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Uber eine Klasse Riemannscher Flichen
mit endlich vielen nur logarithmischen Windungspunkten.”)

Von Helmut Wagner in Gottingen.

Einleitung.

Herr R. Nevanlinna hat eine neue Klasse von meromorphen Funktionen eingehend
untersucht ). Es sind dies die Funktionen, welche die schlichte endliche Ebene auf
Riemannsche Flichen mit nur logarithmischen Windungspunkten, und zwar mit nur end-
lich vielen, abbilden. Herr R. Nevanlinna hat dariiber folgende Hauptergebnisse ge-
wonnen:

Es seien a,,a,,...,a, (¢ = 3) willkiirlich gegebene, voneinander verschiedene
Punkte der w-Ebene. Jedem Punkt @, (k=1,2,...,q9) sei eine natiirliche Zahl u;
willkiirlich so zugeordnet, dafl

q

P
(1) Ux ;%MI_2

ist. Dann gibt es mindestens eine meromorphe Funktion w(z), welche die schlichte end-
liche z-Ebene auf eine Riemannsche Fliche abbildet, die iiber jedem der Punkte a; auBer
moglicherweise gewissen schlichten Blédttern genau g logarithmische Windungspunkte
hat, sonst aber keine (auch keine algebraischen) Windungspunkte mehr besitzt, so dal

A
»o| —~

die Gesamtzahl der (logarithmischen) Windungspunkte ,é u; = p betrigt. Fir p=3

ist diese Funktion im wesentlichen, d. h. bis auf eine ganze lineare Transformation von z,
eindeutig bestimmt; fiir jedes p = 4 aber gibt es unendlich viele wesentlich verschiedene
Funktionen w(z), die sich dadurch unterscheiden, daB die von ihnen iiber der w-Ebene
‘erzeugten Riemannschen Flichen trotz der gleichen Windungspunkte noch verschiedene

Struktur haben 2). Jede solche Funktion w(z) hat die Ordnung _2p. und besitzt die Werte

.. L2
a; als einzige Ausnahmewerte, und zwar sind die entsprechenden Defekte gleich —5’5,
so daB die Summe aller Defekte ihr Maximum 2 erreicht. Ferner geniigt w(z) der

*) Diese Arbeit wurde der Mathematisch-Naturwissenschaftlichen Fakultit der Georg-August-Universitdt
zu Géttingen als Dissertation vorgelegt. Referent war Herr Dozent Dr. Ullrich.

1) R. Nevanlinna, Uber Riemannsche Flichen mit endlich vielen Windungspunkten, Acta mathematica 58
(1932), S.295—373.

2) Falls die Anzahl g der gegebenen Grundpunkte ay, gleich zwei ist, so ist die (fiir ¢ = 3 notwendige und hin-
reichende) Bedingung (1) nicht mehr hinreichend. Vielmehr ist dann notwendigerweise auch p = 2, also y; = p, = 1.
Die Funktion w(z) ist wie im Falle p = 3 im wesentlichen eindeutig bestimmt und 1iB8t sich in einfacher Weise als
lineare Transformation der Exponentialfunktion darstellen. Die iiber der w-Ebene ausgebreitete Riemannsche Fliche
ist die bekannte logarithmische Fliche.
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Differentialgleichung
wlll 3 w// 2
@) o — o (%) = poa,
wo P(z) ein Polynom vom Grade p — 2 ist. Wenn umgekehrt P(z) ein beliebiges Polynom
vom Grade p — 2 ist, so ist jede Losung der Differentialgleichung (2) eine in der endlichen

Ebene meromorphe Funktion der Ordnung -g—, die iiber der w-Ebene eine Riemannsche

Flache erzeugt mit genau p logarithmischen und sonst keinen Windungspunkten derart,
daB die Anzahl der iiber einem und demselben Grundpunkt liegenden logarithmischen

Windungspunkte nicht groBer als P st

2

Im AnschluB an diese Hauptergebnisse von Herrn R. Nevanlinna erheben sich nun
die Fragen: Uber welchen Stellen der w-Ebene liegen bei gegebenem Polynom P(z) die
logarithmischen Windungspunkte der Riemannschen Fliche, die als Bild der schlichten
z-Ebene von einer bestimmten Lésung w(z) der Gleichung (2) iiber der w-Ebene erzeugt
wird, und wie ist die Struktur dieser Riemannschen Fliche?

Herr R. Nevanlinna selbst hat diese Fragen schon fiir die einfachsten Spezialfille
von P(z) erledigt, nimlich erstens fiir den Fall, daB P(z) eine reine Potenz von z ist 3),
und zweitens fiir den Fall, daB P(z) ein quadratisches Polynom in z ist 4). Als wichtigstes
Hilfsmittel bei der Behandlung dieser einfachsten Fille verwendet er die Laplacesche
Transformation zur Integration der Gleichung

144 1’
3) g +7P(z)g=0,

welche in enger Beziehung zur Gleichung (2) steht.

Eine Untersuchung der Frage, ob es etwa noch allgemeinere Polynome P(z) gibt,
bei denen man ebenfalls mit Hilfe der Laplaceschen Transformation zum Ziele kommt,
zeigt, dafl dies tatséichlich der Fall ist. Und zwar ergibt sich, falls p eine gerade Zahl
(p=2n, n =2) ist,

(4) P(z) = — 2M z2n—2 — QN zn—2 (M =+ 0)

als néchstliegende Verallgemeinerung der im vorigen Abschnitt erwidhnten einfachsten
Polynome. ‘

In dieser Arbeit wollen wir nun die oben gestellten Fragen an dem neuen Spezial-
fall (4) von P(z) behandeln. Auch in diesem Falle lassen sich alle Rechnungen zur Be-
stimmung der Lage der logarithmischen Windungspunkte wirklich bis zu Ende durch-
fithren, und zwar zeigt sich, daB sich die Lage der logarithmischen Windungspunkte
explizite mit Hilfe der Gammafunktion angeben 148t. Die Frage nach der Struktur
der Riemannschen Fliche werden wir fiir gewisse ausgezeichnete Fille vollstindig losen,
némlich dann, wenn das Polynom (4) so beschaffen ist, daB von den 2n logarithmischen
Windungspunkten r iiber eine und dieselbe Stelle zu liegen kommen. In den iibrigen
Fallen gelingt es uns, Aussagen zu gewinnen, die iiber die allgemeinen Nevanlinnaschen
Satze nicht unerheblich hinausgehen.

%) R.Nevanlinna, Uber die Herstellung transzendenter Funktionen als Grenzwerte rationaler Funktionen,
Acta mathematica 85 (1930), S. 259—276.
1) Vgl. die schon in FuBnote !) genannte Abhandlung.
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Teil 1. Vorbereitende Betrachtungen.
§ 1. Darstellung der Nevanlinnaschen Funktionen als Quotienten zweier nullstellenfremden
ganzen Funktionen.
Um die in der Einleitung geschilderten Nevanlinnaschen Funktionen darzustellen,
geht man von der Differentialgleichung

aus. Setzt man w’ = g2, so geht (2) iiber in die Differentialgleichung

ny A
®) g'+5 Pl)g=0,

und es gilt:

Der Quotient von zwei beliebigen linear unabhéngigen Losungen von (3) ist eine
Losung von (2), und umgekehrt 148t sich jede Losung von (2) als Quotient von zwei
linear unabhingigen Losungen von (3) darstellen.

Hierdurch ist die Darstellung der Nevanlinnaschen Funktionen auf die Integration
der Gleichung (3) zuriickgefiihrt. Jede Losung von (3) ist eine ganze Funktion

(der Ordnung -%) und 148t sich durch eine besténdig konvergente Potenzreihe darstellen.
Wir wollen daher zunichst ganz allgemein g in Form einer Potenzreihe ansetzen. Es sei

2
(5) PE) = —2Z b7,

g(z) =’.5{; ¢z,
also
g’ =210 =16z =2 +2) (G + 1) cj427.

Geht man mit diesem Ansatz in die Gleichung (3), so ergibt sich folgendes Gleichungs-
system:
2'1 'Cz—'boco=0
3 '2 'Cg—“bocl_bIC(,: O
S R AR AR R R

p(p—1cp —bocpa—=---—bp2c,=0

Nachdem man ¢, und ¢, willkiirlich festgesetzt hat, lassen sich aus (6) die iibrigen Koeffi-

zienten c,, ¢, . . . eindeutig ermitteln. Wir bestimmen zwei linear unabhéngige Lo-
sungen von (3) durch die Anfangsbedingungen

G* (z) = ¢} k24 .-

G**:Z; . cg‘* 1 c;’lf*z i e (cfef* —ef*el +0).

G*(2)

G**(z)

zweier nullstellenfremder ganzer Funktionen.

Insbesondere heben wir die Lésungen

D) =0+ 1z4 s, gD =1+0-24...

Dann ist w(z) = die Darstellung der Nevanlinnaschen Funktionen als Quotienten
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heraus und nennen

g*(z)

v = ey

=04+1.240-224 ...

die Grundidsung von (2).

Wir werden unsere spiteren Untersuchungen, insbesondere die Bestimmung der
Lage der logarithmischen Windungspunkte, nur fiir die Grundlésung von (2) durchfiihren.
Dies bedeutet keine Einschrankung; denn die allgemeine Losung von (2) ist nichts anderes
als eine lineare Transformation der Grundlésung.

§ 2. Normierung von P(z)zu — 2z2%—2 — 2cz”—'2 .
Es sei nun, um zu unserem Spezialfall iiberzugehen,
p=2n (n ganz und = 2), -
(4) P(z) = —2Mz2—2 — 2 Nz»—2 (M £ 0),
also (vgl. (5))

bp=0by=+ ' =bp3=0, bps=2N,
by =by =+ =bops3=0, bpo2=M.
Dann lauten die Gleichungen (2) und (3):
(8) g — (Mz2—2 4 Nz»—2) g =0,

Wir wollen, um auch die Abhingigkeit von n, M und N zum Ausdruck zu bringen,
die Losungen g*, g** von (8) und die Grundlésung w von (7) ausfiihrlich bezeichnen mit

gx(z; M, N), g¥*(z; M, N), w,(z; M,N).
Setzt man
g*(z; M, N) =i§)c;‘ 7 (r=0, ¢t =1),
g**(z; M, N) =,.§°:, Hrd (%=1, *=0),
80 ist, wie aus den Gleichungen (6) folgt,
¢+ =0 fir j=d (mod n),
¢#* =0 Tiar 722 0 (mod n).
Ferner ergibt sich nach (6) fiir die Koeffizienten ¢} mit j=1 (mod n) das Gleichungs-

system
(n + 1)nc:+1 —Nef =0

() (2n +1) 2n¢},,, —Nck , — Mc} =0
(Bn + 1) 3ncg, ., —Neg, , — Mc,’:‘+1 =0

und fir die Koeffizienten ¢* mit j =0 (mod ») das Gleichungssystem
n(n —1)ck* — Nef* =0

(10) 2n(2n —1)e}f* — Nc¥* — Mci* =0

3n(@n —1)cg¥ — Neg* — Mc** =0

---------------------

Journal ffir Mathematik, Bd, 175. Heft 1. 2
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Daher ist fir k = 1,2, 3, . . . sowohl ¢
aufgefaBt als Polynom in )/ und NV, homogen vom Grade k ist. Sowohl in it
auch in ¢}* tritt N entweder nur in geraden oder nur in ungeraden Potenzen auf, je

nachdem % gerade oder ungerade ist.
Somit erfilllen die Losungen

ghz; M, N) = 2+ et dntt
g¥*(z; M,N) =1 —}-kéc;“”*z"”

als auch ¢;* ein Polynom in M und IV, welches,
als

(11)

der Gleichung (8) die Beziehungen:

g*(z; M, N) = —
(12) WWu

g m = g7, i)

Vit
{ g* (o 25 M, ) = on g2z M1, — ),

gk (Vﬁz; 1, 7%—),

(13) of
gr* (e_"—z; M, N) = g¥(z; M,—N).
Durch zweimalige Anwendung von (13) erhilt man

2mi ) 2xi

{ g (eTz; M,N)=e" gz; M, N),

2ni
g (em 23 M, N) = goria; b, ),

was iibrigens auch unmittelbar aus (11) ersichtlich ist.
*

Hieraus ergeben sich fiir die Grundlosung w, = ég;% der Gleichung (7) die Be-

ziehungen:
1 = N
(14) wals; M, N) = —— w, (W’Mz; 1, W)
WWu
(15) Wa (e7Z; M, N) = e™ wy(2; M, — N),
2mi 271
(16) Wy (eTZ; M, N) =e" w,(z; M, N).

In (14) kann, ebenso wie oben in (12), M jeden der beiden Werte und, nachdem

VM fest gewihlt ist, VVTM_ jeden der n Werte bedeuten.

Wir wollen nun fiir das Folgende P(z) zu — 2z°*—2 — 2¢z"2% normieren. Dies
ist keine wesentliche Einschrinkung. Denn Gleichung (14) gestattet uns, alle fiir
P(z) = — 222»—2 — 2¢2"2 gewonnenen Ergebnisse ohne Miihe auf den allgemeinen
Fall P(z) = — 2Mz*»—2 — 2Nz"2 zu iibertragen. Der Einfachheit halber wollen wir
die im normierten Falle auftretenden Funktionen

gnzil,c),  gX*(zilie),  walzid,0)
kurz mit
gx(z,c),  g¥*zc)y,  w,l(z0)
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bezeichnen. Da wir die Gleichungen (7), (8), (15), (16) spiter nur im Falle

P(z) = — 2722 __ Qczn—2
anwenden werden, wollen wir sie hier noch einmal besonders fiir diesen Fall anschreiben:
1244 3 1\ g
I
(18) g — (222 + ez 2)g =0,
(19) Wy, (e—'" z, c) = e" wy(z, — ¢),
2ni 2ai

(20) Wy, (e " 2, c) =e " wy(z, c).

Dann brauchen wir spéter bloB hierauf zu verweisen.

§ 3. g*(z ), g¥*(z, c) und w,(3, c) als Funktionen von z und c.
g*(z,¢) und g¥*(z, c) sind, da sie die Differentialgleichung (18) befriedigen, bei
festem ¢ ganze Funktionen von z, und zwar gelten die Entwicklungen

g,’:‘(z, €)=z +k§;0*

kn-+1
¥n+1% )

gz ) = 1 + 3 cxain,
wo die Koeffizienten ¢}, , und ¢* den Gleichungen (vgl. (9) und (10))

(n+1) ne* , —c=0

n+1

(2n +1) 2nc}  , —cct,—1=0

(21) n+1
(Brn +1) 3nek , —eck,, —c*, =0
nn—1)c* —c=0
(22) 2n(2n — 1) ¢} —cc** —1 =0
3n(3n — 1) * —cct* —c** =0
geniigen.

Wir werden nun zeigen, daB g*(z, ¢) und g**(z, c) bei festem z auch ganze Funktionen

von ¢ sind.
Wie aus den Gleichungen (21) und (22) zu ersehen ist, sind die Koeffizienten

% ¥k *k __ kX 3 3 143 1
c¥, 1 = ¢ 1(¢) und ¥ = c*(c) Polynome in ¢ mit positiv reellen Koeffizienten. Daher

gilt, wenn Q eine beliebige positiv reelle Zahl ist, fiir |¢]| =< Q:
Ik (@] S ¢ Q) Ighk(e)] = i (Q) -
Infolgedessen sind die Reihen
2] + 3 e (@) |14 = g2(121, 0),
L+ 3 Q) 12" = (|21, 0)
fiir | ¢| < Q Majoranten der Reihen

24 3t (0 = g2z, 0),

1 +ké; c:”*(c)zk" = g:*(z, ¢),
o
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und diese konvergieren daher bei festem z fiir |¢| < Q gleichméBig in ¢. Wie der Weier-
straflsche Doppelreihensatz lehrt, sind somit ihre Summen g¥(z, ¢) und g**(z, ¢) bei

festem z fiir |¢| < Q reguldr analytische Funktionen von ¢. Hiermit ist, da man ja Q
beliebig grof wihlen kann, die Behauptung bewiesen. Zusammenfassend hat man also
das Ergebnis:

Die Losungen g¥(z, c) und g¥*(z, c) von (18) sind bei festem ¢ ganze Funktionen von z

und bei festem z ganze Funktionen von c; die Grundlosung w,(z, ¢) von (17) ist bei festem
c eine meromorphe Funktion von z und bei festem z eine meromorphe Funktion von c.

Teil 2. Die Lage der logarithmischen Windungspunkte.

§ 4. Integration der Gleichung g'' — (2272 4 cz%—2) g = 0 mit Hilfe der Laplaceschen
Transformation.

Um weitere Schliisse iiber die Grundlosung w,(z, ¢) von (17) ziehen zu konnen,
wollen wir die Gleichung :

(18) g — (2 4 cz—2)g =0
mit Hilfe der Laplaceschen Transformation integrieren.
Wir fiihren zunéchst durch

(23) z = —’27 A

die neue unabhéingige Verdnderliche = ein. Dann wird
g = % = 4z2”"2g§-§ + (2n —2) zn—2 g—i ,
und Gleichung (18) geht iiber in
4z2"—23——;% + (2n — 2)zn*2dg — (224 " 2) g =0

oder

) rgi+ (=) E— (Gt 5)e=0.
Macht man zur Loésung von (24) den Ansatz

(25) , g = fpe”‘u(t) dt,

wo u(t) eine noch zu bestimmende Funktion und « und g noch zu bestimmende Inte-
grationsgrenzen bedeuten, so ist unter der Annahme, daB man in (25) unter dem Inte-
gralzeichen differenzieren darf,

B
Zg fte"udt -2 —ftze‘“’udt

und, wie sich durch partielle Integration erglbt

fe“
few( Wt o) a

xg=e"u

z d— = t%eu

dax?
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Hiermit lautet Gleichung (24):

1 ldu ¢ . 1)w g

8
(26) ———fe"‘{tz%—{-mu——(i—— =0.
Damit (25) eine Losung von (24) wird, bestimmen wir u(¢) so, daB in dem in (26)
auftretenden Integral die geschweifte Klammer identisch verschwindet. Als Losung
der Differentialgleichung

erhalt man demnach fiir u(z):
1 a 1 b
w) = (3 +1) (71

c—1 1 —c—1 1
(27) T TR TS Ty Ty =t

wo zur Abkiirzung

gesetzt ist.
Da u(t) eine mehrdeutige Funktion von ¢ ist, wollen wir sogleich einen eindeutigen

Zweig festlegen. Zu diesem Zweck denken wir uns die t-Ebene vom Punkte ¢ = ——é—
an lings der negativ reellen Achse bis ins Unendliche und vom Punkte ¢t = + —%— an
langs der positiv reellen Achse bis ins Unendliche aufgeschlitzt. Es sei
1l 1 .
‘%_ + f— eloglg—}-t +w’ i = eloglg—t +w,

wobei unter log’-%—-{-tl bzw. unter logl—%—-——tl der reelle Wert zu verstehen ist.
Dann wird

alog l—;—-t—t

+iap blogll-tl+ibw
u(t)=-e e 12 )

und wir wollen bei unseren folgenden Betrachtungen den durch die Ungleichungen
—n < o <mxm, —a<p<mn

festgelegten eindeutigen Zweig von u(¢) zugrunde legen. Fiir spiter wollen wir noch

anmerken, daB dann den Punkten des unteren Schnittufers der negativ reellen Achse

die Argumente ¢ = — =&, v = 0, den Punkten des oberen Schnittufers der negativ

reellen Achse die Argumente ¢ = =, 9 = 0 entsprechen.

Nun haben wir im Integral (25) noch einen geeigneten Integrationsweg zu be-
stimmen. Beschrinkt man z auf die rechte Halbebene Rz > 0, so strebt der Ausdruck

(vgl. (26))
r—t)erem (e

gegen 0, wenn ¢ lings eines der beiden Schnittufer der negativ reellen Achse iiber alle
Grenzen wichst. Daher kann man im Integral (25) sowohl « als auch g8 gleich — oo
wihlen. Damit nun das Integral (25) nicht identisch verschwindet, nehmen wir den
folgenden aus drei Stiicken bestehenden Integrationsweg &, (0 < & <1): Das erste
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f———
*
Fig. 1.
Stiick & gehe von — oo lidngs des unteren Schnittufers der negativ reellen Achse bis
zum Punkte ¢ = ———;- — e. Das zweite Stiick &, sei die im positiven Sinne vom Punkte
t= ———;— — ¢ des unteren Schnittufers bis zum Punkte ¢ = mé— — ¢ des oberen

Schnittufers durchlaufene Kreislinie lt + —;—l = ¢e. Das dritte Stick £ gehe vom

Punkte ¢ = ——-}2— — ¢ langs des oberen Schnittufers der negativ reellen Achse bis — oo

(vgl. Fig. 1).
Nunmehr erkennt man, daB das Integral

1 “1 b

(28) I,,(a:, C) = | el® (-2—‘ + t) (7 s t) dt
fiir Rz > 0 bei beliebigem ¢ eine Losung der Gleichung (24) darstellt, vorlaufig allerdings
noch unter der Annahme, daB man es unter dem Integralzeichen nach z differenzieren
darf.

Wir wollen nun zeigen, daB man das uneigentliche Integral I,(z, c¢) tatsdchlich
unter dem Integralzeichen nach x differenzieren darf. Dabei werden wir gleichzeitig
noch einige weitere Aussagen iiber I,(x, c¢) gewinnen, die wir spéiter benotigen werden.
Wir stiitzen uns hierbei auf folgenden Satz: 5)

Es sei @ eine in der t-Ebene gelegene streckbare Kurve und & ein in der z-Ebene
gelegenes Gebiet. f(¢, z) sei fiir jedes auf & gelegene ¢ eine in & regulidr analytische
Funktion von z und innerhalb & gleichmiaBig beschrinkt. Dann stellt das Integral

f ft, z)dt (falls es fir jedes x aus & im eigentlichen Riemannschen Sinne existiert)
6

eine in @ regulir analytische Funktion von z dar.

Es sei nun fir »=1,2,3,...
1

1
0‘7<'—_2"_'87 137<—'2‘—"'8$

und es strebe &, -~ — o, f,— — oo fir » - co. Den Punkt { = «, denken wir uns auf
dem unteren Schnittufer, den Punkt ¢ = g, auf dem oberen Schnittufer liegend. Dann
stellt nach obigem Satze fiir v =1,2,3,... das Integral

For (5 +1)" (5=
— tx | —
I,,,,_Je (2+t) 5 —1 dt,

welches iiber das zwischen den Punkten ¢ = «, und ¢ = g, gelegene Stiick des Weges &,
zu erstrecken ist, bei festem ¢ eine ganze Funktion von z und bei festem z eine ganze
Funktion von ¢ dar, und es strebt fiir v — o

I,,—1, fir Rz> 0.

5) Siehe z. B. Bieberbach, Lehrbuch der Funktionentheorie 1, Leipzig u. Berlin 1930, S. 136 u. 174.
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Nun ist fiir Rz =0

1 a 1 b
ol < fles(5+1) (5= [ 1@t = [+ [+ [
E 2 2 ol T
. ol S 5.
Beschrinkt man z auf den Kreis |z —¢&| <& (§>0) und ¢ auf den Kreis |¢| £ Q (0>0),
a b
so ist auf ®, der Integrand 'e“ (%— -+ t) (—%— —t) l beschrinkt und somit auch das

Integral

J

Sl (b=

AuBerdem gelten fiir die Integrale [ und [ die Abschétzungen:

& eF
:F

(3 + [z 1)

Idt] — fIetx-{-alogj§+t|$€an+blog|}—-t[I ldl[
gf

2
“g Ra R n—Q- Ra R
§e2"fe‘m{—;-+t %——t |dt|§e2"f‘%+t —%-—-tl |dt]
S eF
b
—p 2 all en(Z_T ° —
| T s AT
eF 9 eF

Daher ist sowohl

Jle(t+ 3=

olts i (b= f

g
fir | —&| <& und |c| < Q beschrinkt. Man hat also
| In,»| = H,

wo H, falls |t —&| < & und |c¢| < Q ist, eine von », 2 und ¢ unabhéngige Schranke ist.
Da man aber £ und Q beliebig gro8 wihlen kann, so findet nach dem Vitalischen Satze
die Konvergenz von I,,, gegen I, auf jedem endlichen Bereich der rechten z-Halbebene
Rz >0 und auf jedem endlichen Bereich der ¢-Ebene gleichm#Big in z und ¢ statt. Nach
dem WeierstraBschen Doppelreihensatz ist daher I» bei festem ¢ eine fiir Rz > O regular
analytische Funktion von z und bei festem z mit positivem Realteil (Rx > 0) eine fiir
alle ¢ reguldr analytische Funktion von ¢. Der WeierstraBsche Doppelreihensatz liefert

weiterhin fiir 2 > 0 die Folgerungen:

als auch

I, . dl,, al, . dl,,
dz —imet, g = himree

Hieraus ergibt sich, da man ja die eigentlichen Integrale I, , unter dem Integralzeichen
nach x differenzieren darf, daB man, wie behauptet, auch das uneigentliche Integral I,
unter dem Integralzeichen nach z differenzieren darf. Wir fassen unsere Ergebnisse in
folgenden Satz zusammen:
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Das Integral
B s 1_
(28) IL(z, c) —-efe‘ ( + t) ( t) dt

stellt bet beliebigem c fiir Rx > O eine Losung der Gleichung (24) dar und ist bei festem c
eine fiir Rx > 0 regulir analytische Funktion von z, bei festem x mit positivem Realteil
(Rz > 0) eine fiir alle ¢ regulir analytische Funktion von c.

Wir bemerken noch, daB das Integral 7,(z, ¢), falls nur 0 < ¢ < 1 ist, von ¢ unab-
hingig ist. Dies ergibt sich unmittelbar daraus, daB nach dem Cauchyschen Integral-

satz das Integral
1 alq b
iz | —
Jelg+ (3=

verschwindet, wenn es iiber den in Fig.2 dargestellten geschlossenen Integrationsweg
erstreckt wird.

Fig. 2.

AuBer dem Integral 7, brauchen wir noch das fiir Rz > 0, e > —n 4 1 existie-
rende Integral

(29) I*(z, ) =ft (~5 - f (5 = a,

—_—0

welches lings der negativ reellen Achse zu erstrecken ist und wo unter
1 (1 )"
(~z—4(z-

eog| —F—1l +blog| §—t|

der Wert

zu verstehen ist. Man gelangt

mit reellem log1—--—~tl und reellem log,-— —t

auf demselben Wege wie oben bei I, zu folgendem Ergebnis:
Das Integral

i a b
(29) I¥(z, c) =fe”‘ (———;—-—t) (—;— —t) dt

stellt fir Rz > 0, Re > —n + 1 eine Lisung der Gleichung (24) dar und ist bei festem c
mit Re > —n + 1 eine fiir Rz > 0 regulir analytische Funktion von z, bei festem x mit
Rz > 0 eine fir Re > —n + 1 regulir analytische Funktion von c.

Fiir spéter sei noch angemerkt, daB man auch das Integral /¥ unter dem Integral-
zeichen nach z differenzieren darf.
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Wir kehren nunmehr vermittels (23) zur unabhingigen Veridnderlichen z zuriick.
Dabei geht die rechte Halbebene %z > 0 in einen der Winkelrdume

mm T
argz—7|<% m=0,2,...,2n—2)
iiber, und zwar wollen wir der Einfachheit halber stets den Winkelraum |arg z| < %

wihlen. Dann erhalten wir folgende Ergebnisse:
Das Integral

Ez”t 1 a 1 b
(30) Ju(z,¢) = fe (—2— + t) (—2- -—-t) dt
€.
stellt fiir |arg z| <§n’—z bei beliebigem c eine Liosung der Gleichung (18) dar und ist bet

7
2n

eine fir alle ¢ regulir analytische Funktion von c.

festem ¢ eine fiir |argz| < reguldr analytische Funktion von z, bet festem z mit

z
2n
Das Integral

31) J*(z, ) =—]%e”£z”t (~—;— — t)(—%— — t)bdt

stellt fir |arg z| < 2%, Re> —n + 1 eine Lisung der Gleichung (18) dar und ist bei

|arg z| <

JT
2n
JT

bei festem z mit |argz| < o eine fiir Re> —n + 1 regulir analytische Funktion

festem ¢ mit Re > —n + 1 eine fiir |arg z| < — regulir analytische Funktion von z,

von c®).

§5. Zusammenhinge zwischen den Integralen J,, J¥ und den Potenzreihen g¥, g**.
Zunichst wollen wir untersuchen, welcher Zusammenhang zwischen den Integralen
Ja(z, ¢) und J¥(z, ¢) besteht. Dabei haben wir |arg z| <2Ztr_z’ Re> —n +1 voraus-

zusetzen.
Nun strebt aber unter diesen Voraussetzungen

2me (1 “1 ® .
ﬁ[e (—2—+t) (7——t) dt -0 fiir e-0,

8

8) Die Werte, die das Integral (30) bzw. (31) in dem Winkelraum

_mrl _
argz n’<2n m'=0,2,...,2n—2)

liefert, sind im allgemeinen keineswegs analytische Fortsetzungen der Werte, die es in dem Winkelraum

m'’n

argz—
g n

r
2n
liefert, falls m’ == m’’ ist. Wenn man also, wie es hier stets geschehen soll, unter Jy,(z,c) bzw. J¥(z, ¢) eine
bestimmte analytische Funktion von z verstehen will, so muB man in (30) bzw. (31) z auf einen bestimmten der

Winkelrdume

< m"=0,2,...2n—2)

arg z—ln;‘—ﬂi < % m=0,2,...,20—2) beschrinken, z. B. wie oben auf den Winkelraum

[argzl<-£.
2n

Journal fiir Mathematik, Bd. 175. Heft 1. 3
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und somit ist

. 2 (1 ‘1 > s Zme (1 “r1 b
Ja(z,¢) =1lim | e (—2—+t) (—2————t) dt—l—]:_lg e (»2—+t) (§—t> dt.

0 oy
Da hierin
lim [ = e~ J¥(z, ), lim [ = — e J¥(z, c)
&0 e &—)Os;{.
ist, so ergibt sich fir e > —n 4 1 folgender Zusammenhang:
(32) Jn(2, ¢) = — 2i sin 7wa J¥(z, ¢).

Nunmehr konnen wir dazu iibergehen, den Zusammenhang zwischen den Lésungen
J (2, ¢), J¥(z,¢) und g¥(z, c), g¥*(z,c) der Gleichung (18) zu ermitteln. Wenn auch
Ju(z, ¢) und J¥(z,¢) durch (30) bzw. (31) nur in dem Winkelraum |argz| < 21;2 dar-

gestellt werden, so wissen wir doch, daB J, und J} (wie jede Losung von (18)) bei festem
¢ ganze Funktionen von z sind und sich in besténdig konvergente Potenzreihen ent-
wickeln lassen. Daher konnen wir ansetzen:

J (2 ¢) = yO(c) + yPle)z + - - -,
Taa €)= 8(c) + 8z 4« -,
so daB wegen der Anfangsbedingungen von g*(z, ¢) und g**(z, c) folgender Zusammen-
hang zwischen J , J¥ und g¥, g** besteht:
Sz, ¢) = YD (c) gx*(z, ¢) + yP(c) gX (2, ¢)
) {J:f(z, ¢) = 8,(c) g2 (2, ¢) + 8(c) g (s €) -
Die hier auftretenden Koeffizienten y(:)(c), yf‘l)(c), 6(:)(c), é(n”(c) haben wir nun
zu bestimmen. Zunichst zeigen wir, daB yﬁ’)(c) und ys)(c) fiir alle ¢, 6(::)(c) und 6(”1)(0)
fir Re > —n 4 1 regulir analytische Funktionen von ¢ sind.

Es sei ¢ eine beliebige Stelle der ¢-Ebene. Da w,(z, ¢®) nicht konstant ist, gibt
es zwei dem Winkelraum |argz| < % angehorende Punkte z, und z, so, dal

82 (2, ¢?) g¥(z, )
GRATD I R S S )
ist. 2z, und z, seien so gewihlt. Dann ist:
(34) g2*(2,, €0) gh(z,, (V) — g¥*(z,, ) g¥(z;, €0) 0.
Nach (33) hat man nun:
y(,,o)(c) g:*(zp C) + ?’5.1)(0) g:(zp C) = Jn(z;l’ C)1
Y0(c) g¥*(zy, ¢) + ¥Pe) g¥(z,y, ¢) = J (25, C).
Hieraus folgt durch Auflésung:

J”(Zl, C) g:(zga C) - Jn(zg) C) g:(zli C)
g:*(zp C) g:(zza C) '—g:*(zm C) g:(zls C) ’
g:*(zlv C) Jn(zzv C) —g:*(zza 6) Jn(zp C)
g:*(zp c) g:(zy C) _g:*(zzv C) g:(zla C) )

rRe) =
(35)

rPe) =
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Wie frither (vgl. auch §3) gezeigt wurde, sind
8X (2 €)y 8 (2, €)r &1*(2y5€)y 8¥* (25 €), T (2, 0), T, (2, €)

ganze Funktionen von ¢. Daher sind in (35) Zihler und Nenner ganze Funktionen
von ¢, und da nach (34) der Nenner an der Stelle ¢(® nicht verschwindet, so schlieBt
man hieraus, daB »((c) und y®)(c) in der Umgebung der Stelle ¢*) reguldr analytisch
sind. Da aber ¢ ganz beliebig war, so sind in der Tat y®(c) und y{)(c) fir alle ¢
regulir analytische Funktionen von c.

Ganz ebenso erkennt man, daB 6(c) und 6(c) fiir Re > —n + 1 regulir analy-
tische Funktionen von ¢ sind.

Bevor wir uns zur expliziten Bestimmung der in (33) auftretenden Koeffizienten
wenden, erinnern wir an das Eulersche Integral erster Gattung B(p, o) (die Betafunktion),

an das Eulersche Integral zweiter Gattung I'(s) (die Gammafunktion) sowie an den Zu-

sammenhang zwischen beiden:
1

(36) B(o,0) = [£71(1 — )" 'dt (Re > 0, Ro > 0)
0
(37) I(s) = f e~ dt (Rs > 0)
0
(38) Ble,0) = oo o).

Um nun zunéchst 6(c) und 65°(c) zu ermitteln, substituieren wir in dem Integral
B)t=—=< —%. Dann geht die Darstellung (31) iiber in

(39) In(z,c)=[e
0
Wie in § 4 bemerkt wurde, darf man I¥(z, ¢) in der Gestalt (29) unter dem Integral-
zeichen nach z differenzieren. Es ist leicht, auf Grund dieser Tatsache einzusehen, dafl
man auch das Integral J¥ 2. B. in der Gestalt (39) unter dem Integralzeichen nach z
differenzieren darf, d.h. daB gilt:

1 n
(—21—1) 2

P(r+ 1) dx.

* & 1 .
(40) ‘%" = f (— 27 — 1) R e e
0
. - . dJy . n
Diese Darstellungen (39) fiir J,, und (40) fiir T gelten fiir |arg z| < 9 Re>—n+1,
*
sind also nicht ohne weiteres bei z = 0 anwendbar. Da aber J. und dzﬂ ganze Funk-

tionen von z sind, so kann deren Wert bei z = 0, der ja gleich 6(c) bzw. gleich &%(c)

ist, durch den Zielwert bestimmt werden, dem das J darstellende Integral (39) bzw.
%

das dez” darstellende Integral (40) zustrebt, wenn z liangs der positiv reellen Achse

gegen O riickt. Es sei nun bei der Bestimmung dieser Zielwerte nur aus Darstellungs-
griinden voriibergehend ¢ reell (und > —» + 1) vorausgesetzt. Dies bedeutet keine
Einschriankung, denn die zu gewinnenden Ausdriicke fiir 0(c) und 6{(c) gelten ohne
weiteres auch fiir alle komplexen ¢ der Halbebene e > —n + 1.

3*
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Es ist, falls z positiv reelle Werte durchlduft (vgl. (39)),

8(c) = lim e

z—0 ¢

1 n
(g (v + 1)de
oder, wenn man das Integral in zwei Integrale zerlegt,

1 ©
(41) & (c) =1lim [ +lim [.
=0 ¢ z—>Oz_1
Fiir das erste Integral in (41) ergeben sich die Abschitzungen

1 1 5 1

—,—1 —l—z"' o —27— —-l-z" —_——
TR [ Pt Y dr< [ €TV B 4 1P de <e T [ (x o+ 1) do.
0

o 0

Fiir z—~ 0 strebt sowohl der links, als auch der rechts vor dem Integral stehende Expo-
nentialfaktor gegen 1. Die obere Integrationsgrenze z—! wichst iiber alle Grenzen, so

daB das links und rechts auftretende Integral gegen [z"(z + 1) dz strebt. Daher
0
gilt in (41)

1 )
m [ = [z + 1)’ d.
0

z—0 0
Fiir das zweite Integral in (41) erhidlt man die Abschitzung
ho (——21—1)-—1—2” o b b a b
fe nC (1) de < [1(e + 1) dr.
—1 —1

Folglich gilt in (41)

@

lim [=0.
z—0 1
Somit ist
O (e) = [ (v + 1) dv,
0
oder nach Ausfiihrung der Transformation 7 = 1—;-3 :

1
)= [y (1 —y)dy.
0

(36) und (38) ergeben schlieBlich

(—1—a—b) T+ a)

e

oder, wenn man fiir ¢ und b die Werte (27) einsetzt,
1 1 1 — c)
(&) rlz "=

7+

0w (e) =




Wagner, Eine Klasse Riemannscher Flichen. 21

Wie aus (40) folgt, ist, falls z positiv reelle Werte durchliuft,

1
oP(c) = hmf(—— 7 —1)z71e (e (v +1)dr
z—0 0
oder
L __2.n,
8 () = —2limz""e " [e e + 1) dr
(42) z—0 0
— lim z”"f = 2’—1) (v + 1) d.

z—0

Fiir z— 0 strebt auch z*—! -0 und da, wie oben gezeigt, das zweite Integral in (42) gegen
den endlichen Grenzwert 6()(c) strebt, so ist in (42) der zweite Limes gleich 0. Ferner
1
strebt in dem ersten Limes von (42) der Faktor e * " gegen 1. Daher reduziert sich
0¥(c) auf
2

80(c) = — 2 1im 2"~ fe W 1Y dy

z—>0

. .2 .
oder, wenn man die Transformation 7z"r = v ausfithrt und dabeci beachtet, daB nach

27) a+b+1=—--n1~“ fut,
| ;
1) 2\n L ey ek 270\
8(c) = —n(—-~) limfe v o (1 +,___) dv
n z—0 nv
(43) Rt
2\n
= —n(3) (:;‘ﬁ‘! “,‘1‘3!)

Aus der Abschitzung

z » z -l
fe—vv (1+2z)dv<fe”v » dy
0 (1]

ergibt sich, daB in (43)
lim f =0

=0

ist. AuBlerdem gilt die Abschétmng
® 1
(1+——z"—1)fe v "dv<fe (1+ )dv<fe—v'v_7dv.

Daher ist in (43)

® 1
limf =0fe "y ndp = l'(i ————’11’—)

und somit
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oder nach der bekannten Funktionalgleichung der Gammafunktion (1 4+ s) = s['(s):
1

- (3 (-4).

Wir haben also, um es noch einmal zusammenzustellen, zunéchst unter der Voraus-
setzung, daBl c reell (und > —n + 1) ist, folgende Werte gefunden:

)t~
()

5(0)(

(44)

0= (2 (-4,

Aber diese Ausdriicke gelten, da 6% (c) und 6”(c) in der ganzen Halbebene ®t¢ > — n 4 1
reguldr analytisch sind, ohne weiteres auch fiir alle komplexen ¢ dieser Halbebene.

Zur expliziten Bestimmung von y((c) und y®(c) stiitzen wir uns nunmehr auf den
fur Re > —n + 1 giltigen Zusammenhang (32). Dieser liefert die Beziehungen:

7’;0)(0) = — 21:5;0)(0) sin wa,
7;1)(0) = — 2i6§:)(c) sin na.

Daher ergibt sich zunéchst fir Re > —n 4 1:

r(%) r(‘%_%}c) . ( 1——0)

re) = 2 ( +12_; ) + =5
= 2n1 r(%)
(45) r(é_ + !__2;_9) r(% T ‘1‘2‘+n—c)
1
" 1—¢

=22 r(-Jns(3 1579
1

= 2ni

1 1—0) (1 1—c)°
r(‘z‘““"z?f Mg — o

Da aber, wie oben gezeigt wurde, »((c) und y{(c) in der ganzen c-Ebene regular analy-
tisch sind, so gelten die Ausdriicke (45) ohne weiteres iiberhaupt fiir alle c.

Es sei noch erwihnt, daB nach (45) y(9(c) die Nullstellen ¢ = 4 ((2/ + 1) n + 1)
(7=0,1,2,...), y(c) die Nullstellen ¢c= (2j +1)n+1 (j=0,+1,£2,...) be-
sitzt. Daher verschwindet J,(z,¢) fiir c= (2j + 1) +1 (j=0,1,2,...) und nur
fiir diese ¢ identisch in z. Dagegen verschwindet J¥(z, ¢), wie aus (44) folgt, fiir keinen
einzigen Wert von ¢ identisch in z.
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§ 6. Die Zielwerte von wy(z, c) und die Stellen, iiber denen die logarithmischen Windungs-
punkte liegen.

Als nichsten Schritt fithren wir den Nachweis, dal die Integrale I,(z,c¢) und
I¥(z,c) gegen den Zielwert O streben, falls z in dem Winkelraum

larg z| < 12’- — (n> 0, aber beliebig klein)

tiber alle Grenzen wiichst.
Es ist (vgl. (28))

AR gweme—aesel (L ) (A )y,
und da auf &, B
B —g e |Stse
ist, so folgt
i secsemen(4 (o
&,
Es sei ¢ g-i— und |§z| ggigiﬁx. Dann ist
(— i+ ) o + ¢ 90| < — = e,
so daB die Abschéitzung
s (e (5o
e,

gilt. Wenn daher z in dem Winkelraum |Jz| =< —S%ERx iiber alle Grenzen wichst, so

strebt I, gegen den Zielwert-0. Da man ¢ beliebig klein wihlen kann, so ist hiermit
fiir 7, die Behauptung bewiesen.
Fiir I} ergibt sich die Behauptung aus der aus (29) folgenden Abschitzung

—i o b
PRI (R 7

Die bewiesenen Zielwerteigenschaften von I, und I¥ lassen sich sofort auf J, und
J¥ ibertragen:
Die Integrale J,(z, c) und J¥(z, c) streben gegen den Zielwert 0, falls z in dem Winkel-

|dt] .

raum |arg z| < ﬁn — & (9 > 0, aber beliebig klein) iiber alle Grenzen wdchst.

Hiernach sind J,, (firc == (2j + 1)n4+1,7=0,1,2,...) und J¥ (fir Re > —n + 1),
wie Herr R. Nevanlinna sie nennt, defekte Losungen der Gleichung (18).

Nach einem ganz allgemein von Herrn R. Nevanlinna bewiesenen Satz?) strebt
nun jede von der defekten Lisung J, bzw. J¥ linear unabhéingige Losung von (18) in

) R. Nevanlinna, a.a. 0. 1), S.362.
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dem Winkelraum |argz| g-’% — & gegen den Zielwert . Insbesondere gilt dies

also, falls ¢+ (2j +1)n +1 (j = —1,—2,—3,...) ist, fiir die Losung g**.
Nun 148t sich, falls ¢ 3= (2j +1)n+1 (j =0, 4+ 1, +2,...) ist, die erste der
Gleichungen (33) folgendermaBen schreiben:
g:(z, ) 1 Jz0) ¥0()
g (me) YD) gf* (e 0) ()

wn(z, €) =

In(2, €)
ga*(z,¢)
0 strebt, so schlieBt man hieraus:

Da der Quotient in dem Winkelraum |argz| < % — 9 gegen den Zielwert

Wenn z in dem Winkelraum |argz| < % — @& iber alle Grenzen wichst, so

strebt w,(z, c) gegen den Zielwert

yle) (n )% r(i + %) r(%__%_;;)

IR R VP S S
it — n t 2 + “2n
vorldufig allerdings noch unter der Einschréankung, daB
ist.

Im Falle ¢e=@2j+1)n+1 (G=—1, —2,...) ist J, (3¢) = yO(c)g¥*(z c)
mit nichtverschwindendem p{(c). Dann strebt also, wenn z in dem Winkelraum

largz| < = _ 9 iber alle Grenzen wachst, g¥*(z, c) gegen den Zielwert 0, g¥(z, c)

= 2n
: 8 (2 €) :
gegen den Zielwert oo und w,(z,¢c) = ;‘,’_*%(Z_a gegen den Zielwert o. Nun hat

aber der Ausdruck

()T —)
(n)7r(1+n M3 2n
2 1\ (1 1+ c)

rle—3) g+
bei c=2j+1)n+1 (j=—1,—2,...) je einen Pol erster Ordnung. Daher
ordnet sich auch der Fall c=(2j+1)n+1 (j=—1,—2,...) der im vorigen Ab-
schnitt angegebenen Formulierung unter, die dort u. a. gemachte Einschrinkung
c*+2/+1)n+1(G=—1,—2,...) kann fallen gelassen werden.

Nun bleibt nur noch der Fall c= (2j +1)n+ 1 (j=0,1,...) zu erledigen. Da
in diesem Falle das Integral J,(z, c) identisch in z verschwindet, stiitzen wir uns jetzt

auf das nicht identisch in z verschwindende Integral Jjf(z, ¢). Wir schreiben die zweite
der Gleichungen (33) in folgender Form:

game) 1 TRz 6 e)
gz, 0)  8)) g¥(ae) ()

wn(zs C) =

Ja(z, ¢)

2**(z, ¢) in dem Winkelraum |argz| < — — # dem Zielwert 0 zustrebt, so er-
” I

=2n
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gibt sich die Folgerung, daB w,.(z, ¢) in diesem Winkelraum dem Zielwert

1 1 (1 1 —— C)
&) _ (_n_)'r? r(t+5)r(z -5
6(,,1)(0)_ 2 1) ( 1+¢
l'(l n T 2n )
zustrebt. Man kann also im vorletzten Abschnitt auch die Einschrinkung
c+2j+1n+1(G=0,1,2,...) fallen lassen.

Hiermit ist ohne Einschrankung fiir alle reellen und komplexen ¢ folgender Satz
vollstindig bewiesen:

Wenn z in dem Winkelraum |argz| < 2— — & iiber alle Grenzen wdchst, so strebt

w,(z, ¢) gegen den Zielwert
1 1) (1 l—c)
A_(n)zr(l—*"; r—2_— 2n
o \2 1 1 1+c) :
r(t—3) (g +

Nunmehr liefert die Anwendung der Gleichung (19) den weiteren Satz:

Wenn z in dem Winkelraum

arg z — —‘ < =~ — & iiber alle Grenzen wichst, so

strebt w,(z, c) gegen den Zielwert
' 1 1) (1 1+ c)
A e' (n)"r(i—i_Z N3~

1= 2 1 1 1—¢\°

=) rz+ %)

SchlieBlich erhilt man, indem man die Gleichung (20) mehrmals auf die beiden
letzten Sdtze anwendet, das allgemeine Ergebnis:

Wenn z in dem Winkelraum

mr|_ n —
<
argz — — ‘ S5 — & (& >0, aber beliebig

klein) iiber alle Grenzen wdchst, so strebt bei beliebigem reellem oder komplexem c die Grund-
losung w,(z, c) der Gleichung

(224 17
w 3 (w )2
222} = —9gn2 __9pgm—2
w’ 2 \w ?

falls m eine gerade Zahl ist (m =0, 2, . .., 2n — 2), gegen den Zielwert
w Ar(d) (it
4 _e""-;"(n)nr(i“Ln "3
" 2 1 1+c) !
(e
falls m eine ungerade Zahl ist (m =1,3,...,2n —1), gegen den Zielwert
1 1) (1 1+c)
M n F(1+— g =2
An=e™ ('2‘) r(1_1) ( +1—c)°
n 2n

Journal ffir Mathematik. Bd. 176. Heft 1. 4
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Mit anderen Worten: Jeder Weg, der in einem der Winkelraume

argz——mT sS0——219 (m=0,1,2,..., 2n—1; 4> 0)

nach oo einmiindet, ist fiir die meromorphe Funktion w,(z, ¢c) Zielweg mit dem Ziel-
wert A, .

Hieraus folgert man nun weiterhin mit Hilfe des Satzes von Hurwitz-Iversen und
unter Beachtung der Tatsache, dal w,(z, ¢) als Funktion von z keine mehrfachen Stellen
besitzt, den Satz:

Drie Grundlosung w,(z, c¢) der Gleichung
w3 (w

144 2
W2 (M ) __gpne__9om2
w’ 2 ’)

w
bildet die schlichte endliche z-Ebene auf eine Riemannsche Fliche ab, die nur logarithmische
Windungspunkte, und zwar genau 2n solche besitat. Diese liegen iiber den Stellen

T3) rE =)

w=dp=en () r(t—1)r(z+59

(m gerade)

und
e AT(14 ) r(2 A
== (n\» n 2 2n
w=A,=¢e" (—) (m ungerade).
n 2 + 2n

§ 7. Die gegenseitige Lage der logarithmischen Windungspunkte in Abhdngigkeit von c.

Der letzte Satz des vorigen Paragraphen besagt in geometrischer Ausdrucksweise
folgendes:

Die 2n logarithmischen Windungspunkte liegen zur Halfte iiber der Kreislinie

o] — (%)?1? r(1 - ':{) r(é‘_%f)

r(e—3)rlz+57)

und zur Hdlfte iiber der Kreislinte
el 5
Yorl=g) e

und zwar sind sowohl die iber der ersten, als auch die uber der zweiten Kreislinie gelegenen
Windungspunkte die Ecken eines regelmdifligen n-Ecks 8).

Wir wollen zunichst folgende, im Anschlufl hieran auftauchende Frage unter-
suchen: Fiir welche Werte von ¢ fallen die beiden Kreislinien, iiber die die Windungs-

8) Im Falle n = 2 sind hierbei unter den Ecken eines ,,regelmifigen 2-Ecks* zwei diametral gegeniiberliegende
Punkte der in Frage kommenden Kreislinie zu verstehen.



Wagner, Eine Klasse Riemannscher Flichen. 7

punkte verteilt sind, zusammen? Wann kommen also simtliche 2z Windungspunkte
iiber eine und dieselbe Kreislinie zu liegen ?
Dazu ist offenbar notwendig und hinreichend, dafl die Funktion

3= e+ %)

(46) D,(c) = ( N 1+ c) F(—i- 1+ c)
2n 27 2n
den Betrag 1 annimmt. Auf Grund der Funktionalgleichung I(s)[(1 —s) = si:ns

148t sich nun diese Funktion ®,(c) durch die Exponentialfunktion darstellen. Man
erhilt:

3 1 1+C) in inme
smn(—i— + 2n /| erer + 1
1—e¢\ i

(47) D,(c) = e im
inn (=0 er por

Wir haben also zu untersuchen, fiir welche Werte von ¢ die Funktion (47) den Betrag 1
annimmt. |®,(c)| = 1 ist aber gleichbedeutend mit

(ER(et"M) -+ cos ——~) +1 (S (e" ) — sin — f

inc ’

(Si(e ) + cos —-) + z(&}(e” ) + sm—

Man sieht hieraus, daB}, da ja sin z =+ 0 ist, dann und nur dann |®,(¢)| = 1 ist, wenn
n

ime e
Ser)=e " sm—%—c 0

ist. Man erhilt daher die Bedingung
Re = jn G=0,4+1,42,...).
Somit haben wir den Satz:

Dann und nur dann, wenn Re=jn (j=0, +1, +2,...) ist, deckt sich die
Kreislinte, iiber der die Windungspunkte Ag, A, . .., Asy—s liegen, mit der Kreislinie,
iiber der die Windungspunkte Ay, A, . . ., Agy—y liegen.

Von besonderem Interesse ist weiterhin noch die Frage: Fiir welche Werte von ¢
kommen die Windungspunkte A, A;, 4,, ..., Azp—1 nicht iiber lauter verschiedene
Stellen zu liegen? Mit anderen Worten: Wann fallen die 2z Windungspunkte teilweise
iibereinander ?

Zunichst untersuchen wir die Moglichkeit, daB das von den Windungspunkten
Ao, Ay, . - .y Agy—s gebildete n-Eck mit dem von den Windungspunkten A, 4,, . . ., Agpy
gebildeten n-Eck zusammenfallt, daB8 also die Windungspunkte paarweise iibereinander
fallen. Dazu ist offenbar notwendig und hinreichend, daB die Funktion ®,(c) (vgl.

tkxn
(46)) einen der Werte e® (k=1,3,...,2n — 1) annimmt. Die Moglichkeiten %k = 1
und %k = 2n — 1 scheiden jedoch von vornherein aus, da, wie aus der Darstellung (47)
in BB
ersichtlich ist, die Funktion ®,(c) die Werte e» und e »  als Picardsche Ausnahme-
4*
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werte (im engeren Sinne) besitzt. Daher tritt der Fall des paarweisen Ubereinander-
fallens der Windungspunkte erst von n» = 3 an ein.

Wir haben nun im Falle n = 3 die Gleichung

tkn

Dp(c)=¢en (k=3,5,...,2n —3)
nach ¢ aufzulésen. Dies ergibt (vgl. (47))
ine Sin&_—t_i)_y.z
U
o . (k—1)=’
™

Man erhilt also, da dieser Sinusquotient fiir £ = 3,5, . . ., 2n — 3 positiv ist, fiir ¢ die
Werte:

" singcjz—ni)n
(48) c=(21+1)n+2’510g81n@—~1)ﬂ
n

Hier ist unter dem Logarithmus des Sinusquotienten der reelle Wert zu verstehen, und
j kann jede ganze Zahl bedeuten.

Somit kommen die Windungspunkte dann und nur dann paarweise iibereinander
zu liegen, wenn ¢ gleich einem der Werte (48) ist. Es sei noch bemerkt, daBl im Falle
eines ungeraden n die Werte (48) fiir k= n reell sind, n#mlich gleich (27 + 1)n
(j=0,4+1, +2,...),daB dagegen im Falle eines geraden n kein einziger der Werte (48)
reell ist.

Aus der bekannten Tatsache, daB die Funktion [(s) keine Nullstelle, aber bei
s=0, —1, —2,... je einen Pol besitzt, folgert man unmittelbar noch einige weitere
Mébglichkeiten des Ubereinanderfallens von Windungspunkten. Man kann dann folgenden
abschlieBenden Satz aufstellen:

Die 2n logarithmischen Windungspunkte fallen

I. iiber 2n verschiedene Grundpunkte, wenn c¢ von den unter 11 und 111 anzufiihren-
den Werten verschieden ist,

I1. iiber n verschiedene Grundpunkte, wenn c einen der folgenden Werte hat:
c= (2 + 1)n+£’—zlog————:_i—— (=0 +1, +2,...;k=3,5,...,2n —3),

II1. iiber n + 1 verschiedene Grundpunkte, wenn c einen der folgenden Werte hat:
1) c=—(@+Dn—1) (=012 ..)

2)  c=—(@+Da+1) (=012 ..)
3) e= (2 +1)n—1 (=012, ...
£) e= (2 +1)n+1 (=012 ...).

In dem nur bei n = 3 vorkommenden Falle 11 kommen die Windungspunkte paar-
weise iibereinander zu liegen, und zwar Ay tiber Ay, Agye Uiber Ay, usw. Ay_s iiber Asy_s.
In dem bei jedem n(= 2) vorkommenden Falle 111 kommen von den 2n Windungspunkten
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n iiber einen und denselben Grundpunkt zu liegen, und zwar im Unterfall
1) A07 A27 sy A2n——2 iiber w= o,
2) Agy Agy -+ .y Asns iiber w=20,
3) Al') A31 LAY A2n——1 tiber w = o,
4) Ala Am sy A2n—1 i/iber w =

Teil 3. Die Struktur der Riemannschen Fliche.

§ 8. Allgemeines iiber die Struktur einer Riemannschen Fliche mit endlich vielen nur
logarithmischen Windungspunkten.

Um die Struktur einer Riemannschen Fliche mit endlich vielen nur logarithmischen
Windungspunkten zu beschreiben und zu veranschaulichen, kann man folgendermaBen
vorgehen:

Man ziehe in der w-Ebene eine geschlossene Jordankurve &, welche durch die
Grundpunkte a,, @y, ..., 4, iber denen die Windungspunkte liegen, hindurchgeht
und bei positivem Umlauf diese Grundpunkte in der angegebenen Reihenfolge trifft.
Q wird durch die Grundpunkte in ¢ Teilbogen zerlegt und zerlegt selbst die w-Ebene in
ein Innengebiet &; (welches bei positivem Umlauf von & zur Linken liegt) und in ein
AuBengebiet ®,. Denken wir uns nun die Riemannsche Fliche lings der Kurve & durch-
stanzt, so zerfdllt sie in unendlich viele iber &; und ®, gelegene schlichte Flichenstiicke,
welche wir als (die zur Zerschneidung & gehorigen) Halbblitter der Riemannschen Flache
bezeichnen wollen. Fiir jedes solche Halbblatt erscheinen gewisse der Punkte a,, a,, . . ., a,
als Windungspunkte. Diese Punkte, deren Anzahl mindestens 2, hochstens ¢ betriigt,
mogen die Ecken, die zwischen den Ecken gelegenen Teilstiicke von & die Seiten des
betreffenden Halbblattes heilen. Die Struktur der Riemannschen Fliche wird nun
offenbar dadurch vollstandig beschrieben, daB man zu jedem Halbblatt angibt, an welche
anderen Halbblitter es iiber den einzelnen Teilbogen von £ angeheftet ist.

Um diese Verhaltnisse besser iiberschauen zu konnen, gehen wir in die z-Ebene
iiber. Vermige der eineindeutigen Beziehung, die die meromorphe Funktion w(z)
zwischen der schlichten endlichen z-Ebene und der iiber der w-Ebene gelegenen Riemann-
schen Fliache vermittelt, erscheinen in der z-Ebene als Urbilder der einzelnen Halbblatter
der Riemannschen Fliche gewisse Gebiete, die wir Halbgebiete nennen wollen. Als Ur-
bild einer Seite eines Halbblattes erscheint in der z-Ebene eine Seite des entsprechenden
Halbgebietes, eine Kurve €, die aus dem Unendlichen kommt und ins Unendliche geht.
Einem Halbblatt mit 7 Ecken (2 < r < ¢) entspricht somit ein Halbgebiet, welches mit r
Lappen ins Unendliche reicht. Da diese Lappen den Umgebungen der Ecken des Halb-
blattes entsprechen, so seien die zu den einzelnen Lappen gehoérigen unendlich fernen
Randpunkte als die Ecken des betreffenden Halbgebietes bezeichnet. Uber die Kurven
€, die zusammen die Urbilder der Kurve & sind, schlieBt man aus der Tatsache, daB w(z)
keine mehrfachen Stellen besitzt, noch folgendes: Je zwei verschiedene der Kurven €
haben im Endlichen keinen Punkt gemeinsam.

Wie Herr R. Nevanlinna gezeigt hat®), gibt es nun einerseits nur endlich viele
Halbgebiete mit mehr als zwei Ecken, andererseits im Falle ¢ > 2 aber auch mindestens
ein solches Halbgebiet. Es gibt also ein wohlbestimmtes kleinstes aus Halbgebieten zu-
sammengesetztes Gebiet, welches alle Halbgebiete mit mehr als zwei Ecken enthélt.
Dieses Gebiet, welches Herr R. Nevanlinna das Kernpolygon nennt, wird von p der

%) R. Nevanlinna, a.a.O. 1), S.303—321.
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Kurven €, seinen Seiten, begrenzt, wobei p die Gesamtzahl der logarithmischen Win-
dungspunkte bedeutet. Es ragt also mit p Lappen ins Unendliche, und jeder dieser
Lappen bestimmt eine Ecke des Kernpolygons. Die Ecken des Kernpolygons sind ein-
eindeutig den logarithmischen Windungspunkten der Riemannschen Fliche zugeordnet.
Dem Kernpolygon entspricht ndmlich in der Riemannschen Fliche ein aus endlich vielen
Halbbldttern zusammengesetztes Flachenstiick, welches in siamtliche p Windungspunkte
einmiindet, und zwar das kleinste derartige Fldchenstiick. AufBerhalb des Kernpolygons
gibt es nur Halbgebiete mit zwei Ecken — solche Halbgebiete seien auch als Streifen-
gebiete bezeichnet — und zwar schliefit sich an jede der p Seiten des Kernpolygons eine
unendliche Folge von nebeneinander liegenden Streifengebieten an. Eine solche Folge
von Streifengebieten bezeichnet man auch als logarithmisches Ende. Thm entspricht
in der Riemannschen Fliche ein Flachenstiick, welches sich in der einen Richtung un-
endlich oft um zwei Punkte herumwindet.

Das aus dem Kernpolygon und p logarithmischen Enden bestehende Netz der
Halbgebiete gibt eine vollstandige Ubersicht iiber den Aufbau der Riemannschen Fliche.
Im AnschluB an Herrn Elfving °) sei aber nunmehr noch eine andere Darstellungsweise
fiir die Flachenstruktur angegeben, ndmlich der Streckenkomplex 11), wie wir ihn nennen
wollen, der zu dem Netz der Halbgebiete in gewisser Weise dual ist.

Wir wihlen zu diesem Zweck in ®&; einen Punkt w;, in @, einen Punkt w, und
verbinden w; mit w, durch ¢ punktfremde Kurven | und zwar iiber jeden der ¢ Teil-
bogen von & genau einmal. Die Punkte w; und w,, sowie die Kurven I denken wir uns
auf die Riemannsche Fldche projiziert und betrachten die hierzu in der z-Ebene als
Urbild erscheinende Konfiguration. Man bezeichnet die Urpunkte von w; als Innen-
knoten, die Urpunkte von w, als Aufenknoten. Zwei Knoten heiBlen benachbart, wenn sie
in benachbarten, d. h. unmittelbar aneinander grenzenden Halbgebieten liegen. (Von
je zwei benachbarten Knoten ist also stets der eine ein Innenknoten, der andere ein
AuBenknoten.) Jede Kurve ¢, die als Urbild einer Kurve | in der z-Ebene auftritt und
zwei benachbarte Knoten unmittelbar verbindet, heifit ein Glied. Die Gesamtheit der
Glieder, die zwei benachbarte Knoten verbinden (dies sind mindestens 1, hochstens
g — 1 Glieder), bildet ein Biindel. Mit dieser Ausdrucksweise konnen wir nun sagen,
daB von jedem Knoten ¢ Glieder ausgehen und da8 diese ¢ Glieder r Biindeln (2 < r < ¢)
angehoren, wobei r gleich ist der Anzahl der Ecken, die das dem Knoten entsprechende
Halbblatt der Riemannschen Fliche besitzt.

Der Komplex der Gliedkurven ¢ gibt ebenso wie das Netz der Halbgebiete eine
vollstéandige Ubersicht iiber den Aufbau der Riemannschen Fliche. Da es nur auf topo-
logische Zusammenhangsverhiltnisse ankommt, kann man diesen Komplex noch schema-
tisieren, indem man jedes Glied durch eine Strecke darstellt, und zwar die Glieder eines
Biindels durch dicht nebeneinander liegende parallele Strecken. Die so erhaltene sche-
matische Figur ist eben der Streckenkomplex der Riemannschen Fliche. Er besteht aus
dem nur endlich viele Knoten und Glieder enthaltenden Kern und p logarithmischen
Enden, entsprechend dem Kernpolygon und den p logarithmischen Enden bei der Dar-
stellung der Flachenstruktur durch das Netz der Halbgebiete. Versteht man unter
einem einfachen Knoten einen Knoten, von dem zwei Biindel ausgehen, und unter einem
Verzweigungsknoten einen Knoten, von dem mehr als zwei Biindel ausgehen, so kann

10) Elfving, Uber eine Klasse von Riemannschen Flichen und ihre Uniformisierung, Acta Soc. Sci. Fennicae,

Nova series A, 2 (1934), Nr. 3.
11) Wir vermeiden hier den von Herrn Elfving gebrauchten Ausdruck topologischer Baum und verwenden statt

dessen die Bezeichnung Sireckenkomplex, weil darin auch geschlossene Gliederzyklen vorkommen kénnen.
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man den Kern kennzeichnen als den kleinsten, alle Verzweigungsknoten (sowie alle
maoglicherweise noch zwischen diesen gelegenen einfachen Knoten) enthaltenden Teil-
komplex des Streckenkomplexes. Jedes der p logarithmischen Enden besteht aus einer
unendlichen Folge von einfachen Knoten, die durch Biindel von abwechselnd s und
¢ —s Gliedern (1 < s < ¢ — 1) verbunden sind.

Die Bedeutung des Streckenkomplexes ist, um es noch einmal kurz zusammen-
zufassen, folgende: Die Knoten sind eineindeutig den Halbblittern der Riemannschen
Fliche zugeordnet, wihrend die Glieder angeben, in welcher Art und Weise die einzelnen
Halbblatter zusammenhéngen.

§ 9. Die Struktur der Riemannschen Fliche in dem Falle, daf} die 2n logarithmischen
Windungspunkte iiber lauter verschiedene Grundpunkte zu liegen kommen.

Durch die allgemeinen Nevanlinnaschen Ergebnisse ist die Struktur einer Rie-
mannschen Fliche mit endlich vielen nur logarithmischen Windungspunkten schon
weitgehend aufgeklart. Es bleibt nur noch die eine Frage offen: Wie ist das Kern-
polygon aus Halbgebieten zusammengesetzt? Oder, was auf dasselbe hinauskommt:
Wie sieht der Kern des Streckenkomplexes aus?

Diese Frage wollen wir nun an unserer speziellen Flichenklasse untersuchen. Wir
betrachten zunichst den Fall, daB die 2r logarithmischen Windungspunkte iiber 2n ver-
schiedene Grundpunkte zu liegen kommen (Fall I des Satzes von Seite 28f.). Die Win-
dungspunkte bezeichnen wir nun wieder wie in Teil 2, aber im Gegensatz zum vorigen
Paragraphen, mit Ay, A, 4,, ..., A2s—;. Die Numerierung der Windungspunkte ist
also nicht mehr wie in § 8 willkiirlich, sondern mit m (= 0,1,2,..., 2n —1) ist
derjenige Windungspunkt A, numeriert, der dem von w(z) in dem Winkelraum

arg z ma
g n

= %_ # (9 > 0) angestrebten Zielwert entspricht. Die hierdurch

festgelegte Reihenfolge A, 4, 4y, . .., Azn_1 bezeichnen wir auch als die natiirliche
Reihenfolge der Windungspunkte. Nunmehr folgen die den Windungspunkten
Ag, Ay, Ay, ..., Agny zugeordneten Ecken E,, E, E,,..., E3,; des Kernpolygons
bei einem positiven Umlauf um das Kernpolygon gerade in dieser Reihenfolge aufein-
ander, und die 2n logarithmischen Enden Ly, Ly, Ly, . . ., Lon—y1,0 Winden sich der
Reihe nach um die Windungspunkte A, und 4,, A, und 4,, A, und A4,, .. ., Az, und 4,.

Um nun die Gleichung (20) ausnutzen zu konnen, wihlen wir die bei der Zer-
schneidung der Riemannschen Fliche zugrundegelegte Kurve & so, daB sie bei Drehung

um den Nullpunkt um den Winkel 2—’? in sich selbst iibergeht. Wir bezeichnen diejenige

Durchlaufungsrichtung von &, bei der der Nullpunkt zur Linken liegt, als positiv. Wir
wahlen ferner w; = 0, w, = o und auch die Gesamtheit der Kurven [ so, daB sie bei

Drehung um den Nullpunkt um den Winkel '2—’? in sich selbst iibergeht. Sodann gestattet
uns Gleichung (20) zu schlieBen, daB auch die Gesamtheit der Kurven €, sowie die Ge-
samtheit der Kurven ¢ bei Drehung um den Nullpunkt um den Winkel -2;? in sich selbst

iibergeht. Da zwei verschiedene der Kurven € im Endlichen keinen Punkt gemeinsam
haben, schlieBt man hieraus sofort Folgendes: Im Inneren des Kernpolygons verlaufen
entweder iiberhaupt keine Kurven €; oder nur solche Kurven €, die die Ecken E, und
E,, die Ecken E, und E,, die Ecken E, und Eg, . . ., die Ecken E,_3 und E, verbinden
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(und zwar sind alle diese n Eckenpaare durch die gleiche Anzahl von Kurven © ver-
bunden); oder nur solche Kurven €, die die Ecken E; und E;, die Ecken E, und Ej, die
Ecken Eg und E,,..., die Ecken E,, ; und E, verbinden (und zwar sind alle diese
n Eckenpaare durch die gleiche Anzahl von Kurven € verbunden). Das Kernpolygon
ist also entweder ein von Kurven € freies 2n-Eck. Oder es besteht aus einem zentralen
n-Eck und aus n an dessen n Seiten angefiigten Dreiecken. Zwischen dem zentralen
n-Eck und jedem der n Dreiecke kann noch eine gewisse (bei allen n Dreiecken die gleiche)
Anzahl von Streifengebieten eingefiigt sein.

Nun gibt es stets insgesamt n verschiedene Reihenfolgen, ndmlich
AO’ A,c, A2, A,‘+2, . ey Agn_g, A,,+2n_2 (% = '1, 3, .. uy 2n —_— 1) 12),

in welchen die Grundpunkte von der Kurve & so durchlaufen werden kénnen, daB diese
dabei noch alle an sie gestellten Forderungen erfiillt.

Betrachten wir zuerst den Fall x = 1, also die natiirliche Durchlaufungsreihenfolge.
Dann ist entweder das Kernpolygon frei von Kurven €. Oder es besteht aus einem
zentralen n-Eck und aus n Dreiecken, von denen jedes unter Zwischenschaltung einer
gewissen (bei allen n Dreiecken der gleichen) ungeraden Anzahl von Streifengebieten
an eine der n Seiten des n-Ecks angefiigt ist. DalB die Anzahl dieser Streifengebiete
ungerade ist, ergibt sich so: Da das zentrale n-Eck den Punkt z = 0 enthélt und da der
diesem entsprechende Punkt w=0 in dem von £ umschlossenen Innengebiet ®; liegt, so
ist das zentrale n-Eck Urbild eines Exemplares von &;. Durchliduft man den Rand der
auBeren Dreiecke so, daf ihre drei Ecken in der Reihenfolge

Ei,Ezp1,Eape (A=0,2,...,2n —2 bzw. 41=1,3,...,2n —1)

getroffen werden, so liegen die von den Dreiecken umschlossenen Innengebiete zur Linken.
Da die Kurve & die entsprechenden Grundpunkte A;, A;41, A1+2 bei positivem Um-
lauf in dieser natiirlichen Reihenfolge trifft, so ist auch jedes der n &uBleren Dreiecke
Urbild eines iiber ®; gelegenen Halbblattes. Somit muBl jedes der duBeren Dreiecke
durch eine ungerade Anzahl von Streifengebieten von dem zentralen n-Eck getrennt
werden.

Nehmen wir nun den Fall » = 3,5, . ..,2n — 1, also eine andere als die natiirliche
Durchlaufungsreihenfolge. Dann kann das Kernpolygon nicht frei von Kurven € sein.
Denn sonst wire es Urbild eines Exemplares vor ®&;, und dies widersprache der Tat-
sache, dall seine Ecken in der Reihenfolge E, E,, E,, ..., E2,—; aufeinander folgen,
wihrend die entsprechenden Windungspunkte nicht in der natiirlichen Reihenfolge von
8 durchlaufen werden. Das Kernpolygon besteht vielmehr stets aus einem zentralen
n-Eck und aus n Dreiecken, von denen jedes unter Zwischenschaltung einer gewissen
(bei allen n Dreiecken gleichen) geraden Anzahl13) von Streifengebieten an eine der
n Seiten des n-Ecks angefiigt ist. DaB diese Anzahl gerade ist, erkennt man so: Durch-
lauft man den Rand der duBleren Dreiecke so, daB ihre drei Ecken in der Reihenfolge
EyEjz1,Eze (A=0,2,...,2n —2 bzw. 1=1,3,...,2n —1) angetroffen werden,
so liegen die von den Dreiecken umschlossenen Innengebiete zur Linken. Da man die
Kurve & im negativen Sinne durchlaufen muB, um die entsprechenden drei Grund-
punkte A;, Aj4+1, Aate in dieser Reihenfolge anzutreffen, so ist jedes der n &uBeren Drei-
ecke Urbild eines iiber &, gelegenen Halbblattes. Daher kann, da das zentrale n-Eck

12) Etwa in diesem und dem nichsten Paragraphen auftretende Indizes, die > 2n-— 1 sind, sind mod 2n zu
verstehen.
18) Diese gerade Anzahl kann auch gleich Null sein.
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Fig. 3a. (w-Ebene)

Ly; L,

L;, oS \&i‘} ﬁ o Lo,
%-\-\\o o//1-¢
o_#

A,

K\

5 ~.

L ,0%‘ */ \.,, ~§0\ L
~ i W 70
r R
Ly L,,

Fig. 8c. (Streckenkomplex)
Journal fiir Mathematik. Bd. 175. Heft 1. b



Wagner, Eine Klasse Riemannscher Flichen.

%

(w-Ebene)

Fig. 4a.

-

(z-Ebene)

Fig. 4b.

(-]
5 5
W &
R 3
N s //,// % \OWL
DTSR
/+..V\A+
/&. i
2= mﬁolk
sy
7 R
w
8 <

(Streckenkomplex)

. Fig. 4c.



Wagner, Eine Klasse Riemannscher Flichen.

(w-Ebene)
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Urbild eines Exemplares von &; ist, jedes der d&uBleren Dreiecke nur durch eine gerade
Anzahl von Streifengebieten von dem zentralen n-Eck getrennt werden.

Nun wollen wir noch angeben, wie der zugehorige Streckenkomplex aussieht.
Zuerst moge die Kurve € die Grundpunkte in der natiirlichen Reihenfolge durchlaufen.
Dann enthilt der Streckenkomplex entweder nur einen Verzweigungsknoten, einen
Innenknoten, von dem die 2n logarithmischen Enden unmittelbar ausgehen, und zwar
jedes mit einem Biindel aus einem Glied beginnend. Oder er enthilt mehr als einen
Verzweigungsknoten. Es gibt dann in dem Kern des Streckenkomplexes einen zen-
tralen (Innen-)Knoten und n &uBlere Verzweigungsknoten. Jeder der duBeren Ver-
zweigungsknoten, die sdmtlich Innenknoten sind, ist durch eine endliche Folge von
Biindeln und einfachen Knoten mit dem zentralen Knoten verbunden. Alle diese
n Folgen enthalten die gleiche gerade Anzahl von Biindeln, beginnen am zentralen Knoten
mit einem Biindel aus 2 Gliedern und endigen an den &dufleren Verzweigungsknoten
mit einem Biindel aus 2z — 2 Gliedern. Von jedem der duBeren Verzweigungsknoten
gehen schlieBlich zwei logarithmische Enden

Lll—i—l und L;,+1;,+2 (1‘—10,2,...,27‘&—2, bzw. }.:1,3,...,2]&-——-1)

aus, jedes mit einem Biindel aus einem Glied beginnend. Nun nehmen wir an, daB
die Kurve ¢ die Grundpunkte in der Reihenfolge

A07 A,‘, A2’ A,,..},g, ey Azn_g, A,‘+2”_2 (}t = 3, 5, e ey 2n s 1)

durchlauft. Dann enthidlt der Streckenkomplex stets mehr als einen Verzweigungs-
knoten, und zwar gibt es in dem Kern wieder einen zentralen (Innen-) Knoten und r
suBere Verzweigungsknoten. Jeder der &duBleren Verzweigungsknoten, die sdmtlich
AuBenknoten sind, ist durch eine endliche Folge von Biindeln und einfachen Knoten
mit dem zentralen Knoten verbunden. Alle diese n Folgen enthalten die gleiche ungerade
Anzahl von Biindeln, beginnen am zentralen Knoten mit einem Biindel aus zwei Gliedern
und endigen an den dufBleren Verzweigungsknoten mit einem Biindel aus zwei Gliedern.
Von jedem der duleren Verzweigungsknoten gehen schlieBlich zwei logarithmische Enden
Lisyyund Liigae (A=0,2,...,2n —2, bzw. 1 =1,3,...,2r — 1) aus, von denen
dasjenige, dessen erster Index gerade ist, mit einem Biindel aus » — 2 Gliedern, das-
jenige, dessen erster Index ungerade ist, mit einem Biindel aus 2n — » Gliedern beginnt.

Die von uns betrachtete Klasse von Riemannschen Fliachen stellt also ein einfaches
Beispiel dafiir dar, daB der Streckenkomplex einer Riemannschen Fliache von ihrer Zer-
schneidung, insbesondere von der Reihenfolge, in der die Grundpunkte von der zer-
schneidenden Kurve & getroffen werden, abhéngen kann. Es ist mir nicht gelungen,
bei unserer Flachenklasse die Anzahl der zwischen dem zentralen Knoten und den duBeren
Verzweigungsknoten gelegenen Biindel in ihrer Abhéngigkeit von ¢ und & néher zu be-
stimmen 14).

14) Vgl. zu dem Vorhergehenden die Figuren 3 bis 6, in welchen eine der von uns betrachteten Riemannschen
Flachen fiir den Fall n = 4 veranschaulicht wird. Es handelt sich in allen Figuren um dieselbe Riemannsche Fléiche,
bei deren Zerschneidung der Reihe nach die vier verschiedenen Durchlaufungsreihenfolgen der Grundpunkte zu-
grundegelegt werden. Es ist dargestellt: in den Figuren a die w-Ebene mit den Grundpunkten (kleine Kreise mit
Mittelpunkt), der Kurve & (ausgezogen) und den Kurven [ (gestrichelt); in den Figuren b die entsprechende Konfi-
guration in der z-Ebene (die Kurven € sind ausgezogen, darunter die Seiten des Kernpolygons besonders stark, die
Kurven ¢ gestrichelt; kleine Kreise mit Mittelpunkt bezeichnen die Urpunkte zu den Grundpunkten); in den Figuren
¢ der zugehérige Streckenkomplex (die Innenknoten sind durch kleine Kreise ohne Mittelpunkt, die AuBenknoten
durch kleine Kreuze gekennzeichnet). Es wurde dabei angenommen, daB durch die im Innern des Kernpolygons
verlaufenden Kurven € jedesmal die Ecken E, und E,, E, und E;, E; und E,, Eg und E, verbunden sind, und zwar
in Fig. 3b durch je 2, in Fig. 4b durch je 1, in Fig. bb durch je 1, in Fig. 6b durch je 3 Kurven €.
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Nun noch eine Bemerkung fiir den Fall, dal die 2n logarithmischen Windungspunkte
iiber eine und dieselbe Kreislinie zu liegen kommen, da also nach § 7 Re =0 (mod n) ist.
In diesem Falle denken wir uns als Kurve & — dies ist am einfachsten — die Kreislinie
gewihlt, tiber der die Windungspunkte liegen. Dann liefern unsere allgemeinen Formeln
fiir die Lage der logarithmischen Windungspunkte iiber die Reihenfolge, in der die Grund-
punkte auf der Kreislinie & aufeinander folgen, folgendes Ergebnis: Falls Rc ein gerades
Vielfaches von n ist, so folgen die Grundpunkte auf der Kreislinie  stets, d. h. unab-
hangig von ¢ in der natiirlichen Reihenfolge A,, 4,, 4,, . . ., A2, aufeinander; falls
Je ein ungerades Vielfaches von n ist, so folgen sie stets in einer anderen als der natiir-
lichen Reihenfolge aufeinander, und zwar fiir

. (x—3)m . (x—1)m
" sin Pa— " $in g
— i (&3 — [ — = —
nlog. (M__i)n<\sc<ﬂ10g. CESIE (x=3,5,...,2n —1)
sin ~e 2 sin L 1%
2n 2n

in der Reihenfolge A,, A., Ay, Aut2, ..., A2n—2, Axion—2. Im iibrigen gilt iber das
Kernpolygon und den Streckenkomplex das, was oben fiir die jeweilige Durchlaufungs-
reihenfolge gesagt wurde. Daher ist (vorausgesetzt, daB als Kurve & die mehrfach ge-
nannte Kreislinie gewdhlt wird) zu vermuten, daB im Falle fic = 0 das Kernpolygon
frei von Kurven € ist und daB im Falle Re=jr (j =1,2,3,...) die Ecken E, und
E,, E;und E,, ..., Eyp und E;, im Falle Re= —jn (j=1,2,3,...) die Ecken
E;und E;, Egund E;, ..., Esyy und E; durch je j Kurven € verbunden sind.

§ 10. Die Struktur der Riemannschen Fliche in dem Falle, daf die 2n logarithmischen
Windungspunkte paarweise iibereinander zu liegen kommen.

Nun wenden wir uns zu dem nur bei » = 3 vorkommenden und fiir

k—1)=n

2n
sin k+ 1=

2n
eintretenden Falle, daB die 2n logarithmischen Windungspunkte paarweise iibereinander
zu liegen kommen (Fall IT des Satzes von Seite 28f.). Als Kurve & denken wir uns stets
die Kreislinie gewihlt, iiber der die Windungspunkte liegen. Dann gelangt man durch
ebenso einfache Schliisse wie im vorigen Paragraphen zu folgendem Ergebnis:

sin

c=(2j+1)n+i;’:—10g (G=0,4+1,+2..;k=3,5,...,2n—3)

Das Kernpolygon besteht stets aus einem zentralen n-Eck und aus n an dessen
n Seiten angefiigten Dreiecken. Zwischen dem zentralen n-Eck und jedem der n Dreiecke
kann noch eine gewisse (bei allen n Dreiecken gleiche), gerade Anzahl von Streifengebieten
eingefiigt sein. Der Kern des Streckenkomplexes enthilt somit einen zentralen Ver-
zweigungsknoten (Innenknoten) und rn &uBere Verzweigungsknoten. Jeder der dulleren
Verzweigungsknoten, die sémtlich AuBenknoten sind, ist mit dem zentralen Knoten
durch eine endliche Folge von Biindeln und einfachen Knoten verbunden. Alle diese
n Folgen enthalten die gleiche ungerade Anzahl von Biindeln, beginnen am zentralen
Knoten mit einem Biindel aus einem Glied und endigen an den duBeren Verzweigungs-
knoten mit einem Biindel aus einem Glied. Von jedem der duBeren Verzweigungsknoten
gehen schlieBlich zwei logarithmische Enden L;;41 und Layia4e (A=0,2,...,2n —2,
bzw. A=1,3,...,2n — 1) aus, von denen fiir
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Fig. 7a. (w-Ebene)
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k—1)=n
qpe Mlog 2"
ge= 78 Sin(k+1)7z

2n

sin
(k=3,5,...,2n —3)

dasjenige, dessen erster Index gerade ist, mit einem Biindel aus k 3 Gliedern, das-

jenige, dessen erster Index ungerade ist, mit einem Biindel aus 2—12;2{6:——1— Gliedern

beginnt. Es ist zu vermuten, dafl fir

Re=(@2j+ DHn G=0,+£1,+2,...)
jeder der duBeren Verzweigungsknoten durch |2j 4 1] Biindel mit dem zentralen Knoten
verbunden ist, und daB im Falle ¢ >0 (j = 0,1, 2,...) die logarithmischen Enden
Lizpp und Lyyga4e (A=0,2,...,2n —2), im Falle e <0 (j=—1,—2,...) die
logarithmischen Enden Lj;;.; und Ljiiia42 (A=1,3,...,2n —1) von demselben
duBeren Verzweigungsknoten ausgehen 1%).

§ 11. Darstellung von w,(z, ¢) fir den Fall, dafi von der 2n logarithmischen Windungs-
punkten n iber eine und dieselbe Stelle zu liegen kommen; anschliefende Aussagen
iiber die Riemannsche Fliche.

Bei dem nunmehr zu betrachtenden Falle, daB von den 2n logarithmischen Win-
dungspunkten 7 iiber eine und dieselbe Stelle zu liegen kommen (Fall III des Satzes
von Seite 28f.), gehen wir etwas anders und zwar mehr analytisch vor. Wir leiten zu-
néchst eine einfache Darstellung fiir die Grundlésung w,(z, ¢) der Gleichung (17) her.
Daraus werden wir dann unmittelbar eine Aussage iiber die Riemannsche Fliche ablesen
konnen.

Die folgenden Betrachtungen sind vollkommen unabhéngig von Teil 2. Wir brauchen
von dort nicht einmal die Kenntnis der Werte von ¢, fiir die der obige Fall eintritt. Diese
Werte von ¢ werden sich vielmehr auf einem anderen Wege noch einmal nebenbei er-
geben. Aus der in FuBnote ) genannten Nevanlinnaschen Arbeit benotigen wir die fol-
genden beiden Tatsachen:

1. Zwei benachbarten Ecken des Kernpolygons entsprechen niemals zwei iiber
einem und demselben Grundpunkt gelegene logarithmische Windungspunkte.

2. Die Nevanlinnaschen Funktionen w(z) lassen in jedem logarithmischen Ende
zwei Werte aus; diesen Ausnahmewerten sind die Punkte zugeordnet, um die sich das
dem logarithmischen Ende entsprechende Riemannsche Fliachenstiick windet.

¢ sei nun so beschaffen, daBl eine Losung w(z) der Gleichung

wlll 3 wl AW]
(17) _107—__2_(@—0'—) = — 2222 Qg2

die schlichte endliche z-Ebene auf eine Riemannsche Flache abbildet, welche iiber w = oo
n logarithmische Windungspunkte besitzt. Dabei braucht w(z) nicht notwendig die

Grundlésung von (17) zu sein.

18) Vgl. zu diesem Paragraphen die Figuren 7 bis 9, in welchen fiir den Fall’n = 5 zu den drei Moglichkeiten
des paarweisen Ubereinanderfallens der Windungspunkte je eine Riemannsche Fliche veranschaulicht wird. Dabei
wurde angenommen, daBin Fig. 7b die Ecken E, und E,, . . ., Eg und E, durch je 3 Kurven €, in Fig.8b die Ecken
E,und E,, . .., Egund E, durch je 3 Kurven €, in Fig. 9b die Ecken E, und E,, . . ., E, und E; durch je 1 Kurve
€ verbunden sind. Beziiglich der Darstellung der verschiedenen Punkte und Kurven vgl. FuBinote 14).
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Dann folgt aus der obigen Tatsache 1, dafl von den beiden Ecken einer jeden Seite
des Kernpolygons 1) stets die eine einem im Endlichen gelegenen Windungspunkt, die
andere einem im Unendlichen gelegenen Windungspunkt entspricht. Nach der Tatsache 2
besitzt daher w(z) in jedem logarithmischen Ende auBer einem endlichen Ausnahmewert
den Ausnahmewert co. Daher kann w(z) den Wert co nur im Kernpolygon annehmen.
Da aber nun im Kernpolygon jeder Wert nur endlich oft angenommen wird, so besitzt
w(z) iberhaupt nur endlich viele Pole. Wie wir wissen, 148t sich w(z) als Quotient zweier
linear unabhéngiger Losungen von (18) darstellen. Jede Lésung von (18) ist bekannt-
lich eine ganze Funktion der Ordnung », und je zwei linear unabhingige Liosungen von
(18) haben keine gemeinsame Nullstelle. Daher gibt es eine Losung g(z) von (18), welche
die Pole von w(z) als Nullstellen, auer diesen aber keine Nullstelle mehr hat. Diese
Loésung g(z) hat also bloB endlich viele Nullstellen, und nach Division durch ein Polynom

D(z), welches in denselben Punkten wie g(z) verschwindet, bleibt eine ganze Funktion
ohne Nullstellen iibrig. Da diese ganze Funktion (der Quotient %%l)) die Ordnung n
hat, ist sie von der Form ¢#®), wo d(z) ein Polynom vom Grade n bedeutet.

Fiir jeden der oben néher gekennzeichneten Werte von ¢ besitzt somit die Gleichung

(18) g’ — (@ ) g =0
eine Losung von der Form
(49) g(z) = D(z) e¥®,

wo D(z) und d(z) Polynome sind; der Grad von D(z), den wir mit i bezeichnen wollen,
ist gleich der Anzahl der Pole von w(z), der Grad von d(z) ist gleich n.

Geht man mit dem Ansatz (49) in die Gleichung (18), so erhdlt man
(50) D"+ 2d'D"+ (d" +d2—z22—¢z2)D=0.

Aus dieser Gleichung werden wir zunéchst d(z) ermitteln. Es sei
h

Die) = 2 Du,  d(z) = 3 duzt .

Dann ist auf der linken Seite von (50) der Koeffizient von z2#+*—2 gleich (n%d2 — 1) D;.
Also ergibt sich, da D, == 0 ist,
1 1
% — el
dn - n2 b dﬂ :{: n .
Die weiteren Koeffizienten d,—y, d,—q, . . ., dy, d; ergeben sich alle zu Null. Denn ange-
nommen, es wiirden nicht alle Koeffizienten d,_;, dn—s, . . ., dy, d, verschwinden. Wenn
dann d; (1 £j <n—1) von den nichtverschwindenden Koeffizienten derjenige mit
dem groBten Index wire, so wire auf der linken Seite von (50) der Koeffizient von
zn+i+8—2 gleich 2nd, jd; Dy, also = 0, wahrend er doch nach Gleichung (50) verschwin-
den muB. Dabher ist in der Tat

d"__].:dn__ZZ-.~=d2:d1=0.

Uber d,, 1aBt sich aus (50) nichts schlieBen. Da jedoch d, in (49) nur den unwesentlichen
konstanten Faktor e% liefert, so konnen wir ohne Beschrinkung der Allgemeinheit

16) Die bei der Zerschneidung der Riemannschen Fliche zugrunde gelegte Kurve 8, die sich nun nicht mehr
so wihlen 13B8t, daB sie bei Drehung um den Nullpunkt um den Winkel 2;? in sich selbst iibergeht, denken wir uns

beliebig festgelegt.
6*
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dy, = 0 wahlen. Wir haben somit
d(z) = + % .

Hiernach reduziert sich Gleichung (50) auf
(51) D" 4+ 22 1D" + (+ (n —1) —c¢)z»2D = 0.

(In (51) gehoren, wie auch stets im folgenden, die oberen Vorzeichen zu d(z) = + —ni—z",

die unteren Vorzeichen zu d(z) = — —ri-L— z%.)

Beachtet man den Ansatz
h
D(z) =k§)Dkz" ,

so folgt aus (51) zunichst:

D,=0, D3=0,..., Dy4=0,

-Dn+2 = 07 Dn+3 = 0’ te DZn——l = 0,

Dopyz =0, Dopy3=0,...,Dgpy =0
usw., also allgemein

D = 0, wenn sowohl % 5= 0 (mod n) als auch % == 1 (mod n).

Fiir die Koeffizienten D; mit k£ = 0 (mod n) ergibt sich aus (51) das Gleichungssystem:
n(n—1) Do+ (£ (n —1) —c) Dy =0
(52) 2n(2n — 1) Dgy + (= B2 —1) —¢) D, =0
3n(3r — 1) Dap + (& (572 — 1) —¢) Den =0

oder allgemein fir x=0,1,2,...

(63) (p+1)n((p+1)n—1)Dyyyyn + {£ (e +1)n —1) —c} Dy = 0.
Fir die Koeffizienten D; mit k=1 (mod n) erhidlt man aus (51) das Gleichungs-
system:
(n+1)nDpyr+ (£ (n+1)—c)D;=0
(54) (2n +1)2nDopi1 + (£ Bn + 1) —¢) Dy =0
(Bn 4 1)3nD3pyy + (£ 5 4+ 1) —¢) Dapyy =0

oder allgemein fiir »=0,1,2,...

(85) (v + Dn+1) (v + D)nDysomer + {=£ (29 + 1) 0 + 1) — &} Dyys = 0.

Nun soll aber D(z) ein (nicht identisch verschwindendes) Polynom sein. Daher
miissen sich die Koeffizienten D; aus (52) und aus (54) von einem gewissen Index an alle
zu Null ergeben. Dies ist nur dann méglich, wenn entweder in (53) fiir eine gewisse
Zahl yu der Folge 0,1,2,... oder in (55) fiir eine gewisse Zahl » der Folge 0,1, 2, ...
die geschweifte Klammer verschwindet, d. h. wenn

entweder ¢ = + ((2u +1)n —1) (p=0,1,2,...)
oder c=4+(2v+ 1)n+1) (»=0,1,2,...)

ist. Nur fiir diese Werte von ¢ kann demnach die Gleichung (51) von einem nicht iden-
tisch verschwindenden Polynom befriedigt werden.
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Wir nehmen zunichst die erste Moglichkeit
Dann ist in (55) die geschweifte Klammer fiir jede Zahl » der Folge 0,1,2,...
von Null verschieden. Wire D, # 0, so wiirden sich also aus (54) auch die unendlich
vielen Koeffizienten D, 1, Dopys1, Dsnyy, ... alle ungleich Null ergeben. Dann wére
aber D(z) kein Polynom. Daber muB D, verschwinden und folglich nach (54) auch
Dyi1y Donyyy Dgpyr, ... Um nicht die triviale Losung D(z) = 0 zu erhalten, muf
man D, von Null verschieden wihlen. Das Gleichungssystem (52) liefert sodann die
Koeffizienten D,, Dzn, D3y, . . ., und zwar ergeben sich D,, Dqy, . . ., D, als von Null
verschieden, dagegen D(i1)n, Dutoyn, - . . zu Null. Das Polynom D(z) ist somit vom
Grade & = un und geniigt, da alle Koeffizienten D, mit % == 0 (mod n) verschwinden,

271

der Beziehung D(eTz) = D(z). Wir wollen dieses Polynom genauer auch mit
D n(z) bzw. Dy .(z) bezeichnen, je nachdem ob es zu ¢= + ((2x + 1)n —1)
oder zu ¢ = — ((2u + 1)n — 1) gehért. Wir haben also das Ergebnis:

Die Gleichung (18) besitzt fiir ¢ = + (2u 4+ 1)n —1) (4 =10,1,2,...) eine
Losung von der Form

1
£(z) = DE,az)e " .
Hierin ist D, .(z) ein Polynom vom Grade /& — un, welches der Differentialgleichung
D" +2z1D"F 2unzr—2D = 0
geniigt und daher explizit durch

xf 1
D, .(z) = D, Z"' _.(f_z_)_(’iz__ o

B (x . ~)
n
n*x!
X
dargestellt wird.

Wir betrachten nun die zweite Moglichkeit
c=4+(2v+1)n+1) (r»r=0,1,2,...).

Dann ist in (53) die geschweifte Klammer fiir jede Zahl u der Folge 0, 1, 2, . . . ungleich
Null. Wiére D, = 0, so wiirde also das Gleichungssystem (52) auch die unendlich vielen
Koeffizienten D,, Dy, D3y, ... alle als von Null verschieden ergeben. Dann wire
aber D(z) kein Polynom. Somit muB D, verschwinden und folglich nach (52) auch
Dy, Dsyyy D3y, ... Damit D(z) nicht identisch verschwindet, muf man D; von Null
verschieden wihlen. Das Gleichungssystem (54) liefert sodann die Koeffizienten
Dy, Dopyvy Dspya,y - .., und zwar ergeben sich D,.;, Dani1, - - -y Dynya als von Null
verschieden, dagegen Dgi1yns1, Doteymsts - - - zu Null. Das Polynom D(z) hat daher
den Grad 2 = »n 4+ 1 und befriedigt, da alle Koeffizienten D; mit k=1 (mod n)
2n1 PRI

verschwinden, die Beziehung D(eTz)= en D(z). Wir wollen dieses Polynom ge-
nauer auch mit D, .1 ,(z) bzw. D;, i1 .(z) bezeichnen, je nachdem ob es zu
c=+4 ((2v+1)n + 1)) oder zu ¢ = — ((2v + 1)n + 1) gehort. Wir haben somit
das Ergebnis:
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Die Gleichung (18) besitzt fir ¢ = + ((2» +1)n +1) (»=0,1,2,...) eine
Losung von der Form

g(z) = Dt 1,.(2) ei%zn-
Hierin ist Djf.;,(z) ein Polynom vom Grade & = wn + 1, welches der Differential-
gleichung
D" 4 2z21D'"F 2(vn + 1) 22D =0
geniigt und daher explizit durch
. (= 27())
Dm+1,n(z) = Dlz _‘_~’_T’_ zxntl

x=0 i
n*sx!
x®
dargestellt wird.

Die beiden, fiir ¢ = 4 ((24 + 1)n —1) und fiir ¢ = 4 ((2» + 1)n + 1) gewon-
nenen Ergebnisse lassen sich auch gemeinsam in folgender Weise aussprechen:
Die Gleichung (18) besitzt, falls ¢= + (2h +n —1) und h eine der Zahlen
0,1,n,n+1,2n,2n+1,3n,3n+ 1, ... ist, eine Losung von der Form
1 n
g() = Dita() e,

wo Dif,(z) ein Polynom vom Grade h bedeutel, welches die Gleichung

(56) D" +2z21D"F 2hz2D =0
befriedigt.
Wie aus unseren Betrachtungen hervorgeht, sind die Werte
c=+ (2h +n—1) (h=0,1,n,n-+1,2n,2n+1,...)

auch die einzigen Werte von ¢, fiir welche die Gleichung (18) eine Losung von der Form
(49) hat.

Beachtet man, daB die Gleichung (17) durch die Substitution w’ = g—2 in die
Gleichung (18) iibergeht (vgl. §1), so erkennt man folgendes:

Die Gleichung (17) besutzt, wenn ¢ = + (2k + n — 1) und h eine der Zahlen 0, 1, n,
n -+ 1, 2n, 2n + 1, ... ist, eine Lisung von der Form

2
14 :F—l”

(57) w(2) =f(—le)—h£3w dt,

wo Difn(z) ein Polynom vom Grade h bedeutet, welches der Gleichung (56) geniigt. t, ist
beliebig zu wihlen, jedoch so, daf Dit,(t,) &= 0 wird.

Wie aus der Darstellung (57) folgt, besitzt diese meromorphe Funktion w(z) den
Wert o als Picardschen Ausnahmewert im weiteren Sinne und zugleich als Nevanlinna-
schen Ausnahmewert mit dem Defekt 1. Daher bildet in der Tat die durch (57) darge-
stellte meromorphe Funktion w(z) die schlichte endliche z-Ebene auf eine Riemannsche
Flache mit 2r logarithmischen Windungspunkten ab, von denen rn iiber dem unendlich
fernen Punkt liegen. Die angegebenen Werte von ¢ sind auch die einzigen, fiir welche
die Gleichung (17) eine Losung hat, welche als Bild der schlichten z-Ebene iiber der w-
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Ebene eine Riemannsche Flache mit n iiber w = oo gelegenen logarithmischen Windungs-

punkten erzeugt. Da das Polynom Dji,(z) der Gleichung (56) geniigt, hat es lauter
einfache Nullstellen. Die Gesamtzahl der (einfachen) Nullstellen ist also gleich 4. Jede

einfache Nullstelle von D3, (z) liefert aber nach (57) einen einfachen Pol von w(z). Daher
hat w(z) insgesamt % (einfache) Pole. Zusammenfassend kann man folgenden Satz
aussprechen:

Es sei h eine der Zahlen 0,1,n,n +1,2n,2n + 1, ... und Dif,(z) ein Polynom
vom Grade h, welches der Gleichung

(56) D" 4 221D F 2hz"—2D =0
geniigt. Dann bildet die durch

: 2
I +

(57) w(z) t f DEW) dt (Dica(to) % 0)
dargestellte meromorphe Funktion w(z) die schlichte endliche z-Ebene auf eine Riemannsche
Fliche mit 2n logarithmischen Windungspunkten ab. Von diesen 2n Windungspunkten
liegen n iiber dem unendlich fernen Punkt, iiber welchem die Riemannsche Fliche iiberdies
noch h schlichte Blitter besitzt.

Wenn man fiir 2 = 0, n, 2n, . . . das Polynom Dj,(z) so normiert, daB D5, (0) =1
ist, so befriedigt fiir diese Werte von % die Funktion

z :len

e n
o = wEor™

0

die Anfangsbedingungen w(0) = 0, w'(0) = 1, w'’(0) = 0. Sie ist also gerade die Grund-
16sung von (17).

Normiert man fir 2 =1, n + 1, 2n + 1, ... Di,(z) so, daB seine erste Ableitung
im Punkte z = 0 den Wert 1 annimmt, so gilt, wenn % eine der Zahlen1,n + 1,2n 4+ 1, ...
ist, fiir die durch (57) dargestellte meromorphe Funktion w(z) in der Umgebung des
Punktes z = 0 die Laurententwicklung

(58) wie) = — 4+ A+ 7 Fula)

wo Po(z") eine Potenzreihe in z* bezeichnet. Wir denken uns nun in (57) die untere
Integrationsgrenze so gewihlt, daB in dieser Laurentreihe das absolute Glied A ver-
schwindet. DaB dies moglich ist, ist leicht einzusehen. Wenn némlich das beliebig
gewihlte ¢, diese Eigenschaft noch nicht hat, so gibt es doch ein ¢, so, daB
2
t e:F ;—t”

J (D)

wird 17). Ein so gewihltes ¢, hat alsdann, wenn es an Stelle von ¢, im Integral (57) als
untere Integrationsgrenze genommen wird, die gewiinschte Eigenschaft. Nunmehr
folgt, nachdem in (57) die untere Integrationsgrenze in der angegebenen Art festgelegt

17) Denn fiir die durch (57) dargestellte meromorphe Funktion w(z) ist ein beliebiger endlicher Wert entweder
kein Ausnahmewert oder, wenn er Ausnahmewert ist, so doch nur mit dem Defekt -15 Daher nimmt diese Funktion

jeden endlichen Wert (sogar unendlich oft) an. Insbesondere gilt dies also fiir A.
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ist, aus (58):
1
w()

wo auch P,(z") eine Potenzreihe in z* bedeutet. Somitist firh =1,n+1,2n +1,...
das Integral (57) gleich der negativen reziproken Grundlosung.

Wir kénnen nun unser Ergebnis auch in folgender Weise aussprechen:

1. Es sei c= 4+ (2p+1)n—1) (g=0,1,2,...) und D,f;,,,,(z) diejenige Poly-
nomlésung der Gleichung

=z + z*1 P (z") ,

D" 4+ 2271D" F 2unz—2D =0,

welche fiir z = 0 den Wert 1 annimmt. Dann wird durch
2

z e; ;t”
wa(2, €) =f————dt
0 (Dlzll:n»"(t))z

die Grundlosung der Gleichung (17) dargestellt. Diese bildet die schlichte endliche z-Ebene
auf eine Riemannsche Fliche mit 2n logarithmischen Windungspunkten ab. Von diesen
2n Windungspunkten kommen n iiber den unendlich fernen Punkt zu liegen, iiber welchem
die Riemannsche Fliche iiberdies noch un schlichte Blitter besitst.

2. Es sei ¢c=+ (2v+1)n+1) (»=0,1,2,...) und D y1a(z) diejenige
Polynomlésung der Gleichung

D" 4 271D F 2(vn + 1)zm2D =0,

deren erste Ableitung fiir z = 0 den Wert 1 annimmt. Dann wird durch

z q:Etn —1
e n
n\<y = '—'—dt
) (f (D) )

die Grundlésung der Gleichung (17) dargestellt, falls t, als Nichtnullstelle von D1 4(t) so
gewdhlt ist, daf in der Laurententwicklung fiir das in der Klammer stehende Integral das
absolute Glied verschwindet. Diese Grundlosung bildet die schlichte endliche z-Ebene auf
eine Riemannsche Fliche mit 2n logarithmischen Windungspunkten ab. Von diesen 2n
Windungspunkten kommen n iiber den Nullpunkt zu liegen, iiber welchem die Riemann-
sche Fliche iiberdies noch vn + 1 schlichte Blitter besitzt.

Nun seien zum Schlu8 noch ein paar Spezialfille angefiihrt:

Die Grundlésung w,(z, ¢c) der Gleichung (17) ist im allgemeinen eine meromorphe
Funktion von z mit Polen. Nur in zwei Fillen, namlich erstens fiir c = n — 1 und zwei-
tens fiir ¢ = —n 4 1, ist sie eine ganze Funktion von z und zwar

z_2m;m zZ 2,
w,,(z,n-——l):fe »" dt und w,,(z,—n—}—l):fe"t dt.
0 0

Von besonderem Interesse ist noch der Sonderfall » = 2. Dies ist ndmlich der ein-
zige Fall, in dem & alle natiirlichen Zahlen einschlieSlich Null durchlaufen kann. Glei-
chung (56) lautet fir n = 2:

(Dit2)"" + 2z (Difz) F 2R DiE, = 0.

Nun befriedigt bekanntlich das h-te Hermitesche Polynom — es sei mit H(z) bezeichnet —
die Differentialgleichung
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AP Hu(z) de;.(z)

Fr i + 2kH,.(;) =0.
Ferner geniigt, wie man sieht, das Polynom H,(iz) der Differentialgleichung
S .
d ’;’:2(‘1) + 2zdﬂd"f‘ﬁ — 9% Haliz) = 0.

Daher ist das Polynom Dj »(z) bis auf einen konstanten Faktor gleich dem A-ten Hermite-

schen Polynom Hj(z) und das Polynom D?,L, 2(z) bis auf einen konstanten Faktor gleich
dem Polynom Hj(iz).

Eingegangen 9. September 1935.
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