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0. Introduction
In 1964, Shields proved the following theorem:

Theorem 0.1 (Shields [S]). Let 4 be the unit disk in C and & a family of holomorphic
functions of A into itself, continuous up to the boundary of A. Assume that fog=gof
for every f,ge F. Then there exists a point T € A such that f(t)=1 for every fe F.

In other words, a commuting family # of holomorphic functions (i.e., such that
fog=gof for every f,ge %) continuous up to the boundary always admits a
common fixed point (i.€., a point 7 such that f(r)=rtfor all fe #)in A. This result is
a feature of the holomorphic structure, and not some sort of consequence of
Brouwer’s theorem: indeed, there are examples of commuting continuous
functions mapping the closed unit interval [— 1, 1] CR into itself without common
fixed points (see Boyce [Bo] and Huneke [Hu]).

The first generalization of Shields’ result to several complex variables is due to
Eustice [E], who in 1972 proved the same fact for holomorphic maps of the bidisk
A?= A4 x ACC?. Shortly later, Suffridge [Su] in 1974 found a proof of the same
result for the unit ball B" of C” (actually, Suffidge constructed a common fixed
point for two commuting maps, but his proof can be adapted to a generic family).

Shields’ proof of Theorem 0.1 relies on the main fact of iteration theory of
holomorphic functions of 4 into itself, the Wolff-Denjoy theorem:

Theorem 0.2 (Wolff [W 1, 2, 3], Denjoy [D]). Let f:4—A4 be a holomorphic
function, f=+1id,. Assume that f is not an automorphism of A with exactly one fixed
point. Then the sequence { f*} of iterates of f converges, uniformly on compact sets,
to a constant function T€ 4.

In their proofs, Eustice and Suffridge used some weak version of the iteration
theory on the bidisk and the ball, respectively, together with Shields’ theorem to
build up an induction argument; in particular, in Suffridge’s proof the fact that the
fixed point set of a holomorphic map of B" into itself is biholomorphic to a ball of
smaller dimension plays a fundamental role. Furthermore, it should be remarked
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that the whole strength of the iteration theory in the ball (due to Hervé [H]) yields
an easier proof of Suffridge’s result.

Recently ([A 1, 2]), the iteration theory has been developed in strongly convex
domains, and the aim of this paper is to use it to extend Shields’ theorem to this
situation. Actually, a common fixed point for two commuting maps was already
constructed in [A1]; here we shall prove the complete generalization of
Theorem 0.1. As in Eustice’s and Suffridge’s proofs, we shall use in a fundamental
way the structure of the fixed point set of a holomorphic map, as described by
Vigué [Vil, 2]. Unfortunately, it is not clear whether the fixed point set of a
holomorphic map of a convex domain into itself is biholomorphic to a convex
domain of smaller dimension; we only know how to describe it by means of
complex geodesics, a concept introduced by Vesentini [V 1, 2] and mainly studied
by Lempert [L 1, 2] and Royden and Wong [RW]. So, the first section of this
paper is devoted to a review of some facts about complex geodesics, probably
already known but lacking in suitable bibliographical references. For the sake of
simplicity, we shall prove several results for strongly convex domains with C3
boundary, but they probably hold in domains with C? boundary too. The proof of
the main theorem is the bulk of the second section of the paper, and it was already
announced in [A 3].

We shall denote by Hol(M, N) the space of holomorphic maps from the complex
manifold M into the complex manifold N, endowed with the compact-open
topology; by || - || the usual euclidean norm on C”, and by w the Poincaré distance
on 4. For every z,we C" we set

n
(z,wy= _21 ZjWj;
j=

in particular, {z, w) is the usual hermitian product on C". Finally, if D CC C" has at
least C? boundary, we shall denote by n, the exterior unit normal to D at xedD.

I would like to thank Laszl6 Lempert for an illuminating conversation
regarding Proposition 1.8.

1. Complex Geodesics

Let D CCC" be a bounded domain in C". For every z e D, we identify the tangent
space T,D with C", as usual. The Kobayashi metric k,: TD—>R" is defined by

VzeD YveT,D «p(z;v)=inf{|¢| 3¢ e Hol(4, D): p(0)=z, ¢'(0)=v}.
The Kobayashi distance k;,: D x D-»R™ on D is the integrated form of k:

Vzo,z1€D  kp(zo,2y)

yis a C! curve in D connecting z, and zl}.

= inf{(}) ©p(y(2); Y'(2))

For general properties of the Kobayashi metric and distance consult [K 1, 2] and
references therein.
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Lempert [L 1] has shown that if D is convex then the Kobayashi distance is
given by

Vzgz,€D  kplzo2;)=inf{e(0, £)| 39 € Hol(4, D): p(0) = zo, () =2}

A complex geodesic ¢ is a holomorphic map from 4 into D which is an isometry
for the Poincaré distance on 4 and the Kobayashi distance on D, i.e.,

Vi, 0ed kp(olh) o)) =wlly, (o).

Remark that if a complex geodesic ¢ extends continuously to d4, then ¢(d4)CaD.

A geodesic disk is the image of a complex geodesic. Vesentini [V 2] has shown
that a complex geodesic is determined up to an automorphism of 4 by its image.
We shall say that a complex geodesic ¢ is passing through two given points
ze,21 €D if z, and z; belong to the image of ¢; it is clear that, up to an
automorphism of 4, we can assume @(0)=z, and ¢({,)=z, for some {,€(0,1).
Analogously, we shall say that a complex geodesic ¢ is tangent to a direction ve C*
at the point z,e D if p(0)=z, and ¢'(0)=Av for some 4>0.

The main facts about complex geodesics in convex domains are summarized
in:
Theorem 1.1. Let D CCC" be a bounded convex domain. Then:

(i) (Lempert [L 1], Royden and Wong [RW]) For any two points z,,z, €D
there exists a complex geodesic passing through z, and z,;

(i) (Lempert [L 1], Royden and Wong [RW]) For any point z,€ D and any
direction ve C" there exists a complex geodesic tangent to v at zy;

(iii) (Lempert [L1]) If D is strongly convex with C? boundary, every complex
geodesic extends to a C* > map of A into D;

(iv) (Lempert [L 1]) More generally, if D is strongly convex with C" boundary
(r=3,..., ), every complex geodesic extends to a C"~2 map of 4 into D;

(v) (Vesentini [V 2], Royden and Wong [RW1]) 4 holomorphic map ¢ : A—D is
a complex geodesic iff there are {,,{, € A such that kp(o(Co), p(())=w(Ce,C1);

(vi) (Vesentini [V 2], Royden and Wong [RW]) 4 holomorphic map ¢ : A— D is
a complex geodesic iff kp(p(0); '(0))=1.

Lempert gave the following characterization of complex geodesics in convex
domains with C* boundary:

Theorem 1.2 (Lempert [L 1]). Let D CCC" be a strongly convex C?* domain. Then a
holomorphic map ¢ : A—D is a complex geodesic iff it extends to a C*'> map of 4
into D and there exists a continuous function p:04—R™ such that the map
(= {p(, defined on 04 extends continuously to a holomorphic map ¢: 4—C".
Furthermore, p can be chosen so that on 4 we have

¢, p>=1. (1.1

A holomorphic map ¢: D— D is a holomorphic retraction if ¢> = g. In particular,
¢(D) is a complex submanifold of D (see Rossi [R] or Cartan [C]), and coincides
with the set of fixed points of g. There is a strong connection between complex
geodesics and holomorphic retractions:
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Theorem 1.3 (Lempert [L2]). Let DCCC" be a strongly convex C" domain,
(r=2,3,...,0), and p eHol(4, D) a complex geodesic. Then there exists a holo-
morphic function F:D— A such that

VzeD <{z—@(F(2)), $(F(2))>=0. (1.2)

In particular, Fop=id,, and ¢ o F is a holomorphic retraction of D onto ¢(4).
Furthermore, F extends C"~2 to oD.

The function F is called the left inverse of the complex geodesic ¢.

The rest of this section is devoted to the study of the uniqueness of complex
geodesics. First of all, in strongly convex domains there exists a unique geodesic
disk passing through two given points:

Proposition 1.4 (Lempert [L1], Royden and Wong [RW]). Let DC CC" be a
strongly convex C? domain. Then

(i) For any two distinct points z,, z, €D there exists a unique geodesic disk
passing through zy and z,;

(ii) For any point z, € D and direction ve C", v=0, there exists a unique geodesic
disk tangent to v at z,.

Proof. Since the proof of (ii) is quite similar to the proof of (i), we shall describe in
detail the latter only. The existence is Theorem 1.1(i). Assume now that
@0, @1:4—D are two complex geodesics passing through z, and z;; up to
automorphisms of 4 we can assume that ¢(0)= ¢,(0)=z, and @y({,)=¢,((,) =2,
for some {,ed. For Ae[0,1] set ¢,=(1—A)¢p,+A¢p,. Clearly, every ¢, is a
holomorphic map of 4 into D; moreover, ¢,(0)=z, and ¢,({,)=2z, for every
4€[0,1]. Then, by Theorem 1.1 (v), every ¢, is a complex geodesic; in particular,
@(04)C oD for every Ae[0,1]. But D is strongly convex; hence ¢,|,, does not
depend on A. In particular, ¢q|;, = ¢,],,4 and, since bounded holomorphic maps are
completely determined by their boundary values, po=¢,. q.e.d.

Given z,,z, €D, the unique complex geodesic ¢ such that ¢(0)=z, and
@(Co)=2z, for some {, € (0, 1) will be called the normalized complex geodesic passing
through z, and z,.

Now we want to discuss the uniqueness of complex geodesics passing through
given points in the boundary of D. To do so, we shall need the concept of angular
derivative. Let f be a holomorphic map of 4 into itself, with radial limit te 4 at
g €04; then the angular derivative of f at ¢ is defined by

, . T—f(ta)

ro=inite 43

It turns out (see for instance Burckel [Bu]) that the limit (1.3) always exists (and it

can be + 00); moreover, if 1=¢ then f'(¢) € (0, + co] and, if it is finite, it coincides

with the non-tangential limit of f” at 6. Conversely, if f extends C* to 4, then the

angular derivative is always finite and it is clearly given by the value of f” at ¢.
The facts we need about the angular derivative are summarized in:

Theorem 1.5. Let f: A—A be holomorphic. Then
(i) (Herzich [He]) If f(0)=0 and the radial limit of f at 1 is 1, then f'(1)21.
Moreover, f'(1)=1iff f=id,.
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(ii) (Behan [B]) If the radial limit of f at 1 is 1, and at —1 is —1, then
S (=1)z=1. Moreover, f' (1)f'(—1)=1iff f is an automorphism of A fixing 1
and —1.

To compute angular derivatives, we shall use the

Lemma 1.6. Let DCCC" be a strongly convex C* domain, xedD and ¢:4-D a
complex geodesic such that ¢(1)=x. Denote by F:D— A the left inverse of ¢. Then

{v, ) o
VoeC" dF, (v)=—>"" ={v,{(1)). 1.4
0=, s = (14)
Proof. Since for any { € 4 we have dF ,,(¢'({))=1 and
kerdF = {ve C"|<v, §(()> =0},
it is clear that [by (1.1)]

dF ¢(g)(”) =<, ¢({)) .
Then letting {—1 and recalling Theorem 1.2, we get (1.4). q.e.d.
Now we can prove

Proposition 1.7. Let D CCC" be a strongly convex C* domain. Then for any z,e D
and x € 0D there exists a unique complex geodesic ¢ : A— D such that ¢(0)=z, and

o(1)=x.

Proof. First of all the existence. Let {z,} CD be a sequence converging to x; denote
by ¢, the normalized complex geodesic passing through z, and z,. Since D is taut,
up to a subsequence we can assume that {¢,} converges to a holomorphic map
¢@:A4-D. Clearly ¢(0)=z,; moreover for all {4

kn(zo, @(0))= lim kp(zo, pu(() = (0, ),

and ¢ is a complex geodesic. Then it extends C® '/? to dD, and clearly ¢(1)=x.
Assume now that p is another complex geodesic with p(0)=z, and p(1)=x.
Denote by F (respectively G) the left inverse of ¢ (respectively ). We claim that

Foyp=id,. 1.5)
In fact, by Lemma 1.6
{y'(1), M)
FopY(1)=dF (v'(1))= ——+—=-.
(Feyp)(1) (v'(1) TN D)
Analogously,
_Le)my 1

G O= i my = Fewn
Then, by Theorem 1.5(i), (F o) (1)=(G - ¢)(1)=1 and therefore (1.5) is proven.

Now, (1.5) means that (¢ —¢@, @) =0 on 4. In particular,
{y(0)—¢(0), M,G> =0
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for every o €d4. Since D is strongly convex, this implies that y=¢ on 04, and
hence everywhere. q.e.d.

Using a similar argument, we can prove the uniqueness of the geodesic disk
passing through two given boundary points:

Proposition 1.8. Let D CCC" be a strongly convex C* domain. Then for any pair of
distinct points x,, x, € 0D there exists a unique (up to automorphisms of 4) complex
geodesic @ such that ¢(1)=x, and p(—1)=x,.

Proof. We begin with the existence. Let {z,} CD be a sequence converging to x,,
and denote by ¢, a complex geodesic such that @, (1)=x,, z; € x((— 1, 1)) and

Xo—X
lo0)—x,) <22l (1)

Since D is bounded, up to a subsequence we can assume that {¢,} converges to a
holomorphic map ¢ : 4—C". Since D is strongly convex, either ¢(4)CD or ¢ is a
constant contained in dD. The last possibility cannot occur [by (1.6)]; so
peHol(4, D), and it is clear that ¢ is as desired.

Assume now that y is another complex geodesic with y(1)=x, and p(—1)=x,,
and denote again by F (respectively G) the left inverse of ¢ (respectively y). We
claim that this time FoypeAut(d). (1.7)

Indeed, by Lemma 1.6

WAL W(=1)5)
Gy (p(—my

(Fow)(1)-(Foyy(—1)=
For the same reason,

1
(Foy)(1)-(Foyp)(=1)

(Goo)Y(1)-(Geo)(=1)=

Then Theorem 1.5 (ii) yields
(Fop)(1) (Feyy(—=1)=1,

and then (1.7). Hence, up to compose y with an automorphism of 4, we can assume
that F o p=1id , and the assertion follows as in the proof of Proposition 1.7. q.e.d.

Let D CC C” be a strongly convex C* domain: for every zye D and wq € D, with
Zo ¥ W, let @, denote the unique complex geodesic such that

(on,wo(o) = ZO and (pzo,wo(tanh [kD(Zoa WO)]) = WO ’
where tanh[kp(zo, wo)]1=1 if wo€dD.

Lemma 1.9. Let DCCC" be a strongly convex C* domain. Then the map
(Zo» Wo) P @z, Srom D xD minus the diagonal to Hol(4,D)nC°(4,D) is
continuous.

. Proof. Let {(z, w;)} be a sequence in D x D (with z, % w, for all ke N) converging to
(zg» Wo) € D x D with zy & w,; we have to show that ¢, = ¢,, ., tends to ¢, . Since
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Dis taut and ¢,(0) =z, —z, € D, it suffices to show that the only limit point of {¢,}

iS (sz, wo*
Let {¢, } be a subsequence of {¢,} converging to a map ¢. Since D is taut,
¢ eHol(4, D) is a complex geodesic with ¢(0)=z,. Put

s =tanh(kp(zi, wy));
obviously, s,—s,=tanh(kp(zo, w,)). Therefore

@(so)= lim @, (s, )= lim w; =w,,
v— oo

and ¢ must be ¢, ... q.ed.

Now we can define the representation of D onto the unit ball B" of C"
introduced by Lempert [L1]. Fix z,eD, and define @,,:D—B" by setting
?, (z9)=0 and ,
&,(2) = tanh(kp(zo, 2) - 22220 (1.8)

. P 1020, 0]
In other words, @, (z) is the point w of B" such that w/|w/ is parallel to ¢, , and
kg0, w)=kp(z,,2). Then
Proposition 1.10. Let D CC C" be a strongly convex C* domain, and z, € D. Then the
map @, :D—B" defined in (1.8) is a homeomorphism of D with B" such that
(i) @,,(z9)=0 and &, (0D)=(0B");
(i) for any ze D we have kp(z,,2)=w(0, | ,(2)]);
(iii) for any ze D\{z,} we have

oot ¢,0(z)>
G0 A=, ({ o)

Furthermore, @, depends continuously on z,.

Proof. Since every ¢, . is holomorphic, by Lemma 1.9 ¢ .(0) depends con-
tinuously on z, and z, and so @, is continuous and depends continuously on z,,.
Since D is compact, it suffices to show that @, is bijective, and to verify (iii).
@, is injective: assume P, (z,)=D, (z,). Then ky(zy,z,)=kp(z¢,2,) and
?,2:(0) Pz0,2,(0)

10202, O 9%, 2O
Now, ¢,, ., and ¢, ,, are complex geodesics; hence, by Theorem 1.1 (vi),

Kp(20 92,2, (0) =1=Kp(20; 97,,.,(0)) ,

and  so ¢y, ., 0)=1¢5,,0). Thus o . 0)=¢;, .,(0); hence, by
Proposition 1.4 (i), @,,, ., = ¢.,,., and then z, =z,.

@, is surjective: let w=rx e B", where r€(0, 1] and x € 0B". Choose a complex
geodesic ¢ e Hol(4, D) such that ¢(0)=z, and ¢'(0)=Ax for some 1>0. Clearly,
®=¢,, . for some ze D; we can also assume tanh(ky(z,,z)) =r. Then

@, (z)=tanh(ky(z,2)) - lTx =w.



652 M. Abate

Finally, we are left to show that
P,,(2)
I19.,(2)l

quo((pzo, z(()) = C

for all { e A*. Fix {,€ A4*; by definition,
tanh[kp(zos ¢2,,(Co))]= Lol

and
0.(2) _ ¢4 0)
19, oL, A0)
Now let 7={,/|{o| € 04, and define y € Hol(4, D) by y({) = ¢,, ,(t{). pis a complex
geodesic such that p(0)=z, and y(|{,))= @, .({o); therefore
v'(0) ¢%,,-(0)
' (O)] (A (U]

¢zo((pzo, z(CO» = ICO[ = CO

and we are done. q.ed.

It should be remarked that Lempert [L 1], using different methods, proved that
if D has C" boundary (r=4,...,c0) then @, is a C"~*-diffeomorphism of D\{z,}
onto B™\{0}, depending C"~* on z,,.

2. Common Fixed Points

We can now move toward the main theorem of this paper; we are left to recall few
facts about iteration theory and the structure of fixed point sets. If f is a
holomorphic map of a domain D into itself, we shall denote by Fix(f) the set of
fixed points of f in D. Remark that, by definition, Fix(f) is always contained in D,
even if f is continuous up to the boundary of D and has fixed points there.
Moreover, the set of fixed points of f in D is in general strictly greater of the closure
in D of Fix(f) [consider for instance the map f: BZ— B? given by f(z,w)=(z3,w)].
The structure of Fix(f) in convex domains is quite well understood:

Theorem 2.1 (Vigué [Vil, 2]). Let DCCC" be a bounded convex domain, and
feHol(D, D). Then:

(i) Fix(f) is a (possibly empty) closed connected submanifold of D;

(ii) for any pair of distinct points z,,z, € Fix(f) there exists a geodesic disk
passing through z, and z, contained in Fix(f).

It should be remarked that if z, and z, are two distinct points in the topological
closure Fix(f)CD of Fix(f), then again we can find a geodesic disk passing
through z, and z,; it suffices to use the construction of geodesic disks passing
through given boundary points described in the proofs of Propositions 1.7 and 1.8.
Combining this with the results of the previous section we get:

Corollary 2.2. Let DCCC" be a strongly convex C? domain, and take
fi,... f,eHol(D,D)  such  that  F=Fix(f})n...nFix(f,)*0. Then
F=Fix(f))n...nFix(f,)C D is homeomorphic to a compact convex subset of C".
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Proof. Take zyeF. If F={z,}, the assertion is obvious. Otherwise, Proposi-
tion 1.10 and Theorem 2.1 show that

F=a_(B'nV),
for a suitable linear subspace V of C", and we are done. q.e.d.
The main facts of iteration theory we need are summarized in:

Theorem 2.3 (Abate [A1,2]). Let DCCC" be a strongly convex C* domain, and
feHol(D, D). Then:

(i) If Fix(f)=0, then the sequence of iterates { f*} of f converges, uniformly on
compact sets, to a constant map x € 0D.

(i) If Fix(f)=#0, then there is a subsequence { f**} of iterates of f converging,
uniformly on compact sets, to a holomorphic retraction ¢, of D onto a submanifold
M ; of D. Moreover, ¢ does not depend on the particular subsequence, but only on f,
and fy, is an automorphism of M.

If Fix(f) =0, the holomorphic retraction g, is called the limit retraction of f.
Finally we can prove our main theorem:

Theorem 2.4. Let DC CC" be a strongly convex C* domain, and % CHol(D, D)
NCYD) a family of commuting holomorphic maps. Then there exists a point xe D
such that f(x)=x for all fe #.

Proof. Assume first that there is fe # without fixed points in D. Then, by
Theorem 2.3 (i), there exists a point x € 0D such that the sequence of iterates of f
converges to x. Hence for any ge % we have

g9 = Jim g(/4(z)= lim fX(g(z)=x,

where z is any point of D, and we are done.
So assume that Fix(f) <0 for every fe #. The first key observation now is that
if f, g e Hol(D, D) commute, then g sends Fix(f) into itself. In fact, if z € Fix(f) then

f(82)=g(f(z)=g(2).

The second key observation is that if f,ge# then ¢, and g, commute. In
particular, g, g, is a holomorphic retraction, and moreover

0o, D)=¢D)ng,D).
Indeed, g, - o (D) is contained in g (D)g,(D) for ¢, and g, commute; on the other
hand, ¢(D)ng,(D) is clearly contained in Fix(g,c@,)=0,°0,D). An induction
argument then shows that for any f},...,f,€# the map g; ...o0,, is a
holomorphic retraction of D onto

07,0007, (D)=0s(D)N...00; (D).

In particular, the intersection on the right-hand side is always a non-empty closed
connected submanifold of D. Choose fi,...,f,€% so that the dimension of
;,(D)N...ng, (D) is minimal; then for any fe # we should have

2r(D)n...nes (D) CoyD). 2.1)
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Setg=gy,o...o0@,, and M =g(D). Then ¢ is a holomorphic retraction of D onto M
commuting with every fe . Moreover, for every fe# we have M Co (D), by
(2.1), and f(M)CM, for M =Fix(g). Now, f|, ) is an automorphism of ¢ (D);
hence f(M)=M and f|,,€ Aut(M). Finally, for any fe # we have Fix(f)nM =0,
indeed, since ¢ commutes with f, o(Fix(f))C Fix(f) and so

Fix(f)nM=o(Fix(f))=*0.

We shall denote Fix(f)nM by F; since it is easy to check that F,=Fix(g-f),
every F is again a closed connected submanifold of D, invariant under the action
of any ge #.

Now, ky=kplp = »; in fact

Vzi,2,€ M kpl(zy,25) Skarlzy, 25) =kprlo(z4), 0(22)) Skp(zy, 22) -

In particular, every complex geodesic in M is a complex geodesic in D; moreover,
since M =Fix(g), for every two distinct points in M passes a unique complex
geodesic.

If # has a common fixed point in ¢D, our work is clearly finished. So assume
that there are no common fixed points of # in the boundary of D; we want to
construct a common fixed point in the interior of D. First of all we claim that

Vi nfu€F Fro..nF; +0. 22

We argue by induction on u. For u=1is clear. Assume F; n...nF; _ #0, and
take f,e#. By Corollary 2.2, F 10 .nF,_ is homeomorphic to a compact
convex subset of C". Since it is also invariant undcr f» by Brouwer’s theorem f, has
afixed pointin F; A...AF,_ . We have to show that f, actually has a fixed point
in F,n...nF; . Assume it does not. If f, had a unique fixed point
xemtnfw, then {x} should be invariant under any fe %, that is x
should be a common fixed point of # contained in 0D, against our assumption. So
f, should have at least two distinct fixed pomts x,yeFyn...0F; ~noD. Let
@:4-D be the umque complex geodesic passing through x and y, clearly,
@(4)CM. But f,|, is an automorphism of M; hence f, - ¢ is again a complex
geodesic passing through x and y. By Proposition 1.8, f, o p(4)=¢(4), that is f,
sends ¢(4) into itself, and without fixed points, for ¢(4)CF,,n...nF, _ . But then
the sequence of iterates of f,|,., should converge to a point of the boundary, by
Theorem 0.2, and this is impossible, for f, has fixed points in D, by assumption.
The contradiction arises from assuming F, N...nF; =@;hence F; n...nF +0,
as claimed.

So we have proven that, if # has no common fixed points in 8D, then (2.2)
holds. In particular, the intersection of every finite subset of the family {F | fe #}
is not empty; since D is compact, this implies that the intersection of the whole
family is not empty, and every element in this intersection is a common fixed point
of #. qed.
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