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620 J. M. Lasry and P. L. Lions

We may now adapt without any real modification the proof of Theorem V.1 to
deduce

sup (w—v)= max (w—v)
2-9Q5 0Qs

and we conclude letting @ goto 1. []

VII. Optimal Stochastic Control with State Constraints

We now want to use the results obtained in the preceding sections in order to solve
some optimal stochastic control problems with state constraints: a rather vague
way to formulate our problem is to say that we want to “constrain a Brownian
motion in a given domain Q by controlling its drift”. More precisely, we consider a
system whose state is given by the solution of the following stochastic differential
equation

dX,=adt+]/2dB,, Xo=xeQ, (3)

where B, is a Brownian motion on a standard probability space (Q, F, F,, P) and
where g, is the control process i.e. a progressively measurable stochastic process
taking values in R" for instance. In other words

t
X,=x+ { ads+]/2B,
0

T
and we assume (at least) that { |aJds< oo a.s. (Vr < o0).
0

We will say that this control a is admissible if X, e Q V¢ =0 a.s. Even if we could
work with general controls of the above form, we will restrict ourselves to
feedbacks or Markovian controls which are defined as follows. Let ae C(Q;RY),
we may solve the stochastic differential equation

dX,=a(X)dt+)/2dB, for 0<t<rt,, Xo=x€Q, (85)

where 7, is the first exit time of X, from Q i.e, 7,=inf{t=0, X,¢Q} (t=+ o0 if
X,eQfor all t 20). Thus, a(X)) is really the control but we will ignore this minor
point of terminology and we will say that a(-) is the control (or control policy).
Next, we define an admissible control as a control a(-) such that

P(t,<o00)=0 forall xeQ. (86)

And we will denote by o the class of all admissible controls.
For each a, we define a cost function

J(xa)=E Z (FOX)+cla(X ) e ¥dt, 87)

where c=c(p,q)=q 'p~ "~ Y, 1>0 is the discount factor. Observe that the
running cost f(x)+ cla|? contains two terms: one which measures the cost for the
state to be at x, and the other measuring the cost for using the control a. All
throughout this section f e L3, (Q) is bounded from below so that J(x, a) makes
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sense even if it may be infinite. This is of course a very special example but we will
come back on part 2 on much more general problems for which similar results to
those which follow still hold.
Finally, we want to minimize J,. We introduce the value function
ux)= inf J,(x,a), VxeQ. (88)
acod

The typical questions that one wants to solve in such problems is to determine
u, and possibly an optimal control (here an optimal Markovian control or an
optimal feedback), i.e. some a in .o/ such that

u(x)=J,(x,a), VxeQ.

And this is precisely what we will achieve using the results of the preceding
sections. Let us also observe that it is not completely obvious that .7 %, let alone
that there exists a € &7 such that J(x,a) < oo for xe Q.

Finally, we will also consider the case of ergodic control which consists,
roughly speaking, in taking 1=0.

VII.1. Subquadratic Hamiltonians

Theorem VIL1. Let 1 <p<2,let feL} () be bounded from below and satisfy (78).
Then, the value function u, given by (88) is the unique solution of (1) in W%"(Q2)
(Vr < o0) such that u;— + oo as d—0,,.. Furthermore, ay(x)= p|Vu,|?~2Vu,(x) is the
unique optimal markovian control.

Proof. We denote by ii, the unique solution of (1) in W%"(€2) (Vr < o) such that
i, + o0 asd—0,. We are first going to show that &, > u, and that a, € /. Indeed,
for§>0let 2 =inf(t 20, X, ¢ Q;), we apply 1t6’s formula on [0, 7] with the process
X, corresponding to the control ay(x)= —p|Vii,|?~2Vu, and we find for all x Q;

i ()=E [ {—A40,(X)+ plVii, [P(X)+ Ay (X )}e ™ *dt + Eii(X g™+
0
hence from the equation (1) this yields
#,(x)=E | {f(X)+clagX)"e Hdt+ Ei (X, de ¢, VxeQ,  (89)
o
In particular, we may deduce from this quantity
(inf al> E[e *#]<C, VxeQ,
s

for some C independent of d.

Now, since #i;—~+o as d-0,, (inf ﬁl) —-+4+o00 as 0-0,, therefore
0025
E[e”**]—0 as 6—0,. Hence E[e”**]=0 for all xe @ and this precisely means
that aje .
In addition, we may also deduce from (89) that for  small enough and for x € Q;

BZE | {f0X)+clagX e dr
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since i, 20 for x e Q —Q;. Now, if we let J go to and if we use the fact that a, e o/
and thus ©2— + 00 a.s. as §—0, for all xeQ, this yields

dyx)2J(x,a0), VxeQ. (90)

We next show that i, = u,. If this is the case, (90) then implies that a, is optimal.
To show that i, =u,, we first recall from section that there exist w, subsolutions of
(1) in W>"(Q) (Vr<o0) such that w,»ii, uniformly on compact subsets of Q.
Therefore, if ae &/, we find using again Itd’s rule for all xe Q;

wa(x)SE tg {f(Xt)+cla(X,)I"}e'”dt+E[wn(th)e—m;Z] .

Now, if J(x,a)= + o0, we obviously have w,(x) <J(x, a), while if J(x,a)< oo, we
deduce from the above inequality letting 6 go to 0,

woSE T {f(X) +cla(X)le~*dt = J(x, a)

since 13— + o0 a.s. as -0, and thus
[E[wA(X e *#]| < sup |w,|E[e**]>0 as 50, .
2

Therefore, letting n go to + co, we finally deduce for all xe 2, ae .o/
(x) < J(x, a)
and our claim is proved. []

The uniqueness of the optimal control is a bit technical but very simple to
understand so we just sketch the argument: assume that a is optimal then applying
1t6’s rule we find for all >0, xeQ;

Tx:

u(x)=E :I: {f(X)—a(X) Vuy(X)—|Vu (X )P}e™"dt + Euy(X g™ *

<E | {f(X)+claX )% e ¥+ Eu,(X e 7.
0

But recalling that u,(x)=J(x, a) for all x e Q and using the Markov property of X,
we deduce that the above right-hand side is also equal to u,(x). Therefore, the
equality yields that for all xe Q;

a(X)=a,X,) forall te(0,7l) as.,

(where X, is the solution corresponding to a) and letting J go to 0, we finally find
that for all x € 2, a(x)=a,(x) (recall that a, a, are continuous on Q). [

VII.2. Superquadratic Hamiltonians

Theorem VIL2. Let fe L3 () be bounded from below, satisfy (41) for some f<p
and let p>2. Then, the value function u, given by (88) is the unique solution of (1) in
W2"(Q) (Vr< o) satisfying (62).
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Proof. We will approximate the Hamiltonian |£|? as follows: let R=1, consider
some Hamiltonian Hy such that Hy is convex on RY, H(&)=|¢P if |¢|<R,

Hg(&)|&]7% is constant for |&| large where &—9‘—1 >f and 1 <a<?2, Hy increases

uniformly on compact subsets to |£[? as R goes to + c0. And we denote by Lg() the
following convex function

—Lg(m)= inf (5 ¢+ Hg())
EeRN

so that Lg(n)=cln|? and Ly decreases uniformly on compact subsets to c|n|?
Then, because Hy = Cg|E|* for |&] large, it is not difficult to adapt the results and
the proofs of Sect.II to show that there exists a unique solution ug of

—Aug+Hg(Vug)+iug=f(x) in Q, ugeWZ"(Q) (Vr<oxn)

such that uz— 4 as d—0,.
And exactly as in the preceding section, we can check that

uplx)= inf E z (f(X)+Le(@X e, V¥xeQ.

Of course, uy decreases to the value function u, given by (88). On the other
hand, we remark that we may choose Hye C*(IR") such that

ID*HRN1E1*,  IDHRENIEISCo(HR(&)+1), VEeRM,
and
Hg(&)z[E*, VEeRM

for some C, independent of R. And we may adapt the a priori estimates in the
appendix (see also part 2) to deduce that ug is bounded in W,};* and thus in W%"(Q)
(Vr< o). Hence,u, € W,ﬁg'_(!)) (Vr < 00) and solves (1). But then by Corollary IV.1,u,

extends continuously to Q and we may apply Theorem V.2 to deduce that u, is the
unique solution of (1) satisfying (62). []J

The question of the optimality of the control ay = — p|Vu,|? " *Vu, is much more
delicate: in fact, if an optimal control exists, by a similar proof to the one made in
the preceding section, it has to be a, and if we know that a,e .o/ then g, is the
optimal Markovian control. Hence, the main problem is whether a € o/. We know
how to prove that a, € o/ only when (61) (or some easy variants) holds and we refer
the reader to Sect. IV.3 where a few cases when (61) holds are given. Indeed, if (61)
holds then we deal with a diffusion X, satisfying

dX,=)/2dB,+ay(X,)dt,
where a, satisfies
ag(x)d(x)—> —pn as d(x)-0.,, o1

with u=¢> 1. Then, we claim that for any diffusion process of the above form, if
(91) holds and p> 1, then X, never leaves 2 with probability 1, while if (91) holds
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and p<1, X, hots 0Q in finite time with propability 1. Indeed, if u> 1, we apply
1t6’s rule with —logd(x) and we find for all T < oo

AT (Ad  |Vd)? -Ad
—logd(x)=E l:—logd(X,,\T)+ g {—d— - l—dzl—— -2 7 } (Xs)ds]

(in fact we should replace t by t; for 6>0...). And we observe that
4d |Vd?*  a-vd

d d? d

. 1 . o
behaves like (u—1) 2 hear 02 and so this quantity is bounded from below on Q.
Hence, we obtain
E[—logd(X,,1)]< CT—logd(x)
therefore for all xe Q, P(t < T)=0 and we conclude since this holds for all T < co.

On the other hand if u <1 by a simple argument, showing that E[t,] < C for all
x e is easily done if we prove the existence of a supersolution of

—A4z—a-Vzze in Q, forsome £>0, zeC(Q), z=0 on Q.
But this is achieved by considering for pge(u, 1) the function
zp=d" T —po) T = dP2uo+ 1)} 7!

which satisfies in Q—Q, for some § small enough

1
—Azy—a - Vzy=pod " '—a-vdd "+ ——— {1+a-Vdd}
Ho+1

1
—d7#r AdZK>0
" {#0"’1 } B

for some K >0. Then, we consider the solution z, of

—A22~a'|722=1 il’l Q&, Z2=0 on 695.
Finally, we set z=z, in Q — Q;, =z|,o,+ 7z, in Q; where y is small enough so that
0z, _ 0z,
1>

" Z 7 O0 0€Q;. It is then easy to check that z satisfies the desired inequality

with e=min(K, ).

V11.3. Forced Constraints

We first observe that by the results and methods of the preceding sections (and the
interior estimates given in the Appendix), for any p>1 and for any fe L} (Q)
bounded from below there exists a solution ue W;%"(Q2) (Vr < o0) of (1) such that for
all ve W27(Q) (Vr < o) satisfying

—dv+|VoP+ S f in Q (92)
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thenv<uin Q. Of course, if 1 <p<2and f(x) < Cd(x)~ ! then (see Sect. I[) u— + 00
as d—0, and u is the minimum such solution, if p>2 and f(x) < Cd(x)~* for some
B < p then u is the unique solution of (1) satisfying (62) (see Sects. IV and V), while if
f(x)=cd(x)”# — C for some ¢ >0, f = max(p,q) then u— + o0 as d—0, and u is the
minimum solution of (1) bounded from below [and we have uniqueness if f
behaves like C,d(x) #]. In fact, if 1 <p<2, then y— + 00 as d—0, and u is the
minimum such solution.
We then have the following

Proposition VIL1. Let 1 <p<2,orletp>2and f Zcd~?—C for some c>0,C=0,
B = p. Then, the value function u, given by (88) is the above (“minimum explosive”)
solution u. In addition, ay(x)= —p|Vul?~2Vu is the unique optimal Markovian
control.

In fact, since u— oo as d—0,, the proof is exactly the same as the proof of
Theorem VI.1: one shows that u>u, and a, € <, then u<u, and a, is the unique
optimal Markovian control.

Remark VII.1. These results show that for any f bounded from below the formula
(88) yields a finite function (locally bounded) on Q. This may be proved directly by
a tedious probabilistic construction of a control a e &/ such that J(x, @) < oo for all
xeL.

VI1I14. Ergodic Control

We now want to explain in this section the control problems associated with the
asymptotic problems solved in Sect. VI. We begin with the cases when solutions go
to + oo as d(x) goes to 0.

Theorem VIL3. Let f € L}, () be bounded from below and satisfy (78), let 1 <p=<2.
We denote by (v, u,) the solutions given by TheoremV1.1. Then, we have the following
equalities: for any ae o, let 0, be a stopping time bounded by some arbitrary T =0
(independent of a), then

0a
v(x)=inf E | {f(X)+cla(X)}dt+v(X,)—0uy, VXxeQ, (93)
aedd 0
T
up= lim inf Ei [ {f(X) +claX)|9}dt, VxeQ 94)
T— o aesd T 0

and the controlay = — p|Vv|?~2Vv belongs to &/ and is the unique optimal Markovian
control where optimal means that (93)+(94) are equalities when we choose a=a,.

Theorem VIL4. Let fe L} (Q) satisfy (40) and let p>1. Denoting by (v,u,) the
solutions given by Theorem V1.2, Theorem V11.3 still holds.

Since the proof of Theorem VIIL.4 is very similar to the one of Theorem VII.3 we
will only prove the latter.

We first deduce from It6’s formula that if X2 denotes the process correspond-
ing to the choice a, then for all 6>0, xeQ

90/\13
o)=E [ {f(X?)+clag(X?)"}dt + (X7, ) — 0o A Tilo s %5)
1]
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where 0, stands for 6, and 7 is the first exit time from Q;. In particular for 6,=T,
we deduce

E(W(X%r.2)Sv(x)+CT, for some C=0.
Therefore, recalling that v is bounded from below, we obtain

(inf v) P[P <T]<v(x)+C1+T)

0025

and since v— + oo as d—0,, we deduce that g e «.
In addition, if we pass to the limit in (95) as é goes to 0., we find for all xe Q2

6o
ux)=E (I) {f(XD)+clagXD)}dt —0ouo+ lim E[o(X, 4 .o)]
00+
and

lim E[v(X5,A0)]2Z lim {E[(v+C)(X5)1g,<.]—C},
004 -0,

St

where C < inf v, and this last expectation increases to E[v(X§ )]. Hence, we finally

(2]
obtain for all xeQ
0o
ux)ZE (I) {f(XD)+clag(XD)|*}dt + v(Xg) — Otk - (96)
And taking 0,=T, we also deduce for all xe Q

Uo2 lim + E [ {F(X9)+ clag(XO)}dt ©7)
Tow I 0

since ElTv(X‘;)g— % —0as T—oo.

To complete the proof of Theorem VII.3, we basically need to prove the
complementary inequalities in (93)+94). This will be achieved by first introducing
some approximated problem: let (v?, u$) be the solution in W2;"(2°) x R (Vr < o0) of
(79) with Q replaced by 2° such that v’(x,)=0, v’— + 00 as d(x)—0,. With the
techniques of Sect. VI one can show that v’ fv as 6 goes to 0, and converges
uniformly on compact subsets of 2, while v | uy as 610,.

Using It6’s formula, we immediately obtain for all xe Q

(%)< aieni E ‘:j: {f(X)+cla(X )%} dt +v*(Xp,)— 0,u)
and letting & go to 0, we deduce since v’ v as 60,
(x)< aiil&f‘ E 9!: {f(X)+cla(X )|} dt +v(X, ) — O,u
and this combined with (96) yields (93). In addition taking 8,= T, we also deduce

T
@S inf B ] (f(X)+claX )i+ 2 sup |
T o T @

acd



