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608 J. M. Lasry and P. L. Lions

And we obtain easily a priori bounds from the interior gradient estimates:
therefore u, is relatively compact and any convergent subsequence u, converges
uniformly on compact sets, as t, goes to 0, to a solution ve W,3,"(IT) (Vr < o0) of

—Av+|PolP=0 in II, 0u(lxe)=0, [X)|=C|x|* in II,

where IT={xeR"/n(x,) - x<0}. In addition, using Proposition IV.1, we deduce
that v is above any function we W;2;"(w)nC(@) [resp. W?'(w) Vr< oo if we are
dealing with u] satisfying

—Aw+|FwP<0 in @, w=v on JdwnIl.

Finally, the estimates (54), (55) or (57) imply that » depends only on the variable
x - n(xg) i.e. v(x)=@(—x - n(x,)) where ¢ solves

—@"+|@'|P=0 for t>0, ¢@0)=0, ¢@eC([0,0)C*0,0).
Hence, ¢(t) <0 or ¢(t)=CyA*—Cy(t + 4)* on R, for some 1=0. But, since v is “a
maximum solution” we deduce that ¢ =y on [0, L] for all L>0, ye C?([0,L])
satisfying

)=o), —y"+P=0 in (0,L).
And this implies by Theorem IV.2 and its proof that
liminf ()t~ *<0

t—0 4+
therefore ¢(t)= — C,t* and we conclude easily. []

We conjecture that if p > 2, f € L*(Q) then (60) and (61) always hold. Of course,
in view of the preceding argument, it would be enough to prove that |u(x)—u(y)|
<Clx—y|° for some f<a if x,yeQ, d(x)=d(y) but this type of estimate seems
rather difficult to obtain in general.

V. Viscosity Formulation of the Boundary Conditions
V.1. Uniqueness Results

If we accept the stochastic control interpretation of the solutions built in the
preceding sections, one is led (see [20] for more details) to the following
formulation of the boundary condition

forall @eC*Q), u—¢ achieves its minimum over €. (62)

Or course, an equivalent formulation in the case when u € C(Q) is to impose that
u— ¢ never has a local minimum on Q at a point x, € Q forall ¢ € C*(Q).It is quite
clear that solutions considered in Sects. IT and III satisfy (62), even with ¢ € C({),
since they blow up at Q. Similarly, the maximum solutions built in Sect. IV also
satisfy (62), even with ¢ e C*%Q) for 6> «, since they satisfy (17): indeed, assume
for instance that #— ¢ does not achieve its minimum over Q. Since u, ¢ € C(Q),
there is a minimum point x, over Q of u— ¢ and x, € Q. Then, we have for xe Q

u(x)—u(xo) Z @(x)— (xo)
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therefore

liminf {u(x)—u(xe)} |x—xo|™* = liminf {@(x)—@(xo)}|x—xo|*
XeR,x>x0 xXeR,x—*xg
and the right-hand side is O since ¢ is smooth and «€(0,1). And we reach a
contradiction with (17). In other words, any solution of (1) satisfying (17) does
satisfy the boundary condition in “viscosity form” given by (62).

Our goal in this section is to prove, under quite general assumptions, that there
is a unique solution of (1) satisfying (62). In particular, when this holds, this will
imply that with the notations of Sect. IV the maximum solutions # and u are equal.

We may now state our main result.

Theorem V.I. There exists a unique solution of (1) in W;%,"() (Vr < 00) satisfying (62)
under one of the following three sets of assumptions
) 1<p=2, [ e} (Q) satisfies (14) and is bounded from below.
i) 1<p, feL} (Q) satisfies (40).
iii) 2<p, felL? (Q) satisfies (41) with B<p and is bounded from below.

Corollary V.1. Let p>2. Let f € L}, () satisfy (41) with B < p and be bounded from
below. Then, the maximum solutions built in Sect. IV are equal. Furthermore, if
feC(Q) orif feC(Q)and f(x)d(x)°—C, as d—0, with 0<0<p, they coincide
also with the envelope of all C*(Q) subsolutions of (1).

Remark V.1. Actually, (62) can be proved to be equivalent to
u— ¢ achieves its minimum in Q for all quadratic functions ¢. (62"

Indeed, suppose (62') holds and let e C%(Q). Let x,eQ be a minimizing
sequence for u— ¢ converging to some x, € Q. For C large enough we have y(x)
<@(x)Vx#+x, where 1w is defined by p(x)=0(x,)+Vo(xe): (x—x0)
—Clx—x0*Vxef. Hence, y is quadratic and u(x)—p(x)>u(x)—@(x)
=min(u — ¢)=min(u—1p) for all x+ x,. Hence from (62') x, lies in Q.

Proof of Corollary V.1. As we already said, %, u satisfy (62) and so are equal by
Theorem V.1. In addition, if we denote by i the envelope of all C*(Q) subsolutions
of (1); we first claim that by the same arguments as in Sects.III and IV u is a
solution of (1) in WZ"(Q)NC(Q) (Vr<wm). If feC>*Q) for some y>0, the
arguments indeed adapt without changes. If f e C(Q), we just approximate f by
f.e C{(Q) such that f, < f ﬂ, f uniformly on Q. If f e C(Q) satisfies (63), we first
observe that g(x)= f(x)d(x)’ may be extended continuously to Q by giving it the
value C,; on 0Q then we approx1mate g by g,e C}(Q) such that g,<g, g,¢
uniformly on &, g, is constant on 9Q and we consider f, x=g,(d(x)"® A R). And
these approximations easily yield our claim on .

Next, we observe that Proposition IV.1 and Theorem IV.2 may be applied or
more precisely that their proofs are immediately adapted to the case of #<0 that
i satisfies (17). Hence, # satisfies (62) and Corollary V.I is proved. [J

V.2. Proofs

We begin with the proof of Theorem V.1 in the case i ). We denote by i the unique
solution of (1) in W;2;"(2) (Vr < 00) which blows up at (see Theorems II.1 and 11.2)
and we consider another solution u of (1) in W;%"(Q) (Vr < o) satisfying (62). We
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obviously have u<u by Theorems I1.1 and I1.2 and we want to show that the
reverse inequality also holds. The strategy of proofis quite simple: we just observe
that if ve C*(Q) is a subsolution of (1) then u—v achieves its minimum over Q2 at
some point x, because of (62) and by the maximum principle we deduce
(u—1)(xo) =0 hence u=v. Therefore, if we are able to approximate i by C*(Q)
subsolutions of (1), we complete the uniqueness proof. Now, if f e C!(Q) such that
fi2 f, fn= —C for some C independent of n and f, converges uniformly to f on
compact subsets of Q. We next denote by i, the corresponding unique solutions of
(1) (with f replaced by f,) which blow up near the boundary (Theorem II.1) and as
remarked in Sect. II we know that iz, converges uniformly on compact subsets of Q
to #and of course #, < #. Since we know now by the proof of Theorem I1.1 that i,, is
an increasing limit of C%(Q) (use the smoothness of f,) solutions of (1) (with f
replaced by f,), the desired sequence of subsolutions of (1) in C*(Q) is built.
However, this argument does not work as well if we only assume (as we did in
Theorem V.1) that fe LY (Q), satisfies (14) and is bounded from below. In this

loc

general case, we approximate f by f, given by
fi=f in Ql/n’ =—C, in Q_Ql/na (63)

where C,=0 is any constant such that f = —C, in Q.

Again, we consider the solutions @, of (1) (with f replaced by f,) which blow up
near Q. We know from the proof of Theorem I1.1 that there exists foreachn=1, a
sequence (i, ,)m>; satisfying

—Aﬁn,m+lvan,mlp+j’ﬁn,m=f;t in Q’ an,me Wzyr(Q)(Vr<oo)9
i, n=m on 08 (64)

and @, , T4, uniformly on compact subsets of Q.

Therefore, we obtain: u>1, ,, and, passing to the limit in m, u> 4, And we
recall from the results and arguments of Sect. I that i, increases to i and thus u = i,
completing the proof of Theorem V.1 in casei).

The proof of case i) is almost trivial: indeed, we apply (62) with ¢ =0 to deduce
that any solution of (1) satisfying (62) is bounded from below on Q. Thus, by
Theorems III.3 and IIL.4, the uniqueness is proved.

Unfortunately, the proof of case iii) is much more complicated; in order to
keep the ideas clear (or to try at least) we will begin with the case when f e C'(Q)
and Q is starshaped (step 1), then we will treat the case when fe C}(Q) but Q is
arbitrary (step 2) and we will conclude with the general case (step 3).

Step 1. feCY(Q), Q is starshaped.
Without loss of generality we may assume that Q is starshaped with respect to
0. Again, we denote by @ the maximum solution of (1) in WZ'(Q) (Vr <) or
equivalently in C*(Q2) in view of the smoothness of f —see Sect.IV. And we denote
by u any other solution of (1) [in C¥()] satisfying (62). Recall that e C(Q) (cf.
Sect.IV) and observe that applying (62) with ¢ =0, one deduces that u is bounded
from below and thus u may be extended continuously to € (cf. Sect. IV). Finally,
u<d and thus we want to show the reverse inequality.
We then introduce for t€(0,1)
p—2

v ()=t P Tu(tx) for xeQ/t>Q. (65)
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Obviously, v, satisfies
v Vo=t f(x) in U, b,eCHQONCQ)  (66)
and thus in particular v,e C*(Q) and satisfies
A Vo P40 < f()+C(1—1) in @ 67)

for some C=0 independent of t. In other words, v,— %(1—0 is a CXQ)

subsolution of (1) and our strategy applies: u>v, in Q and thus passing to the limit
as t goes to 1 we conclude u>u in Q.

Step 2. feCY(Q), Q arbitrary.

We first observe that by the maximum principle the minimum of u—i is
achieved at the boundary. Furthermore, if 8 €(0, 1), we may still assume that the
minimum of u— 0 is still achieved at the boundary. Indeed, if u—0,u has an
interior minimum over Q say at x, e Q for some sequence 6,1, then observing
that 0,u satisfies

— 40,3+ VOwP+A8,u<0,f < f+C(1-0,)

we deduce from the maximum principle
. _ C
min (u—0,0)= — — (1—6,)
2 A

and we conclude letting n to to + co.

Therefore, let fix 6 e(0,1), we assume that u—60i has a minimum over Q at
Xo € 0Q. Then, we remark that u— 0 +(1 — 0) |x — x,|? has a unique maximum over
Q at x,€0Q and, denoting by i =0ii+(1—60) |x —x,|?, that @ satisfies

—Ai+|ViP+s0f+C1—-0)< f+C(1-0), (68)

where C denotes various nonnegative constants independent of 6.

We next observe that for some small >0, the open set Q=(x,,d)NQ is
starshaped with respect to a point that we denote by 0 such that d(0)=~y >0 where
y, 0 are independent of x, and 6. We then consider as in step 1 the functions

p—2
v(x)=t P litx) for xeQ/t, te(0,1)

and we obtain exactly as in step 1 using now (68) instead of (1)

—Av,+ Vo P+ A, £f+C1—0)+C(1—t) in Q, ©v,eCH Q). (69)
Let X be a minimum point of u —v, on Q: because of (62), xe Q or x€ 60N Q. If x € Q,
we use maximum principle to deduce

mgn wu—ov)=— % (1—-6)— % 1-0

and thus in particular
p—2

— C
lxg)—t P02 ~ S (1-6)— S (11
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and we deduce letting t go to 1

1-6).

>0

m;n (u—0)=(u—0u)(xo)= —

The conclusion follows upon letting 6 go to 1.
In the other case i.e. if Xe dQNQ, we obtain letting ¢ go to 1

(u—1)(xo)Z min (u—ii)
0N

and this yields a contradiction with the fact that x, is the unique minimum point
of u—1ii over Q.

Step 3. The general case.

We begin by observing that if f e C(Q) or even if f is continuous near 6Q2 the
above proof is easily adapted: the only difficulty lies with the fact that i, i, v, do
not belong to C? in general. But this can be taken care of by observing that

1
Vo *05=1; [where 05= 5N 0 (5), 020, e 2(RY), RjN edx=1, SupngB(O,i):I

satisfies
— Ao, 5+|Vv, 5P+ Av, 5
Sf*0;+C(1—0)+o(1—1t) in {xeQ/t, dist(x,00/t)> 6},

where w is a modulus of continuity of f near the boundary. Taking é small enough,
we find that v, ;€ C*(Q) and

—Av, 5+ Vv, P+, s f+CA =0+ o(1-t)+w(@d) in Q

and we conclude as before letting 6 go to 0, then ¢ go to 1 and then 6 go to 1.

To obtain the uniqueness in the case of a general f, we approximate f by f,
given by (63) where C, =0 is any constant such that f = —C, in Q. The above
arguments show that u>u, where u, is the unique solution of (1) satisfying (62)
(with f replaced by f,). Obviously, # = u, and u, increases to a solution in W2"(Q)
(Vr < 00)nC(Q) of (1) and we just have to show that @<, where #i denotes the
limit of u,. To this end let 8€(0, 1), let ye (B, p), =1—1y/p and choose K>0,C>0
so that w= — C— Kd" satisfies

— AW+ |FPwP+AwL —Cy—vd™? in Q, forsome v>0. (70)
Then, we remark that z=60i+ (1 —0)w satisfies
—Az+|VzfP+AzZ0f —(1 —0)(Cy+vd™ ") =g.

But on Q,,

g=f—(1=-0(f+Co+tvd" = f
while on Q—@Q, ,

g=0C(1+d #)—(1—0)(Co+vd™?)
and thus, g< f, in Q provided n is large enough say n=ng(6). Hence,

i+(1—-0w=u, if n=ny0)
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and passing to the limit in n, we deduce
Ou+(1—0u=4q.

We may now conclude letting 6 go to 1. [

V.3. Applications

We want in this section to show that (17) is equivalent to (62) when p>2 (with
appropriate conditions on f) and that (62) is stable under some passages to the
limit. This together with the uniqueness proved in Theorem V.1 will yield a rather
powerful stability result. We begin with the relations between (17) and (62). Recall
that (17) implies trivially (62).

Theorem V.1. Let ue W2'(Q) (Vr<oo), let p>2, let f e L3 (2) be bounded from
below and let xq€ Q. Assume that ue C(Q) satisfies (62) and

—Au+|VulP+iu=f in Q, forsome A C=0. (72)
Then, u satisfies
liminf {u(x)—u(x,)} |x—xo|*<0, where a=(p—2)[(p—1). (73)

xeQR,x-xg
Proof. The proof is almost the same as the one of Theorem IV.2: with the
notations of Theorem IV.2, we just have to replace w by w" defined exactly as w

with d replaced by d+ % Then, w"e C*(®) is a subsolution of (1) and u=w" on

dwn Q. Therefore, by maximum principle, u — w" achieves its minimum on €2 and
we reach a contradiction. []

Remark V.1. Many variants of the above result and of its proof exist that we will
skip here.
We now present a stability result.

Theorem V.2. Let(F,), be a sequence of continuous functionson M® x R¥ x R x Q
where M denotes the space of N x N symmetric matrices, let u, € W;%;"(Q) (Vr < o)

satisfy for some C =0 independent of n
F,(D*u,,Du,u,x)=—C a.e.in Q. (74)

We assume that F (A, &,t,x) S F,(B,&,t,x) for all EeRY, te R, xe Q, A= B (in the
sense of symmetric matrices), F, converges uniformly on compact subsets to
—tr(A)+|&|" + At, for some p>2, A =0, u,, satisfies (62) and converges uniformly on
compact subsets of Q to some function ue C(Q), and that (u,—u)~ converges
uniformly to 0 on Q. Then, u satisfies (62).

Proof. Assume by way of contradiction that u— ¢ admits a minimum at x, € 0€2
for some ¢ € C*(Q), without loss of generality we may assume that x, is the unique
minimum point of u— ¢. By assumption, u,— ¢ achieves its minimum over  at
some point x,€ €. We remark that

min (4, — @) Su,(x)— @(x);>u(x)—@(x) forall xeQ
e}
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while
min (u"'_(P)g Hl_in (u_(p)_ “(un_‘u)_ Iloo 5
Q Q
hence u,(x,)— ¢(x,) converges to u(xo)—@(x,). Now if x, (or a subsequence)
converges to X e (2, then
(%) — (%) Z U(x) — (X)) = (| (11— 1) ™ || o 7 U(X) — (%)

and thus X=Xx, by the uniqueness of the minimum.
Next, by maximum principle, we have

Fn(Dz(p(xn)5 D(p(xn)a un(xn)7 xn) % -C
and passing to the limit we find
— Ap(x0) + |V o(xo)|” + Au(xo) = — C. (75)

and we observe that we may replace ¢ by @+ c(6*—(d+J)*) where 6>0,

-2 . . . ..
o= p—I, ¢>0, since u— @ + c((d + 5)*— 6%) admits also a unique minimum at x,.

Therefore, we deduce from (75)
—Ap(xo)+ cad ™ P Ad(x) — coa(1 — )6~ D+ | p(x) —cxd! ~*Vd|P = —C

and if we choose ¢ in such a way that (ca)? ' <(1—a), we easily reach a
contradiction letting d go to 0. []

From this stability result, we deduce the
Corollary V.2. Let p>2, let f, e LY () satisfy
f,z—C, f,£Cd™* ae in Q, forsome C=0, Be(0,p). (76)

We denote by u, the unique solution in W2,"(Q)nC(Q) (Vr < o0) of (1) satisfying (62)
and we assume that f, converges to f weakly in L3, . — *. We denote by u the unique
solution in WZ'(QNC(Q) (Yr<o) of (1) satisfying (62). Then, u, converges
uniformly on Q to u.

Proof. By Theorem IV.1, u, is bounded in C%?(Q) for some >0 and in W%"(Q)
(Vr < o0). Then, we may assume (up to subsequences) that u, converges uniformly
on Q to a solution u of (1) [in W%(Q)NC(Q) for all r<oo]. By Theorem V.2, u
satisfies (62) and thus u=4 by Theorem V.1. []

VI. The Ergodic Problem

In this section, we want to study the questions associated with the so-called ergodic
stochastic control problems with state constraints. From the p.d.e.’s viewpoint this
amounts to study the behaviour of Au and u as 4 goes to 0 where u is the solution of
(1) considered in the preceding sections. We will perform such an analysis in the
three different cases studied above. The typical result we will obtain is that Au,
u—u(x,) converge uniformly on compact subsets of Q to u,€IR, v solution of

—Av+|VolP+u,=f in Q, v(xy)=0 77



