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Zur Theorie der komplexen Multiplikation. II.

Von Masao Sugawara in Tokyo.

In einer fritheren Arbeit!) habe ich folgende Vermutung ausgesprochen:

Es sei Q ein imaginir quadratischer Zahlkérper und m ein ganzes Ideal in Q. Der
Strahlklassenkorper mod m iiber Q entsteht dann dadurch, dafi man eine Hassesche Strahl-
klasseninvariante (¥*) zu Q adjungiert.

Beweisen konnte ich sie dort unter der Annahme:

(I 4lm, m=+4.

Inzwischen ist es mir gelungen, diese Vermutung noch in weiteren Fillen zu be-
statigen. Der Beweis in S. I 148t sich namlich vereinfachen und verschirfen; man braucht
statt (I) nur folgendes vorauszusetzen:

(I') Es existiert ein Primfaktor p von 2 in Q mit p*|m und ¢(m) = 6.

Ist insbesondere p vom absolut ersten Grade, so kann es wegen ¢(p) =1 nie im
Fihrer einer Idealgruppe in Q genau in der ersten Potenz aufgehen. Zieht man also
bei der Voraussetzung (I') nur solche Werte von m in Betracht, die wirklich als Fiithrer
einer Idealgruppe in Q auftreten konnen, so ist hiermit meine obige Vermutung fiir
,»fast alle” durch einen Primfaktor ersten Grades von 2 teilbaren Moduln m bestitigt. —
»Fast alle® soll hier wie im folgenden ,,bis auf endlich viele Ausnahmen* bedeuten.

Eine #dhnliche Methode, die von einer anderen Form des Additionstheorems der
@-Funktion Gebrauch macht, gestattet nun, die Behauptung auch unter folgender
Voraussetzung zu beweisen:

(1) P(m) = N(m) [ 7 (1 N(p))zs

plm

Soweit m nicht durch einen Primfaktor ersten Grades von 2 teilbar ist, ist ‘¥ (m)
eine positive ganze rationale Zahl; und es gibt offenbar nur endlich viele Werte von m
fir die 0 < ¥(m) <5 gilt. Meine Vermutung ist damit tiberhaupt fiir ,,fast alle*
bestitigt.

Zum Beweis setze ich die Kenntnis von S. I voraus und kann mich dementsprechend
kurz fassen. Ferner lasse ich die Korper Q = P(Y=—1), P(Y—3) auBer Betracht;
fiir sie ist ja, wie bereits in S. I erwihnt, meine Vermutung bereits auf Grund der klassi-
schen Theorie richtig.

Beweis unter der Annahme (1').

1) M. Sugawara, Zur Theorie der komplexen Multiplikation.I, ds. Journal 174 (1936); im folgenden zitiert

mit S. I

Journal fiir Mathematik, Bd. 175. Heft 2. 9
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Es sei 7(f*) = t(¢|a) eine Strahlklasseninvariante mod m und  eine durch %
teilbare ganze Zahl in Q, die aber #= 0 mod* m ist. wp ist dann offenbar eine Halb-
periode der Funktion z(u|a).

Beachtet man nun, daB in der in S.I zugrunde gelegten Additionsformel

1) (z(u + k) + z(u) + (k) (v(u) — ©(h))® = 7(u)® — Az(u) + B
die rechte Seite fiir u = h verschwindet, daB also das Polynom 23 — Az 4+ B durch
z— z(h) teilbar ist, so kann man diese Formel durch Division beider Seiten mit z(u) — t(k)
in die folgende einfachere Gestalt bringen:

(1) (z@ + &) + (@) + (b)) (z(u) — v(h)) = (u)? + 7(u)r(h) + 7(h)* — 4,

oder

a” (2 T(h)2 — A) + (R) (z(w) + ©(uw + k) = ©(u) ©(u + k).

Nach unseren Voraussetzungen ¢(m) =6 und Q = P()/—1), P(/—3) gibt es
nun sicher drei zu m prime Zahlen w,, w,, ws, die in verschiedenen Strahlklassen
mod m liegen. In (1') bzw. (1"') setzen wir A = wo, u = w;p (1 =1, 2,3). Wiein S. I
sieht man dann leicht ein, daB die 7(wi¢|a) und die 7((w; + w)e|a) verschiedene
Strahlklasseninvarianten mod m sind. Ferner ist es unmoglich, daB die drei Zahlen

oi = t((w; + o) ela) + r(wie|a)
samtlich einander gleich ausfallen. Denn sonst sei ¢ ihr gemeinsamer Wert. Das Polynom
zweiten Grades in z,
(0 + (@) (z — r(wg)) — (2* + z7(we) + H(we)® — A),

hitte dann nach (1) die drei verschiedenen Wurzeln 7(w;p|a).

Es sei also etwa o, &0, Aus den nach (1") giiltigen Formeln

(2 7(we)* — A) + 0: 1(we) = T(wig) T((wi + w)o) (i =1,2)

ergibt sich dann durch Subtraktion, daB z(wp) in Q(z(f*)) liegt. Nach (1) und (1")

gehoren mithin auch die Zahlen A, B zu Q(z(f*)). Nach S.1I, §1 bzw. § 3 ist damit
der Beweis erbracht.

Beweis unter der Annahme (I1)2).
Zunichst beweisen wir folgenden

Hilfssatz. Wenn Q =P ()—1), P()—3) und
(2) ¥(m) =5,
s0 gibt es in Q sicher drei Zahlen w,, wy, w; von der Art, daB w; und w; + 1 prim zu m
sind und iiberdies die dret durch w; und w; + 1 mod m bestimmten Paare von Strahl-
klassen mod m, die wir im folgenden mit
{(@;), (w; + 1)} mod m (i=1,2,3)
bezeichnen, voneinander verschieden sind.

Dabei sollen zwei Paare {«, 8} und {y, 6} dann und nur dann als ,gleich* gelten,
wenn x =y, f =06 oder « =4, f =y ist.

2) Die folgende Beweisanordnung verdanke ich Herrn Iyanaga; mein urspriinglicher Beweis war kompli-
zierter, Ich mochte Herrn Iyanaga auch an dieser Stelle meinen herzlichen Dank fiir seine Verbesserungen aus-
sprechen.
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Beweis. 'Y(m) gibt, wie leicht ersichtlich, die Anzahl der mod™ m inkongruenten
Zahlen o von der Art an, daB » und w + 1 beide zu m prim sind. Zwei Strahlklassen-
paare mod m,

{(0), (0 + 1)} und {(0'), (o' + 1)},
sind aber fiir m 42 — und das ist auf Grund der Voraussetzung (2) sicher der Fall —
dann und nur dann gleich, wenn eine der beiden folgenden Kongruenzen stattfindet:

w'=ow (mod™ m)

o'=—0n—1 (mod™* m) .
Ist also Y(m)> 2.2, d.h. gilt (2), so gibt es mehr als zwei Werte » derart, daf
{(®), (0 + 1)} verschiedene zu m prime Restklassenpaare mod* m darstellt; w.z. b. w.

Unser Beweis wird nun auf Grund der folgenden Additionsformel 3) der p-Funk-
tion gefithrt:

2\2
(P -+ P2+ Pa) (4 P1P2Ps — 83) = (plpz + P2Ps + Papy + —gz) ;

wobei
P = ﬁ)(u), P2 = P('U), Ps = P(u + U) .

Es sei 7(f*) = 7(¢|a) eine Strahlklasseninvariante mod m. Rechnet man die
eben angegebene Formel auf die Funktion 7(z) = t(u|a) um, so findet man

3) 4 (7 + T3+ 73) (717273 + B) = (1175 + 7575 + 737, + 4)?,
wobei
T = z(u), Ty = 1(v), 3= (u + v),
A =3 j(a) (j(a) —2°-3%),
B =2j(a) (j(a) —2%-3%)?
gesetzt ist, oder auch

3) 4(ry+ 2) (uy + B) = (niz + y + 4)°,

WO
Tyt T3 =10, TT3=1Y
gesetzt ist.
Denkt man sich nun in (3') t,, 4, B als Konstante, z, y als Variable, so stellt
(3") eine Parabel in der z, y-Ebene dar, die nur dann ausartet, wenn die Determinante
2 — 1 1.4 —2B
D = —1 1 A—27% |=—4(1} —Ar, + B)?
|1yA —2B A —21% A —4vy B
verschwindet.

Unter der Annahme (2) gibt es nun offenbar zwei Werte von o so, daB 7(we|a)
verschiedene Strahlklasseninvarianten mod m sind. Verschwindet D = D(u|a) fiir
u = wp mit diesen zwei Werten von o, so kann man die so entstehenden zwei Gleichungen
als lineare inhomogene Gleichungen fiir die Zahlen A, B auffassen, und damit durch
Auflésung A, B als Zahlen in Q(z(t*)) finden.

Da sich also der Beweis in diesem Fall mit unserem SchluB aus S. I durchfiihren
148t, nehmen wir weiterhin an, daB es ein ¢ mit D(g|a) =0 gibt. Wir setzen dann
in (3) u=y9, v=w;p, wo die w; (i=1,2,3) gemiéB unserem Hilfssatz bestimmt sind.

3) Siehe etwa Hurwitz-Courant, Funktionentheorie (Berlin 1925), S. 172,
9‘
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Setzen wir ferner
t(wigla) + 7((1 + wi)ela) =z
t(wela) - 7((1 + wi)ela) =y,
so sind ersichtlich
(xi’ ?!.) (" = 1, 2’ 3)
drei verschiedene Punkte auf der nicht ausgearteten Parabel (3') mit 7, = 7(g]|a).
Diese Punkte konnen daher nicht auf einer Geraden liegen, d. h. es ist die Determinante

1 2y
1 =z ¥y
1 xy y,

Die drei aus (3') entspringenden Formeln
&(7y + ) (v + B) = (vy@i + yi + A)? (t=1,2,3)
sind nun wieder drei lineare inhomogene Gleichungen fiir die Zahlen
A2, 24, —4B

d = +0.

mit der Determinante
1 nwoy4+y o+ 7
1 72,4+ Y, 2+ 7
11 7z +ys 23+ 71
Unser Beweis ist also auch in diesem Fall nach dem Schema aus S. I durchfiithrbar.

=—d 0.

Eingegangen 8. Juli 1935.



