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1. Introduction

Being aware of the difficulties in formulating and proving a law of large numbers
for random walks on an arbitrary locally compact group, it seems hopeless to try
the same attempt on the even more general structure of a hypergroup. However,
since these difficulties arise in part from the complicated geometric structure of
many of the groups considered, one might expect that it is possible to obtain
theorems on hypergroups which are of particularly simple geometry. This has
successfully been done by Eymard, Roynette, Gallardo, and Ries (see [8, 15, 14]) in
the case of the hypergroups on N related to the Gegenbauer polynomials. Whereas
on the real line (with the usual topology) there is exactly one structure as a
topological group, there is an abundant collection of hypergroups on the half line
R, (see Chébli [5], Zeuner [28]). In the case of Chébli-Triméche hypergroups
enough analytical tools are developed to prove the law of large numbers and the
central limit theorem. The latter will be studied in the forthcoming paper [29].

IfX,,X,,... areiid. random variables with values in a group, the correspond-
ing random walk is the sequence S,, S,, ... defined by S,: =X, X,_, ... X,. Since
the operation on a hypergroup is only defined in terms of the convolution of
measures, the random walk (S, :n=1) can only be defined by its distribution and
not as a function of (X,:n=1). The notion of concretization and a randomized
multiplication is introduced in 3.3 in order to obtain an explicit construction of
(S,:n=1) in terms of (X,:n=1) for every 2" countable locally compact
hypergroup.

As in the classical case, the moments of a random variable are introduced, both
to formulate the conditions under which a particular limit theorem holds, and to
calculate the actual value of the limit. This has to be done by a modified definition
to fit with the hypergroup operation. The first and second moments are in very
close connection with the notion of the dispersion of a probability measure used in
Faraut [9] and Triméche [24]. As to be expected by the results of Guivarc’h [16],
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two different situations occur depending on the parameter ¢ (see 2.2) which
determines the growth of the hypergroup. If ¢ > 0 the hypergroup is of exponential
growth and the expectation of every nonzero random variable is strictly positive.
This result includes the symmetric spaces of rank one of non-compact type and
corresponds to Guivarc’h [16], corollaire on page 77. If ¢ =0 the expectation of

every random variable is 0 and so is the limit of ;S,, in probability. This result

should be compared with [16, théoréme 3, p. 72].

In both cases a strong law of large numbers will be proved. Apart from the
different and less general situation in this article the main difference with the results
in [16] is the fact that for hypergroups on R | the law of large numbers can be

formulated without the use of a gauge function and the a.s. limit of — ! S can be
calculated explicitly.

2. Preliminaries

2.1. Let K be a hypergroup in the sense of Jewett [20]; this means that K is a locally
compact space with an associative convolution (x, y) — &, * &,€ .4 '(K) (the space
of probability measures on K) such that there exist a neutral element e K and an
inversion x — x” satisfying certain conditions (see [19, 20, 23] for details). In the
cases considered in this article (except in the third paragraph) K will be Hermitian
(i.e. x"=x for all x e K); in particular this implies the commutativity of K.

The dual K of the Hermitian hypergroup K is the space of all real valued
multiplicative functions ¢ on K with ¢(e)=|¢|,=1 [20,6.3]. For every
probability measure P on K the Fourier transform % P is the continuous real-
valued function ¢ — #P(p):=[@dP on K. It is a well known fact that the
uniqueness theorem and the continuity theorem for the Fourier transform are
valid for many commutative hypergroups [3, 19, 20].

2.2. In the sequel we consider the class of Chébli-Triméche hypergroups on

K:=R, :Forevery function 4 on R , (which turns out to be the Lebesgue density

of a Haar measure of K) satisfying 4(0)=0, 4 strictly increasing and unbounded,
! A/

% decreasing on R*, and A((;C)) = %+ B(x) on a neighbourhood of 0 (where a >0

and B is an odd €*-function on IR), there exists a unique hypergroup structure on

R, such that

0
ox

for every even €*-function f on R and x,yeR .. The neutral element of this
hypergroup is 0 and the inversion is the identity mapping.

The growth of this hypergroup is determined by the number

hm A((x)) >0:If >0 then we obtain A(x)=A(1)-e**~ Y for x=1 and so

the hypergroup is of exponential growth; if ¢=0 then (R, *) is exponentially

bounded. The multiplicative functions are precisely the solutions ¢, (1€ C) of the

(A(x)A(y)—(des *sy)) 0 <A(x)A(y) (f fde, *ep)
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differential equation
A, ,
@it 0@ +2)0,=0,  ¢,0)=1, ¢3(0)=0

and the dual is K = {,: A€ R, Ui[0, ¢]}. In the following we will identify K with
the set of parameters R, Ui[0, ¢]. The proof of the preceding results can be found
in [5,28].

2.3. The most important technical tool used in this article is the Laplace
representation for the multiplicative functions ¢, (AeC) proved in [5,
Proposition I-1V]: For every xelR, there exists a probability measure v, on
[ —x, x] such that

@, (x)=[e "y (dr) for xeR,, ieC.

Furthermore the measure t, with the density ¢+ e~ ¢ with respect to v, is a
symmetric subprobability measure on R which depends continuously on x [in the
weak topology on #°*(R)]. Therefore T may be considered as a sub-Markovian
kernel from R, into R and it follows from the Laplace representation for ¢, that
for every Pe #*(R ,) we have

FP()=1P() forall leR,

where 1P(4)=(t,(A)P(dx) for every Borel measurable subset 4 of IR, and " denotes
the usual Fourier transform on the real line (which should be well distinguished
from the Fourier transform % of R | considered as a hypergroup).

3. Concretizations of Hypergroups

The main problem which makes it difficult to state probabilistic results on a
hypergroup K is the fact that the definition does not allow us to define the
“product” of two independent random variables X and Y with values in K as a
K-valued random variable X - Y directly. It is clear, however, that the distribution
of this product — if it exists — should be Py * Py. It is the purpose of this paragraph
to construct such a random variable, unifying the different approaches which have
been made in concrete examples.

3.1. Definition. Let (K, *) be a hypergroup (not necessarily commutative), 4 a
probability measure on a compact set M and ®:K xK xM—-K be Borel-
measurable. (M, u, ®) is called a concretization of (K, *) if

w{B(x,y,- )eA}=(e,*¢)(A) for x,yeK, AeB(K).
Here B(K) denotes the Borel o-field of K.

3.2. Examples

3.2.1. Let G be a locally compact group and * the convolution defined by the
group operation. If we define ®(x,y,1):=xy for x,yeG then ({1},¢,,®) is a
concretization of (G, *).
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3.2.2. More generally let H be a compact subgroup of G and (G//H, *) the double
coset hypergroup (see Jewett [20]). Then (H, wy, ®) is a concretization of (G//H, *)
if we define &(x,y,h): =Heo(x)ho(y)H where ¢:G//H—G is measurable and
satisfies x=Ho(x)H for every xe G//H (if G is locally compact, metrizable, and
separable the existence of ¢ follows from [4]).

323. Let K:=IR, &, %&,: =36,y +36,4,, M:={—1,1}, p:=%¢_, +4¢,, and
D(x,y,A):=|x+Ay|. Then (M, u, ®) is a concretization of (R, *).

3.24. Let x> —% and (IR ., *) be the hypergroup defined in [22, 18] (see also [11])

by .

8:%8,=C, | smrymam(1—4)*"12%dA  (x,yeR,)
-1

I'e+1)
T+
M:=[—-1,1], p:=g- A, 4, (where g():=c,-(1—n?*""? and 4, ,; denotes
the Lebesgue measure on [—1,1]) and &(x, y,4): =]/x*+y* —24xy.

3.2.5. Let a> —1 and ([0, n], ) the hypergroup defined in [2] by

with ¢,:= . A concretization of this hypergroup is given by

1
— 2ya—1/2
8x * gy . _ca ,‘.1 earccos(cosxcosy+}.Sinxsiny)(1 _'1 )¢ / d;L fOI' X, ye [05 7t] .

A concretization of this hypergroup is givenby M:=[—1,1], u:=g-4_; ;;asin
3.24 and .
&(x, y,A): =arc cos(cosx cosy+ Asinxsin y).
3.2.6. If we choose M and u as in 3.2.4 and
®(x, y,A): =arch(coshx coshy+ Asinhxsinhx) for x,y,elR,, le[—1,1],
we obtain a concretization of the hyperbolic hypergroup [21, 26, 27].

3.2.7. Let a> B> —1 and consider the hypergroup operation on IR . defined in
[12]. In this case a concretization is given by

M:=[0,1]x[0,n], p:=g 1}

[with g(r, 9): =c, (1 —r?)*"#~1r?#*1(sin9)*/], and
1
@(x, y,(r,3): =arch [i (1 +coshx)(1 +coshy)
2
+ %(1 —coshx) (1 —coshy)+rcos3sinhx sinhy] .

3.2.8. Consider the convolution
e %e L& x—yl+2s+1
TS (x+ ) (v +1)

on the nonnegative integers IN (compare [8] and [15]). In [15] a concretization of
this hypergroup is given by M : =S? (the sphere in IR®), u the uniform distribution

elx—yl +2s(xa yGN)
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on §? and
D(x,y, D): =[x =yl +2[3{ (x+ Deo +(y+ 1D —[x—yl} ]
(where e, is a fixed unit vector in R® and | | the Euclidean norm).
3.3. Definition. In the sequel let (M, u, ®) be a concretization of the hypergroup
(K,*) and (2,2, P) be a probability space. If X and Y are K-valued random

variables and if 4 is an M-valued random variable, independent from (X, Y) and
satisfying P ,=p we define

X4Y:=d(X, Y, A).
This is a K-valued random variable.

More generally let (X,,: n= 1) be a sequence of K-valued random variables and
(4,:n=1) be a sequence of M-valued random variables with P, =pforn>1and

n
such that X, 4, X,,4,,... are independent. Then we define 4]] recursively by
i=1

0 n n—1
4[] X;:=e and 4[] X;:=X,* 4[] X;
j=1 j=1 j=1
forn>1.

It is clear that (A['[ X;: ne]N) is a (non homogeneous) Markov chain, the
i=1
transition kernel being

n—1

4] X j=x} =(Py *¢e,)(A) P-as.

P{Al’[ X;ed
i=1

n
If the hypergroup is commutative we will write X 1Y instead of X 4Y and 4y
ji=1

n
instead of 4]] .
j=1

3.4. Proposition. Let (X, Y, A) be independent and P,=u. Then Pyay= Py* Py.
Proof.
Pyay(A)=P{d(X, Y, A)e A}
=[[ P{®(x, y, A) € A} Px(dx)Py(dy)
=[Ju{®(x,y, )€ A}Px(dx)Py(dy)
=[[ &, * &, (A)Px(dx)Py(dy)
=(Py*Py)(4A) for AeB(K). O

3.5. Remark. It is clear that a concretization is not uniquely determined by the
hypergroup and hence the same is true for X 4Y. However, the following
proposition shows that the joint distribution of X, ¥,and X 4Y does not depend on
the choice of the concretization.

3.6. Proposition. Let X, Y, X', and Y’ be K-valued random variables with Py
=P x yy. Furthermore let (M, p, D) and (M', i, &) be concretizations of (K, *) and
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A, A" be M-valued resp. M’-valued random variables such that A is independent of
(X,Y) and A’ is independent of (X',Y’') with Py=p and P, =y'. Then Py y x4y,
=Py y.x%yy
Proof. For every A, B, C e B(K) we have
Pix v, x4y (4 x Bx C)=A£BP{‘D(X, ¥, A) € CYPx yd(x,y))
= | & *x&(C)Py y(d(x,y))
AXB
=A { B P{dy(x’ Y, A/) € C}P(X’,Y’)(d(xa y))
=P(X',Y',X'4’Y')(A X B X C) . D
3.7. Corollary. If (X,, 4,:n€NN) are independent with P , = pi then the distribution
of <X wA[] X ,.:ng1> does not depend on the concretization (M, u, D) or on the
j=1
choice of (A,:n=1).

3.8. Proposition. Let (K, *) be a (locally compact ) hypergroup with countable base
of topology. Then there exists a mapping ®:K x K x[0,1]—-K such that
([0,1], Ao, 13» ®) is a concretization of (K, *).

Proof. We will only treat the case that K is not countable (if K is at most countable
we may construct @ in the same way as below without worrying about
measurability). It follows from the assumptions that there exists a bimeasurable
bijection y:K—[0,1]. The induced mapping pr> w(u) from #'(K) onto
([0, 1]) is Borel measurable and hence so is the mapping p: [0, 1]*>—.#([0,1])

defined b
y Px, y) i =(Ey- 10 * Ep-1(y) -

It is a well known fact that for every ue .#*[0, 1] there is a unique left continuous
increasing function ¢,:[0,1]—[0, 1] such that ¢,(4,, )= p, namely

@um)=0vsup{ze[0,1]: ([0, z]) <} .

We will prove that the mapping @,:[0,1]13—[0,1] defined by
Do(x, ¥, 1)1 = @4, ,)(4) for all x, y, A€ [0, 1] is Borel measurable. It follows from the
left sided continuity of ¢, that it suffices to show that for every 1e[0,1] the

mapping
> 9,()=0vsup{ze[0,1]: u([0,20) <2}
is Borel measurable. This, however, is a consequence of
{pe MY ([0,1]): 9, () Se} = {pe A0, 1]): [ 110 gduZ 4}
The mapping ®: K x K x [0,1]—K can therefore be defined by
B(h, k, 2): =y~ (Do(w(h), w(k), ). O

3.9. We are now considering the special cases K=R , and K=[0,1] —see [1, 5,
28]. It follows from [28] that we may suppose without loss of generality that

minsupp(e, *&,)=|x—y| for x,yeK
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and
maxsupp(e, *¢,)=x+y if x,yeK (and x+y=<1 in the case K=[0,1]).

Since in these cases there is no need for a Borel isomorphism v in the proof of 3.8,
we get the following additional properties of @:

?(x,,0)=|x—y| for x,yeK
and
&(x,y,1)=x+y for x,yeK (and x+y=<1 in the case K=[0,1]).

Furthermore ®(x,0,4)=®(0,x,4)=x. Every hypergroup on R, or [0,1] is
commutative [28, Corollary 2.4] and hence

D(x,y,)=D(y,x,4) for x,yeK, 1e[0,1].

It is easy to prove that forevery 1€ [0, 1] the mapping &(-, -, 1): K x K— K is lower
semicontinuous. Under the additional assumptions that ¢, * ¢, is diffuse for x, y> 0
and supp(e, * &,) = [|x — yl, x + y] (which happens to be true if (R ., *) is a Chébli-
Triméche hypergroup as shown by Trimeche [25, Sect. 8]), &(-, -, 1) is continuous
for every Ae[0,1].

4. Moments

The usual definition of moments of higher order on a locally compact group
[16, 18] depends on the choice of the gauge function d,(x): =inf{n=1:x€ V"} and
essentially only states whether the moment of order « (¢ >0) exists or not. On
Chébli-Triméche hypergroups however, the moment of order n of a probability
measure can be defined for every integer n> 1 in a unique way fitting (in the sense of
4.14) with the convolution structure of the hypergroup.

From now on let (K, *) be a Chébli-Triméche hypergroup on IR , (see 2.2). It is
proved in [5] that ¢,(x) is an analytic function of A. The derivations of ¢,(x) with
respect to A will be the most important tool to define moments for each probability
measure on IR, in a way which is consistent with the convolution structure.

4.1. Definition. For every Ae €, xeR,, and n>0 let

a n
P i(X): = (@) Prrip¥Nu=0 and  my(x): =9, ;(x).

Some elementary properties of the functions ¢, ;, and m, will be proved first.
42. Let L be the differential operator on IR, defined by Lf(x)=—f"(x)

—1:((;:)) f'(x) for x>0 and fe%*(IR,) with f'(0)=0. By differentiating the
differential equation ¢,=(0*+4%)¢;, ¢,(0)=1, ¢}(0)=0 with respect to 1 we
obtain

Lo, 1=(0*+ )@, 1 +2inkp,_ 1 ;—nn—1)@,_, ;, ¢, (0)=0, ,(0)=0
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and especially
Lm,= —2nom,_,—nn—1m,_,, m(0)=m(0)=0 for n=1
(with my(x)=1 for every x€IR ).

4.3. 1t follows from the Laplace representation (2.3) that
Pu ()= [ e By (dr)= [ t"e” A7 (dr)

and .
myx)= [ t'v(dt) for xeR,, AeC, n=1.

4.4.1f A€i[0, o] @, , is real valued for every n=1 since ¢, is real valued. For Ae R
@, ;isreal valued if nis even and i@, ;isrealifnis odd. This follows since ¢ ,(x)is an
analytic function of 1 and ¢, is real for AeIR,.

It follows from m,(x)= | t*(e® +(—1)"e” %)t (dt) that m, =0 for every n=1.
0
4.5. We now have to study the two cases ¢ =0 and ¢ >0 separately. We begin with
the case ¢=0. It is clear that m,=0 if n is odd.
4.6. Lemma. Let ¢=0, AcR ., and neN. Then

a) my <1+4my, for every k<n,
b) |02, Al Smy,, and
) l@2n-1,2lS1+my,

Proof.
a) my(X) =24, (dt) S [ (1 + "W (dt) =1+ my,(x),
b) @20, NS [ 12" ™ H v (d) = 2"V [(dt) = my,(x),
<) Q20— 1, (N[ 167" Te™ My (de) = [ [t]*" ™ Ly (dt)

<[A+2"w d)=1+my,(x). O

4.7. Theorem. Let P be a probability measure on R , and n=1. Then the following
conditions are equivalent:

(i) [m,.dP is finite,

(i) #P is 2n—1 times differentiable, # P*"~(0)=0 and # P?"(0) exists.

Inboth cases F P () =i* | ¢, ,dP for allk<2n,\eR .. In particular # P?(0)
={mydP.

Proof. “i = ii”: By 4.6a) and induction & P?"~ 1 exists. From 4.6c¢) and b) we
obtain

i(PZn—Z,i,:l:pZn—z,u# §m2n+ 1
and

|(p2n—-1,l_(p2n—1,u|
I i_ﬂ | §m2n
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and it follows from the dominated convergence theorem that & P?"~1)(}) and
FP®"(J) exist and equal i*"~'-[¢,,_, ,dP and i*"-[¢,, ,dP respectively. In

particular Fplan- 1)(0)=§§02,,_ 1,0dP=Im2n— ,dP=0.
“ii = i”: Because of # P"~1(0)=0 the 2n-th derivative & P"(0) equals
2 ’llina hl—z (F PP"~I(h)— F P2~ 2(0)).
Since @,,_,, ;<m,,_, by 4.6b) we may apply Fatou’s lemma to obtain

0% [ m,,dP

a 2
:_I(b‘};) O2n—2,nlh=0dP
o1
=2.[£1_{r(1)'}l_2(m2n—2_q)2n-2,h)dp

|
§2h£1ilonfh_2.[m2n—2_(pZn—Z,th
1
n
=—-2FP*0)<o0. [J

=2 liﬁn inf — (# P?"~2(0)— F P2~ 2(h))
-0

4.8. Remark. The condition # P"~Y(0)=0 — which does not occur in the usual
formulation of this theorem on R — cannot be dismissed. For example in the case of
Kingman’s hypergroups [A(x)=x%**! o> —1, see 3.2.4] the (Cauchy type)
distribution P with density

2 (e +32) x2at!

ﬁF(a+1) (1+x2)a+3/2

has the Fourier transform A+ e~ * (see [7, 8.6(4)]) which is infinitely often
differentiable on R, but {m,dP = co.

Let us now suppose that ¢ > 0. Then m,, is strictly positive on IR* forevery n=0.
In view of (7.6) and (5.4) this fact corresponds to the corollary on p. 77 in [16].

4.9. Lemma. Let ¢0>0 and n=0. Then
a) (Pn,i}.>0if’{e[0ag]a
b) (pn,ilé(pn,iu lf Oéléﬂéga and

C) mn_wn,il émn_(pn,iu lf0_§/1§#<g

o—4 o—u
Proof. a) @, ;;(x)={t"e~"@" Yy (dt)>0.

b Guuld= | CeTe I d) =] e (~ 1)
<] (@ (— 1V dr)
0

= (pn,iu(x)

since sinh and cosh are increasing functions.



666 H. Zeuner

M) = @uisx) _% (€0 (=16 )€+ (~ 1) e~
5 e 7 7,(df)
B G G e G G e W
0 e—nu

— m,,(x) — O, iu(x)
9—H

since sinh and cosh are both convex functions. []

2 n
4.10. Lemma. Let ¢>0. Then m,(x)< (§> +om,, (x) for all x>0, neN.
Proof. If n is odd we conclude from sinh y < ycoshy for all y >0 that

mo(x)= [ - sinh (ta)r (dF)

Sot"" ! cosh(te)r,(dr)
0

=om,,,(x) forall x=0.
If n is even we use the inequality coshy <ysinhy+ 1y, ,(y) to obtain y"coshy
<y"*!sinhy+2" which implies

m,(x)= (;) " cosh(ta)z,(d?)

< z(et“ ! sinh(tg) + (2/0)")r.(d?)
<om,, () +@2/er forall x20. [

4.11. Theorem. Let ¢>0, n=1, and P be a probability measure on R .. Then the
following conditions are equivalent:

(i) [m,dP is finite,

(i) A+ FP(il) is n times differentiable on [0, o].

ol
F P¥(0)= [ m,dP.

Proof. “i = ii”: It follows from 4.10 and induction that f: 4+ [¢;;dP is (n—1)
times differentiable on [0,¢] and /"~ V(4)={¢,_,,;;,dP. The mean value theorem
and 4.9b) imply that

On-1,i(X) = @n— 1, iy (X S |A— | - my(x).
By Lebesgue’s theorem we obtain that f®~ 1 is differentiable and

k
In both cases <i> FP(il)=(¢ ,dP for all k=n, Ae[0,¢]. In particular

<5BZ>" FP(iA)=f"(A)=] @, ,dP.
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“ii = i”: By induction the first n—1 moments | mdP (k <n—1) are finite and
V) =f¢,-1.,dP. 1t follows from 4.9c¢) that the difference quotients
My—1 = Pn—1,is

0—4
theorem of monotone convergence

1%
fm,dP= aj¢n—l,ildpll=e

(A<p) approach m, increasingly as A.7¢ and hence by the

exists and equals f™(g) which is finite. []

4.12. Remark. Let 9> 0and | m,dP be finite. Then it follows from 4.3 and 4.9 b) that
l@,, (%) =m,(x) for all x=0 and 1eC such that |31|<g. Therefore the function
A [ @,dP is ntimes differentiable in this strip and in particulary — [ @, , ;, dPisn
times differentiable on R. This fact will be used later.

4.13. Remark.Let ¢ =0. Then a sufficient condition for E(m,(X)) being finite (where
X isalR , -valued random variable) is E(X™) < co. This follows from the inequality
m,(x) < x" for all x =0 which is a consequernce of the fact that the measure v in 4.3 is
supported by [ —x, x].

4.14. Theorem. Let ¢ >0, X and Y beindependent R , -valued random variables such
that E(m,(X)) and E(m,(Y)) are finite. Then E(m, (X 1 Y)) is finite and

x4 )= 5, (7) BmxpBm, .

Proof. This follows from the fact that the product of two n times differentiable
functions is again n times differentiable, Theorem 4.11, and Leibniz’s rule. []

5. Expectation

5.1. In this paragraph the special properties of the function m, will be considered.
We will assume ¢ >0 throughout the whole paragraph. The function m, has
already been defined in [9, 24] under the name “forme quadratique généralisée”. It
will be used to define a modified expectation for every R | -valued random variable
consistent with the hypergroup structure (see 5.6).

5.2. Examples. If A is of the form A(x)=(sinhx)*for some o >0, the function m, can
be written down in closed form for some values of a. According to Faraut [9], m,(x)

=2In cosh; ifa=1and m;(x)=xcothx—1 if a =2. If « =3/2 one calculates m,(x)
2

=2In cosh% + %(tanh ;) (x=0). If A(x)=(coshx)? then m,(x)=x tanhx.

5.3. Remark. By integrating the differential equation for m, (see 4.2), one obtains

m,(x)= 29? jy'A(z)dzdy for x=0.
)0

This formula has been used in [13].
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5.4. Definition. Let (R, *) be a Chébli-Triméche hypergroup with the corre-
sponding function m,. Then for every R, -valued random variable X,
E (X):=E(m(X)) is called the *-expectation of X.

5.5. Remark. Although E(X)=0 holds for every random variable in the case ¢ =0,
the *-expectation does not loose its entire sense as can be seen from Theorem 8.4.
The notions of “dispersion” and “variance” are also used for E,(X) by some
authors (see [9,13,24]). Theorems 7.6, 7.7, and 8.4, as well as the central limit
theorems in the forthcoming paper [29] are the motivation to call E (X) the
“expectation” of X and to reserve the expression “variance” to the corresponding
number related with the second moment function m,.

5 6. Proposmon Let A have the distribution u and be independent from (X, Y). Then
(X+ Y)=E (X)+EY).

The proof follows from 4.14. [

5.7. Lemma. If 9>0 then lim —=-~ 1(x) =1.
Proof. Suppose that m] takes negative values. Since m (0)— >0 there exists

!

x>0 with mi(x,)>0, mi(x,) <0, and m7(x,)<0. This would 1mp1y that m/ - i

and mj are strictly decreasing in a neighbourhood of x,,. But this is impossible since

my +mj i =20 by 4.2. From this contradiction we conclude that m] =0 and m)

’

is increasing. Suppose now that §: = lim m/(x)<1. This implies m] =29 — = m

>20— éﬂ. When i(x) is close enough to 2¢ the last number becomes strictly

positive and hence m/(x) is bounded away from 0 for large enough x. This is a
contradiction with sup{my(x):x=0}=f<1. On the other hand, from 2¢m)

=mi+ l—m’l =20 we obtain m <1 and hence mj(x) 71 as x—oo. This implies

1. O

ml(x)

5.8. Corollary. Let ¢>0 and X be a R ,-valued random variable. Then E (X) is
finite if and only if E(X) (the expectation of X in the usual sense) is finite.

5.9. Proposition. Let ¢ >0 and X be a R , -valued random variable with 0< E (X)
< + 0. Then

0
= B@u(X ;o= E,(X).

Proof. If E,(X) is finite this is Theorem 4.11. If E ,(X) = oo this follows from 4.9 and
the theorem of monotone convergence. []
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6. Variance

We will now explore the properties of the function m, to obtain a modification of
the notion of variance in a similar way as for the expectation in the last paragraph.

6.1. Examples. If A(x)=x" (x=0) we obtain m,(x)= oc_~1|-_1x2' If A(x)=(sinhx)?,

my(x)=x*+2—2xcoshx [26, p. 191] and in the case A(x)=(coshx)? we have
m,(x)=x2.

6.2. Lemma. m,(x)> <m,(x)<x? for every x=0.

Proof. The first inequality follows from 4.3 and Jensen’s inequality; the second has
already been proved in 4.13. []

: A
6.3. Corollary. Let 9>0. Then lim sz(x)z 1.

6.4. Lemma. If ¢=0 then m, is a convex function and lim ma(x) =+ 0.

x—o X
Proof. The convexity of m, follows in the same way as the convexity of m, in the
first part of the proof of 5.7. The assumption that m), is bounded leads to a
contradiction since it implies

. A’
Jim o) =2 lim i) g =2
: ’ 3 m2(x)
Hence m}, is unbounded. But from m}(x) » 0o as x— oo follows lim = + o0

by the mean value theorem. [J

A'(%)
A(x)

6.5. Lemma. Suppose that 9 =0 and {x x> 0} is bounded. Then there exists

y>0 such that m,(x)=vx? for x=0.
. . . A .
Proof. It follows from the differential equation m + —m/, =2 that the function y
A
defined on IR, by

mj(x)/x for x>0
p(x)= ,

m3(0)= for x=0

a+1

satisfies the differential equation
, A'(x)

xy'(x)+ <x A

A'(x)
A(x) b+1
we obtain y'(x)>0 and so y is certainly bounded from below by 2y where

7:=min (E%’ E:l-_l) But this implies m’(x)=2yx and hence the result. []

2

+1>tp(x)=2, p(0)= PR

Let b be an upper bound for x (x>0). Then for every x such that yp(x) <
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6.6. Definition. In order to define the *-variance for every Chebli-Triméche
hypergroup (R ,,*) with corresponding functions m; and m, we introduce the
function v: R, xR, =R, v(x, &): =my(x)—2Em, (x)+ &2 (x, & =0) which is non-
negative by 6.2. For every R , -valued random variable X such that E(m,(X)) < oo
the function & — E(v(X, £)) on R takes its minimum at & =E (X)), this value being

Vi(X): = E(U(X, E (X)) = E(m,(X)) — E(m,(X))* Z0.
If E(m,(X))=co we define V,(X)=co. V,(X) is called the *-variance of X.

6.7. Remark. In the case ¢ =0 V,(X) equals E(m,(X)); this number is called the
“dispersion” of X in [24].

6.8. Remark. V(X) is strictly positive unless X =0 P-a.s. At the first look it is
surprising that the *-variance of a constant X 0 does not equal zero. But it
reflects the fact that X + Y is random even if X >0 and Y >0 are deterministic.

6.9. Proposition. If ¢ >0 orif {x . i(X) x> 0} is bounded, V(X) exists if and only
if E(X?)< 0. )

Proof. This is a consequence of 6.3 in the first case, and 6.2 and 6.5 in the
second. [J

6.10. Proposition. Let X and Y be independent R , -valued random variables. Then
V(X3 Y)=V,(X)+ V,(Y).
Both sides of this equation may be infinite.

Proof. If E(my(X)) or E(m,(Y)) are infinite it follows from 4.14 that E(m,(X -/|1- Y))

and hence V(X -Iil- Y) equals + oo. Let us therefore suppose that V, (X)< oo and
V(Y)< oo. It follows from 4.14 that

V(X4 Y)=E(my(X + Y)— Em,(X } Y))?
= E(m,(X)) + 2E(m; (X)) E(m,(Y)) + E(m,(Y))
— E(m,(X))> —2E(m (X))E(m,(Y))— E(m,(Y))?
=V, (X)+V(Y). O

6.11. Remark.If X and Y are not independent but only *-uncorrelated (in the sense

that
E(m(X)m(Y))=E (X)E(Y))

then the assertion of Proposition 6.10 remains valid.

7. Laws of Large Numbers in the Case of Exponential Growth
Recall that (M,u, @) denotes a fixed concretization of a Chébli-Trimeche
hypergroup (R, *).

7.1. Proposition. Let X, Y, and A be independent R , -, R -, and M-valued random
variables such that P ,=p.
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a) If E,(X) and EY) are finite, then E(mX4$ Y)X)=my(X)+E(Y)
P-almost surely.
b) If V(X) and V(Y) are finite, then

E(w(X i Y), E (X ¥ Y)X)=uv(X,E X))+ V,(Y) P-as.
c) If |34 Zo, then
E(p X £ Y)IX)=0,(X)- E@p,(Y)) P-as.
Proof. a) Let AeB(R ). Then by 5.6 it follows

EQ ey my(X F ) = EOmy (e XD Y)— Bl ey gy (V)
=Em,(1;x; 4X)+E(Y)—P{X ¢ A}E(Y)
=E(lixeq  [m(X)+EY)]).

b) For every 4AeB(R ) we conclude from 4.14 that

E(1 (Xed)® my(X ‘/’1‘ Y)= E(mz(1(xE A}X) ‘ﬁ Y)— E(l{X¢A}m2( Y)
=E(my(1xc 4 X))+ 2E(m(1;x. 4 X))E(Y)
+E(m,y(Y))— P{X ¢ A} E(m,(Y))
= E(1{XeA} [my(X) + 2m1(X)E*(Y) + E(my(Y))]).

Therefore E(m,(X i Y)IX)=my(X)+2m(X)E(Y)+ E(m,(Y)) P-almost surely and
hence
E@X 4 Y,E (X + Y)|X)=Emy(X ¥ Y)|X)
—2E (X T V)Em (X 1Y)\ X)+E (X +Y)?
=my(X)+2m (X)E (Y)+ E(m,(Y))
—2(E,(X) + E,(Y)) (m,(X) + E,(Y))
+(E,(X) + E,(Y))?
=my(X)—2m(X)E (X)+ E (X)?
+ E(my(Y)—E,(Y)?
=0(X,E(X))+ V(YY) P-as.

¢) Since ¢, is a bounded multiplicative function we obtain for every 4 € B(RR ;)

E(lixca oa(X '/*1‘ Y)=E(@((1xe4X) '/*1‘ Y)—E(1ix¢ 4y0:(Y))
= E((PA(I{XEA}X))E((p}.(Y))_P{X¢ A}E(‘P).(Y))
=(E(lxe @:(X)) + P{X ¢ ADE(¢,(Y))
—P{X ¢ A}E(p,(Y))
=E(lixcay 9:(X)E(@(Y))). O
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7.2. Notation. For the rest of this article we suppose that X, X,, ..., 4,,4,, ... are
independent IR , - resp. M-valued random variables such that P, =u for every

nz1. It follows from 3.3 that the process (S,:n=0) where S,: =4} X is a (non
homogeneous) Markov chain. i=1

7.3. Corollary. a) If E (X ,)<c0 resp. V(X,)<co for n=1 then (m(S,):neN)
resp. (U(S,, E(S,)) :n € IN) are submartingales with respect to the canonical filtration.
b) If A€i[0, o] then (¢,(S,):neN) is a supermartingale.

Proof. From 7.1 a) we obtain for every n=1

E(my(S,)[Ss— )= Emy(X,F S,_ IS, 1)
zml(sn—1)+E*(Xn)gm1(sn—l) P-as.

The other assertions can be proved in the same way. []

Note that this corollary holds for any hypergroup K and R  -valued functions
m, and m, on K such that 4.14 and m, >m? hold.

For the rest of this paragraph we suppose ¢ > 0. In view of A(x) = A(1)-e
for x=>1 this implies that (IR ,, *) is of exponential growth.

2e(x—1)

7.4. Theorem. Let (X,:n=1) be an independent series of IR, -valued random

© 1
variables such that Y el V(X,)<o0. Then

n=1
1 -1
~(S,—mi \(E,(S,)0 Paas.

Proof. Let s,:=E(S,). It follows from 6.2 and 7.3a), that (v(S,,s,):n=1) is a
positive submartingale. Furthermore, the assumptions and 6.10 imply that

5 B8, 5) 005, 1,5 ) <00

n=1

Hence by Chow’s law of large numbers [6] and 6.2 we obtain

_ 2
(ﬂﬁ)—s> < uS,5)—0 P-as.
n n

Since (m;!)(t)1 as t—oo there is a number a>0 such that
S,)— L
Imy Y(x)—m; }(y)| £2|x—y| +a for all x,yeR,. Therefore m—l(‘"—)—sl—»O implies

1 n
lim = (S, ~my '(s))=0. O

7.5. Remarks.

7.5.1. If in the situation of the preceding theorem we assume additionally that

%E*(S,,) is bounded we obtain

lim %(S,,—E*(S,,))=O P-as.
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This is a consequence of

mi(EL(S) 1) 0

o e sy
; (m1 (E*(Sn)) - E*(S")) - n E*(Sn) ( E*(Sn)

(compare 5.7).

. o . .1 .
7.5.2. If in the situation of the preceding theorem #:= lim ;E*(S,,) exists, then

lim - S =n P-as.

n— o0

7.5.3. Under additional assumptions on the function A we can obtain
m;(x)=x+ O(1) for x—co. Then the conclusion of Theorem 7.4 may be written as

1
lim " S,—E(S,))=0 P-as.
7.6. Corollary. Let (X,:n=1) be an i.i.d. sequence of integrable random variables.

Then
%S,,—»E*(X ) P-as.

Proof. Let a>0 be arbitrary, consider the truncated variables X7: =1x, <nq X
and define $¢:=0, S5: =S;_, bx 4 Sa:=E(S;)for n=1, using the same 4,’s as in
the definition of S,. By Lemma 6.2 we obtain

e | © {1 «©
Y FVXD=% = Z E(1gj<x,<a+ 13V X 7 EL(X3))
n=1M1 n=1 N" j=0
® 1
=2 peay Z Plaj=X,<a(j+ D} (E(X,)* +a*(i+1)?)
n=1

Z P{gi <X, <a(j+1)}-a®(+1)*

j=0

+.§ Plai<X <a(]+1)}E*(X1)2}
— ¥ Plgj<X, <a(+1)

© 1 © 1

2(i41)2. —+E (X )Y =

x{a G+1) "=]Z+ln2+ +X1) ngl nz}
2

< ¥ 200+ DP@S X, <al+ 1)} + = E X,
j=o0

2
<2a? +2aE(X,)+ 1‘6-13*()(1)2 <.
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On the other hand it follows from lim E_(X})=E(X,) that
o1
lim h—s:=E*(X1).

Hence 5.5.2 implies lim %Sﬁ=E*(X ) P-as. for every a>0.
The probability of Q,: ={X,<na for all n21} is
P(Q,)=1—P{X,=na for some n=1}

21— Y P{X,Zna}
n=1

>1-1px,

= a 1/-

Since in the definition of S? the same A,’s were used as in the construction of S, we
obtain that S, =S4 on 2, and hence Jlrg %S,, =E (X,) P-as. on ©,. Since P(2,)—1
as a— oo the corollary is proved. [

7.7. Theorem. Let (X,:n=1) be an i.i.d. sequence of random variables with E (X )

1
= +00. Then ;S,,—»oo P-as.

1
Proof. Let a be an arbitrary positive number. We will show that P{E S,<a

i.o.} =0. This can be done by proving
1
Y P{—~ S,,<a} <
n>1 n

and using the Borel-Cantelli lemma.
Consider the functions A — E(¢;,- 5(X,)) and 4 — e~ %" Since the derivations
at 0 of these functions are — oo (by 5.9) and —a there exists A€]0, g[ such that

0<e™ E(¢y,-»X1)<1.

Therefore from @;, - 5(x)= | e~y (dt)=e”* it follows

1
P {; S, < a} =P{@io-1(Sn)> Oi(- A)(‘m)}
SP{@ie-»S)>e” lan}
Ze Aan. E(‘Pi(a - ).)(Sn))
= (elu : E((pi(e - ).)(X V)’
and finally

r P {% Sn< a} = ng'l (e‘“E(¢i(e_ HX)'<eo. O

nx1
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7.8. Remark.In 7.2 we have only considered the case of a random walk starting at
the neutral element 0 of (IR ,, *). However, 7.6 and 7.7 (and clearly 7.4) remain valid
if the starting point is arbitrarily distributed. A short look at the proofs of 7.6 and
7.7 shows that it suffices to suppose that (X ,, X 5, ...) are identically distributed (X,
even does not need to be integrable): X, =S, can then be considered as the starting
point of the random walk (S,:n=1).

7.9. Remark. Let (R ,, *) be the Sturm-Liouville hypergroup with A(x)=(cosh x)?
(see [28, Example 2.5¢]). This is not a Chebli-Triméche hypergroup in the sense of
2.2 since A(0) +0. However, the assertions of 7.4, 7.5.3, 7.6, and 7.7 remain valid. In

cos ( >0, Ae @) and it

is easily checked that the facts used in the proofs of 7.4, 7.6, and 7.7 also hold in this
situation.

this case p=1, m,(x) = x tanhx, m,(x)=x?, and (p,l(x)—

8. Laws of Large Numbers in the Case of Exponential Boundedness

8.1. In this paragraph we suppose that ¢=0. This implies E_(X)=0 for every
random variable and therefore we expect the law of large numbers to be of a
particularly simple form. For example if (in the terminology of 6.11) the variances
V(X ;)= E(my(X)) are bounded by some constant b>0 and the variables X ; are
pairwise *-uncorrelated we obtain for every >0

P{% Snze} = P{my(S,) 2 m,(ne)}

PRACH
= my(ne)

nb
N
my(ne)

IIA

by 6.4 and hence

1 . ..

" §,—»0=E,(X; in probability.
8.2. However, the proof of a strong law becomes more difficult and requires some
restrictions concerning the function m,. For the rest of this paragraph we have to

suppose that for every >0 there exists >0 such that m,(ex) = dm,(x) for every
x=0.

8.3. Examples

8.3.1. If «{ A(( )) x>0} is bounded, then 8.2 holds. This follows from 6.5. This

LA . . . .
criterium is useful if — decreases fast. The opposite case is considered in the
following example.

A2x) AR

A(2x) = A( ) for x>0. Then 8.2 holds.

8.3.2. Suppose that there is a ¢ >0 with
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Proof. We consider the function ¢: R, —»IR defined by ¢(x): =4m, (;—) —2cm,(x)

for x = 0. From the convexity of m, (6.4) and 4.2 we obtain m, ( ) A/ 2) <2and
hence Alx/2) =

Ax)  A(x/2) ,(x A(x/2) ( >
25~ (5) zee 0 G (3) 22
An easy calculation yields
A'(x/2) Ax)| , [(x

=4c— —p Zl<

Lo(x)=4c 2+[A(x/2) 2A(x) m, > <0.
Therefore the assumption ¢'(x,)<0 leads to ¢"(x,)>0 and hence ¢'(0)<0
which is a contradiction to ¢'(0)=2m5(0)—2cm’,(0)=0. This implies

m, (g—) > %mz(x) for every x=0.
Now let ¢>0. Then there is an ne N with 27" <¢ and we obtain

M) Zm27"x) 2 (g) m(x)
for every x=0. [
8.4. Theorem. Suppose that 8.2 holds. Let (X,:n=1) be a series of independent

random variables such that

r

& mV*(Xn)<(I).

Then %S,,—»O P-almost surely.

Proof. Since it follows from the assumption and 6.10 that

o)

X

n=1 My(n)

E(my(S,)—my(S,-,)) < o0
we may apply Chow’s law of large numbers [6] in order to obtain
lim ——m,(S,)=0 P-as.
B 2( n)
But if for some ¢ >0 S, > en happens infinitely often with positive probability and if
m{Sa) o Mo 5 5 infinitely

my(n) = my(n)

often with positive probability. Hence the assertion of the theorem. [J

d(¢) is chosen according to 8.2 this would imply

8.5. Remark. Even if the sequence (X, :n=1)isi.id. with V(X ,,) < oo the condition

of the preceding theorem not necessarily holds since Y may be infinite.

n=1 M
’

Since it follows from 6.4 that Ao m’, <2 and hence m,(x)<2x

A 1
A(x) “lnx

2(n)
A(x)

A'(x)

this happens for

example if —— for x— co.
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A'(x)
A(x) 1
sequence (X,:n=1) of integrable R ,-valued random variables ES,,—»O P-almost
surely.

8.6. Corollary. Suppose that {x- :x>0} is bounded. Then for every i.id.

Proof. Let a>0. As in the proof of 7.6 we consider the truncated variables
X3: =1, <an- X, and define §5: =0, S5: =55, -/:-"XZ for n=1. Let y be defined as
in Lemma 6.5. Since X, is integrable,

o

© 1 1 1
n;1 m V*(XZ)é; Y =3 Z E(1{a1<X“<a(1+ 1))m2(X )

n=1 n
1 © 1 n—1 i . 20 2
<= Y 5 ¥ P@EX <aj+1)}e’(+1)
Y n=1 0" j=0
1 @ S
=- Y PlgsX,<a(j+1)}- az(/+1)2 a2
'y_,=0 =j+1 n
g% ¥ P{gj<X,<a(j+ 1} a*(G+1)
ji=o0
2 2
g;(aE(X1)+a )<oo

we obtain from 8.3.1 and the preceding theorem that 18;‘,—»0 P-as. for every a>0.
The rest of the proof is identical with 7.6. []

8.7. Remark. By the same argument as in 7.8. we see that 8.6 is valid even if the
starting point of the random walk (S,:neN) is not 0 but arbitrary.

i((;)) x> 0} is bounded and let 0 < < 2. Then for

every ii.d. sequence (X,:n=1) of R, -valued random variables such that E(X%) is

8.8. Remark. Suppose that {x .

finite, < S,—0 P-almost surely. A similar result has been proved by Gallardo and

1
v
Ries [15].
Proof. 1t is a straightforward generalization of Theorem 8.4 that for every

e )

1
independent sequence (Y,:n=1) such that Y WV"‘(Y")<OO we obtain
1 n=1
TE AZ Y;»0 P-almost surely. If we choose Y, to be the truncated variable
X1 x,<ant/s, it follows as in the proof of 8.6 that — = /,, S,and - " /,, AZ Y; tend to the
same limit almost surely. [
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