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On some problems of orthomorphosis.

Hierzu Figurentafel II.

(By Professor A. Cayley at Cambridge.)

In the interesting Memoir, Schwarz ,,Ueber einige Abbildungsauf-
gaben® (this Journal T. 70 (1869) pp. 1056—120) the author conmsiders the
~ orthomorphic transformation (or, as I call it, the orthomorphosis) of a square
into the infinite halfplane, or into a circle, and of a rectangle into the
infinite halfplane. It is of course easy to deduce the orthomorphosis of the
rectangle into a circle; and then by giving a proper value to the modulus
of the elliptic function involved in the formula, we obtain the orthomorphosis
of the square into a circle, this solution (although equivalent thereto)
being under a different form from that previously given for the square.
But as appears from my paper ,,On the Binodal Quartic and the Graphical
Representation of the Elliptic Functions Camb. Phil. Trans. T. 14 (1889)
pp. 484—494, there is for the rectangle (and consequently also for the
square) an orthomorphosis wherein the boundary of the rectangle or square
corresponds, not to the circumference, but to the circumference together
with two twice repeated portions of a diameter. I propose to consider in
I. these several transformations: II. relates to the orthomorphosis of a circle
into a circle.

I

1. We are concerned with the elliptic function sn for which K' = 2K,
and also with the elliptic function snl of the leminiscate form. The mod-
ulus in the former case is
Y2—1
V241’
For the leminiscate function snl, the modulus is =i, and if (with Gauss)

k= = (V2—1), =3-2¥2, or say VE=1V2—1, 3}7‘?; Va1,
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we write J@ for the value of the complete function K or F,, then we have
1@ = K(Y2—1), = KVk, where k has the foregoing special value: I notice
the numerical values 1@ = 1.311028, k= 3—2Y2 =5sin9"52', k = 1.582548.
The relation between the leminiscate function snl, and the sn with the
foregoing value of k, is easily shown to be

U= (i+1)snlutiy2 -—l'K'=1—+_i
Vksn Dalut 72 where  U— 1 v "™

and it may be added that we have

/ 1+k
enU = (z—l)slnlu+ 7 1/ 8y (1 snlu)(1—isnlw),

_ V2 — ;
dnU = Dela V2 V1+kV(1—snlu)(1+isnlw).

2. The Schwarzian orthomorphosis of the rectangle into the infinite
halfplane is given (Memoir p. 113) by the formula X,+¢Y, = sn(X+4¢Y),
where the modulus is real, positive, and less than unity. Here (see the
figures 1 (XY) and 2 (X,Y,)) the rectangle ABCD, the sides of which are
AB = 2K and BC =K', is transformed into the upper infinite halfplane
(Y, = +), the four corners of the rectangle corresponding to the points

4, B, C, D on the axis of X, where 0B(=04)=1, 0C(= 0D)=

3. We can by a properly determined quasi-inversion (as will be
explained) transform the X, Y,-figure into a new figure (see figure 3 (X,Yy)),
the infinite X,-axis being transformed into the circumference of a circle
(the radius of which may be taken to be =1) and the infinite halfplane
into the area within the circle. The four points A, B, C, D are thus
transformed into points on the circle, which if the quasi-inversion be a
symmetrical one, will be situate, A and B symmetrically, and also C and D
symmetrically, in regard to the axis OY,: and in the case of the before
mentioned modulus & = 3—2V2 (for which the rectangle 4 B C D becomes
a square) the quasi-inversion may be so determined that the points 4, B, C, D
shall be situate midway (that is at inclinations +45°, +135") in the four
quadrants of the circle. '

4. But if in figure 1 we take BL = 1K' and draw FL parallel to
0X, then as shown in my memoir above referred to, the foregoing trans-
formation X,4¢Y, =s8n(X+44iY) changes the rectangle OBLF, the sides of

34*
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which are OB =K and BL=1K', into the quadrant O BLF of figure 2,

OB =1 (as already mentioned) and radius OL = Hence completing

1
e
the rectangle RS L M, the sides of which are RS =2K and SL = I (viz.
this rectangle differs only in position from the first mentioned rectangle
ABCD), we have an orthomorphosis of the rectangle RS L M into the
circle of figure 2: but so nevertheless that to the boundary of the reet-
angle there corresponds not the circumference of the circle but the bound-
ary RGSBLFMAR composed of the circumference and the portions
SB, BL and MA, AR (that is BL, AM each twice) of a diameter of the
circle. See post No. 12.

5. The Schwarzian orthomorphosis of the square into a circle is
given (Memoir pp. 111—113) by the formula x,+iy, = snl(x4-iy); viz. here
(see figures 4 (xy) and b (x,y,)) the square A BCD, the half-diagonals
whereof are each = 1@, corresponds to the circle radius =1 of figure 5,
the four points A, B, C, D of the circle being the quadrantal points as shown
in the figure. Figure 5 is in fact figure 3 turned through an angle of 45°
and it thus appears that Schwarz’s leminiscate solution for the square into
a circle is the quasi-inversion of his solution for the rectangle into the in-

finite halfplane, when by putting k= 3—2V2 the rectangle is made to be
a square. See post Nos. 13 and 14.

6. The general formula of quasi-inversion whereby the infinite
X;-axis is changed into a circumference®) radius unity, is
1+Mi(X,+iY,)
M(X,+iY,)+i
where M is real. In fact writing this equation in the form

1+4+Mi(X,+iY,)
d1I—Mi(X 1Y)’

X, tiY, =

X2+iY2 =

we have
1—Mi(X,—iY,)

—i{1+Mi(X, —iY )}’

and thence X;+Y;—1 =0, if only Y,=0; that is the infinite X,-axis is

transformed into the circumference X4 Y;—1 = 0. '

X,—1iY, =

*) I use here and elsewhere the term circumference rather than circle, to mark
more clearly the distinction between the curve and the included area.
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Writing Y, =0 we have

1+MiX,  2MX, +i(M°X:—1)

Xty =G5 = pxig1

so that to a pair of points (+X,, 0) there corresponds a pair of points
(£ X,, Y,) situate symmetrically in regard to the axis 0Y,.
The equation gives

. 1—i(X, 417,
M(XHY) = TEasp-

Hence writing this in the form
1—i(X, +iV,)

M(X,+iY,) = it i(X, Fir))

we have

oy 14i(X,—iY)
O || T CSTAT

and consequently M*(X;+Y!)—1=0 if ¥,=0; that is the circumference

Xf—{—Yf-};—g: 0 is transformed into the infinite X,-axis.

Although for the purposes of the present memoir we require the
coefficient M, yet there is no real loss of generality in assuming M =1,
and the transformation is best studied under the form

; 14+4(X, +4iY
Xz‘}‘in = ;lc_(‘,ily_t—jl,_i‘),

see post No. 11.
7. As already mentioned, the coordinates (X,, Y,) and (X,, Y,) are
connected by an equation of the foregoing form, and in the case of the

square (k=3—2/2 as before), the corresponding values for the points
A, B, C, D should be

A XetiV,=—1,  Xehi¥,= %
? ,'/2
B X4V, = 1, X+i¥,= %’
. 1 L
C Xi+iY, = T X, +iY, = ’]%17
. 1 . —1414
D Xehi¥y =~ Xehily= =,

the proper value of M is M =V2—1, =Vk; the required formula thus is
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Xpi¥, — LEikiT)

VEX, Y ,)+i
or say :
- vy 1—i(X,+iY,)
VE(X+iY) = X tir—i
Thus for the point B we should have
1—1
- TR Vimict _ i
Vie—V2  thatis VE= V2=l _ Vk=i
= 1—i—iy? g2
V2 vk
which is right. And similarly for the point C, we should have
1—i lti _ ———-—t
1___ vz that is —— V2L _ 1L
VEk 4i .7 VB 14i—iy2 1—iyk’
V2

which is right. And similarly for the points 4 and D.

8. We connect the square A BCD of figure 1 with that of figure
4 by the equation

' . - 1+
X+iY—1iK' = 57

in fact recollecting that 1K = K = 4:/ , we have for the four points

respectively

A X+iY = —K, z+iy = —1@,
B X+i¥Y= K, z+iy = —L@i,
Cc X+iY = K+4iK', ztiy= 1o,
D X+iY = —K+iK', z+iy= la@i,

values which satisfy the relation in question.
9. Hence writing
X+iY=U, a+iy=u,
we have
l-l—c
2/k %

which is the relation in No. 1 between the arguments U, u of the elliptic

U—LiK' =
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functions sn, snl. We have X,+i¥, =snU, «,+iy, = snlu; and consequently
VE(X, +iY. (i+1)(=, +’yn)+'l/2
(_‘J” = DG i)+
Hence substituting for VA(X,+iY)) its value in terms of X,+iY,, we find
(+D( +iy)+iV2 _ 1—i(X,+iY,)
=Dz +iy)+ V2 Ktiti—i
an- equation which (multiplying on the lefthand side the numerator and the

L)
?

denominator each by %) may be written

144 .
{—j ot .

c]/ (z,+iy,) 1=K, 4iF,)
1}7,@ +iy,)—1 Ll =i

that is we have

X,+iY, = 1+' ($1+5y1)

an equation which shows that the figure 5 is in fact the figure 3 turned through
an angle of 45". We have thus proved the conclusion stated in No. 5 as
to the connexion between the leminiscate solution for the square and the
solution for the rectangle.
10. It is convenient to collect here the several equations relating

to the orthomorphosis of the square. We have

X, +iY, = sn(X+iY),. k=3-2/2,

x,+iy, = snl(z+ iy);

— . 1—i(X,+1Y,
VE(X+iY,) = —X—f;—;—}_—)

X+iY— iK' = V b atiy),

7 . G+ D) (z, +iy)+iV2
E(X,+iY,) = 1 <
Vit (i—1) (=, +iy,)+V2

. 144 .
Xot-i¥Y, = —‘7—%—"("71‘*‘ iy,),
which are the equations connecting together the coordinates of the five

figures. A
11. I examine more in detail the above mentioned transformation

. 1+i(X, Y
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(see the foregoing figures 1 (XY) and 2 (X,Y;) in which we now regard the
two circles as having each of them the radius unity); changing the sign of 4,
the equation gives

-y 1—i(X,—iY)
X—iY, = X, —i¥,—i '
and we hence find _
Xipy: = XAV—2v 41

X{+-¥i+2T, 41
consequently if X}+Y¥7+1 = 0, then also X;+Y,+1 =0, or the transformation
changes the first of these imaginary circles into the second of them: or say
it changes the concentric orthotomic of the circle Xi+Y¥;—1=0 into the
concentric orthotomic of the cirele X;4-Y;—1 = 0.
We have moreover

X — 2X, X4+r-1

T XY 42Y, 41 X4+ Y?42Y,+1°
values which give the foregoing expression for X;+Y;. But we further
obtain ~

Y,=

2 (xi+1i-1420Y,)
X ier, 41
and it thus appears that the circumferences

X4 Y?—142uY, =0, X§+Y§—1—% Y,=0

XA ¥i-1-2 Y, =

correspond to each other. These are circles passing through the pairs of
points (¥, =0, X, = +1), (¥Y,=0, X, = +1) respectively; or imagining them
in the same figure, say they are circles each belonging to the series of
circles o*+y’—1+4+28y = 0, and which moreover cut at right angles at the
points y =0, x = +1. But attending more ecarefully to the nature of the
correspondence, it is to be observed that taking Y positive, and giving to
X any positive value from 0 to oo, we have in figure 2, an are LJM lying
wholly within the upper semicircle LFM; and that corresponding hereto in
figure 3 we have an arc LJM lying wholly within the lower semicircle
LOM; and that as in figure 2, the arc LJM lies nearer to the semicircum-
ference LFM or to the diameter LOM, so in figure 3 the arc LJM lies
nearer to the diameter LFM or to the semicircumference LOM. 'Thus the
upper semicircle LFM of figure 2 corresponds to the lower semicircle LOM
of figure 3; but so that the semicircumference LFM of the first figure
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corresponds to the diameter LOM of the second figure; and the diameter
LOM of the first figure to the semicircumference LOM of the second figure.
And further supposing that ¥, is still positive, but that « has any negative
value from —oc to 0, we have in figure 2 an arc in the upper halfplane
lying wholly outside the semicircle; and corresponding thereto in figure 3
an arc lying wholly inside the upper semicircle LHM; that is in figure 2
the infinite space in the upper halfplane outside the semicircle corresponds
in figure 3 to the space within the upper half circle LHM; the infinity of
figure 2 corresponding to the semicircumference LHM of figure 3, and the
semicircumference LFM of figure 2 to the diameter LFM of figure 3. And
thus in figure 2, the upper halfplane inside and outside the semicircle
corresponds in figure 3 to the lower and upper half circles, that is to the
whole circular area OLHM of figure 3.
It is to be observed moreover that we have

X VX, = ZEEREa i)

that is the cireles X{+¥;+1424X, =0 and X34 Y;4+1+421X, =0 correspond
to each other. Imagining the circles as belonging to the same figure, these
are one and the same circle of the series a:2+y2+1—2m:= 0 each passing
through the pair of points (x =0, y = +¢) which are the éntipoints of the
pair (y =0, = +1), and which circles thus cut at right angles those of
the series ’+y*—14+28y =0. We have by means of the two series of
circles an easy construction for the correspondence between the figures
2 and 3. '

12. In explanation of No. 4, observe that, starting from the equation
X,+iY, =sn(X+4¢Y) and writing sn X = P, sniY =iQ, we have -

T 0T 0% L 01— Ppii __Lips
XY, = PY1+0Q%1+ k*Q?4+iQyY1— P21 —k*P

1+k2[ﬂ()2 9
that is
X — PY1+0%1+k*Q? y QVI=P.1— kP
1= 1+ K2 P07 ) 1 = 14-k*P7Q? 1
and thence
P’+Q? .
X%'i”?"“'m: 2 (lf Xf—f—Yf be pllt = 7‘2>;
hence :

P2(1__k202r2) = r2__02, 0‘2(1___k2P2r2) — r2_P2.
Journal fir Mathematik Bd. CVIL. Heft 4. 35
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Now considering in figure 1 any line in the rectangle parallel to the axis
of X, that is taking Y constant and therefore also Q constant, and pro-
ceeding to eliminate P, we have

p__ =0 _pr — 10— (k0N

T:WW 1—k2Q%r? ’
14 k%0°—k*(1 2),.2 1—k20*

and consequently

A+ Q11RO
x, = HAEALE v g 1=k,

v, — QV1+0—(A+# 0D VI+K Q' —k(1+07)r
b 1—k0° ,

giving X,, Y, each of them in terms of Q® and r°, = X;+Y;. The former
of these equations, replacing therein r* by its value, gives easily

X4 Y —24X—2BY 4 = 0,
where

2A 1""02 1 1+k20, 23 — 02+ 1 .

S L S e G

viz. we have thus the equation of the curve, a bicircular quartic which
in figure 2 corresponds to the line parallel to the axis of X, in figure 1.
In particular for the line LM of figure 1 we have Y=1K and

. 1
that is Q = i

xa
VE'
tion of the bicircular quartic is

2 1
XY= 2 (X YD+ 5 = 05

viz. this is the circle Xf—}-Yf——lk— =0 twice repeated, and we have thus

this circle, or rather the half circumference LFM of figure 2 corresponding
to the line LM of figure 1. More simply

thence iQ = snliK' = and thence 4 =B = 717" the equa-

1-/|;_tk snX—f-—/%chan LB PV TP
XY, = sn(X4 i) = 15— = (LHDPEVI-PI—RE
144" -sn'X VE(14EP?)

and thence ‘
oy — (LHRPP I (LR PR P 1
Y= KA 2kP KPP Tk
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that is Xf-l—Yf—ik =0 as before. It is easy to see that the points 4, 0, B
of figure 1 correspond to the points 4, O, B of figure 2, and hence that
the area of the rectangle AOGBLFMA of figure 1 corresponds to that of the
semicircle AOBLFMA of figure 2.

Returning to the equation X,4iY, = sn(X+iY), if we write herein
successively A
'—f, sniY, =iQ, =sni(JK'—73),

Il
w[.-

and

[l

1

LK'4-B3, sniY, =iQ, = sniQK'+73),
then we have

201 i0, = sni(GK'—B)sni(AK'+3) = ‘7{

that is Q,Q, = —: hence for ¢ writing Q, or Q,, we have in each case the
same values of A and B, that is we have the same bicircular quartic for
two lines parallel to and equidistant from the line LM, but to one of these
(viz. the line between LM and BA) there corresponds the half perimeter
lying within the semicircumference LFM, and to the other of them (viz. the
line between LM and CD) there corresponds the half perimeter lying without
the semicircumference LFM.

It may be shown in like manner that to any line in figure 1 parallel
to the axis OY there corresponds in figure 2 a bicircular quartic of the
like form (X4 Y;)~24X;—2BY; 4 =0,

13. Similarly in explanation of 5, observe that starting from the

equation x,+iy, = snl(x-+iy) and writing snlz = p, snlzy = isnly = iq,
we have

. /1—q*4+iqyY1—p*
wrl—zyl:m— q+2q1 P

1-p*q*
that is
o = PV1I=¢ _ qVi—p*
1 l_prqs 9 1 1— pg FER)
and thence
2 2
+
-Tf‘i'?/‘i)' - p_pzqq*z

writing 4y = 1@, we have

. /1—p° 2 . 2y 3
sny:ﬁ%—:—’ that is q=‘L£ or ¢*= 1= p that is —pjp—q=1,
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and thus to the line x4y = J@, there corresponds the circle xi4y;—1 = 0.
More precisely to the line CD of figure 4, there corresponds the quarter-
circumference CD of figure 5: and similarly to DA, AB and BC of figure 4
the remaining quarter-circumferences DA, AB, BC of figure 5; that is to
the whole boundary of the square in figure 4 there corresponds the whole
circumference of the circle in figure 5. ‘

14. To any line in figure 4 parallel to the axis Oz or to the
axis Oy there corresponds in figure 5 a bicircular quartic of the form
xi+y;i—2A4xi—2By;—1 = 0. The investigation is substantially the same
as that contained in No. 12, and need not be here given. But it is re-
markable that also to any line of figure 4 parallel to a side of the square
(that is to any line oty =c¢) there corresponds in figure 5 a bicircular
quartic of the like form (for the sides of the square, or lines x+y = +1@
of figure 4, this. bicircular quartic becomes the twice repeated circle
zi+yi—1 =0 of figure b, which is the result just obtained in No. 13). I
investigate this result as follows. Writing as in No. 13,

snle =p, snliy =isnly =iq,
we have as above

y = %‘%, Y= %1-1};—(—1”2—, and thence zi+y]= 1%.

Now assuming between x and y the relation 4y = C, and writing snlC = ¢,
this gives '

¢ — PV1I—4'+qV1—p!
- 1+p2q2 I .
and to obtain the required curve we must between these equations (three
independent equations) eliminate p and ¢. We have
PV1—q'+qV1—p*
1—p*¢*

(14p°g)e = (A=p'g)(art9),
or writing for convenience £2 = 1—p*¢’, this equation gives

rt+y, =

7

and conseqﬁently

_ 2%
z,t+y,+¢
Hence 2, = pV1—¢', 2y, = qV1—p*, or as these equations may be written
Qi = ==,

2y = —(1-2)p°+ 7,
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and from these equations obtaining the expressions for p> and ¢°, and thence
the expression for p’¢’, = 1—£2, we find after some easy reductions

24 2 Q. 4(1—-82)
(CET e TR R S ON

But we have
Q2 _ 4c?
1-82 7 (z,4y,)'—c’

or substituting this value the equation becomes

4 2,.2,2 2 &
N

c

that is :
{(wf+y?)2_ (@, +9,) }‘(wl+yl)2"” 2}—}-462.’1:?!/3 = 0.

c?
Writing for a moment x4y’ = P, z,y, = Q, this is
(P~ 2 (P120)||P+20—¢ +4c0" = 0,

an equation which contains the factor P+2(Q, or throwing this out, the
equation becomes after an easy reduction

(P—1)+ (1—e)|P—20— - (P+20)} = 0,
that is
@+~ (A= )| @y — 5 @ty = 0,
the required equation. Transforming through an angle of 45" by writing

wz‘tya Y= %Y,

rz 7T e
(where observe that the axis of z, is the line FH of figure 5), the equation
becomes

wI:

1
(@+y3— 1) +(1—e) (293 223) = 0,
or writing ¢ = cosy and therefore 1—¢* = sin’y, this equation becomes
2
(@4 9~ —per, B 200845 +1 =0,

a curve consisting of two indented ovals situate symmetrically in regard -
to the axis Fy, of figure 5. In fact writing in the equation y,=0 we
have for «; two real positive values, but writing #, =0 we have for gy}
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two imaginary values. For y =0 the equation becomes
(@492 —2(z3+y2)+1 =0,
that is, we have the circle z3+y;—1 =0 twice repeated. One of the ovals
is shown in figure 5; the portion of it lying within the circle agrees with
Schwarz’s figure p. 113, turning this round through an angle of 45"
For the lines z—y = C of figure 4 we have in figure 5 the same
system of bicircular quartics turned round through an angle of 90°.

IL

15. T consider the general problem of the orthomorphosis of a circle
into a circle: we can for the transformation of the circumference of the
circle z°4+y’—1 =0 into that of the circle zi+yi—1 =0, find a formula in-
volving an arbitrary function or (what is the same thing) an indefinite
number of arbitrary constants. In fact writing for shortness z= z-iy,
%, = @,+iy,, and 3, 5, for the conjugate functions z—iy, x,—iy,; also ¢(z)
for a function of z involving in general imaginary coefficients a+ib, etc.,
and ¢@(z) for the like function with the conjugate coefficients a—ib, ete.;
then if we assume

5 =_9®
1 — 1 9
()
where m is any positive or negative integer, this implies
- 9(z
By = = SP()I 3
()
consequently, if «*+4*—1 =0, that is sz =1, or 5 = —:—, we have
1 (1
_ ‘P(7) % ‘P(“;) 1
5y =

(%)m(r(z)z JONEY

or 5,5 = 1, that is zi+yi—1=0.
In a slightly different form, taking o, /3, etc. to denote any imagi-
nary quantities, and e, f3, ... the conjugate quantities; assuming

¢(z) = (3—e)(E—7)...,
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and taking m for the number of factors, we have

(z—-_a)(z—ﬁ:)...
(1- ax)(1—F5)... !

‘and then (repeating the demonstration) we have
s . G-®GE=p)...
' (1—az)(1—F5)...

which writing therein 5:%, becomes

B3 =

1 /1 5
7 = 7—a><7—ﬂ)... _ .
(1-2)(-£).. G—a)E—fh)...

wlm

e T - 1
and consequently if z =—:—, then also z, =~ as before.
1

. . . y: | .
We may in the expression for z, introduce a factor - o what is

the same thing a factor A which is such that A4 = 1. In particular we
thus have the solution

A(z—a)
3 = ——=",
(1—eaz)
giving
_ Alo—a
5 = A=)
1—az
which for zz = 1 becomes
- A(l—eaz
5 = _,iz:;_L

so that (A4 being = 1) this gives 5,3, = L.

16. This is a solution with three arbitrary constants, viz. A (which
may be put = cosi+-isini) is a single arbitrary constant, and o, = a+ib
is two arbitrary constants; and these constants may be so determined that
a given point in the interior of the one circle, and a given point on the
circumference thereof shall correspond respectively to a given point in the
interior of the other circle and to a given point on the circumference
thereof. According to a well known theorem of Riemann’s, any two simply
connected areas included within given closed curves respectively may be
made to correspond to each other, and that in ome way only, under the
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foregoing conditions as to a pair of interior points and a pair of boundary
points: and we have in what just precedes the solution of the problem in
the case of two equal circles.

17. In the case of any other - solution, we thus know that the
correspondence between the two circumferences cannot and does not imply
a (1,1) correspondence between the areas of the two circles: but -it is
interesting to enquire what happens. I take a very particular case

3(5—2
B 1(—2:5) !
and therefore
- 2(5—2
B §—2E) '

. and consequenﬂy

- mafwe—2(s43)+4)
5151 = = =
1—2(s+75) + 455

that is
@ +y)(="+y'—42+4)

4(z’+y")—4dz+1 .
so that writing «’+y°—1 =0 we have z}+y;—1 =0, a correspondence of
the two circumferences. But to the circumference #i+yi—1 = 0 there corre-
sponds not only the circumference 2’+y*—1 =0, but another circumference.
In fact writing «i+y7 =1, we have

4@ H)—do+l = @)y~ dat4),

Tty =

that is

(+y*Y—dz(@+y)+4z—1 = 0,
or

(@+y—D(@@*+y'—4z+1) = 0,
and there is thus the other circle
4y’ —4x+1=0, or say (z—2)+¢’—3=0,

viz. this is a circle, coordinates of centre (2,0) and radius = V3, cutting the
circle 2’4+y*—1 =0 in two real points. Referring to the figures 6 (xy) and
7 (z,9,), and observing that (z; =0, y, = 0), that is 5, ==0, gives z =0, or
s = 2, that is the points (2 =0, y =0) and (x =2, y =0), we see that to
the centre O in figure 7, there correspond in figure 6 the points 0, M
which are the centres of the two circles. To any small closed curve, or
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say any small circle surrounding the point O of figure 7, there correspond
in figure 6 small closed curves surrounding the points O, M respectively;
and if in figure 7 the radius of the circle continually increases and be-
comes nearly equal to unity, the closed curves of figure 6 continually in-
crease, changing at the same time their forms, and assume the forms shown
by the dotted lines of figure 6. It thus appears that to the whole area of
the circle zi+yi—1 =0 of figure 7, there correspond the two lunes ACB
and ABD of figure 6 or if we attend only to the area included within the
~circle z°4-y*—1 =0 of this figure then there corresponds not the whole

area of this circle, but only the area of the lune ACB: and thus that the

—2 . . o
assumed relation 2, = zfz_%) establishes in fact an orthomorphosis of the

circle zi+yi—1 =0, and the lune ACB inside the circle x4 y°—1 =0 and
outside the circle (#—2)°4+y°—3 =0. It may be added that to the infinite
area outside the circle xj+yj—1 =0 of figure 7, there correspond in figure
6 first the area of the lense AB common to the two circles, and secondly
the area outside the two circles: we have thus an orthomorphosis of the
area outside the circle ai+yj—1 = 0 into these two areas respectively.

A somewhat more elegant example would have been that of the
correspondence
5 = 2(z—V2)

1—)2x !

here, corresponding to the circumference xi+yi—1 =0, we have the two
equal circumferences @*+y°*—1 = 0, and (z—V2)*+y*—1 = 0, and to the whole -
area of the circle o{+yi—1 =0, there correspond two equal lunes ACB
and ABD.
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