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Zur Theorie der Bernoullischen Zahlen.
(Von Herrn M. A. Stern in Gottingen.)

Dass die Bernoullischen’ Zahlen allm#hlich iiber jeden angebbaren
endlichen Werth hinaus wachsen, hat schon Ewler in seiner Differential-
rechnung gezeigt. Die einfache Eigenschaft dieser Zahlen aber, dass, von
der vierten an gerechnet, jede folgende grosser ist, als die ihr vorher-
gehende, finde ich in keiner mir bekannten Arbeit iiber Bernoullische Zahlen
bewiesen oder auch nur ausgesprochen, obgleich der Beweis sehr leicht zu
filhren ist, wenn man von der bekannten Eulerschen Definition ausgeht,
nach welcher, wenn B, die »' Bernoullische Zahl bedeutet und S,, die

Summe der unendlichen Reihe 1—{-—2—1574-% ete., die Gleichung
1.2...2v

2.):/—1”’.'1/

B, =
stattfindet. Denn hieraus folgt
(A) Bv+l — (2”’}'1)(2”‘}‘2) S?v+2 s
’ B, (2n)* Sz,
Sobald also der auf der rechten Seite dieser Gtleichung stehende Ausdruck

grosser als die Einheit ist, muss auch B,,, > B, sein. Nun ist S,,,, > 1,
ferner S2=%, und da allgemein S,, <<S,,_1, %o ist mithin Swé%—,

S,,

also S§'+2 >~§—,—> 0,6. Ist nun » =4, so hat man
2y

9.10.0,6 9.10.0,6

Gny = 394 b
mithin nach (A4.)
’ . Bs> Bq§
um so mehr, wenn » =5,
11.412.0.6
Tewy b

also B; > B;. Indem man diese Betrachtung fortsetzt, ergiebt sich also,
dass iiberhaupt B,,, > B,, sobald » < 4.
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350 Stern, zur Theorie der Bernoullischen Zahlen.

Hieraus folgt, dass wenn zwei Bernoullische Zahlen denselben Werth
haben sollen, eine derselben B, oder B, oder B, sein muss. Ein Fall dieser
Art ist bekannt, ndimlich B, = B,= 4% Aus dem Vorhergehenden folgt
aber, dass dies der einsige Fall ist. Dass niimlich unter den fiinf ersten
Bernoullischen Zahlen nicht noch einmal eine solche Gleichheit vorkommt,
ergiebt sich aus ihren bekannten Werthen. Nun ist B, = ¢ kleiner als
B = &%, also iiberhaupt B, << B,, sobald » =>5. Ferner sind B, =4
und B;= 43 kleiner als B;= % und daher auch allgemein <Z B, , sobald »>4.

Gottingen, den 5. Januar 1882.




