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min (u"'_(P)g Hl_in (u_(p)_ “(un_‘u)_ Iloo 5
Q Q
hence u,(x,)— ¢(x,) converges to u(xo)—@(x,). Now if x, (or a subsequence)
converges to X e (2, then
(%) — (%) Z U(x) — (X)) = (| (11— 1) ™ || o 7 U(X) — (%)

and thus X=Xx, by the uniqueness of the minimum.
Next, by maximum principle, we have

Fn(Dz(p(xn)5 D(p(xn)a un(xn)7 xn) % -C
and passing to the limit we find
— Ap(x0) + |V o(xo)|” + Au(xo) = — C. (75)

and we observe that we may replace ¢ by @+ c(6*—(d+J)*) where 6>0,

-2 . . . ..
o= p—I, ¢>0, since u— @ + c((d + 5)*— 6%) admits also a unique minimum at x,.

Therefore, we deduce from (75)
—Ap(xo)+ cad ™ P Ad(x) — coa(1 — )6~ D+ | p(x) —cxd! ~*Vd|P = —C

and if we choose ¢ in such a way that (ca)? ' <(1—a), we easily reach a
contradiction letting d go to 0. []

From this stability result, we deduce the
Corollary V.2. Let p>2, let f, e LY () satisfy
f,z—C, f,£Cd™* ae in Q, forsome C=0, Be(0,p). (76)

We denote by u, the unique solution in W2,"(Q)nC(Q) (Vr < o0) of (1) satisfying (62)
and we assume that f, converges to f weakly in L3, . — *. We denote by u the unique
solution in WZ'(QNC(Q) (Yr<o) of (1) satisfying (62). Then, u, converges
uniformly on Q to u.

Proof. By Theorem IV.1, u, is bounded in C%?(Q) for some >0 and in W%"(Q)
(Vr < o0). Then, we may assume (up to subsequences) that u, converges uniformly
on Q to a solution u of (1) [in W%(Q)NC(Q) for all r<oo]. By Theorem V.2, u
satisfies (62) and thus u=4 by Theorem V.1. []

VI. The Ergodic Problem

In this section, we want to study the questions associated with the so-called ergodic
stochastic control problems with state constraints. From the p.d.e.’s viewpoint this
amounts to study the behaviour of Au and u as 4 goes to 0 where u is the solution of
(1) considered in the preceding sections. We will perform such an analysis in the
three different cases studied above. The typical result we will obtain is that Au,
u—u(x,) converge uniformly on compact subsets of Q to u,€IR, v solution of

—Av+|VolP+u,=f in Q, v(xy)=0 77



Nonlinear Elliptic Equations. 1 615

with the same boundary conditions for v than for u. And these will uniquely
determine (u,, v). In the preceding statements and below, x,, is any fixed point in Q
and we assume that Q is connected.

VI.1. Subquadratic Hamiltonians

Whenever it exists, we will denote by u, the solution of (1) with appropriate
boundary conditions and if x, is any fixed point in Q we will denote by v,(-)=u,(-)
—u,(xy). We assume throughout this section that 1 <p<2.

Theorem VL1. Let fe L3 () be bounded from below and satisfy
lim { f(x)d(x)~%/d(x)—0,}=0. (78)

Let u, be the unique solution of (1) in W,2,"(Q) (Vr < c0) such that u,— + o0 as d—0,..
Then, Vu, and Au, are bounded in L5, (£2) and Au,, v, converge uniformly on compact
subsets of Q to ugeR, ve W2"(Q) (Vr < o) such that v(x,)=0, v satisfies (15) and

—Av+|VofP+uy=f in Q. (79)

In addition, if (iiy, 7) e R x W;2:"(Q) (Vr < 00) satisfies (79) and § goes to + co as d goes
to 0, then lig=u,, =v+C for some CeR.

Proof. The proof involves several steps, we first obtain some bounds and we pass
to the limit (Step 1). Then, we show that for any solution (i, ) as above & blows up
at the boundary like C,d™* (Step 2). Next, we show the uniqueness of u, (Step 3).
Finally, we conclude with the uniqueness (up to constants) of 7 (Step 4).

Step 1. Goingthrough the proofs of Theorems II.1 and I1.2, we see that u, satisfies
for all ¢>0, 1€(0,1]

CO —& Ce CO + & CE
— <L < =

da A = ul = da + l (80)

for some C, =0, with the usual modifications if ¢ =0 (i.e. p=2). In particular, Au, is

bounded from below and in Lf,.. Then, using Theorem I'V.1, we deduce that Vu, is
bounded from below. Therefore, v, is bounded in W%, *.

We next want to show that v, satisfies

—L _Cgv, in Q, forsome C,e€(0,C,), C=0. (81)

Observe first that v, satisfies
—Av, +|Vu,P+ v, + duy(xg)=f in Q.

. . . C
And if we choose C, in (0, C,), we obtain denoting by z= —~

da
—Az+|VzlP—Az< f—Auy(xg) on Q—Q;
if  is small enough, say 6 £d,. Now, there exists a constant M >0 such that

0 2M on Q.
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Hence, adapting the comparison results proved in Sect. II, we deduce
C
0, =M+ d—; on Q.

Extracting subsequences if necessary — the convergence of the whole sequence
will follow from the uniqueness —, we may now pass to the limit Au,(x,) converges
to a constant u,, v, converges to a solution v of (79) satisfying (81) and such that

Uxo)=0.

Step 2. Let (ily, D) eR x W2"(Q) (Vr < o) be a solution of (79) such that # goes to
+ o0 as d goes to 0. We want to prove that & satisfies (15). To this end, we recall

that w, ;= 50_—;)8« satisfies
— AW, s+ VW, 5P = f—il, in Q;,—Q; if 0<5<Iy=0le).

Then, let M,=sup{|i(x)/xeQ, d(x)=0,(c)}, we deduce from the maximum
principle that

0<W,s+M, on Q;—Q;
and letting  go to 0, we deduce
—C=ZP=(Cy+e)d™*+M, on Q. (82)
Next, we simply observe that 7 satisfies
— AT+ |ViP+d=¢g in Q, ©T—-+4+oc0 as d-0,
where g = f —ii, + D e LY, () satisfies (78) because of (82). Therefore, Theorem I1.2

loc

yields the desired behaviour of & near 0€2.

Step 3. We first show that if (u,,v), (fly, ) are two solutions of (79) such that
v, 0— + o0 as d—0, then uy,=1,. To do so, we adapt an argument from Lions [16,
19]. Assume for instance that uy <i, and let £>0, 8€(0,1). Obviously, we have

— A(OD) + |V (0D)|P + 67 < 0f + 00— 0il
< f+C(1—0)+e05— 0, .
Next, since v, § behave like Cyd ™ * near 09, 05 <v+ C, in £; hence
— AOD)+ |V (6D)P + 00 < f + C(1 — ) + ev+eCy— Ol
S +ev—ug+(uy—0ii,)+eCo+ C(1—6)

while v satisfies of course
—Av+|VolP+ev=f+ev—u, in Q.

But u, <ii,. Therefore, for 8 near 1 and ¢ small enough (depending on 0) 67 is a
subsolution of the equation satisfied by v. By Theorem I1.2, this implies 00 <v.
Letting 6 go to 1, we find §<v. But, v+ C,, #+ C, satisfy the same problems for
arbitrary constants C;, C, and we reach a contradiction.
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Step 4. Uniqueness of v, up to a constant.
Let C, €(0,C,), again we observe that

(@) (@)

for some small enough 6> 0. Therefore, if 8e(0,1), w=05+(1 —6) % satisfies

— AW+ VWP SO0(f —ug)+(1 =) (f —up)=f in Q-Q;.

14
<f—u, in Q—Q;

Co

a’

And since v, ¥ behave like (Ww—v)—> — o0 as d—0 .. Therefore, by the maximum

principle,

max (w—uv)= max (w—u).
2-Qs 005

Hence, if we let 6 go to 1, we find that

sup (f—v)= max (§—v).
2-Qs 0025

On the other hand, we also deduce from the maximum principle that

max (f—v)= max (i —v).
25 025

Therefore, any maximum point X of §— v on 92, is in fact a global maximum point
of i—v on Q. But, since §—v=1y satisfies the equation

—Ap+B-Vp=0 in Q

for some B L}, (2;R"), the strong maximum principle then yields
t—v={@—0)(X) in Q

and we conclude. []

We would like to conclude this section with a few remarks on the case p=2
which make a connection between our results and the interpretation of first
eigenvalues in terms of optimal stochastic control that was considered by Holland
[9,10].Indeed, if p= 2 and if v solves (79) with v— 0o asd—0 , then we may perform
the well known logarithmic transformation i.e. v= —Log¢ and we find

—do+fo=uqp in Q, >0 in Q, ¢->0 as d-0, (83)

or in other words u, is the minimum eigenvalue of the operator (— 4+ f) with
Dirichlet boundary conditions. And the uniqueness of u, corresponds to the
uniqueness of an eigenvalue with a positive eigenfunction, while the uniqueness of
v up to an additive constant corresponds to the uniqueness of ¢ up to a
multiplicative constant.

VI1.2. Forced Infinite Boundary Conditions

We will be now concerned with the case when f grows so fast at the boundary that
u, automatically has to blow up at 0Q. To simplify the presentation, we will only
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consider the case when f satisfies (40) and therefore, by Theorem I11.4, u, is the
unique solution of (1) which is bounded from below.

Theorem VI1.2. Let f e LY, (Q) satisfy (40) and let p> 1, we denote by u, the unique
solution of (1) which is bounded from below. Then, Vu, and Au, are bounded in L}, (Q)
and Au,, v, converge uniformly on compact subsets of Q to u,eR, ve W2"(Q)
(Vr <o) such that v(x,)=0, v satisfies (79) and

M- MZvEMd*+M in Q, forsome M=1,
where a=§—1 if B>p (84)

and d™* is replaced by |Logd| if f=p=q. In addition, if f satisfies (18'), then v
satisfies (19). Furthermore, if (i, ?)€ R x W%"(Q) (Vr < 00) satisfies (79) and # is
bounded from below, then @iy=u,, ?=v+C for some CeR.

Remark VI1.1. If we consider the special case p=2 and if we perform the same
logarithmic transformation as in the preceding section v= — Log ¢, we see that we
are dealing with bounded, positive solutions of (83) and that the very fact that f
blows up fast enough at 0Q2 forces ¢ to vanish on the boundary. Again, the
uniqueness part of the above result may be interpreted as a uniqueness for first
eigenvalues and eigenfunctions of the operator —A4+ f where no boundary
condition on ¢ is imposed except “¢ is bounded”.

Proof of Theorem V1.2. Most of the proof of Theorem V1.1 goes through in this
case except for the uniqueness arguments which use the precise behaviours of v, &
near the boundary. Of course, if we assume (18’) then the proof of Theorem VI.1
applies with some rather easy adaptations. In the general case, however, we have to
involve slightly more elaborate arguments to show the uniqueness part of the
above result. We only prove as in Theorem V1.1 that v, § both satisfy (84). Next, we
prove that uy,=1i,. We see that the corresponding proof (Step 3) in the proof of
Theorem VI.1 only uses the fact that 85 < v+ C, for any two solutions (u, v), (i, )
and for all 8 € (0, 1). But this can be deduced from Theorem II1.4: indeed w=071is a
subsolution of the equation

—Aw+|VwP+wZg=0f+0i—id, in Q.

But in view of (40) and (84) O0f + 605 —ii,< f+Co<f+v—uy+C, for some
constants Cy, C,=0. Therefore, by Theorem 111.4, we deduce

wsv+Cy in Q
and our claim is proved.
Finally, we have to show the uniqueness of v up to a constant. Then, we observe
that the proof given in Step 4 of the proof of Theorem V1.1 still applies provided we
take C, small enough, indeed the only difference comes into the verification that

w—v——o00 as d—>0, where w=00+(1— ) ¢, with 0 <6 < 1. But the inequality
we just proved shows that
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and taking C, small enough so that % = %0+C we find
140 1-46 6
ws (—;— + —4—-> v+Cy+C= 3: v+ Cy+C

therefore w—v— — 00 as d—0, since v—>+ o0 as d—0,.
Then, the proof of Theorem V1.1 applies and we may conclude the proof of
Theorem VI.2. [

V1.3. Superquadratic Hamiltonians

We now conclude this section by examining the remaining case namely the case
when p>2 and fel3 (Q), is bounded from below and satisfies (41) with f<p.

Then, we know there exists a unique solution u, of (1) satisfying (17) or (62). As A
goes to 0,, we obtain the

Theorem VL.3. Let p>2, let f € L7, (Q2) be bounded from below and satisfy (41) for
some B < p. We denote by u, the unique solution of (1) in W2,"(Q) (Vr < o0) satisfying
(62). Then, Vu, is bounded in I, (Q) and Au, is bounded in L°(Q). And Au,, v,
converge uniformly on Q to uge R, ve W2 (2)nC(Q) (Vr < o) such that v(xq)=0, v
satisfies (17) and (79). In addition, if (ily, D) e R x W2,"(Q) (Vr < 00) satisfies (79) and
if ¥ satisfies (62), then fig=u,, 1=v+C for some ceR.

Proof. Clearly, Au, is bounded from below. Then, we may apply the local gradient
bound given in Theorem IV.1: hence, Vu, is bounded in L, (). But this bound (see
Corollary IV.1) also implies that u, is bounded in C®%(Q) for some 0€(0,1)
independent of 1. Therefore, up to subsequences, Au, and u, converge uniformly on
QtougeR, ve WA (Q)NC(Q) (Vr < o) such that v(x,) =0, v satisfies (79). Next, by

Theorem V.2, v satisfies (62) and therefore, by Proposition V.1, v satisfies (17).
Notice also that v is the unique solution satisfying (62) of

—Adv—|VuP+Av=g, in Q,

where g,=f —u,+ Av.

Next, using Theorem V.1, the uniqueness of u, follows immediately as in Step 3
of the proof of Theorem VI.1 (§=1 is enough in this case).

Finally, we want to prove the uniqueness of v, up to a constant. Again, the only
fact we have to prove is the following

sup (f—v)= max (i—v).
N—-0Qs 026

To this end, we set a = ﬁ%? and we consider for 8 (0,1), w= 05— (1 —6)C,d* then
for C, >0, § small enough (independent of §) we have

—Aw+ VWP f—uo—1 in Q—Q,.
In particular, for A small enough, we have

—Aw+|PwP+iw=<g, in Q-Q;.
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We may now adapt without any real modification the proof of Theorem V.1 to
deduce

sup (w—v)= max (w—v)
2-9Q5 0Qs

and we conclude letting @ goto 1. []

VII. Optimal Stochastic Control with State Constraints

We now want to use the results obtained in the preceding sections in order to solve
some optimal stochastic control problems with state constraints: a rather vague
way to formulate our problem is to say that we want to “constrain a Brownian
motion in a given domain Q by controlling its drift”. More precisely, we consider a
system whose state is given by the solution of the following stochastic differential
equation

dX,=adt+]/2dB,, Xo=xeQ, (3)

where B, is a Brownian motion on a standard probability space (Q, F, F,, P) and
where g, is the control process i.e. a progressively measurable stochastic process
taking values in R" for instance. In other words

t
X,=x+ { ads+]/2B,
0

T
and we assume (at least) that { |aJds< oo a.s. (Vr < o0).
0

We will say that this control a is admissible if X, e Q V¢ =0 a.s. Even if we could
work with general controls of the above form, we will restrict ourselves to
feedbacks or Markovian controls which are defined as follows. Let ae C(Q;RY),
we may solve the stochastic differential equation

dX,=a(X)dt+)/2dB, for 0<t<rt,, Xo=x€Q, (85)

where 7, is the first exit time of X, from Q i.e, 7,=inf{t=0, X,¢Q} (t=+ o0 if
X,eQfor all t 20). Thus, a(X)) is really the control but we will ignore this minor
point of terminology and we will say that a(-) is the control (or control policy).
Next, we define an admissible control as a control a(-) such that

P(t,<o00)=0 forall xeQ. (86)

And we will denote by o the class of all admissible controls.
For each a, we define a cost function

J(xa)=E Z (FOX)+cla(X ) e ¥dt, 87)

where c=c(p,q)=q 'p~ "~ Y, 1>0 is the discount factor. Observe that the
running cost f(x)+ cla|? contains two terms: one which measures the cost for the
state to be at x, and the other measuring the cost for using the control a. All
throughout this section f e L3, (Q) is bounded from below so that J(x, a) makes



