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On the representation of rational numbers
as a sum of a fixed number of unit fractions
By Yehuda Rav at Hempstead, Long Island, N. Y.

1. Introduection

The representation of rational numbers as sums of distinct unit fractions, i.e.,
fractions with numerator one, goes back to antiquity ([25], pp. 19—30 and p. 48). Lambert,
in 1770 ([18], p. 351), illustrated the expansion of real numbers in series of unit fractions,
but it was Sylvester [23] who gave a new impetus to the study of unit fraction expansions.
While some recent studies [6], [8], [24] are concerned with the representation of rational
numbers as sums of reciprocals which belong to certain classes of sequences of positive
integers, the number of terms in the sum being immaterial, this paper deals with the
solubility in integers of the Diophantine equation

*) mn = 1)z, + 1zy + -+ - + 1,

where & is fized, and m, n are given positive coprime integers. After introducing the
concept of decomposing a set of non-zero elements M,, ..., M, of a unique factorization
domain into relative irreducibles, necessary and sufficient conditions for the solubility of
equation (*) are obtained. Furthermore, an effective algorithm is described to determine
whether equation (*) is soluble, and if it is, the algorithm yields all solutions.

2. Decomposition into relative irreducibles in a UFD.

Let U be a UFD (unique factorization domain), M,, ..., M, a set of non-zero
elements in U. We shall define inductively a family of elements {X, .}, where
1<n<--<v,<kand (vy,...,v,) ranges over all ordered m-tuples from the set
{1,...,k} for all 1 <m <k, yielding a total of (f) + (g) + -4 (Z) =2F—1
elements. To simplify notation, set (v, ...,»,) = »(m) and abbreviate “i € {v,, ..., »,}"”
by “i € »(m)”. Furthermore, for any a, b € U, the symbol (a, b) will designate the g. c. d.
of a and b, not the ideal generated by a and b. Similarly, if more than two elements are
involved. Let X, = X, = (M,,..., M;). Setting

(2. 1) M, = X, MP, G=1,....k
then (M®, ..., M{®) = 1. Let X, ,, = (M®, ..., M® ).

v1? Yk-1
27*
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Clearly, any two distinct X, ,, are relatively prime, since any common divisor of
them divides (M{, ..., M®). Thus, one may set

MP = [,-e vI(kI—l) X)) MG, (=1, k)
where the product extends over all ordered (kK — 1)-tuples (v, ...,», ;) containing j. It
follows from the choice of X, ,, asthe g. c.d. of MY, ..., M) that

(M(" oL, Sl’“k“ll’) =1

for any ordered (kK — 1)-tuple (uy, ..., #;_1)-

Assume that the X, ., and M***V have been defined and that any k —s + 1
distinct M*~**V are relatively prime. Let X, _, = (M{\*D, .. M) Then any two
distinet X, ,, are relatively prime and one may set

(k—s+1) __ (k—s) | —

(2.2) M; = [jevl(%_x) Xyge—n] MG, G=1,...,k).

From the choice of X,;_, it follows that any k — s distinct M*~® are relatively prime,

and thus the induction is carried from s — 1 to s. In particular, if s = &k — 2, equation
(2. 2) yields that M® =[ IT | X,] M and (MP, MP) = 1if u + v. Setting M = X,
i€r

7
and substituting successively all expressions for the M{” into (2. 1), we obtain:

k—1
(2. 3) M,=n1n 1II X, G=1,...,k).
8=0 j€v(k—s)
As the g. c. d. of any set of elements in a U F D is unique up to associates, and the preced-
ing construction depends solely on the successive extraction of g.c.d.’s, it follows that
the family {X, .} is uniquely determined up to associates by M, . .., M,. Obviously,
some members of the family may be units. The X, ,  will be called the relative irreducibles
of M,,..., M, and (2. 3) the decomposition of M,, ..., M, into relative irreducibles.

Remark 1. (X, . s Xoy,.np) = 1, where s < t, if at least one p, & {v,, ..., 9.
Proof. Suppose there exists an irreducible element p in U which divides X
and X . By definition,

= (MED, ..., MEY) and X

(150 05%) T

(Bseees tg)
(P15:-07p)

X oy = (MEFD, L MG,

Since by construction, M{® divides M{" if a < b, it follows that MGV divides MU+" and
p divides (MU*D, . M““) M('“’) But if ,ui¢{v1, AN then'
(MY, . MG, M;z.“)) =1
as any m distinct M™ are relatively prime. Thus, p cannot be an irreducible in U.
Remark 2. If i € {v,, ..., v} and n, is such that (n;, M;) =1, then (X, ,,,n)=1.

Proof. According to (2. 3 1 €{v,...,v,} implies that X divides M, and the
conclusion follows.

()

3. Main results

In the sequel, all symbols will denote rational integers, unless otherwise stipulated.

Theorem 3. 1. The Diophantine equation

k
(3.1) min = X 1jz,, (m,n) =1, k fized,
i=1
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is equivalent to the Diophantine equation

k—2 k k—2
(3.2) m Il I Xgo= 2Zn I IT X,
s=0 v(k—s) =1 s=1 14 v(k—s)
where the n; divide n, (n,, ..., n) = 1.

Specifically, if {X, .} is a family of 2¥ — k'— 1 non-zero integers, with
1<vw<---<9v,<k and (v,,...,v,) =»(¢) ranges over all ¢-tuples from the set
{1,...,k},2 <t < k, such that (3. 2) is satisfied, where the product {I extends over

v(k—s)

all ordered (k— s)-tuples and the product 3 1({ extends over those not containing i,
1§ v(k—s)

then upon setting

k—2
(3. 3) zo=mnln, I IT X, i=1,...,k
s=0 1€v(k—s)
a solution of (3. 1) is obtained. Conversely, any solution z,, ..., z, of (3. 1) determines
divisors n;of n with (ny, ..., ) = 1 and a family {X,, . ,,} of non-zero integers such that
(3.2) and (3. 3) are satisfied. Moreover, (X Xopyorwwp) =1 (s =) i at least

(B tig)? “H(vy,..

one p; ¢ {v,...,v}and (X, %) =1if i€y, ... 9]

Proof. Suppose 2* — k — 1 numbers X, ) exist satisfying (3. 2) for some divisors

(vl,..
n,...,n, of n. Define x; as in (3. 3) and set
k-2 k—2 k—2
M=1n 1 Xv(k—s)7 Ni:: I ) II Xv(k—s)’ Bi = 11 I Xv(k—s)'
s=0 »(k—s) s=1 i¢ v(k—s) §=0 1€ v(k—s)

k
Then M = B,N, it =1,...,k) and (3. 2) becomes mM = X n,N,. Hence
1=1
J I’Li]Vi o k n;
min = 151 nM 2 nB; i=1

Conversely, suppose z,, . . ., z, satisfy (3. 1). We note in passing that (3. 1) is not
soluble if m > kn. Crossmultiplying and rearranging terms in (3. 1) yields

k-1
(3. 4) Xy Xy (Mxy—n) = nx, 3 x—l—g—cx—"'i
i=1 i
Setting
(3.9) A= (n,z), 2, = A;B;, n=A;n;; (B;,n) =1 Ct=1,2,...,k

and substituting into (3. 4), we obtain after dividing by A, - - - A, that

k-1
(3. 6) B, -+ By_y(mB,—n) = B, 21 Bi. 'éin_l n;.
Let {X,,...,)} be the family of relative irreducibles of B,, ..., B, (as defined in Sect. 2)
and let
k—1
3.7) Bi=1 1I X, G=1,...,k)
s=0 7€ v(k—s)

be the corresponding decomposition of By, ..., B, into relative irreducibles. Then

k—1 k—1

B,-- By ,=1I II I X, -

j=1 8=0 j€v(k—s)
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To simplify the preceding expression, consider first the case when s = 0. The factor
X, = Xq,2,..1) occurs in each B; and thus appears to the (k— 1)th power. Consider
now any s = 1 and a fixed factor X,_,, = X, ., - Hv,_ =k, then X, ., appears
in the product B, --- B, ; to the (k— s)th power, for it is a factor of B, ,..., B
and no other B;. On the other hand, if »,_, = k, then X

Yk—s

vy BPPEATS In precisely

k—s—1 B; amongst By, ..., B, ;, and thus B, --- B, contains X, ., ,to the
(k — s — 1)th power. Hence
k-2
(3.8) B1 v B 1= X k)X Xy Xk—l I ( I X’:(—Ics-s)' I Xﬁ(?_—s)l) .
s=1 \k¢v(k—s) k€ v(k—s)
Consider next (B, - -+ B,)/B,;, 1 £ i < k—1. In view of (3. 7),
k i
ko k=1
(By- - By)|B; = H 11 . I Xv(k——s)‘
j=1 8=0 j€v(k—s)
j*i
By the same argument as before, only 7 replacing &, we obtain that
-+ By, Xy Xy B2
3.9 — Xk—l Xk—s . ch——s—-l
(3.9) B@ (Ayek) _X_,— 3111 [zev(k y e ievl(_{_s) »(k—s) | *
But
Xk—x . Xk—s—l
ol P JT S
— X . Xk——s—l . Xk—s—l
i vl(_llc-—-s) v(k—s) i6 vI(l——s) v(k—s) e ,,1(%._3) v(k—s)
—_ . k—s—1
- i ;:l({—s) Xv(k-—s) w(Ist) Xv(lc—s) .
Thus,
k—1 B Bk k—1 X Xk— k—2
n =X o X Xkt n; X .
ié‘l ‘ Bi oo By ksU1 v(ﬂs) #(k—s) 2 X; s=1 i vl(%—s) ")

Substituting (3. 8) and the preceding into (3. 6) and cancelling common factors yields:

k—2
(3. 10) Xy Xpoo IT 1T X,y (mBy—my)
s=1 k¢v(k—s)
k-1 X X _ k—2
— X, E_A_X_LLH I X,y
i=1 [ s8=1 14 v(k—s)

Now, X,, being a factor of B, does not divide m B, — n,, since (B, n,) =1 (3.5).

And according to Sect. 2, Remark 1, X, is relatively prime to each factor preceding

(m B, —n;) in (3. 10). Thus X, = 1. Similarly, X, =1, for i =1,...,k—1. Finally
k—2

since By=II II X,;_,, (3.10) becomes:

8=0 K€y (k—s)
k—2

(3. 11) m H II Xv(lc—s) == 2 n; H H Xv(k—B)'

8=0 v(k—s) 8=1 i1¢ v(k—s)

Now (3. 11) implies that (n,,...,n,) =1, for as (m,n) =1, n,| n, any prime divisor
of (ny, ..., n) divides some X, ., ., which is impossible according to Sect. 2, Remark 2,
since (r;, B,) = 1 in view of (3.5) for all 1 < ¢ < k. Combining now (3. 5) and (3. 7),
noting that X,,, = 1, we obtain that

(3.12) = (nn) Bi=(nin) T I Xyu s, i=1,..., k)

8=0 1€v(k—s)

where each B, is a product of 2~ — 1 X, . Q.E.D.

(1'],... l't)
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We shall consider next the determination of all integral solutions of (3. 1) if such
exist. One may restrict oneself to positive integral solutions, as in the general case the
argument varies only slightly. Clearly, if m/n = 1/z; + 1/z, + - - . 4+ 1/, for positive z,,
then not each of the 1/x, can be less than m/nk, hence we may assume that 1/z, = m/nk,
therefore 0 < z;, <nk/m and only finitely many values for x, have to be considered. For
each choice of 2, one argues similarly about the equation (mx,—n)/nz, =1/z,+ -+ + 1/x,,
and thus, in a finite number of steps all solutions, if such exist, are obtained. However,
in view of Theorem 3. 1, a more efficient algorithm can be applied, as will be described
in the proof of the following theorem.

Theorem 3. 2. Let m, n and k be given positive integers, (m, n) = 1. Then (3. 1) has
at most a finite number of positive integral solutions z,, ..., x,. Moreover, there exists an
algorithm to determine whether (3. 1) ts soluble, and if it is, the algorithm yields all solutions.

Proof. For a given n, there exist finitely many positive integers n,, ..., n, such

that n,|rn and (n,,...,n,) = 1. We consider then all equations (3. 2) for all choices
of ny,...,n,. Clearly,

k—2 k—2 k—2
17 ) 11 Xv(k—s)] / m n Xv(k——s) = 1/ I . 11 Xv(k—s)'
s=1 1¢ v(k—s) §=0 w(k—s) 8=0 t€v(k—s)

Thus, (3. 2) can be written in the form

) B2
(3.13) m = E n,/ o 1 X,

s=0 i€v(k—s)

As it is impossible that each of the k summands be less than m/k, there exists j, 1 < j < k&,
such that

k-2
n; [ II 11 Xv(k_s>§"%/k,

s=0 jEv(k—s)
hence
k—2
(3. 14) O< I I X,_o=knjfm=kn*m,
8=0 jE€v(k—s)
where n* = max (n,,...,n,). We may assume, by possibly renumbering the n,, that

j = 1. Thus (3. 14) determines the possible range for 2= — 1 of the X’s. To determine -
for each choice of the X’s in (3. 14) the possible range of the remaining 2~ — k X’s,
we proceed as follows: Set

E—2
[ml =\|m I{) 161(7k )Xv(k—x) —n
§= v(k—s
(3. 15) o
nV=n, 1T II X, s (i=2,3,...,k)
s§=1 1€v(k—s)
16 v(k—s)

Then the remaining X’s must satisfy the equation

k—2 k k—2
1
m, 1 I X,(k_s) = Z n(L ) II II X,,(k_s),
s=1 1¢ v(k—s) =2 8=1 1€ v (k—s)
g v (b—s)
or equivalently,
k 1 k—2
(3. 16) mo=3n"/ T O X4,
=2 g8=1 1¢ v(k—s)
1€ v(k—8)

Repeating the argument following (3. 13), the algorithm can be continued until all sets
of admissible X’s within the restricted ranges have been examined for a given choice of
nyy.o.oy . QU E.D.
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Theorem 3. 1 deals with integral solutions, without restrictions to positive solutions.
It is clear, however, from (3. 2) and (3. 3) that we may restrict all the X,, , with s =1
to be positive integers, while n, . . ., n, and X,;, can assume any non-zero integral values,
and we shall adhere to this convention henceforth. Several special results are noteworthy.
If k=2, (3.2) becomes m X, 5 = n, + n,, hence we obtain the following theorem of
Nakayama [12] and Kiss [10]:

Corollary 3. 1. m/n admits a 2-fold representation if and only if there exist coprime
divisors n,, n, of n such that n, + n, =0 (mod m).

Next, consider the case when &£ = 3. Then (3. 2) becomes

m Xy,0,5 Xa,9 Xa,5 X5 = 1 X 5 + 12 X5 + 15Xy 9,

which we shall rewrite as
(3.17) mzyzt = nx + nyy + nyz,

where (z, y) = (2, 2) = (y, 2) = (x, nyng) = (y, nyn,) = (2, nyn,) = 1in view of Remarks 1
and 2 of Sect. 2. Equation (3. 17) generalizes equations (A) and (B) of Bernstein ([1], p. 3)
for an arbitrary n, not necessarily a prime number. The simplicity of Corollary 3. 1

suggests a similar condition if £ > 2. In view of (3. 2), we multiply both m and n by
k—2

nm i X,;.,. Set

8=1 wv(k—s)

2
M=mIl I X,4y; N=nII II X,

s=1 v(k—s) s=1 v(k—s)
(3. 18) t = Xv(k) = X(1,2,...,k)
k—2
NizniH I Xﬂ(k—8)7 (L:fl,...,k).
s=1 i€ v(k—s)

3
Clearly, (3. 2) then becomes Mt = X N, and N,| N. To show that (NV,..., N,) =1,
i=1

we argue as follows. Let p be a }:rime divisor of (N, ..., N,). Since according to
Theorem 3.1 (n,,...,n,) = 1, we may assume that p divides the terms

1 2 k
My Mgy ey g, XUED XU X0,

where 0 < f < k, and the i-th term is a factor of V,, having suitably renumbered the
N,. It follows from Remark 1 that if p divides both X, =, and X, ), wheres =1¢,

then{,ul, co b <{py, ..., v} If the subscrlpt of X"“’ls (v(’“) "“’) = =S8,
then {{*1, ..., 50V} < {,,(f+2) B P (k) } But f +i¢ {,,(f+1) ,,(f+1)} in
view of the definitions of X¢+? and N,,,. Hence {» +1’ <, ¥I*1} does not contain any of
the numbers f + 1,/ + 2,..., k and thus {p{*?, .. v‘f"’”} {1 2,...,f}. Therefore f > 1.

Set »/*D =, Then 1 § r § f. Since (m,, B,) =1 (equation (3. 5)), it follows from
Remark 2 and (3. 7) that (XY*V, n) =1 (XY*) = X ) while p divides XY*" and n,.
Consequently (N,,...,N,) =1 and we have proven the following generalization of
Nakayama’s Theorem:

Main Theorem. The Diophantine equation
min =1z, + Uz, + -+ - + 1z (m,n) =1,

is soluble if and only if for some M and N, m/n = M|N and there exist N, dividing N,
(Nyy+e., V) =1, such that

N,+Nyg+ -+ N, =0 (mod M).
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