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A W'-P_Estimate for Solutions
to Mixed Boundary Value Problems
for Second Order Elliptic Differential Equations

Konrad Groger

Karl-WeierstraB-Institut fiir Mathematik der Akademie der Wissenschaften der DDR,
Mohrenstrasse 39, DDR-1086 Berlin, German Democratic Republic

1. Introduction

In this paper we shall prove that, under rather weak hypotheses, any solution to a
mixed boundary value problem for a second order elliptic differential equation is
in the Sobolev space W!'? for some p > 2. Our starting point is the following result
due to Meyers [6]:

If for some ¢>2 it holds the implication

ueWhAG), AueW 19G)=ueWliG), (1.1)

then for every positive definite matrix (a;;) of bounded measurable functions on G
there exists a p>2 such that

N
ue Wy %(G), Y Dfa;Du)e W~ 1HG)=ue W, "(G). 1.2)
Lj=1

Here G is a bounded domain in R", D; denotes the derivative with respect to the
coordinate x; of x=(x, ..., xy)€R¥, and W:P(G), W ~1*?(G) are the usual Sobolev
spaces.

The hypothesis (1.1) is satisfied for every ge]2, o[ provided that G is a
bounded domain of class C! (see Simader [8, Theorem 4.6]). We shall show that an
analogue of Meyers’ result holds if the homogeneous Dirichlet boundary
condition [which is included in the requirement ue Wy'%(G)] is replaced by a
mixed boundary condition. Moreover, we are going to prove that results of the
type (1.2) can be obtained not only for differential operators of the form

N
u— ¥ 1 Dya;;Dju)

L=

but also for (generally nonlinear) operators of the form

N
u— Z Dibl(': u, Du)+b0('a“7 Du)’
i=1
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here and later on Du denotes the gradient of u, and the dot indicates the
dependence on the spatial variable. For precise assumptions with respect to
b=(by, ...,by) see Sect. 4. It is well known that in the case of mixed boundary
conditions in general one cannot expect an analogue of (1.1) to hold for every ¢ > 2.
We are able to prove, however, that under weak hypotheses there exists some g > 2
such that an analogue of (1.1) holds also in that case. For this proof it is essential
that we deal with second order differential operators only. (W* P-estimates for
solutions to elliptic equations of order 2k in case of smooth boundary conditions
were presented, for example by NecCas [7] and Krbec [5].)

Let us mention that local [P-estimates for gradients of solutions to nonlinear
problems were obtained also by other authors (see Giaquinta and Giusti [3] and
the papers quoted therein). However, to our knowledge these authors made no
attempt to prove global estimates for solutions to mixed boundary value
problems.

The paper is organized as follows. In Sect. 2 we shall introduce the notation
and some notions needed later on. In particular, we shall define a class of subsets of
RY called regular. This class turns out to be quite useful for the formulation of
results on general boundary value problems. For any regular GCIRM we shall
introduce spaces Wy''?(G) and W ~!?(G) coinciding with the usual Sobolev spaces
provided that G is open. We shall denote by R, the class of all regular subsets of R¥
for which an analogue of (1.1) holds. Section 3 contains some preliminary results.
In particular, it will be shown that the validity of the relation G € R, depends on the
local properties of G only. In Sect. 4 we shall prove that the relation G € R, implies
a regularity result of type (1.2). We shall take advantage of an iteration procedure
which has widely been used by Koselev in order to prove other regularity results
(see [4]). In Sect. 5 we shall show that if G e R,, > 2,and if G is obtained from G by
a Lipschitzian transformation, then there exists a p>2 such that G e R,. From this
fact it will follow that for every regular subset G of R" there exists a ¢ > 2 such that
GeR,

2. Notations and Notation

If G is any subset of the Euclidean N-space R", then we denote by G, G and G the
interior, the boundary, and the closure of G, respectively. We write |x| for the
Euclidean norm of xeRN.

Assume that u is a solution to a second order elliptic differential equation in a
domain 2 CIR". Let u satisfy a Dirichlet condition on I' C 62 and natural boundary
conditions on I': =dQ\I". If one wants to prove a regularity result for u, then one
has to impose an appropriate “regularity condition” on I' and I". We are going to
show that it is useful to formulate all conditions and results in terms of G:=QuT".

Definition 1. Let G and G be subsets of R¥. A bijection @ :G—G will be called a
Lipschitz-transformation, if ® and &' are Lipschitzian with respect to the
standard metrics of G and G.

Definition 2. We shall call~GC]RN regular, if G is bounded and if for every ye 0G
there exist subsets U and U of R and a Lipschitz-transformation @: U—U such
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that U is an open neighbourhood of y in RY and that &(UNG) is one of the
following sets:

E;:={xeR" :|x|<1, xy<0},
E;:={xeR":|x|<1, xy<0},
Ey:={xeE,:xy<0 or x,>0}.
Remark 1. Apart from boundedness regularity of G means, roughly speaking, that

the parts I'=G\G and [:=G\G of the boundary dG are separated by a
Lipschitzian hypersurface of 0G.

Remark 2. In the following we shall assume always — even if this is not mentioned
explicitly — that G is a regular subset of R". Then G is of finite Lebesgue measure.
The boundary dG = G is of N-dimensional Lebesgue measure 0. Therefore we are
allowed to identify the spaces I(G) and I(G).

Definition 3. For 1 <p< oo we denote by W #(G) the closure of the set
{u|G:ue CFMR™), suppun(G\G)=0}

in the Sobolev space W' ?(G), equipped with the standard norm of that space. The
space dual to Wy'*(G) will be denoted by W ~ 1'?(G); here (and later on) p’ denotes

1 1
the exponent conjugate to p defined by ’ + 7 =1. For the norms in Wg?(G) and

W~ 12(G) we write || - ||, pand | -|l_, ,, respectively. If necessary we indicate the
dependence of these norms on G by an additional index. By J; we denote the
duality map of the Hilbert space W, %(G).

Remark 3. 1f G is open, then our definition of Wy *?(G) coincides with the usual one.
If G is closed then W 2(G)=W¥(G).

Remark 4. If this should not lead to misunderstandings we write W;'*?, W~ !'? and
J instead of W}'P(G), W~ 1%(G), and J ¢, respectively.

Remark 5. Let 1<p<q<oo. Then Wy, W7, and W7 is dense in Wy'? (the
sign ¢ means that the imbedding is continuous). Therefore we have
WP wohe,

Remark 6. From the formula
{Ju,vd= [ (uv+Du-Dv)dx, for wu,veWy?,
G
it follows easily that J maps Wy ?, p>2,into W~ "? and that J| W, ? is continuous

as a map from W'? into W~ !'?. Throughout this paper, for p > 2, we shall use M »
as an abbreviation for
Sup{"u“ l,p:ue Wfol,p, “Ju“ - l,pé 1} .

Note that M, =1.

Definition 4. For 2 <q < oo wedenote by R, the class of all regular subsets G of RY
for which J; maps W %G) onto W~ "4(G).
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Remark 7. If Gis a bounded domain of class C* then G € ﬂ R, This follows easily

from a result stated by Simader (see [8, Theorem46]) As mentioned in the
introduction we shall show in Sect. 5 that for every regular G there exists a g>2
such that GeR,.

Remark 8. In view of the Open Mapping Theorem the relation G € R, implies that
M, < 0.

Let us introduce some further notation. By Y,, 1 <p < co, we denote the space
I[A(G;RM*1), equipped with its standard norm The space dual to Y, will be
identified with Y,.. Moreover, let Le #(W,"?;Y,) be defined by Lu:=(u, Du),
ue Wy Obviously, J=L*L. 1t is easy to check that L maps W7, p>2,
continuously into Y, and that L* maps Y,, p>2, continuously into W ™12,

3. Preliminary Results

Lemma 1. Let GeR, for some q>2. Then GER, for 2<p=<q and M,< M lf -
_1-6_9¢

== .

Proof. 1. Let Pe £(Y,; Y,) be defined by P:=LJ ~'L*. Since G € R, the operator P
maps Y, continuously into itself. It is easy to check that || P| ¢y,.y, =1 and that
[Pl ¢y ,; vy <M, In view of the well-known Riesz-Thorin Interpolation Theorem
(see, e.g., Bergh and Lofstrom [1]) this implies that P maps Y, continuously into

1 (9 6
itself and that | P| gy,.y,)< M3~ °Mj provided that )= T + , 0€[0,1].
2.Let 2<p=<gq, and let fe W™ 17 be fixed. We define
Yoe W 2:z(Lv):={f,v).

Because v is uniquely determined by Lu, this definition makes sense. Since z(Lv)
S fll-1,plvl4, - 2 is a continuous linear functional on a subspace of Y,.. By the
Hahn-Banach Theorem z can be extended to a functional on Y, (again denoted by
z) with the same norm. Thus, ze Y, and |z|y,=|f] -, Moreover, L*z= £
because

Yoe W2 :{L*z,v> =z, Lo) ={f,v).

For w:=J"'f we have Lu=LJ 'I*2=PzeY, and |Lu|y,SMj|zl|y,
~M"|lf|| .., Consequently, ue W' ?(G) and |ju, p<M"||f|l 1, To show that u
isin W3'? we proceed as follows We chooseasequence (f,) from w1 "convergmg
in W™1'? to f. (Note that W;"? ¢, W*? with dense imbedding and that W, ?" is
reflexive as a subspace of a reﬂexive space. This implies that W ™14 is dense in
W~1r) Letu,:=J ', Thenu,e W 1CWy Pand |[u,— tipll; , S M2 f,— full -1,
Hence (u,) converges in WP, Its limit must be u since J ™' W™ 12 W2 is
continuous. Thus, J~! maps W~!:? continuously into W;'? and

M, =sup{|ully ,:ue We?, |Jul _, ,<1} S M?.
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Lemma 2. Let {U,,...,U,} be an open covering of G, and let ¢=2. If U;nGeR,,
i=0,...,r, then GeR,.

1 k 1 k-1
=41 =l-——, = — —_— =
Proof. Let 1,:={3}, I;: [2 N3N [, k=1,...,I, where | denotes the
. 11 1 1
largest integer such that 2 > N and let I, 1:=}0, 57 N[' We shall prove the

assertion for —e I, by induction with respect to k. For k=0, i.e. ¢ =2, the assertion
is trivial. Novg let the assertion be proved for all g such that ! el forsome k<l We
want to prove the assertion under the hypothesis 1e I, 1.then we can choose p
such that%e I and% < 3 + % In view of Lemma 1qwe have UnGeR,,i=0,...,r.

By our induction hypothesis this implies that GeR, Let fe W~ "%G) and
u:=J"'f. Because of Ge R, we obtain ue Wy"?(G)C L¥G) (the inclusion follows
from Sobolev’s Imbedding Theorem). We choose a partition of unity {¢,, ..., ¢,}
subordinate to the covering {U,,...,U,}. We want to show that each of the
functions gu, i=0, ...,r, is an element of W' %(G). We have pue W-?(U,nG) and
(in view of the choice of p)

Voe We 2(U;nG): | (ouv+ D(pu)- Dv)dx
UinG

= | (upp+Du-D(ep)+uDv—vDu)- De)dx
G

in

={fipp>+ | (uDv—vDu) Dodx
U,nG
Sl fll-1,q+ Nully, ) 0l g, vn6 -

In the dual pairing { f, @;v) the function @,vis to be interpreted in the usual way as a
function defined on G vanishing on G\U; The estimate shows that
Junclou)e W™ 14UNG). Consequently, ¢@ueW YU;nG) and u=qqu
+ ...+ @,ue W, %G). This result completes the proof of Lemma 2.

Lemma 3. For every q=2 the sets E, and E, are in the class R,.

Proof. Let E:={xeR":|x|<1}, and let g=2 and ie{1,2} be fixed. For any
ue Wy *(E;) we define

(Su) ():= u(x) for xekE,,

W= U= 1yulx, —xy) for x=(x,xy)e E\E,.

Clearly, if ue Wy %(E,) then Sue Wy*YE). We fix fe W~ "4(E,) and set u:=Jg ' f.
Then ue Wy *(E,) and

Yoe W X(E): {JzSu,vy = [ (Su)v+ DSu - Dv)dx
E

= I. (uw+Du - Dw)dx=<{Jgu,w)={f,w),
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where
w(x):=v(x)+(—1)'v(x’, —xy) for x=(x,xy)€E;.

[Note that we Wy (E,).] Since |wly g, <2[0[l;, .,z We have {f,w)={g,v) for
some ge W~ 4E). Because E e R, this implies that Sue Wy 4E). In view of the
definition of W 4(E,) we obtain u=Su|E;e W3 4E,). This completes the proof.

Remark 9. In the same manner one can prove that E,:={xeE,:x,>0} isin R,
for every g=2.

4. Boundary Value Problems
Let b be a function satisfying the following hypotheses:
b:GxRV*1SRY¥! b(-,0)e LA(G; RV* 1) for some ¢>2,
b(-, &) is measurable for every EeR¥*1;
(blx, &) —b(x, n) - (E—m Zm|—n|*, m>0,
Ib(x, &) —b(x, n)| EM|E—n|, M < oo, for xe G, &, neRN*1.

@.1)

Of course, here the dot indicates the Euclidean scalar product in R¥*?, and |¢| is
the Euclidean norm of e IR¥*!. We define A: Wy 2— W ™12 setting

Yoe Wi 2: (Au,v):= | b(:, Lu)- Lvdx, 42
G

where L is the operator introduced at the end of Sect. 2.

Remark 10. The operator A is strongly monotone and Lipschitzian (cf. [2, Chap.
I11]).

Remark 11. The hypotheses (4.1) are satisfied in particular, if
N
b, %)= Z:l a;i¢;, Jj=1,..,N,

bo( O =ae&o, for &=(Cp, .. Ey)eRYTY,
provided that a;;€ L*(G), i, j=1,...,N, and a, € L*(G) are such that

N
Y a0)EEzmE, alx)zm, m>0, for xeG, feR".

i,j=1

In that case (4.2) reads as follows:
N
Vve Wi ?: (Au,0) = | < y a,-jDiuDjv+a0uv> dx.
G \i,j=1

Remark 12. For pe[2,4] the operator A maps Wy'? continuously into W ™12,
Indeed, if u, ue W7, then

Voe Wy ?: {Au,v) < [ (M|Lu|+]b(;, 0))) |ILvldx Zcv]l,p»
G

(Au—Au,vy < ‘I;MIL(u—ﬁ)I |ILvldx = Mllu—ally ol p -
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The next theorem deals with the question whether A maps W,*? onto W™,

Theorem 1. Let G € R,. Suppose that (4.1) holds and that A is defined by (4.2). Then A
maps WP onto W™UP provided that pe[2,q] and M,k<1, where
k:=(1—-m*/M*'2 If pe[2,q] and M k<1, then

HA—1f_A_1g“1,p§mM_2Mp(1_Mpk)_lnf—g“—l,p for f; gEW_l’p‘
For pe[2,q] the inequality M k<1 is satisfied, if

11 (1 1) flogk

p 2 \2 gq)logM,’
Proof. Let t:=mM~? and let (By)(x): = y(x)—tb(x, y(x)) for yeY,. It is easy to
check that (4.1) implies that B, restricted to Y,, pe[2, q], is a Lipschitzian mapping

from Y, into itself, where k is a Lipschitz constant of this mapping (cf. [2, Chap. I1I,
Lemma 3.1]). Let fe W™ 1P, pe[2,4], and let

Qu:=J '(I*BLu+tf)=u—tJ " "(Au—f), ueW;".

Then Q, is a Lipschitzian mapping from Wy? into itself, and M ok is a Lipschitz
constant of Q . This follows from the fact that Ge R, (cf. Lemma 1) and from the
properties of L and B. Thus, the requirement Mk <1 guarantees Q ,: Wy'"?— Wy'*?
to be strictly contractive. By definition of Q , the fixed point ue Wy*? of Q is a
solution to Au= f. Hence 4 maps W;? onto W~ 2. Since A: Wg"2->W 12 is
invertible, the fixed point u of Q  is the unique solution to Au= f.If f,ge W™ "-" are
given and u, v are the fixed points of Q,, Q,, respectively, then

lu—vlly,,=1Qu—0uplly, , < Mpklu—vl ,+Q0—Qupl,,,
éMpk”u_U”1,p+Mpt”f~g” -1,p*
Hence
lu—vlly,, StM(1-M )~ f—gl -y,

The last assertion of the theorem follows from M ngZ, where 0 is defined by

1 1-6 6
—=-—+ — (cf. Lemma 1).
p 2 ' )

Remark 13. Let the hypotheses of Theorem 1 be satisfied, and let pe [2, q] be such
that Mk <1. Furthermore, let F be any mapping from W2 into W~!-?. Then
from Au= Fu,ue W2, it follows that u € Wy *?. This is an immediate consequence
of Theorem 1. An example for F is given by

(Fu,vy:= [ do(-,updx+ [ di(,ujvde for ve W, 2,
G r
where I :=G\G, and dy:GxR-R, d,: I'xIR—>R are Carathéodory functions
satisfying appropriate growth conditions. (I" is to be equipped with the standard
surface measure.) In this case Au=Fu means that

~ 3 Dbl Li+bol Li=de() in G,

N
Y, b(,Luv;=d,(~u) on I, u=0 on IG\TI',
i=1
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where v=(v,, ..., vy) is the outer unit normal at a point of I'. The term Z by(-, Lu)v;

is defined as an element of the Sobolev space W~ 1/2:2(I'). This example shows that
Theorem 1 can be used to prove W' P-estimates for solutions to rather general
boundary value problems for second order elliptic differential equations.

Remark 14. An analogue of Theorem 1 holds for systems of second order
equations. This follows easily from the fact that, for any ne N, the duality map of
Wo4(G; R") is “diagonal”.

Remark 15. 1f there exists a function ¢:G x R¥*1 >R such that
d
b(x,&) =7 olxi+m) | for &neR¥", xeG,
t=0

then the number k in Theorem 1 may be replaced by the strictly smaller number
(M —m)/(M +m) (cf. [2, Chap. III, Lemma 4.14]).

5. Lipschitz-Transformations of Sets Ge R,

Let & be a Lipschitz-transformation from G CRR" onto G CIR™. If G is regular then
G is regular as well, but from Ge R, it does not necessarily follow that GeR,. It
holds, however, the following

Theorem 2. Suppose that GeR, for some q>2 and that ® is a Ltpschuz-
transformation from G onto GC]RN Then there exists a p>2 such that GeR

Proof. Let Tu:=u-® !, for ue Wy *(G). By means of the chain rule one can easily
prove that T maps W;'?(G), p=2, continuously onto W} ?(G). Let T* be the
adjoint operator of T:Wj }G)— Wy *G). Standard calculations show that
Theorem 1 is applicable to the operator A:=T*J5T: Wy *(G)»W~*G) (cf.
Remark 11). Consequently, there exists a p>2 such that 4 maps W #(G) onto
W~ LHG). Since T* maps W™ '?G) into W™ P(G) (this follows from the
properties of T), the operator Jg ' = TA~'T* maps W~ '"%(G) into W' #(G). This
shows that GeR,.

Theorem 3. If GCRY is regular, then Ge ) R,

q9>2
Proof. In view of Lemma 2 it suffices to find an open covering {U,,...,U,} of G

such that U;nGe () R,, i=0,...,r. Since 0G is compact there exist open sets
q>2

U,,...,U, and Lipschitz-transformations @, ...,®, such that 0GC U U; and

o(U; r\G) €{E\,E,.E 3} (cf. Definition 2). One can find an open set of class C!such
that U,CG and GC U U, Then UynG=U,€ D R, (cf. Remark 7). Theorem 2
shows that U;nG e UOR ,i=1,..,rifEe | qR=2, i=1,2,3. From Lemma 3 we

q>2 q>2
know already that E, € ﬂ R, i=1,2. Moreover, elementary considerations show

that there exists a Llpschltz-transformatlon mapping E; onto E,. (One can also
show that there exists a Lipschitz-transformation from E; onto E 4, cf. Remark 9.)

Therefore, once more using Theorem 2, we find that E;€ () R,.
q>2
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