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nonlinearities in the gradient and singular boundary conditions. The uniqueness
question may be solved directly by p.d.e. methods or by checking that any solution
is the value function. Finally, one builds an optimal control using, whenever it is
possible, the solution of the HIB equation. This is why some sections below deal
with purely p.d.e. questions while others are concerned with the stochastic
interpretation. Another distinction is made below between what we call the model
problem (1) and more general equations. This artificial distinction is made only to
simplify the exposition. In fact, in all sections below, we adopt a layered
presentation with gradual generalizations where we just explain the required
modifications of proofs.

II. Subquadratic Hamiltonians
We will be dealing here with (1) in the case when 1 <p<£2.

11.1. Bounded Data
We begin with the case of bounded data i.e. we assume that f e [°(Q).
Theorem IL1. There is a unique solution ue W2 ’(Q) (Vr<o0) of (1) such that

u(x)— + o as d(x)—0_. In addition, if Co=(p— 1)p 1(2 p)~ ! when p<2, Co=1
when p=2, then (15) holds. Finally, let ve L},(Q) satisfy

—Ao+plEP 2 Vo+ WS f+(p—DIEP in P'(Q), VieR" (21)
then v<u a.e. in Q; in other words, u is the maximum L, , subsolution. []

Corollary IL1. Let f,, f, € L*(Q) and let u,, u, be the corresponding solutions of (1)
which go to + o0 on 0Q. Then, we have

1
sup (u; —uy)* < 7 sup (f;—f2)". O
o o

1
Proof of Corollary I1.1. u,— 5 sup (fi—f»)* is a subsolution of (1) with f
Q

replaced by f, so by Theorem II.1 u; <u, + %sup (i—f)t 0O
2]

The proof of Theorem II.1 is unfortunately a bit longer and we split it into
several parts. First (step 1), we compute the explosion rate of such a solution and
this trivial computation leads to families of super and subsolutions. Next (step 2),
we build a minimum and a maximum “explosive” solution which have the same
leading behaviour near the boundary. Then (step 3), we prove the uniqueness and
(15). Finally (step 4), we prove the “maximal subsolution” property.

Step 1. It is reasonable to try to obtain the leading term in an expansion of a
solution of (1) blowing up at the boundary by the following ansatz near the
boundary: u(x) =~ Cyd(x)”* The most explosive term in [ — du+ |Vul? + Au— f] is

then
—Coa(a+1)d >~ 2+ ChaPd @+ 1ip



590 J. M. Lasry and P. L. Lions

where we used (twice) the fact that |'d| =1 near the boundary (in fact, as it is well-
known: |Fd|=1 at each differentiability point of d, and d is smooth near the
boundary if Q is smooth). This leads to the choices

a= 12-’—”, Co=a~ ' a+1)1~Y if p<2.
Of course, if p=2 one replaces Cod ™ * by —C, Logd and one finds C,=1.

In order to use in a meaningful way the above formal consideration, we build
two families of “approximations of Cyd™*”, each of which is a two-parameter
family, where we first denote by d any smooth function, say C*(Q), on Q equal to
dist(x, 0Q) near the boundary, say for dist(x,0Q)<J, with 6,>0. Then, we

introduce for £,6 20

c,6=(C0+8)(d_5)_u+Ce} (22)

7

W, s=(Co—&)(d+0)*—C,
for some large constant C, to be determined. Of course, if p=2 then (d+J) “is
replaced by — Log(d + 0). Notice also that if w, ; is defined and smooth on 2, w, ,
is only defined on Q;={x €, dist(x, 0Q) > d} at least for é <J, (d, to be choosen
small enough; 0< 6 < 4§, will always be assumed in this proof). In fact, it will be
handy to consider d as a smooth function on R?, say C*IR"), such that: d(x)
=dist(x, 0Q) if xeQ, dist(x,0Q)<dy; d(x)=0, if dist(x,0Q)=d,, x€Q; d(x)=
—dist(x,09Q) if x¢Q and dist(x, 0Q)<8y; d(x)< —3, if dist(x, )=, x¢Q.
Observe of course that |Pd|=1 in {dist(x,02)<d,} and that d(x)=—0
=dist(x, 08,) if dist(x,0Q)<d, while d(x)+6=dist(x,0Q°) if dist(x,dR)<do,
where

Q° ={xeR¥,dist(x, ) <6} = {xe RN/d(x) = — 5} .
So that, we may consider w, ; to be defined on ©°. (Notice that such a function d

exists as soon as Q is open bounded and has a C*-regular boundary 9Q.)
We conclude these preliminaries with the following computations

_Awe,5+|l7ws,é’p+lws,é_f
= —a(a+1)(Co+e)(d—06)"* 2|Vd|*+a(Co+¢)(d— )" 14d
+aP(Coy+e)P(d— 0) P VIVdP+ ACo+¢)(d— ) *+AC,— f .

Recalling that «+2=(a+1)p and «?C§=a(x+1)C,, we deduce easily for e<1,
8=9,

— AW, 5+ |V W, oP+ AW, s— f Zve(d—8) "2+ AC—C(1+(d—08)™*7")
for some v>0, C=0. And we can choose C, large enough in order to find

— AW, 5+ VW, 4P +AW, 5= f in Q. (23)

Similarly, one shows that C, can be choosen large enough to have:

— AW s+ VW, off +Aw, ,Sf in Q. (24)
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Step 2. Building a minimum “explosive” solution is easy in the subquadratic case.
Indeed, one solves

—Aug +|VuglP+dug=f in Q, uzeW?'(Q) (Vr<o) (25)
with boundary conditions going to infinity (as R— co) like for instance
ug=R on 0Q (26)
or
ug=w, g on 09, foranyfixed &>0. 27)

Since p<2, the existence follows from standard results on subquadratic quasi-
linear equations (see for example Amann and Crandall [1]). In view of the
maximum principle (we have to use here the slightly more general form of
maximum principle in Sobolev spaces — see for example Bony [5] and Lions [23])
we deduce in the case of (27) for example

W, 1 rSUpSug =w, if O<R<R', V>0

and where w,=w, ,. The last inequality of this string comes from the maximum
principle provided we observe that ugz <w, near Q2 since w, blows up at the
boundary.

Hence, uy is bounded in L. This combined with (25) implies that ug is
bounded in W2;"(Q) (Vr < c0): this can be deduced either from [1] using again the
fact that we are dealing with a subquadratic Hamiltonian or by using the gradient
estimates of the appendix (see Lions [16, 19]) which yield bounds in W}, *(22) and
then using (25). Anyway, uy converges (as R— o0) to a solution u of (1) in W;%"()
(Vr < o0) which also satisfies w,<u<w, Ve >0. Next, we claim that u=w,. for all
¢'>0. Indeed for any R’ >0, we can find R such that w,. ;g <w, ; and letting R’
go to + oo, we conclude easily.

We now claim that u is the minimum “explosive” solution of (1). Indeed, let u be
another solution of (1) in W(R2) (Vr < o) such that u— + oo as d(x)—0.. then by
maximum principle u = ug in Q and thus passing to the limit we obtain u=u in Q.

To build a maximum explosive solution, we consider the preceding minimum
explosive solution u; in Q; and we let 6 go to 0. Recall that we have

(Co—s)(d"‘a)—a—C£§y5§ws’5, V8>0

and clearly enough u; > u; if 0 <’ <. Therefore, passing to the limit, exactly as
above we find a solution @ of (1) such that

w,Sasw, in Q.

The fact that @ is the maximum explosive solution is proved by using again the
maximum principle to show (with the above notations)

usu;—i as Jgoesto0.
In conclusion, we found solutions u, @ e W2;"(Q) (Vr < o0) of (1) such that
w,Sususasw, in Q, forall &>0, (28)

where u is any solution of (1) in W;%"(€) (Vr < o) such that u— oo as d—0,.
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Step 3: Uniqueness. It is of course enough to show that u= i in Q. We first observe
that (28) implies that (x)(u(x))~* converges to 1 as d(x)—0.. Therefore, if we
denote by m= igf f(x), we deduce that for all 8&(0,1)
u(x)>0u(x)+ (1 —0m/A in a neighbourhood of éQ.
In addition, w=0a+ (1 —8)m/A satisfies in Q
—Aw+|PwP+AwS0f+(1—O0m=f.
Therefore, we deduce easily by the maximum principle
wsu in Q
and we conclude letting 6 go to 1.

Step 4. We wish to prove that the unique explosive solution u of (1) that we built

above is also the maximum L} subsolution. Let v e I} () satisfy (21). In order to

avoid some rather unpleasant technicalities, we begin with the case f e C(Q): in
that case, we smooth v by convolution i.e. we consider v, =uv * g, where g € Z(R"),

1
0<¢, | gdx=1,supp(¢)CB, and ¢,=n"p(n"). Then, if 5 > 7 we find easily
RN
—Av, +|Po,|P+Av, < f*xg, in Q
and f *g,< f+e¢, where ¢,+0. Therefore, we deduce
&, . 1
(v,,— T) Su; if 6> p

n

and we conclude letting n go to + oo and then é go to 0.
If f e L*(Q), we obtain by the above proof that v, <u} where uj is the explosive

solution in Q; corresponding to f * g, (sull ifo> ;). In addition, the proof made

above also shows that uj is bounded in L, (€2;) and thus in W;2;"(2;) (Vr < o) since
f *g, is bounded in [°(R): in fact, one may even choose C, such that

(Co—8)(d—0) "~ C,Su;=(Co+e)(d+6)*+C,
(with the usual modifications if p=2). Then, we may pass to the limit as n goes to
+ o0 and uj (or subsequences) converges to a solution of (1) in £, thus below u, (in

fact it is u; because the above inequality shows it blows up at 09;). Therefore, v <u;
in ©; and we conclude letting 6 go to 0. []

Remark 11.1. One may deduce from the above arguments the “continuity” of the
explosive solution with respect to @, p or f (for the weak L *topology).

Remark 11.2. By a convenient (and technical) variation of the above method one
can show that it is possible to replace f € L°(Q) by f € I%,.(2) ( p> %), f bounded

from below and f bounded near JQ.
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11.2. General Data
We now wish to allow some data f which may not be bounded near 6Q.

Theorem I1.2. Let felf (), assume that f is bounded from below and that f
satisfies (14). Then, Theorem I1.1 still holds provided one replaces C, by the unique

2—p\* 2
positive solution of the equation (pr> c5— i Co—C,;=0ifp<2,C3—C,

1 (p—1)?
_Cl =0 ifp=2.

Proof. We only present the main modifications in the preceding proof. With the
above new value of C,, one builds exactly as in the proof of TheoremIIl.1 a
maximum explosive solution # of (1) such that

(Co—e)d *—C,<iS(Co+8)d™*+C, in Q, Ve>O0. (29)

The above equation for C, comes into the picture when making the formal
computations of Step 1 and balancing the various leading terms in d * " 2=d %
The only modification in the proof of Theorem II.1 consists in proving that there
exists a minimum explosive solution ¥ which also satisfies (29). To this end, we
observe that w, ,is a subsolution of (1) when Q is replaced by ©° and f is replaced
by

fy=min(f,C,+C5d+0)"Y) in Q, =C,+C;d+)1 in QP —Q,

where C;, C, are positive constants such that C;>C,, C,+C3d™ 9> f in Q.
Obviously, f;e L°(Q2). Therefore, by TheoremIL.1 and its proof, there exists a
unique explosive solution u; of (1) with f replaced by f;, [obtained by an increasing
limit of solutions of (1) with finite boundary values] and u;=>w, ;. Since f = f;, any
explosive solution of (1) is above u [use the maximum principle with the
approximating bounded solutions of (1)] and thus in particular & >u; From this,
we deduce easily letting J go to O the existence of a minimum explosive solution of
(1) u satisfying (29).

Remark 11.3. The analogues of Remarks II1.1-I1.2 still hold: notice only that the
stability with respect to f holds with respect to the weak * L topology provided
the data f are uniformly bounded from below and, satisfy (14) with C, bounded
and f(x)=<Cd™ %+ C for some C=0.

Remark 11.4. The proof also shows that if w is a supersolution of (1) which blows
up on 0Q i.e.

—AW+|PWP+Aw=f in Q, w-0 as d(x)-0,
then w=>u.

Remark 11.5. If we allow f to go to — oo near 09 (or some points of 6R2) then the
situation is a bit more complex. Let f € LY, (), if we assume (14) with C, =0 then
the above result is no longer true. In that case, there still exists a maximum
explosive solution which behaves as C,d ™ * and is the unique solution going to
+ 0 as Cyd % However, in general, there may exist other solutions going to + oo
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less rapidly: indeed, consider

Ad |\Vd)? |vdP
f(x)=7— 7 + L —ALogd.

If 1<p<2, f behaves like — dl—z near 092 and thus satisfies (14). And notice that
u(x)= — Logd(x) is then a solution of (1) which goes to + oo as d(x) goes to 0.

If we assume (14) and C, >0, then f is bounded from below and Theorem I1.2
applies. Now, if we assume (14) and C, <0, then there are two positive solutions C,
of the equation stated in TheoremI1.2 say 0<Cy <Cg and Cq =0, Cg »C, as
C,—0_. Again, there exists a maximum explosive solution of (1) behaving near 0Q
as Cy d~*and itis the unique such solution. But there also exists in general another
explosive solution of (1) behaving near 0Q2 as Cy,d~*: for instance, consider
f=—Aw+|Vw]P+Iw where w=Cqyd™* [

11.3. Asymptotic Expansions Near the Boundary

In this section, we want to precise a bit the behaviour near the boundary of
solutions which blow up at the boundary. Even if we will not present a complete
asymptotic expansion near the boundary (which should include [g]—1 singular
terms plus a bounded term where [g] denotes the integer part of g), the methods we
use should give it and we leave the awful computations to a courageous reader.
We will only prove the

Theorem I1.3. Let f e L2 (Q) be bounded from below and assume that
lim { f(x)d(x)*~"/d(x)>0, } =0. (30)

We denote by u the unique solution of (1) in W*"(Q)(Vr < 00) which goes to + oo
C

on 09Q. Then, if pe3,2] i.e. qe[2,3), u— d—f is bounded on Q when p <2 while

u+logd is bounded on Q when p=2. Next, if pe(1,3] we set

1 o . 3
Cilx)=— 5 —— Codd(x) i p<s3,
) 3 (31)
Ci)=—75Coddx) i p=73,
and we have
{u— %0—} & 1-C, as d—0, if p<%,
(32)
CO _1 . 3
u—— logd|~'-C, as d-0, if p=75-

Proof. We begin with the case 1<p<3. In view of the results of the previous
sections, it is enough build appropriate sub and supersolutions which blow up
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near 09Q. To this end, we consider

wi=Co Ctd oG (G0 oy 3
T & & 2

c c 3 (33)
w;=j’-—(C1+s)Logd+C“ w;=7°—(CI—S)Logd—C£ if p=>3,

where C, is a positive constant to be determined. Tedious computations show that,
provided C, is given by (31) and C, is large enough, w, (resp. w,) is a
supersolution of (1) [resp. subsolution of (1)]. Therefore, w, Su<w; in Q for all
¢>0 and (32) is proved.

Next, if 3< p<2, we also want to build convenient sub and supersolutions.
However, in this case, the choices are not straightforward as above. Indeed,

. 2—
recalling that a= —i’ we choose

C C
wl = ?l-"o— —(Cy+e)dt*+C,, w = E”ﬂ —(Cy—¢)dt*—C,, (34)
where
Com— % Codd if p<2, Ci=—iad if p=2
1= T 51 "0 I p<sz, =73 n p=2.

Again, one can check that w,, w, for conveniently large C, are sub and
supersolutions of (1) and since they go to + oo at 92 we deduce that w, Su<w, in
@ and we conclude. []

Remark I1.6. In the various bounds on the behaviour of explosive solutions near
the boundary, it may seem strange that the leading terms are not continuous with
respect to p (as p goes to 2 for example). Similarly, in (34) the term d' ~¢ vanishes
and could seem to be irrelevant. However — and this fits well with the stochastic
control interpretation — these questions disappear if we look for formal expansions
of the gradient obtained by differentiating these expansions for the solution:
indeed, in Theorem II.1, u behaves like
p-2 2-p

2 g -2
(=177 3= d)

s0 Vu(x) should behave like —(p—1)"*~Dpd(x)d~1?~1 and when p goes to 2
this quantity goes to —Fd(x)d~! which is precisely the gradient of —logd. A
similar explanation holds for (34).

IIL. Infinite Boundary Conditions and Blowing up Data

In this section, we consider the case of data f blowing up at the boundary fast
enough to force solutions of (1) bounded from below to blow up at the boundary.
This also will yield some uniqueness results. The results of this section correspond
to Theorem 1.3.



