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600 J. M. Lasry and P. L. Lions

Without loss of generality (adding a large constant to f, u, #) we may assume that
uzu=1, f =1 a.e. in Q. Therefore, there exists 6 (0, 1) small enough such that
u=0u in Q. Let then 6,=sup{6e(0,1]/u=6u in Q} — we follow a uniqueness
argument which was introduced in a different context by Laetsch [14]. If8,=1, we
are done. We thus argue by contradiction and assume that 8, <1. Of course, we
have u=6,u in Q. We then consider z=¢d ™ * and we observe that z satisfies

—Az+|Vz|P+Az<ePd P+ C,dPH!

and this is less than f for ¢ small enough say ¢<¢,. We choose e=¢,. In fact
zs=¢(d+ )™ * also satisfies

—Azs+|VzyP+Az;< f in Q.
And we consider w, ;=(60,—y)i+(1—0,+7)z;; w, ; satisfies for y <6,
—Aw, s+ |Vw, P +Aw, 50—y f+(1—0+y)f=f in Q

and since u, @ blow up near the boundary we have w, ;<0,i<u near the
boundary. Therefore, by the maximum principle, w, ;<u in Q. We now let y go to
0, and then 6 go to 0, to find

Ogi+(1—0p)z<u in Q
but we obviously have z = vii for some v>0. Hence,
@y +(1—0va<u in Q

and this contradicts the definition of 6,. [J

IV. Superquadratic Hamiltonians
IV.1. Interior Gradient Bounds and Maximum Solutions

We begin with a result which gives interior gradient bounds for solutions of (1):
similar bounds were first derived in [16, 19] and the proofs are recalled in the
appendix. We only remark here that a sharper form of these bounds may be
obtained by a simple scaling argument.

Theorem 1V.1. Let f €L}, .(2) be bounded from below on Q and satisfy

IfGN<Cyd(x)™*  for some pz0, C,20. (41)
Let ue W,2"(Q) (Vr < o) be a solution of (1) satisfying
Auz—C, forsome C,=0. 42)

Then, we set y = p%iifﬁgq,yarbitraryin(g,l) if f>qandy= giffe Wl *(Q)
and |V f(x)|d(x)"#~ ! € L*(Q). With these notations and assumptions we have

Vux)=Cad(x)™? in 2, O (43)
where C, only depends on C,, C,, 7, f and the diameter of Q.
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Remark IV.1. The bound is optimal as it may be easily checked on simple

examples like % if p<2 (—Logd if p=2) with C,,a given as in Theorem I.1 or
-2

Theorem 1.3, or —Cyd®* if p>2 with a= E——lifﬁgq, a=1—f/pif f<pand C, is

a convenient positive constant. [] -

Exactly as in [19], this implies of course the following result

Corollary IV.1. Let f e L, (R2) be bounded from below on Q and satisfy (41). Then,
any solution ue W2;"(Q) (Vr < o) of (1) which is bounded from below belongs to
WLs(Q) with s<p—1if p>2 and B<q, s<p/Bif p>B>q (and thus p>2). In
addition, any such solution may be extended continuously on Q and ue C*%Q) with
0=p—-2)/(p—Dif p>2,<q,0=1—B'/pif p>p>pf'q and 6=1—B/pif p>f>q
and f e Wk ®(Q) satisfies |[Vfld " 1e*(Q). O

We now just sketch the proof of Theorem IV.1: let x, € Q, set r=14d(x,) and
consider v(x)=r"" "Yu(x,+rx) for xe B(0,1). One checks easily that v solves

—r?Av+|VolP + Aru=r""f(x,+rx) in B(0,1) 44)
with e=(p—1)y—1, v=(p—1)y+ 1. Next, observe that
[FP7f(xo+rx)|<C, on B(0,1),

where C, depends only on Cg and f. And if f=g, then 6 =0, v=2 while if f>gq,
v=6+2and 6>0.If B<qorif B>qgand d e W™, |Vf|d~#~ ! e [*(Q), interior
estimates are available (see appendix) and we deduce from this
Vo) =C,
which of course yields (43). [J
In the last case, we observe that
Cl
140] 1m0, 0,10 —(:"—k) forall m>1, ke(0,1).

But then, recalling the following “standard” inequality for all m> N
1-X N
I Vv”Lw(B(O,a})) =C| VU“L"'(';(O.*H) {“ AU“L"'(B(O,%)) + Vv”Lm(B(O.%))}m

we finally obtain
[Po(0)| £ Cmyr N/ for all m>N.

And this yields (43). O

Next, using these estimates and Corollary IV.1, we may now deduce easily the
following

Corollary IV.2. Let p> 2, let f € L, (€) be bounded from below on Q and satisfy (41)
with B<p. Then, there exist solutions u, i of (1) in W;%;"(Q) (Vr < c0) bounded from
below such that if v is a solution of (1) in W"(Q) (Vr < 00), respectively W,%;"(Q)
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(Vr < o0), then u2v in Q, respectively i =v in Q. Furthermore, if ve L1 (Q) satisfies
(21) then v<1 a.e. in Q. And if 4;, u; denote the corresponding maximum solutions
of (1) with Q replaced by Q; then

Uy 2ug=dg2us=uzu in Q; for 0<6<d 45)
and u; decreases to # as 6 goes to 0. []

Remark IV.2. A consequence of the results we will prove in the following sections
is the following: assume that f e L°(R") and denote by @’, u’ the corresponding
maximum solution of (1) with Q replaced by Q° then

Uy St SusSig<uy in Q for 0<dé<d (46)
and u,; increases to u as J goes to 0.

Remark 1V.3. We will show in Sect. V that if f behaves like C,d”# near the
boundary with 0 f<p [f=0 means feL*(Q)] then y=# in Q.

Proof of Corollary IV.2. The existence of the maximum solutions y, # is exactly the
same as in Theorem IIL.2. Next, the string of inequalities in (45) follows from the
definitions of u, u. Finally, 4, decreases to a solution of (1) in W2,"(Q) (Vr < o) in
view of the estimates given by Theorem IV.1. Therefore, the limit is below #. Since
on the other hand, by (45), #; =1, we conclude easily. []

We conclude this section by a property of @, u which will be useful later on.

Proposition IV.1. Let @ be a bounded smooth domain such that @CQ. Let
ve W (w) (Vr < 00) (resp. W2 (w)nC(®) (Vr < o0)) be a subsolution of (1) with
replaced by w. If v<u (resp. v<1) on dwNQ then v=u (resp. v=u) in . [J

Proof. Let >0, v,=v—¢ satisfies the same properties than v. In one case, we just

consider _. _ .
w,=# in Q-w, =max(L,v—e) in

and we observe that w, is a subsolution of (1) [in W!;*(Q)]. Therefore, by
CorollaryIV.2, w,<# and thus v<# in w by letting ¢ go to 0.
In the other case, the above construction has to be modified a bit since w, does

not belong to W27(Q) (Vr< o0). We then consider (t)=¢f (é) where ()=t if
t20, Be C*(R), B is convex, 1= f(t)=0 on R, B(t)= —1 if t< —2. And we now
introduce _ . _ o
z,=# in Q—-w, =id+pfv,—%) In o.

Now, z,€ W>'(Q) (Vr < o0) and we claim that z, is a subsolution of (1). We only
have to check this claim inside w where we find

Vz,=B.Vv,+(1—B)Vi,
— Az, = B(— 4v)+(1 = B) (— 4w)— B;|Vv,— Vil*
SB(—4v)+(1—B)(— 4u),
z, S+ v, — 1)

and our claim follows easily from these inequalities.
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We may now complete the proof of Proposition I'V.1 since, by definition, z, <u
in Q and letting ¢ go to 0, remarking that B, converges uniformly to ¢ *, we obtain
v=uinw. [

Remark 1V4. The expert reader will notice that this result is one form of the
dynamic programming principle for the associated stochastic control problem!

1V.2. An Estimate on the Boundary Behaviour

We want to show in this section some properties of @, u like (17). We will be always
dealing with the case p > 2, f € L, .(€2) bounded from below and satisfying (41) with
f < p. Hence, Corollary IV.2 and Proposition1V.1 apply. In all the results which
follow in this section and in Sect.IV.3, we will not recall these assumptions.

Theorem IV.2. The maximum solutions @, u satisfy (17) with a= — % In
addition, if f satisfies P—
lim inf { f(x)d(x)?| d(x)>0,} >0 for some 0€(q,p] 47)

then u, u satisfy (17) with a=1—6/p. [

Remark 1V.5. Again, this result is rather optimal since if f satisfies (41) with §<gq,
we already know that ue C%*%Q)and — C,d* gives a simple example (for the ad hoc
C,>0) which shows the sharpness of (17). Similarly if f(x) behaves like C,d(x)~#
for some g < f < p then we already know that ue C>*%Q) and again — C,d* shows
the sharpness of (17). The only improvement we could think of would be to show
(and we were unable to do it)

liminf {u(y)—u(x)}|y—x|"*=—-C,, forall xedQ,
yeNR,y—>x

p—2

where Co=(p—2)"'(p—1)P~! if f<gq, solves Cha?—Coo(1—a)=C, if f=gq,
1 . .
Co= o Cl? if g< B<p at least when f behaves like C,d~* near the boundary.

Proof of Theorem IV.2. The proofis rather delicate so we will begin with a simpler
claim than (17). But let us first give the idea of the proof: we just observe that (17) is
equivalent to say that for all x,€0Q, u(=u,i1) —¢&x—x,|* cannot have a local
minimum in Q at x, for ¢ small enough. To prove this fact, we will argue by
contradiction and we will do so by building a subsolution on a neighbourhood of
X, such that on the boundary of the neighbourhood it is below u while it is above u
at x,. This will contradict PropositionIV.1 proving thus our claim.

To explain how this strategy works, we will begin proving that if ¢ e C**(Q)
then u— ¢ cannot have a local minimum on Q at x, € Q2 where u=uy or 4. Assume
by way of contradiction that x, is a local minimum of u— ¢ for some ¢ € C'*(Q).
Then, denoting by &, =V ¢(x,), there exists C=0 such that

u(x) Zu(xp) +(Egy x—xo)— Clx — x> forall xeQ. (48)
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We then consider the following function defined on & where w={x € £, d(x) <}
where 0 >0 will be determined later on

w(x) = u(xo) + (&0, X —Xo) = Clx —Xof* + p(d* ~d*), Vxed 49)

. -2 . .
with a= p—l’ for some u >0 to be determined. In view of (48) and (49), we have

wSu on JonQ,  w(xe)>u(xg). (50)
Hence, Proposition IV.1 will yield the desired contradiction if we show that wis a

subsolution of (1) in w. Therefore, we compute in @

— AW+ VWP + Aw— f =2NC+apud* ™ 'Ad — (1 — )d2 -

va |p
F +/1W—~f

1 1
<C (1"‘ ?——7) *ﬂOt(l-—-(Z)F +

where C denotes various constants independent of §. Recalling that |[Fd]=1,
(1 —o)p=2—u, we see that if § is small enough and (au)? ~* <1 —a [depending only
on u, |&), C in (49), a lower bound on f and Q] w is a subsolution of (1) in w.

We now show (17): it is enough to show that the following inequality cannot
hold

+

vd |P
i

U(X) Zu(xo) —eolx —xo* = Clx —xo|*,  VxeQ (51)

for small ¢,, >0 and for some C =0, where a= B_f or a=1—0/p if f satisfies
(47). Indeed, if (51) holds, then we introduce
w(x) = (X0) — eoBo(1X —Xol) = Clx —xo|* + p(0" —d*) in @

where o= {xeQ/d(x) <8}, B,(t) is the function defined by

t|2 2 L L . 1
po=2" RS i gsde, = iz

In view of (51), (50) will hold if

LS (52)

ué* >
Next, we compute for x in w the following quantity

—Aw+|PwP+Aw— f=2NC+(N — 1)soﬂ |+£0B” uo(1— a)dZ —

% _2C(x—xq)—ap

1 vd |P
+oay —— Ad+ eoﬁ 7i-e +Aiw—f

dla I
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(in fact this equality holds a.e. in w), and this yields

—Aw+|l7w|"+Aw—f§C—f+soN%+C,u — (1 — ) =

1
ET:; d2 o

p

vd
o |+2C(x Xo)+op g4l -

Now, if we begin by the case where we do not assume (47), then we just bound f by
a constant C and we deduce

+ soﬂ

+ po(1 —o)

1 1
—Aw+|l7w|"+/lw—~f§C+aON%+CuF pra

1 1\
+ (8o 1= +CHou 7= i)
82—1

2—a
We then choose e = (tud%, ') * withO<t<

2
T so that (52) holds and we obtain

2—a 2-a

—Aw+|PwP+Aw—fSC+Cu +Nt * op @ §2 02

1
di—e

1 _1lze _1-e 1 \?
+—ua(1—cx)d7_7;+<at « 5=y e glley Croap F) .

1
Next, if we fix ¢ in (0 2 ) and pin (0 (to)P~ Lo~ ‘) recalling that d(x) <4, we see

that for ¢, small enough (depending only on N, t, u, ) we may bound the above
terms by
1 1
(:4‘(jﬂ Eii:; —K aif:;
for some K >0, and then we conclude choosing 6 small enough.
In the other case, that is when we assume (47), we obtain

1 1 \?
—Aw+|PwfP+iw—fSC— d— +N80 (socx —+C+ou i a)
82—a

v a o LAV
§C—?+Neog+<c+aeo *Paud P>

2—a 2
and again writing e = (tud%ey )« with 0<t< e so that (52) holds we deduce

_2-a 2-a 2

—Aw+|PwP+Aiw— fSC— 36 +Nat = §7@ "9y "= g

+(C+at" “ oy & Peyoud P

1—-a 1-a 0 1 O)p



606 J. M. Lasry and P. L. Lions

And, if we choose t in (0, 52_a>’ win (0, v'"Pa~ ') we see that for ¢, small enough the
above terms may be bounded by

v

d°

therefore w is a subsolution in  for  small enough and we conclude. []

C—

We, in fact, proved the
Corollary IV.3. The maximum solutions u, 4 satisfy for all xe o
liminf {u(x)—u(xe)} |x — x| *< —K <0 (53)

xXeN, x—Xx
where K=K(p,N) and a=1-1/(p—1).
Andif f satisfies (47), then (S3) holds witha=1— gand K=K(p,0,N, C,)where
C, =liminf { f(x)d(x)?/d(x)—0 }.

IV.3. Infinite Neumann Conditions

Our goal in this section is to investigate the behaviour of the maximum solutions
near the boundary. We suspect that the results given in Proposition IV.3 hold in
full generality but we were unable to prove it.

We will first sketch the proof of

Proposition IV.2. Let fe W *(Q), p>2.
i) If Qis a ball (or if Qis an half-space), the maximum solutions of (1) are
Lipschitz tangentially i.e. if Q= Bg then

lu(y)—u(@)|£Cly—x| Vy,xeQ with |y|=|x| (54)
and if Q={xy>0} then
lu(y) —u(x)| SCly—x| Vy,xeQ with yy=xy (55)

for some C=0, where u=u or .
ii) If Q is convex, then u=u or i satisfies

Vu—Vux) n()nx)|<Cd~1? in Q (56)

Jor some C=0, where n is any smooth vector-field equal to the unit outward normal
near 0Q (i.e. n=—Vd near 0Q). And if 2<p<3, this yields

u(x) —u()| S Clx —y|*~2ICP=D vy, xeQ with d(x)=d(y).  (57)

Remark 1V.6. Itis proved in Lasry and Lions [15] that if Q is convex, f is convex
(€ C(£2)) and satisfies (41) then u and # are convex. In addition, if (41) holds then

_ 1 . . . .
u, we C17(Q) with y= pTl if f<gand y= g if B> gq. This Holder continuity
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combined with the convexity then implies
Vu—Vu-mn|£Cd~"? in Q. (58)

This improved bound on the tangential gradient enables us, in that particular case,
to follow the arguments given below. []

Proof of Proposition IV.2. i) In the case of the half-space, one simply remark that
u(- + he;)) (for 1 <i<N—1) is the maximum solution of (1) with f replaced by
f(- + he;) hence, using as in Corollary IL.1, the maximality

1
lu(- +he)—u( o= 7 /(- +he)=f () o = Clh
and (55) is proved. One proves (54) similarly replacing the tangential translations

by rotations.

. . C L = 1
ii) Let y be an arbitrary point in Q, we set u,(x)= - u(y+t(x—y)wfor0<t<1,

1 -2
xey+ n (2—y)=Q, with a= I;:-_—l Observe that QCQ, and that u, solves

—Au +|Vu |+ itzut =t? T4f(tx) in £,
Therefore, we have for some C=0

—du,+|\Vu P+, < f+C(1—t) in Q,

and u,— % (1 —t)is asubsolution of (1); hence u, <u+ % (1 —1). But this inequality
immediately implies

(x—y,Pux)=—-C, V(x,y)eQxQ, (59)
which in turn yields (56) and (57). O

The improved Holder continuity of u, # in the tangential directions enables us
to obtain the

Proposition IV.3. Let fe W' *(Q), p> 2. Assume that either Q is a ball, or Q is an

-2
half-space, or Q is convex and p < 3, then o = p_1 the maximum solutions u, i satisfy
p —

t™u(xo—tn(xo)) —u(xg)} > —Co as t—0,, uniformlyin x,€0Q (60)
Vu(x)d(x)! *—>Cqoon as d(x)-0,, (61)
where Coy=(1—a)'/®~ Vg1,

Proof. We just sketch it. Let x,€0Q, we introduce the blown-up-functions u,
defined by u(x)=1t"*{u(xo+tx) —u(x,)} defined on Q,= (2 — x,)/t. We want to let ¢
go to 0. We first observe that by Theorem I'V.1 and Corollary IV.1 u, is bounded
in L°(Q,nBg) (VR < o0). In addition, u, solves

— Au,+ [Vu P =127 f(xo+1x)— Au(xo +tx)} in Q,.
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And we obtain easily a priori bounds from the interior gradient estimates:
therefore u, is relatively compact and any convergent subsequence u, converges
uniformly on compact sets, as t, goes to 0, to a solution ve W,3,"(IT) (Vr < o0) of

—Av+|PolP=0 in II, 0u(lxe)=0, [X)|=C|x|* in II,

where IT={xeR"/n(x,) - x<0}. In addition, using Proposition IV.1, we deduce
that v is above any function we W;2;"(w)nC(@) [resp. W?'(w) Vr< oo if we are
dealing with u] satisfying

—Aw+|FwP<0 in @, w=v on JdwnIl.

Finally, the estimates (54), (55) or (57) imply that » depends only on the variable
x - n(xg) i.e. v(x)=@(—x - n(x,)) where ¢ solves

—@"+|@'|P=0 for t>0, ¢@0)=0, ¢@eC([0,0)C*0,0).
Hence, ¢(t) <0 or ¢(t)=CyA*—Cy(t + 4)* on R, for some 1=0. But, since v is “a
maximum solution” we deduce that ¢ =y on [0, L] for all L>0, ye C?([0,L])
satisfying

)=o), —y"+P=0 in (0,L).
And this implies by Theorem IV.2 and its proof that
liminf ()t~ *<0

t—0 4+
therefore ¢(t)= — C,t* and we conclude easily. []

We conjecture that if p > 2, f € L*(Q) then (60) and (61) always hold. Of course,
in view of the preceding argument, it would be enough to prove that |u(x)—u(y)|
<Clx—y|° for some f<a if x,yeQ, d(x)=d(y) but this type of estimate seems
rather difficult to obtain in general.

V. Viscosity Formulation of the Boundary Conditions
V.1. Uniqueness Results

If we accept the stochastic control interpretation of the solutions built in the
preceding sections, one is led (see [20] for more details) to the following
formulation of the boundary condition

forall @eC*Q), u—¢ achieves its minimum over €. (62)

Or course, an equivalent formulation in the case when u € C(Q) is to impose that
u— ¢ never has a local minimum on Q at a point x, € Q forall ¢ € C*(Q).It is quite
clear that solutions considered in Sects. IT and III satisfy (62), even with ¢ € C({),
since they blow up at Q. Similarly, the maximum solutions built in Sect. IV also
satisfy (62), even with ¢ e C*%Q) for 6> «, since they satisfy (17): indeed, assume
for instance that #— ¢ does not achieve its minimum over Q. Since u, ¢ € C(Q),
there is a minimum point x, over Q of u— ¢ and x, € Q. Then, we have for xe Q

u(x)—u(xo) Z @(x)— (xo)



