

Werk

Titel: Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen

Ort: Göttingen Jahr: 1845

Kollektion: Mathematica

Werk Id: PPN250442582_0002

PURL: http://resolver.sub.uni-goettingen.de/purl?PID=PPN250442582_0002 | LOG_0022

reproduced without written permission from the Goettingen State- and University Library.

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions. Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de

Untersuchungen

über

Gegenstände der höhern Geodaesie.

Von

Carl Friedrich Gauss.

Erste Abhandlung

der Königl. Societät überreicht, 1843, Oct. 23.

Bei den, zum Theil von mir selbst, zum Theil unter meiner Leitung, ausgeführten über das ganze Königreich Hannover sich erstreckenden trigonometrischen Vermessungen sind, sowohl in Beziehung auf die Art, wie die Messungen angestellt wurden, als noch mehr in Beziehung auf ihre nachherige mathematische Behandlung und ihre Verarbeitung zu Resultaten, Wege eingeschlagen, die von den sonst gewöhnlichen abweichen. Mein früher gehegter Vorsatz, nach völliger Beendigung der Messungen diese nebst allen von mir angewandten Verfahrungsarten in einem besondern Werke darzulegen, hat, aus Ursachen, deren Auseinandersetzung nicht hieher gehört, bisher nicht zur Ausführung kommen können, und ich wähle daher das Auskunftsmittel, das im theoretischen Theile mir eigenthümliche in einer Reihe von Abhandlungen bekannt zu machen, um so lieber, weil ich auf diese Weise die Freiheit behalte, mit Ausführlichkeit manche Untersuchungen zu entwickeln, welche ein selbstständiges Interesse darbieten und mit den übrigen in enger Verwandtschaft stehen, auch wenn von denselben bei meinen Messungen keine unmittelbare Anwendung gemacht ist. Dies gilt namentlich von dem grössten Theile des Inhalts der gegenwärtigen ersten Abhandlung.

1.

Von der Aufgabe:

die Theile einer gegebenen Fläche auf einer andern gegebenen Fläche so abzubilden, dass die Abbildung dem abgebildeten in den kleinsten Theilen ähnlich wird

habe ich im Jahre 1822 eine allgemeine Auflösung gegeben, welche Hr. Conferenzrath Schumacher im 3. Heft der Astronomischen Abhandlungen hat abdrucken lassen: Bei der Anwendung dieser Aufgabe auf die höhere Geodäsie, für welche sie eine vorzüglich ergiebige Hülfsquelle wird, macht sich das Bedürfniss fühlbar, Abbildungen, welche unter der angegebenen Bedingung stehen, durch eine besondere Benennung auszuzeichnen, und ich werde daher dieselben conforme Abbildungen oder Übertragungen nennen, indem ich diesem sonst vagen Beiworte eine mathematisch scharf bestimmte Bedeutung beilege.

In der angeführten Schrift ist die allgemeine Auflösung, welche eine willkürliche Function einschliesst, auch auf mehrere bestimmte Flächen angewandt; das letzte dort behandelte Beispiel betrifft die conforme Übertragung der Oberfläche, des Umdrehungsellipsoids auf die Kugelfläche, und es ist S. 21 zugleich eine solche Bestimmung der arbiträren Function angegeben, die zu einer sehr brauchbaren Anwendung auf die höhere Geodäsie benutzt werden kann. Diese Benutzung war a. a. O. nur kurz angedeutet, und eine ausführlichere Entwickelung vorbehalten. Ich werde jedoch anstatt dieser speciellen Auflösung eine etwas abgeänderte und für die geodätischen Anwendungen noch viel mehr geeignete Methode zur conformen Übertragung der ellipsoidischen Fläche auf die Kugelfläche in der gegenwärtigen Abhandlung entwickeln, und damit zugleich alles zu einer solchen Benutzung erforderliche verbinden.

2.

Die allgemeine Auflösung der Aufgabe, angewandt auf die ellipsoidische und sphärische Fläche, gibt folgende alle conformen Übertragungen der einen auf die andere umfassende Formel (1):

$$T + i \log \operatorname{cotg} \frac{1}{2} U = f \left(t + i \log \left\{ \operatorname{cotg} \frac{1}{2} w \cdot \left(\frac{1 - e \cos w}{1 + e \cos w} \right)^{\frac{1}{2}e} \right\} \right)$$

Es bezeichnen hier

- e die Excentricität der Ellipse, durch deren Umdrehung um ihre kleine Achse die ellipsoidische Fläche erzeugt wird;
- t und 900 w die Länge und Breite eines unbestimmten Punkts auf dieser Fläche, mithin w den Winkel einer in diesem Punkte gegen die Fläche gezogenen Normale mit der kleinen Achse;
- T und 900 U die Länge und Breite des entsprechenden Punkts auf der Kugelfläche;
- i die imaginäre Einheit √ 1;

f die Charakteristik für eine willkürlich zu wählende Function.

Die Logarithmen sind immer die hyperbolischen.

Durch m wird das Vergrösserungsverhältniss bezeichnet werden, so verstanden, dass jedes Linearelement auf der ellipsoidischen Fläche sich zu dem entsprechenden Linearelement auf der Kugelfläche verhält wie 1 zu m: dieses Verhältniss ist an jeder Stelle der einen und der andern Fläche ein bestimmtes, für verschiedene Stellen veränderlich.

Die einfachste Auflösung erhält man, indem man die willkürliche Function schlechthin ihrem Argumente gleich, oder

$$fv = v$$

setzt, und diese Übertragungsart ist in der That auch die geeignetste, wenn die ganze Oberfläche des Ellipsoids auf die Kugelfläche übertragen werden soll. Für die Anwendung auf geodätische Rechnungen, wo immer nur ein vergleichungsweise sehr kleiner Theil der Erdfläche in Betracht kommt, ist es aber, wie schon a. a. O. bemerkt ist, viel vortheilhafter, der Function noch einen constanten und zwar imaginären Theil beizufügen, oder

$$fv = v - i \log k$$

zu setzen *). Es lassen sich dann der Halbmesser der Kugel und die Constante k so bestimmen, dass die das Vergrösserungsverhältniss ausdrückende Grösse m, von deren geringer Ungleichheit innerhalb der Grenzen der dargestellten Fläche die Bequemlichkeit der Anwendung auf geodätische Rechnun-

^{*)} Durch einen Druckfehler ist a. a. O. S. 22. Z. 7. das Minuszeichen ausgelassen, auch ist ebendaselbst Z. 12 auf den Art. 6 anstatt auf Art. 7 zurückgewiesen.

gen vornehmlich abhängt, für den mittlern Parallelkreis = 1, und bis zu einigen Graden Entfernung nach Norden und Süden kaum merklich von 1 verschieden wird; die Abweichung von dem VVerthe 1 ist nemlich von der zweiten Ordnung in Beziehung auf den Abstand vom mittlern Parallelkreise, und enthält ausserdem noch die Abplattung oder das Quadrat von e als Factor.

Allein dieser Vortheil lässt sich noch sehr vergrössern, wenn man anstatt jener Bestimmung der willkürlichen Function eine etwas abgeänderte, für die Rechnung fast eben so bequeme wählt, indem man nemlich unter Zuziehung einer zweiten Constante a,

$$fv = \alpha v - i \log k$$

setzt. Man hat dann in seiner Gewalt, durch zweckmässige Bestimmung der beiden Constanten zu bewirken, dass die Abweichung des Vergrösserungsverhältnisses m von dem VVerthe 1, in Beziehung auf den Abstand vom mittlern Parallelkreise eine Grösse der dritten Ordnung wird, ungerechnet den auch hier bleibenden Factor e.e.

си ш. т изие... *

Eben so ergibt die Differentiation der Gleichung 4

$$d \log m = \cot g \ U dU - \cot g w dw + \frac{ee \cos w \cdot \sin w dw}{1 - ee \cos w^2}$$

$$= \operatorname{cotg} U dU - \frac{(1 - ee) \cos \omega d\omega}{(1 - ee \cos \omega^2) \sin \omega}$$

folglich, wenn man mit Hülfe von 5 entweder dU oder dw eliminirt,

Durch eine nochmalige Differentiation der Gleichung 7 erhält man

$$\frac{\mathrm{dd} \, \log m}{\mathrm{d} \, U^2} = -\frac{1}{\sin U^2} + \frac{\cos U \cos \omega}{\alpha \, \sin U^2} + \frac{\sin \omega}{\alpha \, \sin U} \cdot \frac{\mathrm{d} \, \omega}{\mathrm{d} \, U}$$

$$= -\frac{1}{\sin U^2} + \frac{\cos U \cos \omega}{\alpha \, \sin U^2} + \frac{(1 - ee \, \cos \omega^2) \, \sin \omega^2}{\alpha \, \alpha \, (1 - ee) \, \sin U^2} \cdot \cdot \cdot \cdot \cdot (8)$$

Soll nun für eine bestimmte Breite (Normalbreite) der Werth von m der Einheit gleich werden, für andere Breiten hingegen nur um Grössen der dritten Ordnung von 1 abweichen, die Breitenunterschiede als Grössen erster Ordnung betrachtet, so muss, wenn die Normalbreite auf dem Ellipsoid mit P, die entsprechende auf der Kugel mit Q bezeichnet wird, für $w=90^{\circ}-P$, $U=90^{\circ}-Q$ in Gemässheit der Gleichungen 4, 7, 8 sein:

$$A = \frac{a \cos P}{\alpha \cos Q \sqrt{(1 - ee \sin P^2)}} \qquad (9)$$

$$0 = 1 - \frac{\sin P \sin Q}{\alpha} - \frac{(1 - ee \sin P^2) \cos P^2}{\alpha \alpha (1 - ee)}$$

oder, wenn man in letzterer Gleichung für sin Q seinen Werth aus 10 substituirt,

Durch diese Gleichung ist demnach a gegeben, sobald für P ein betimmter Werth gewählt ist; Q kann sodann durch Gleichung 10, und A durch Gleichung 9 bestimmt werden; endlich ergibt sich k durch die Sub-

stitution von $w = 90^{\circ} - P_{\circ}$, $W = 90^{\circ} \cdot Q_{\circ}$ in der allgemeinen Gleichung 3, nemlich

4.

Die Berechnung der Constanten A, α , k und der Normalbreite auf der Kugel Q aus P und e wird man, da alle diese Grössen wie Grundlagen für die Anwendung auf eine gewisse Zone zu betrachten sind, gern mit besonderer Sorgfalt und Schärfe auszuführen wünschen, und es verdienen daher einige dazu dienliche Umformungen hier einen Platz: eine Umformung wird ohnehin nothwendig, wenn man von einer bestimmten Normalbreite nicht auf dem Ellipsoid sondern auf der Kugel, also von einem gegebenen Werthe von Q ausgehen, und daraus die übrigen Grössen berechnen will.

Führt man drei Hülfswinkel φ , ζ , η ein, so dass	
$\sin \varphi = e$	(13)
$\sin \varphi = e$ $\tan \varphi = \tan \varphi \cos P^{2} \cdot \cdots \cdot $	(14)
tang $\eta = \sin \hat{g}$ tang P . Probability \hat{g} . Probability \hat{g}	1. 801La (15)
so wird "-	
$\alpha = \frac{1}{\cos \zeta} \cdot $	(16)
$\sin Q = \cos \zeta \sin P$	(17)
$\cos \eta \cos Q = \cos P \dots \dots$	(18)
$\sin \eta = \tan \zeta \operatorname{tang} Q $	(19)
$\tan \frac{1}{2} (P - Q) = \tan \frac{1}{2} \zeta \cdot \tan \frac{1}{2} \eta $	
$\sin (2 \zeta - \varphi) = e \cos 2 Q \dots \dots \dots \dots \dots$	(21)
Die Gleichung 18 folgt leicht aus der Verbindung von 18	5 und 17; so-
dann 19 aus der Verbindung von 15, 17, 18; ferner 20 au	us 17, 18, 19;
endlich 21 aus 14 und 17.	1

Am schärfsten wird man rechnen, wenn man, in dem Falle wo P gegeben ist, sich der Formeln 14, 15, 20 bedient, um der Reihe nach ζ , η , Q zu bestimmen; für den Fall hingegen, wo Q gegeben ist, vermittelst der Gleichungen 21, 19, 20 die Werthe von ζ , η , P ableitet: zur Controlle mag

UNTERSUCHUNGEN ÜBER GEGENSTÄNDE DER HÖHERN GEODAESIE.

man dann noch eine oder einige der übrigen Gleichungen benutzen. Führt man noch einen vierten Hülfswinkel θ ein, nach der Formel

$$A = \frac{a \cos P}{\alpha \cos \theta \cos Q} = \frac{a \cos \eta}{\alpha \cos \theta} = \frac{a \cos \varphi}{\cos \theta^2} = \frac{a \cos \varphi}{1 - ee \sin P^2}$$

$$k = \frac{\tan (45^0 + \frac{1}{2}P)^{\alpha}}{\tan (45^0 + \frac{1}{2}Q) \tan (45^0 + \frac{1}{2}\theta)^{\alpha e}}$$

5.

Ich begleite die Vorschriften dieser ganzen Abhandlung mit einer auf das schärfste durchgeführten numerischen Anwendung, welche andern, die zur Verarbeitung ihrer Messungen die hier vorgetragene Methode benutzen wollen, entweder als Rechnungsmuster zur Construction der erforderlichen Hülfstafeln, oder auch schon unmittelbar als Hülfsapparat für einen grossen Theil der gemässigten Zone dienen kann. In den meisten Fällen wird man übrigens sich mit einer viel geringern Schärfe begnügen können.

Als Normalbreite wähle ich 52° 40', welche ungefähr dem mittlern Parallelkreise des Königreichs Hannover entspricht; da es jedoch in einigen Beziehungen vortheilhafter ist, wenn für die Normalbreite auf der Kugel, als wenn für die auf dem Ellipsoid eine runde Zahl gewählt wird, so setze ich

$$Q = 52^{\circ} 40' 0''$$

Die Rechnung führe ich nach den neuesten von Bessel aus den Gradmessungen abgeleiteten Erddimensionen (Astronomische Nachrichten 19 Band S. 116), wonach, die Toise zur Einheit angenommen,

$$\log a = 6,5148235337$$
$$\log \cos \varphi = 9,9985458202$$

Es folgt hieraus, mit Hülfe der zehnzifrigen Logarithmen,

Mathem. Classe. II.

$$\eta = 2 \circ 15' 42'' 34083
P = 52 42 2,53251
log $\alpha = 0,0001966553
\theta = 3 \circ 43' 34'' 24669
log $\frac{1}{k} = 0,0016708804
log $A = 6,5152074703$$$$$

Nimmt man das französische gesetzliche Meter als Einheit an, so wird $\log A = 6.8050274003$

Wählte man hingegen den zehnmillionsten Theil des Erdquadranten selbst, nach obigen Dimensionen, zur Einheit, so würde sein

$$\log A = 6.8049902365$$

6.

Die Berechnung der Breite auf der Kugel aus der Breite auf dem Ellipsoid kann füglich nach der Formel 3 geführt werden, wenn sie nur für wenige Fälle gefordert wird; für ausgedehntere Anwendungen hingegen wird der Gebrauch einer Reihe vortheilhaft sein, zu deren Entwicklung hier die nöthigen Formeln gegeben werden sollen.

Ich bezeichne eine unbestimmte Breite auf dem Ellipsoid, oder einen unbestimmten Werth von $90^{\circ} - w$, durch P + p, und die entsprechende Breite auf der Kugel, oder den Werth von $90^{\circ} - U$ durch Q + q. Nach dem Taylorschen Lehrsatze wird

$$q = \frac{\mathrm{d}\,U}{\mathrm{d}\,\omega} \cdot p - \frac{1}{2} \cdot \frac{\mathrm{d}\,\mathrm{d}\,U}{\mathrm{d}\,\omega^2} \cdot pp + \frac{1}{6} \cdot \frac{\mathrm{d}^3\,U}{\mathrm{d}\,\omega^3} \cdot p^3 - \frac{1}{2^4} \cdot \frac{\mathrm{d}^4\,U}{\mathrm{d}\,\omega^4} \cdot p^4 + \text{u. s. w.}$$

wo für die Differentialquotienten diejenigen bestimmten Werthe zu substituiren sind, welche zu p=0, oder zu $w=90^{\circ}-P$, $U=90^{\circ}-Q$ gehören. Die successive Entwicklung der unbestimmten Differentialquotienten ergibt

$$\frac{\mathrm{d}\,U}{\mathrm{d}\,w} = \frac{\alpha\,\left(1\,-\,e\,e\right)\,\sin\,U}{\left(1\,-\,e\,e\,\cos\,w^{\,2}\right)\,\sin\,\omega}$$

$$\frac{\mathrm{dd}\,U}{\mathrm{d}\,w^{\,2}} = \frac{\alpha\,\left(1\,-\,e\,e\right)\,\sin\,U}{\left(1\,-\,e\,e\,\cos\,\omega^{\,2}\right)^{\,2}\,\sin\,\omega^{\,2}} \,\left\{\,\alpha\,\left(1\,-\,e\,e\right)\,\cos\,U\,-\,\cos\,\omega\,+\,e\,e\,\left(\cos\,\omega^{\,3}\,-\,2\,\cos\,\omega\,\sin\,\omega^{\,2}\right)\right\},$$

UNTERSUCHUNGEN ÜBER GEGENSTÄNDE DER HÖHERN GEODAESIE.

$$\frac{\mathrm{d}^{3}U}{\mathrm{d}w^{5}} = \frac{\alpha (1 - ee) \sin U}{(1 - ee \cos w^{2})^{3} \sin w^{3}} \left\{ \alpha \alpha (1 - ee)^{2} (\cos U^{2} - \sin U^{2}) - 3\alpha (1 - ee) \cos U (\cos w - ee (\cos w^{3} - 2\cos w \sin w^{2})) + 2\cos w^{2} + \sin w^{2} - ee (4\cos w^{4} - 2\sin w^{4}) + e^{4} (2\cos w^{6} - \cos w^{4} \sin w^{2} + 6\cos w^{2} \sin w^{4}) \right\}$$

Die beiden folgenden, welche ich gleichfalls entwickelt habe, setze ich um den Raum zu schonen in ihrer unbestimmten Form nicht hieher.

Die Substitution von $w = 90^{\circ} - P$, $U = 90^{\circ} - Q$ ergibt dann, wenn zugleich

anstatt α sin Q der Werth sin P, (nach Gleichung 10) und anstatt α cos Q der Werth $\frac{\cos P}{\cos \zeta \cos \eta} = \frac{\cos \theta \cos P}{\cos \varphi}$ (nach Gleichung 18, 16, 23) substituirt, und zur Abkürzung $\cos P = c$, sin P = s geschrieben wird,

$$\frac{d}{dw} = \frac{\cos \varphi}{\cos \theta}$$

$$\frac{d}{dw^2} = -\frac{3 e e \cos \varphi}{\cos \theta^5} \cdot cs$$

$$\frac{d^3 U}{dw^3} = \frac{e e \cos \varphi}{\cos \theta^5} (3 c c - 3 s s + e e (12 c c s s + 3 s^4))$$

$$\frac{d^4 U}{dw^4} = \frac{e e \cos \varphi}{\cos \theta^7} \cdot c s (16 - e e (49 c c - 13 s s) - e^4 (56 c c s s + 29 s^4))$$

$$\frac{d^5 U}{dw^5} = \frac{e e \cos \varphi}{\cos \theta^9} (-16 c c + 12 s s + e e (49 c^4 - 378 c c s s + 9 s^4) + e^4 (628 c^4 s s + 174 c c s^4 - 54 s^6) + e^6 (268 c^4 s^4 + 220 c c s^6 + 33 s^8)$$

Bei dieser Entwicklung von q in eine Reihe nach p ist stillschweigend vorausgesetzt, dass beide Grössen in Theilen des dem Halbmesser gleichen Bogens ausgedrückt sind: soll dagegen q Secunden und p Grade bedeuten, so muss dem ersten Gliede der Reihe der Factor 3600, dem zweiten der Factor $\frac{3600 \, \pi}{180} = 20 \, \pi$, dem dritten der Factor $3600 \left(\frac{\pi}{180}\right)^2 = \frac{1}{9} \, \pi \pi$ u.s. f. beigefügt werden. Unter dieser Voraussetzung gibt die Anwendung der For-

meln auf unser Beispiel folgende Zahlenwerthe, welche ich in eine solche Form setze, dass weitgestreckte Decimalbrüche vermieden werden:

$$q = 359556'' 69447 \cdot \frac{p}{100}$$

$$+ 3041,386524 \cdot \left(\frac{p}{100}\right)^{2}$$

$$- 946,260563 \cdot \left(\frac{p}{100}\right)^{3}$$

$$- 4135,396057 \cdot \left(\frac{p}{100}\right)^{4}$$

$$+ 227, 04342 \cdot \left(\frac{p}{100}\right)^{5}$$

welche Reihe, da p in der Anwendung nur wenige Einheiten betragen soll, immer sehr schnell convergirt. Um für die Richtigkeit dieser Zahlen eine Bestätigung zu erhalten, habe ich die Rechnung für p=-6 und für p=+6, d.'i. für

$$P + p = 46^{\circ} 42' 2'' 53251$$
 und für $P + p = 58 42 2, 53251$

sowohl nach der Reihe, als nach der endlichen Formel 3 ausgeführt. Die Reihe gibt

$$Q + q = 46^{\circ} 40' 37'' 69794$$

 $Q + q = 58 39 44,09285$

die endliche Formel hingegen

$$Q + q = 46 \circ 40' \ 37'' \ 69794$$

 $Q + q = 58 \ 39 \ 44, \ 09283$

also so genau übereinstimmend, wie zehnzifrige Logarithmen nur verstatten.

7.

Auf ähnliche Weise lässt sich der Logarithm von m in eine Reihe entwickeln, deren erste Glieder folgende sind:

$$\log m = -\frac{\sin 2 \varphi^{2}}{6 \cos \theta^{4}} \cdot csp^{3} - \frac{\sin 2 \varphi^{2}}{24 \cos \theta^{6}} (cc + 11 eess) p^{4}$$

$$+ \frac{\sin 2 \varphi^{2}}{120 \cos \theta^{8}} \cdot \frac{s}{c} (2 cc - 3 ss - ee (40 c^{4} - 20 ccss - 6 s^{4}) - e^{4} ss (104 c^{4} + 22 ccss + 3 s^{4})) p^{5}$$

Auch das folgende Glied habe ich (auf einem andern Wege) entwickelt, jedoch nur nach dem Hauptbestandtheile des Coefficienten, welcher von der Ordnung ee ist, und dafür gefunden:

$$+\frac{\sin 2\varphi^2}{720\cos\theta^{10}}\cdot\frac{1}{cc}\left(2c^4-18ccss-15s^4\right)p^6$$

Der durch diese Reihe ausgedrückte Logarithm ist der hyperbolische, und p wird, wie oben, in Theilen des Halbmessers ausgedrückt verstanden: verlangt man den briggischen Logarithmen, indem man p Grade bedeuten lässt, so muss noch der Modulus als Factor hinzukommen und $\frac{\pi p}{180}$ für p geschrieben werden. In dieser Gestalt wird für unser Beispiel

$$\log m = -0,0049612433 \left(\frac{p}{100}\right)^{5}$$

$$-0,0017329876 \left(\frac{p}{100}\right)^{4}$$

$$-0,002393772 \left(\frac{p}{100}\right)^{5}$$

$$-0,0124746 \left(\frac{p}{100}\right)^{6}$$

Die Anwendung dieser Reihe auf die oben betrachteten einzelnen Fälle gibt

für
$$p = -6$$
, $\log m = + 0,000001050448$
für $p = +6$, $\log m = -0,000001096531$

Die endliche Formel 4, welche man auch so schreiben kann

$$m = \frac{\alpha A \cos (Q + q) \sqrt{(1 - ee \sin (P + p)^2)}}{a \cos (P + p)}$$
$$= \frac{\cos \eta \cos (Q + q) \sqrt{(1 - ee \sin (P + p)^2)}}{\cos \theta \cos (P + p)}$$

gibt, mit zehnzifrigen Logarithmen berechnet, bis auf die zehnte Zifer genau dasselbe.

8

Für die umgekehrte Aufgabe, wo q gegeben und p gesucht wird, ist die Entwicklung in eine Reihe noch wesentlicher, da die endliche Formel 3 in diesem Falle nur auf indirectem Wege zum Ziele führen könnte. Der Taylorsche Lehrsatz gibt

$$p = \frac{\mathrm{d}\,\omega}{\mathrm{d}\,U} \cdot q - \frac{\mathrm{d}\,\mathrm{d}\,\omega}{2\,\mathrm{d}\,U^2} \cdot q\,q + \frac{\mathrm{d}^{\,3}\,\omega}{6\,\mathrm{d}\,U^{\,3}} \cdot q^{\,3} - \mathrm{u.\,s.\,f.}$$

wo für die Differentialquotienten diejenigen bestimmten Werthe zu setzen

sind, welche zu q=0 oder $U=90^{\circ}-Q$, $w=90^{\circ}-P$ gehören. Für die unbestimmten Werthe der drei ersten Differentialquotienten ergeben sich folgende Ausdrücke

$$\frac{d\,\omega}{d\,U} = \frac{(1\,-\,ee\,\cos\,\omega^2)\,\sin\,\omega}{\alpha\,(1\,-\,ee)\,\sin\,U},$$

$$\frac{d\,d\,\omega}{d\,U^2} = \frac{(1\,-\,ee\,\cos\,\omega^2)\,\sin\,\omega}{\alpha\,\alpha\,(1\,-\,ee)^2\,\sin\,U^2}\,(\alpha\,(1\,-\,ee)\,\cos\,U\,-\,\cos\,\omega\,+\,ee\,\cos\,\omega\,(\cos\,\omega^2\,-\,2\,\sin\,\omega^2))$$

$$\frac{d^3\,\omega}{d\,U^3} = \frac{(1\,-\,ee\,\cos\,\omega^2)\,\sin\,\omega}{\alpha^3\,(1\,-\,ee)^3\,\sin\,U^3}\,\left\{\,\alpha\,\alpha\,(1\,-\,ee)^2\,(\cos\,U^2\,+\,2\,\sin\,U^2)\right.$$

$$-\,3\,\alpha\,(1\,-\,ee)\,\cos\,U\,\cos\,\omega\,(1\,-\,ee\,(\cos\,\omega^2\,-\,2\,\sin\,\omega^2))$$

$$+\,\cos\,\omega^2\,-\,\sin\,\omega^2\,-\,ee\,(2\cos\,\omega^4\,-\,12\,\cos\,\omega^2\,\sin\,\omega^2\,+\,2\,\sin\,\omega^4)$$

$$+\,e^4\,(\cos\,\omega^6\,-\,11\,\cos\,\omega^4,\sin\,\omega^2\,+\,6\,\cos\,\omega^2\,\sin\,\omega^4)\,\right\}$$

Die beiden folgenden gleichfalls vollständig entwickelten Coëfficienten setze ich um den Raum zu schonen, nicht hieher, da sie doch nur Zwischengrössen sind, um zu den Endresultaten zu gelangen. Diese finden sich nach der Substitution von $90^{\circ} - P$, $90^{\circ} - Q$ anstatt w, U, und nach Anwendung der im 6 Art. angegebenen Umformung von α cos U und α sin U, indem zugleich zur Abkürzung c, s anstatt $\cos P$, $\sin P$ geschrieben wird, wie folgt:

$$p = \frac{\cos \theta}{\cos \varphi} \cdot q$$

$$-\frac{3 e e}{2 \cos \varphi^{2}} \cdot csqq \qquad (4 + \frac{1}{2} \cos \varphi^{3} \cos \theta) \left(-cc + ss + ee \left(5 \cos s - s^{4}\right)\right) q^{5}$$

$$+\frac{e e}{24 \cos \varphi^{4} \cos \theta^{2}} cs \left\{16 + ee \left(41 \cos - 77 ss\right) - e^{4} \left(101 \cos s - 61 s^{4}\right)\right\} q^{4}$$

$$+\frac{e e}{120 \cos \varphi^{5} \cos \theta^{5}} \left\{16 cc - 12 ss + ee \left(41 c^{4} - 522 \cos s + 81 s^{4}\right) - e^{4} \left(538 c^{4} ss - 1536 \cos^{4} + 126 s^{6}\right) + e^{6} \left(857 c^{4} s^{4} - 1030 \cos^{6} + 57 s^{8}\right)\right\} q^{5}$$

$$+ u. s. f.$$

Die numerischen Werthe für unser Beispiel finden sich daraus in ähnlicher Form wie oben, d. i. wenn p in Secunden, q in Graden ausgedrückt wird,

UNTERSUCHUNGEN ÜBER GEGENSTÄNDE DER HÖHERN GEODAESIE. 1

$$p = 360443'' 852122 \left(\frac{q}{100}\right)$$

$$- 3052, 649780 \left(\frac{q}{100}\right)^{2}$$

$$+ 1002, 642506 \left(\frac{q}{100}\right)^{3}$$

$$+ 4119, 589282 \left(\frac{q}{100}\right)^{4}$$

$$- 431, 181623 \left(\frac{q}{100}\right)^{5} \text{ u. s. f.}$$

9.

Auf ähnliche Weise ist der hyperbolische Logarithm von m in folgende nach Potenzen von q fortschreitende Reihe entwickelt, wobei der Coëfficient von q^6 nur nach seinem Haupttheile auf anderm Wege abgeleitet ist:

$$\log m = -\frac{2 e e}{3 \cos \varphi \cos \theta} \cdot csq^{3}$$

$$-\frac{e e}{6 \cos \varphi^{2} \cos \theta^{2}} \cdot cc (1 - 7 e e s s) q^{4}$$

$$+\frac{e e}{30 \cos \varphi^{3} \cos \theta^{3}} \cdot \frac{s}{c} \left\{ 2 c c - 3 s s + e e (20 c^{4} - 10 c c s s + 6 s^{4}) - e^{4} (59 c^{4} s s - 8 c c s^{4} + 3 s^{6}) \right\} q^{5}$$

$$+\frac{e e}{180 \cos \varphi^{4} \cos \theta^{4}} \cdot \frac{1}{c c} \left(2 c^{4} - 18 c c s s - 15 s^{4} \right) q^{6}$$

Die Zahlenwerthe in unserm Beispiele (für den briggischen Logarithmen, und q in Graden ausgedrückt), sind

$$\log m = -0.0049796163 \ 94 \left(\frac{q}{100}\right)^{3}$$

$$-0.0016150307 \ 6 \left(\frac{q}{100}\right)^{4}$$

$$-0.0023973954 \left(\frac{q}{100}\right)^{5}$$

$$-0.0125671 \left(\frac{q}{100}\right)^{6} \left(\frac{q}{100}\right)^{6}$$

10.

Bei einer weitumfassenden Vermessung, wo die Übertragung vom Sphäroid auf die Kugel oder umgekehrt für sehr viele Punkte vorkommt, wird man, anstatt jedesmal auf die Formeln zurückzukommen, lieber ein für allemahl eine ausgedehnte Tafel berechnen. Der Gebrauch einer solchen Tafel wird aber bequemer sein, wenn man ihr die Breite auf der Kugel Q+q zum Argument gibt, als wenn man die Breite auf dem Sphäroid dazu wählen wollte, indem der Übergang von ersterer auf die andere viel häufiger erfordert wird, als der umgekehrte. Für jeden Rechnungserfahrnen wird übrigens die Bemerkung überflüssig sein, dass man behuf Construction einer solchen Tafel nur eine mässige Anzahl von Gliedern direct berechnet, aus denen die übrigen mit eben so grosser Schärfe und sehr geringer Mühe durch ein angemessenes Interpolationsverfahren bestimmt werden. Es werden also dafür die im 8 und 9 Artikel mitgetheilten Reihen zur Anwendung kommen, und gerade deswegen ist es vortheilhaft, dass nicht P, sondern Q eine runde Zahl sei.

Ich füge am Schlusse dieser Abhandlung eine solche Täfel bei, welcher der Normalwerth $Q = 52^{\circ} 40'$ (wie dem bisher betrachteten Beispiele) zum Grunde liegt, und die durch zwölf Grade, von 460 40' bis 580 40', für alle Werthe des Arguments Q+q von Minute zu Minute fortschreitet. Sie giht den zugehörigen Werth von P+p auf fünf Decimalen der Secunde genau; ferner den briggischen Logarithmen von m auf zehn Stellen, nemlich in Einheiten der zehnten Decimale; endlich auch noch, in Secunden ausgedrückt, den Werth von $-\frac{\mathrm{d}\,m}{2\,m\,\mathrm{d}\,q}$; der Gebrauch dieser letzten Columne wird weiter unten erklärt werden. Ich habe die Tafel deshalb mit so vielen Decimalen gegeben, damit sie auch für die allerschärfste Berechnung einer trigonometrischen Vermessung, nemlich für eine Durchführung derselben mit zehnzifrigen Logarithmen, vollkommen zureiche. Jeder, der diese Tafel zur Berechnung von Messungen innerhalb dieser Zone benutzen will, wird, wenn eine geringere Schärfe ihm genügt (und diess ist allerdings der gewöhnlichste Fall) nach Gefallen einige der letzten Decimalen weglassen. In welcher Form man übrigens auch die Resultate einer Messung darstellen mag, so sollte diess, consequenter Weise, immer in einer Schärfe geschehen, die der Schärfe UNTERSUCHUNGEN ÜBER GEGENSTÄNDE DER HÖHERN GEODAESIE.

der Messungen selbst entsprechend ist, so dass man aus den Zahlen der Resultate immer rückwärts die beobachteten Grössen eben so scharf wieder finden kann, wie sie gemessen waren. Wählt man also dazu ausschliesslich die Längen und Breiten, so würde trigonometrischen Messungen selbst von nur mässiger Schärfe, durchaus nicht ihr Recht widerfahren, wenn man die Resultate nur in solcher Schärfe ansetzen wollte, wie Längen und Breiten sich auf astronomischem Wege bestimmen lassen: man würde dadurch nur einen falschen Maassstab für die Güte der Arbeit erhalten, und sich oft gerade der durchgreifendsten Prüfungen dieser Güte entäussern.

11.

Die Benutzung der hier betrachteten conformen Übertragung der Ellipsoidfläche auf die Kugelfläche zur Berechnung trigonometrischer Messungen kann auf mehr als Eine Art geschehen: in der gegenwärtigen Abhandlung wird nur von der unmittelbaren Benutzung die Rede sein; andere abgeleitete Arten, sie zu jenem Zwecke zu benutzen, sollen einer zweiten Abhandlung vorbehalten bleiben.

Die unmittelbare Benutzung ist im Wesentlichen schon in der ohen angeführten Schrift kurz angedeutet. Ein auf der Oberfläche des Ellipsoids durch kürzeste oder sogenannte geodätische Linien, gebildetes System von Dreiecken wird auf der Oberfläche der Kugel durch ein Dreieckssystem dargestellt, worin die Winkel den entsprechenden auf dem Sphäroid genau gleich sind, die Seiten hingegen, wenn sie nicht Meridianbögen sind, zwar nicht in aller Strenge Bögen grösster Kreise werden, aber doch von solchen so wenig abweichen, dass sie in den meisten Fählen als damit ganz zusammenfallend betrachtet werden dürfen, oder dass wenigstens die Abweichung, da, wo die grösste Genauigkeit gefordert wird, mit aller nöthigen Schärfe leicht berechnet werden kann, immer vorausgesetzt, dass

erstens die Dreiecke sich nicht gar zu weit von dem Normal-Parallelkreise entfernen, und

zweitens, dass sie vergleichungsweise, nemlich nach dem Verhältnisse der Seiten zu einem ganzen Erdquadranten, klein sind, wie bei wirklich messbaren Dreiecken immer der Fall ist.

Mathem. Classe. II.

Dieses genaue Anschmiegen der auf die Kugelfläche übertragenen Dreiecksseiten an Grösstekreisbögen findet nun bei der in Obigem betrachteten conformen Darstellung in noch viel höherm Grade Statt, als bei der a. a. O. vorgeschlagenen. VVo diese nach S. 24 bei einem Abstande von $2\frac{1}{2}$ Grad von dem Normal-Parallelkreise eine linearische Vergrösserung von $\frac{1}{530000}$ ergab, würde die neue Methode nur eine Aenderung von $\frac{1}{5800000}$ geben.

Man kann daher das ganze System, nachdem man zuvörderst eine Dreiecksseite auf die Kugelfläche gehörig übertragen hat, ganz so, als wenn es auf dieser selbst läge, vermittelst der Winkel berechnen, nöthigenfalls mit der eben angedeuteten Modification, sodann für alle Punkte die Werthe der Breiten und Längen bestimmen, und von diesen vermittelst der oben gegebenen Formeln, oder vielmehr was die Breiten betrifft, vermittelst einer solchen Hülfstafel, wie hier beigefügt ist, auf die Breiten und Längen auf der Ellipsoidfläche übergehen.

12.

Es bleibt demnach hier noch übrig, die Bestimmung der Abweichung einer auf die Kugelfläche übertragenen geodätischen Linie von dem zwischen denselben Endpunkten enthaltenen Grössten Kreisbogen zu entwickeln, wonach sich zugleich in jedem Falle beurtheilen lässt, ob die Berücksichtigung dieser Abweichung nöthig werde. Man kann diese Aufgabe auf mehr als eine Art behandeln: für den gegenwärtigen Zweck, wo die Reduction immer nur eine sehr kleine Grösse betragen kann, scheint folgende Methode die angemessenste zu sein.

Es sei L die in Rede stehende geodaetische Linie auf dem Ellipsoid in unbestimmter Ausdehnung betrachtet, M ihre conforme Darstellung auf der Kugelfläche, F und G die Endpunkte eines bestimmten Stückes von M, endlich N ein durch diese beiden Punkte geführter Grösster Kreis. Jeder Punkt in N werde bestimmt durch seinen Abstand x von einem zunächst willkürlich auf N gewählten Anfangspunkte; jeder Punkt von M durch seinen senkrechten Abstand y von N und durch das dem Fusspunkte dieses Perpendikels zukommende x. Diese Coordinaten sind als in Theilen des Halbmessers ausgedrückt verstanden, und müssen demnach noch multiplicirt werden mit A,

UNTERSUCHUNGEN ÜBER GEGENSTÄNDE DER HÖHERN GEODAESIE. 19 wenn man sie nach ihrer Lineargrösse, oder mit 206265", wenn man sie in Bogentheilen ausgedrückt verlangt.

Ein Element von M wird durch

$$\sqrt{(\cos y^2 dx^2 + dy^2)}$$

oder durch $\frac{\cos y}{\cos \psi}$. dx ausgedrückt, wenn man

$$\frac{\mathrm{d}y}{\cos y\,\mathrm{d}x} = \tan y$$

setzt, wo mithin ψ die Neigung des Elements gegen die Parallele mit N bedeutet. Um die Vorstellung zu fixiren, mag man sich die x von der Rechten nach der Linken, die y von unten nach oben wachsend denken, wodurch also der Sinn positiver ψ von selbst bestimmt ist.

Das wie oben mit m bezeichnete Vergrösserungsverhältniss beim Übertragen der ellipsoidischen Fläche auf die Kugelfläche kann hier wie eine Function von x und y betrachtet werden: die Grösse des Elements von L, dem jenes Element von M entspricht, wird

$$= \frac{A \cos y}{m \cos \psi} \cdot dx$$

sein, und wenn zur Abkürzung

$$\log \tan \left(45^{\,0} + \frac{1}{2}\,y\right) = u$$

$$\frac{\cos y}{m} = u$$

gesetzt wird, wo mithin n gleichfalls Function von x und y, oder was auf Eines hinausläuft, von x und u sein wird, so hat man

$$\tan \psi = \frac{\mathrm{d}\,u}{\mathrm{d}\,x}$$

und das Element von L

$$= \frac{A n}{\cos \psi} \cdot dx$$

Die Natur der Linie M wird also durch die Bedingung bestimmt, dass zwischen irgendwelchen bestimmten Grenzen das Integral $\int_{\cos w}^{n} dx$ oder

$$\int_n \sqrt{\left(1+\frac{\mathrm{d}\,u^2}{\mathrm{d}\,x^2}\right)}\,\mathrm{d}x$$

ein Minimum werden soll, wofür nach den Regeln der Variationsrechnung sich die Gleichung ergibt

$$\frac{\mathrm{d}n}{\mathrm{d}u} \cdot \sqrt{\left(1 + \frac{\mathrm{d}u^2}{\mathrm{d}x|^2}\right)} \, \mathrm{d}x = \mathrm{d} \frac{\frac{n \, \mathrm{d}u}{\mathrm{d}x}}{\sqrt{\left(1 + \frac{\mathrm{d}u^2}{\mathrm{d}x^2}\right)}}$$

oder

$$\frac{\mathrm{d}\,n}{\mathrm{d}\,u}\,\cdot\,\frac{\mathrm{d}\,x}{\cos\,\psi}\,=\,\mathrm{d}\,\cdot\,n\,\sin\,\psi$$

Unter $\frac{\mathrm{d}n}{\mathrm{d}u}$ ist hier der partielle Differentialquotient verstanden. Diese Formel ist strenge und allgemeingültig. Für unsern Zweck aber, wo bloss das zwischen F und G liegende Stück der Curve M in Betracht kommt, in deren sämmtlichen Punkten u und ψ nur sehr kleine VVerthe haben können, dürfen wir 1 anstatt $\cos \psi$ und tang ψ anstatt $\sin \psi$ schreiben, mithin

$$\frac{\mathrm{d}\,n}{\mathrm{d}\,u}\,.\,\,\mathrm{d}\,x=\mathrm{d}\,.\,\,n\mathrm{tang}\,\psi$$

oder

$$n \tan \psi = \int \frac{\mathrm{d}n}{\mathrm{d}u} \, \mathrm{d}x + \text{Const.}$$

setzen, zugleich aber auch in dieser Formel anstatt der Werthe, welche n und $\frac{\mathrm{d}n}{\mathrm{d}u}$ in der Linie M haben, diejenigen anwenden, welche in den correspondirenden Punkten der Linie N (für u=0 oder y=0) Statt finden, und folglich mit den Werthen von $\frac{1}{m}$ und $\frac{\mathrm{d}m}{mm\ \mathrm{d}u}=\frac{\mathrm{d}m}{mm\ \mathrm{d}y}$ übereinstimmen.

Zur bequemern Ausführung der weitern Entwicklungen sollen jetzt die Abscissen von dem Punkte F' an gezählt, oder in diesem Punkte x=0, in G hingegen x=h gesetzt werden; ich setze ferner $\frac{\mathrm{d}\,m}{m\,\mathrm{d}\,y}=l$, welches im Allgemeinen zwar Function von x und y ist, hier aber bloss nach seinem in der Linie N oder für y=0 geltenden Werthe, also als Function von x allein betrachtet wird; endlich seien ψ^0 , m^0 , l^0 , die bestimmten Werthe von ψ , m, l in dem Punkte F, und ψ' , m', l' die in dem Punkte G. Die obige Formel wird hienach

$$\tan \psi = \frac{m \, \tan \psi^0}{m^0} - m \int \frac{l}{m} \, \mathrm{d}x$$

wo die Integration von x = 0 anfängt. Nehmen wir nun an, dass l und m in folgende nach Potenzen von x fortschreitende Reihen

$$l = l^0 + \lambda x + \lambda' x x + u. s. w.$$

 $m = m^0 (1 + \mu x + \mu' x x + u. s. w.)$

entwickelt sind, so ergibt die Rechnung

tang
$$\psi = (1 + \mu x + \mu' x x + u. s. w.) tang \psi^{0}$$

$$-l^{0}x - \frac{1}{2}(\lambda + l^{0}\mu) xx - (\frac{1}{3}\lambda' + \frac{1}{6}\lambda\mu - \frac{1}{6}l^{0}\mu\mu + \frac{2}{3}l^{0}\mu') x^{5} - u. s. w.$$

und hieraus, weil $u = \int \tan y \, dx$

$$u = (x + \frac{1}{2} \mu xx + \frac{1}{3} \mu' x^{3} + u. s. w.) \tan \psi^{0}$$

$$-\frac{1}{3}l^{0}xx-\frac{1}{6}(\lambda+l^{0}\mu)x^{3}-(\frac{1}{12}\lambda'+\frac{1}{24}\lambda\mu-\frac{1}{24}l^{0}\mu\mu+\frac{1}{6}l^{0}\mu')x^{4}-\text{u. 6. w.}$$

wo keine Constante hinzuzufügen ist, weil für x = 0 auch u = 0 wird. Da nun auch für x = h, u = 0 wird, so folgt aus dieser Gleichung

tang
$$\psi^0 = \frac{1}{2} l^0 h + (\frac{1}{6} \lambda - \frac{1}{12} l^0 \mu) h h + (\frac{1}{12} \lambda' - \frac{1}{24} \lambda \mu) h^3 + \text{u.s. w.}$$

Wird in der Gleichung für ψ auch anstatt x der Werth h, und statt tang ψ ° der eben gefundene substituirt, so ergibt sich

tang
$$\psi' = -\frac{1}{2} l^0 h - (\frac{1}{3} \lambda + \frac{1}{12} l^0 \mu) h h - (\frac{1}{4} \lambda' + \frac{1}{24} \lambda \mu - \frac{1}{12} l^0 \mu \mu + \frac{1}{6} l^0 \mu') h^5$$
 u.s.w. Da

$$l' = l^0 + \lambda h + \lambda' h h + u. s. w.$$

$$m' = m^0 (1 + \mu h + \mu' h h + u. s. w.)$$

so wird

$$(\frac{1}{5}l^{0} + \frac{1}{6}l')h\sqrt[6]{\frac{m^{0}}{m'}} = \frac{1}{2}l^{0}h + (\frac{1}{6}\lambda - \frac{1}{12}l^{0}\mu)hh + (\frac{1}{6}\lambda' - \frac{1}{86}\lambda\mu + \frac{7}{144}l^{0}\mu\mu - \frac{1}{12}l^{0}\mu')h^{5} \text{ u. s. w.}$$

$$-\left(\frac{1}{6}l^{0}+\frac{1}{3}l'\right)h\sqrt[6]{\frac{m'}{m^{0}}}=-\frac{1}{2}l^{0}h-\left(\frac{1}{8}\lambda+\frac{1}{12}l^{0}\mu\right)hh-\left(\frac{1}{8}\lambda'+\frac{1}{18}\lambda\mu-\frac{5}{144}l^{0}\mu\mu\right)+\frac{1}{12}l^{0}\mu'\right)h^{5}\text{ u. s. w.}$$

also in den beiden ersten Gliedern oder bis auf die Ordnung hh mit obigen Werthen von tang ψ^0 , tang ψ' übereinstimmend: diese bequemen Ausdrücke können daher als hinreichend scharfe Werthe dieser Tangenten, oder unter Hinzufügung des Factors 206265" als die Werthe der Winkel ψ^0 , ψ' selbst angenommen werden.

Die Länge der Linie L selbst, zwischen den Punkten auf dem Ellipsoid. denen auf der Kugel die Punkte F, G entsprechen, ist das Integral

$$A \int \frac{\cos y}{m \cos \psi} \, \mathrm{d} x$$

von x = 0 bis x = h ausgedehnt; es wird aber immer erlaubt sein, darin sowohl $\cos y$ als $\cos \psi = 1$ zu setzen, und für m denjenigen Werth, welcher in der Linie M oder für y = 0 gilt, wodurch also das Integral

$$= A \int \frac{\mathrm{d} x}{m^0 (1 + \mu x + \mu' x + \mathbf{u.s.w.})}$$

$$= \frac{A}{m^0} (h - \frac{1}{2}\mu h h + (\frac{1}{3}\mu \mu - \frac{1}{3}\mu') h^5 - \text{u.s.w.})$$

wird. Es ist immer zureichend, den bis auf die Ordnung hh damit übereinstimmenden Werth

$$\frac{Ah}{\sqrt{m^0m'}}$$

dafür anzunehmen.

13.

Die Bestimmung der Grössen l^0 , l' geschieht auf folgende Weise. Es sei \varkappa der Winkel, welchen an irgend einer Stelle des Grössten Kreisbogens N dieser in dem Sinne wachsender \varkappa mit dem Meridian in dem Sinne von Norden nach Süden genommen macht, den VVinkel von diesem zu jenem in dem Sinne von der Linken nach der Rechten gezählt; es sei ferner S die Breite an jener Stelle, T die Länge von einem beliebigen Meridian an ostwärts gerechnet. Man hat dann daselbst

$$dS = -\cos\chi \cdot dx + \sin\chi \cdot dy$$

$$dT = -\frac{\sin\chi}{\cos S} dx - \frac{\cos\chi}{\cos S} dy$$

und folglich den partiellen Differentialquotienten.

$$\frac{\mathrm{d}m}{m\,\mathrm{d}y} = \sin\chi \cdot \frac{\mathrm{d}m}{m\,\mathrm{d}S} - \frac{\cos\chi}{\cos S} \cdot \frac{\mathrm{d}m}{m\,\mathrm{d}T}$$

Da nun bei unserer conformen Übertragung m von der Länge unabhängig oder $\frac{\mathrm{d}\,m}{m\,\mathrm{d}\,T}=0$ ist, so wird

$$l = \sin \chi \cdot \frac{\mathrm{d}m}{m \, \mathrm{d}S}$$

Bezeichnet man die Werthe von χ in den Punkten F und G mit V^0 und $180^0 + V'$ (so dass nach gewöhnlichem Sprachgebrauche V^0 das Azimuth des Grössten Kreisbogens FG in F, und V' das Azimuth des Grössten Kreisbogens GF in G bedeutet); imgleichen die (immer negativen) Werthe von $\frac{206265'' \text{ d}m}{2m \text{ d}S}$ in denselben Punkten mit $-k^0$, -k', so wird

$$206265'' \ l^0 = -2 k^0 \sin V^0$$
$$206265'' \ l' = +2 k' \sin V'$$

Die im vorhergehenden Artikel gegebenen Ausdrücke für ψ^0 , ψ' , in Secunden verwandelt, werden daher, wenn man die von der Einheit hier nur unmerklich abweichenden Factoren $\sqrt[6]{\frac{m^0}{m'}}$, $\sqrt[6]{\frac{m'}{m^0}}$ weglässt,

$$\psi^{0} = -\frac{1}{3}h \left(2k^{0} \sin V^{0} - k' \sin V'\right)$$

$$\psi' = -\frac{1}{3}h \left(2k' \sin V' - k^{0} \sin V^{0}\right)$$

Die dieser Abhandlung beigefügte Tafel gibt in der letzten Columne unter der Überschrift k die Werthe von k^0 , k' für die entsprechenden Werthe von S, die in der ersten Columne unter der Überschrift Q+q aufzusuchen sind; da k immer positiv ist, und $\sin V^0$, $\sin V'$ immer entgegengesetzte Zeichen haben, so wird ψ^0 negativ, ψ' positiv, wenn G westlich von F liegt und umgekehrt: bei der Berechnung erinnere man sich, dass in diesen Formeln h als in Theilen des Halbmessers ausgedrückt verstanden wird, also der in irgend einem Längenmaasse gegebene Abstand der Punkte F, G zuvor mit dem in gleichem Maasse ausgedrückten Werthe von A zu dividiren ist.

Da in unserer conformen Übertragung der Ellipsoidfläche auf die Kugelfläche ein Meridian auf jener wiederum durch einen Meridian auf dieser dargestellt wird, so ist klar, dass jedes Element von L dieselbe Neigung gegen
den Meridian hat wie das entsprechende Element von M, und dass folglich
die Azimuthe der geodätischen Linie in ihren beiden Endpunkten resp. $V^0 + \psi^0$ und $V' + \psi'$ sein werden: sind aber umgekehrt diese gegeben, so werden
sie auf die Kugelfläche reducirt durch Anbringung von $-\psi^0$, $-\psi'$, und
für die Berechnung dieser stets fast ganz verschwindenden Reductionen ist es
offenbar ganz gleichgültig, wenn man in den obigen Formeln anstatt V^0 , V'die Azimuthe auf dem Ellipsoid anwendet.

14.

Um nach den gegebenen Vorschriften die Reductionen der Richtungen, behuf der Übertragung vom Ellipsoid auf die Kugel oder umgekehrt, berechnen zu können, ist zwar eine genäherte Kenntniss der Grösse der Linien, der orientirten Azimuthe, und der Breiten der Endpunkte erforderlich, was nur durch eine vorläufige Berechnung der Dreiecke zu erhalten ist: allein dieser Umstand ist durchaus unerheblich, da eine vorläufige schon die Ausführung der Messungen Schritt für Schritt begleitende Berechnung ohnehin in vielen Beziehungen räthlich, und zur Centrirung der excentrisch gemessenen Winkel, so wie zur Bestimmung des sphärischen oder sphäroidischen Excesses der Winkelsumme jedes Dreiecks sogar nothwendig ist: ja für den ersten Zweck wird, bei der Geringfügigkeit jener Reductionen, schon eine ganz rohe Annäherung immer zureichen, während das scharfe Centriren zuweilen, bei etwas beträchtlicher Excentricität der Standpunkte eine viel weiter getriebene Annäherung Ich habe die Vorschriften deshalb entwickelt, damit man, wenn man jene Reductionen berücksichtigen will, alles zu ihrer schärfsten Berechnung nöthige bereit finde, oder wenn man sie nicht berücksichtigen will, leicht und bestimmt übersehen könne, wie wenigeman dadurch aufopfert. Bei dem ganzen Hannoverschen Dreieckssystem sind die Reductionen durchgehends so äusserst gering, dass ihre Berücksichtigung als gänzlich überflüssig erscheint, und in der ganzen Ausdehnung der Zone von zwölf Breitengraden, für welche ich den Hülfsapparat beifüge; bleiben sie noch unterhalb derjenigen Bogensecundentheile, auf welche man sich bei den meisten Messungen in der Rechnung zu beschränken pflegt. Um diess recht evident hervortreten zu lassen, füge ich hier noch die numerische Rechnung für ein Paar Beispiele bei.

In dem Hannoverschen Dreieckssystem kommen die grössten Reductionen vor bei den Richtungen der Seiten des Dreiecks Brocken-Hohehagen-Inselsberg, welches Dreieck zugleich das grösste und das von dem Normal-Parallelkreise am entferntesten liegende ist; bei allen übrigen Dreiecksseiten überschreiten die Reductionen nirgends zwei Tausendtheile der Secunde, und die meisten erreichen nicht einmahl den Werth 0"001.

Es ist für diese Punkte

Breite

ļ	auf dem Ellipsoid	auf der Kugel	k
Brocken	510 48' 2"	51 0 46' 3"	0"164
Hohehagen	51 28 31	51 26 35	0, 303
Inselsberg	50 51 9	50 49 16	0, 687

Die Logarithmen der Seiten des Dreiecks in Toisen sind

Hohehagen-Inselsberg 4,6393865 Inselsberg-Brocken 4,7353929 Brocken-Hohehagen 4,5502669

Die Azimuthe sind

Standpunkt Brocken

Inselsberg 5° 42′ 22″ Hohehagen 58 49 8

Standpunkt Hohehagen

Brocken 238 9 2 Inselsberg 324 23 1

· Standpunkt Inselsberg

Hohehagen 144 55 51

Brocken 185 35 21

Man braucht hiebei zwischen Werthen auf dem Sphaeroid und denen auf der Kugel nicht zu unterscheiden, da für die Logarithmen der Abstände erst in der achten oder neunten Decimale, für die Azimuthe erst in den Tausendtheilen der Secunde Ungleichheit eintritt, und für unsern Zweck Logarithmen mit vier Decimalen und Azimuthe in Minuten schon überflüssig genau sind. Die Rechnung nach obigen Formeln gibt hiermit folgende Reductionen, wie sie mit ihren Zeichen zu den Azimuthen auf dem Sphaeroid addirt werden müssen, um die Azimuthe auf der Kugel zu erhalten:

Brocken - Inselsberg + 0"00055 Brocken - Hohehagen + 0, 00196 Hohehagen - Brocken - 0, 00238 Hohehagen - Inselsberg - 0, 00332 Inselsberg - Hohehagen + 0, 00428 Inselsberg - Brocken - 0, 00083

Mathem. Classe. II.

Die Winkel des Dreiecks auf dem Sphaeroid (zwischen den geodätischen Linien) empfangen also zur Reduction auf die Winkel des Kugeldreiecks (zwischen Grösstenkreisbögen) die Aenderungen

> Brocken + 0"00141 Hohehagen - 0, 00094 Inselsberg - 0, 00511

Ein zweites Beispiel entlehne ich aus der trigonometrischen Vermessung der Schweiz*), wo das grösste Hauptdreieck zwischen den Punkten Chasseral, Suchet, Berra eben an die Grenze der Ausdehnung unserer Hülfstafel fällt. Wir haben für diese Punkte

Breite

	auf dem Ellipsoid	auf der Kugel	k
Chasseral	470 8' 1"	470 6' 33"	6"137
Suchet	46 46 23	46 44 57	6, 948
${f Berra}$	46 40 36	46 39 11	7, 173

Die Logarithmen der Dreiecksseiten in Metern sind

 Suchet-Berra
 4,7474503

 Berra-Chasseral
 4,7133766

 Chasseral-Suchet
 4,7808768

Die Azimuthe

Standpunkt Chasseral 480 36' 41" Suchet Berra 349 21 54 Standpunkt Suchet Chasseral 228 10 40 280 Berra 47 19 Standpunkt Berra Suchet 101 40 18 Chasseral 169 27 22

Hieraus ergeben sich die Reductionen der Sphaeroid-Azimuthe auf die Kugel-Azimuthe

^{*)} Ergebnisse der trigonometrischen Vermessungen in der Schweiz, herausgegeben von J. Eschmann. Zürich 1840. S. 79. 99. 189. 190. 196.

UNTERSUCHUNGEN ÜBER GEGENSTÄNDE DER HÖHERN GEODAESIE. 27

Chasseral - Suchet + 0"04536
Chasseral - Berra - 0, 00966
Suchet - Chasseral + 0, 06221
Suchet - Berra + 0, 01014
Berra - Suchet - 0, 04717
Berra - Chasseral - 0, 06039

also auch hier ohne Einfluss auf die Rechnung, die in dem angeführten Werke auf Zehntel der Secunde geführt ist.

15.

Die in den Artt. 12 und 13 behandelte Aufgabe ist zwar durch die gegebenen Vorschriften mit einer für die Auwendung überflüssig ausreichenden Genauigkeit aufgelöset; indessen ist es doch der Mühe werth, und zur gleichmässigen Vollendung einer in der Folge mitzutheilenden Untersuchung sogar nothwendig, für einen speciellen Fall die Genauigkeit noch um eine Ordnung weiter zu treiben: dieser specielle Fall steht unter der Bedingung, dass die Linie N in einem zwischen F und G liegenden Punkte H den Normalparallelkreis treffe. Es ist in diesem Falle vortheilhafter, den Anfangspunkt der x, nicht wie oben in F, sondern in H zu setzen, wodurch bewirkt wird, dass bei der Entwicklung von l und m in nach Potenzen von x fortschreitende Reihen in der erstern das erste und zweite Glied, in der andern das zweite und dritte ausfallen, oder dass sie folgende Form haben:

$$l = \lambda xx + \lambda' x^3 + \text{u. s. w.}$$

 $m = 1 + \mu x^3 + \mu' x^4 + \text{u. s. w.}$

Für unsern Zweck wird von den Coëfficienten in diesen Reihen nur der eine λ erforderlich sein, wofür sich aus der im 9 Art. für log m gegebenen Formel verbunden mit den Entwicklungen des 13 Art. leicht folgender Ausdruck ableiten lässt:

$$\lambda = -\frac{2 e e \cos P \sin P \sin \chi \cos \chi^2}{\cos \varphi \cos \theta}$$

in welcher e, P, φ , θ ihre oben erklärten Bedeutungen behalten, und für \varkappa das in dem Punkte H Statt findende Azimuth des Bogens N zu setzen ist.

Werden obige Reihen bei der Integration der Gleichungen

$$d \cdot \frac{\tan y}{m} = -\frac{l d x}{m}$$

$$d u = \tan y \cdot d x$$

angewandt, so ergibt sich

tang
$$\psi = \mathcal{U} \left(1 + \mu x^5 + \mu' x^4 + \text{u. s. w.} \right) - \frac{1}{3} \lambda x^3 - \frac{1}{4} \lambda' x^4 - \text{u. s. w.}$$

 $u = \mathfrak{B} + \mathcal{U} \left(x + \frac{1}{4} \mu x^4 + \frac{1}{5} \mu' x^5 + \text{u. s. w.} \right) - \frac{1}{12} \lambda x^4 - \frac{1}{20} \lambda' x^5 - \text{u. s. w.}$

Die durch die Integration eingeführten Constanten, \mathfrak{X} , \mathfrak{B} , lassen sich durch die Bedingung bestimmen, dass u=0 werden muss für die beiden Werthe von x, welche den Punkten F, G entsprechen. Es seien diese Werthe $x=-\frac{1}{2}$ $(h-\delta)$ und $x=+\frac{1}{2}$ $(h+\delta)$, wo δ den Werth von 2x in dem mitten zwischen F und G liegenden Punkte ausdrückt, und allgemein zu reden eine Grösse von derselben Ordnung wie h ist, oder von einer höhern, wenn H dieser Mitte sehr nahe liegt. Man leitet hieraus leicht folgenden auf die Ordnung h^3 (einschl.) genauen Ausdruck für $\mathfrak X$ ab

$$\mathfrak{A} = \frac{\lambda \left((h + \delta)^4 - (h - \delta)^4 \right)}{192 h} = \frac{1}{24} \lambda \delta \left(hh + \delta \delta \right)$$

Substituirt man diesen in der Reihe für tang ψ , und legt dann der Veränderlichen x die bestimmten VVerthe $-\frac{1}{2}(h-\delta)$, $+\frac{1}{2}(h+\delta)$ bei, so ergibt sich, gleichfalls auf die dritte Ordnung genau,

tang
$$\psi^0 = \frac{1}{24} \lambda h \ (hh - 2h\delta + 3\delta\delta)$$

tang $\psi' = -\frac{1}{24} \lambda h \ (hh - 2h\delta + 3\delta\delta)$

In dem speciellen Fall der in der Folge zu entwickelnden Untersuchung kommt übrigens zu der oben bezeichneten Bedingung noch der Umstand hinzu, dass der Normalparallelkreis mitten inne liegt zwischen den beiden Parallelkreisen, auf welchen sich die Punkte F, G befinden, und in Folge dieses Umstandes werden schon die abgekürzten Ausdrücke.

tang
$$\psi^0 = \frac{1}{24} \lambda h^3$$

tang $\psi' = -\frac{1}{24} \lambda h^3$

auf die dritte Ordnung genau sein, wie sich leicht auf folgende Art zeigen lässt. Bezeichnet man die Breite von F mit Q+q, die von G mit Q-q, so geben die sphaerischen Dreiecke F, H, Pol und G, H, Pol die Gleichungen

$$\sin (Q + q) = \sin Q \cos \frac{1}{2} (h - \delta) + \cos Q \sin \frac{1}{2} (h - \delta) \cos \chi$$

$$\sin (Q - q) = \sin Q \cos \frac{1}{2} (h + \delta) - \cos Q \sin \frac{1}{2} (h + \delta) \cos \chi$$

UNTERSUCHUNGEN ÜBER GEGENSTÄNDE DER HÖHERN GEODAESIE.

und ihre Summe mit 2 cos Q dividirt

tang Q $(\cos q - \cos \frac{1}{2} h \cdot \cos \frac{1}{2} \delta) = -\cos \frac{1}{2} h \sin \frac{1}{2} \delta \cos \chi$

Da nun offenbar $\cos q - \cos \frac{1}{2}h \cdot \cos \frac{1}{2}\delta$ eine Grösse zweiter Ordnung ist, so wird auch $\sin \frac{1}{2}\delta \cos \chi$, und $\delta \cos \chi$ von dieser Ordnung sein, mithin, da λ den Factor $\cos \chi^2$ implicirt, $\lambda hh\delta$ von der vierten, und $\lambda h\delta\delta$ von der fünften Ordnung; hiedurch ist also die Weglassung dieser Glieder gerechtfertigt.

Das Endresultat dieser Entwickelung ist demnach, unter der angegebenen Voraussetzung, in folgenden Formeln enthalten, wo anstatt der Tangenten von ψ^0 , ψ' die Bögen selbst geschrieben sind:

$$\psi^{\circ} = -\frac{ee \cos P \sin P \sin \chi \cos \chi^{2} h^{3}}{12 \cos \varphi \cos \theta}$$

$$\psi' = +\frac{ee \cos P \sin P \sin \chi \cos \chi^{2} h^{3}}{12 \cos \varphi \cos \theta}$$

16.

Die Berechnung des Dreieckssystems auf der Kugel zerfällt in die drei Hauptstücke:

- 1) die Ausgleichung der Winkel nach allen den Bedingungsgleichungen, welche die Beschaffenheit des Systems darbietet.
- 2) die Berechnung der sämmtlichen Dreiecksseiten.
- 3) die Bestimmung der Längen und Breiten der Dreieckspunkte, in Verbindung mit der Orientirung der von jedem derselben ausgehenden Dreiecksseiten.

Die Verwandlung der Längen und Breiten auf der Kugel in die wahren Längen und Breiten auf dem Sphaeroid geschieht dann für die Längen durch die Division mit dem constanten Divisor a, für die Breiten vermittelst der hier beigefügten Hülfstafel, oder einer andern auf ähnliche Weise besonders construirten, wenn man einen andern Normal-Parallelkreis zu wählen Ursache hat.

Mit Übergehung der beiden ersten auf bekannten Gründen beruhenden Geschäfte füge ich hier noch einiges in Beziehung auf das dritte bei, welches sich auf die Auflösung der Aufgabe reducirt*): aus der in Bogentheilen

^{*)} Da diese Aufgabe hier wie eine für sich bestehende betrachtet wird, so können ohne Nachtheil einige Buchstaben hier in anderer Bedeutung als oben gebraucht werden.

ausgedrückten Grösse einer Dreiecksseite r, ihrem Azimuthe T an dem Anfangspunkte, und der Breite dieses Anfangspunkts S, abzuleiten das Azimuth der Seite an dem andern Endpunkte $T' = 180^{\circ}$, die Breite desselben S' und den Längenunterschied beider Punkte λ . Da dies nichts weiter ist als die Auflösung eines sphärischen Dreiecks, so verdient diese Aufgabe nur deshalb hier einen Platz, weil die gewöhnlich gebrauchten Formeln hier einiger Umformung bedürfen, wenn man in den Resultaten (nach der Bemerkung im 10 Art.) dieselbe Genauigkeit erreichen will, in welcher r gegeben ist, ohne mehrzifrige Logarithmen zu Hülfe zu nehmen. Um unter den verschiedenen Auflösungsarten nach jedesmaligem Bedürfniss wählen zu können, setze ich zuvörderst diejenigen hieher, die auf den bekannten elementaren Formeln der sphärischen Trigonometrie beruhen.

Erste Methode

tang
$$s = \cos T \tan g r$$

tang $\lambda = \frac{\tan g T \sin s}{\cos (S - s)}$
tang $S' = \cos \lambda \tan g (S - s)$
 $\sin T' = \frac{\sin T \cos S}{\cos S'}$

Zweite Methode

$$\tan R = \frac{\tan S}{\cos T}$$

$$\tan T' = \frac{\tan T \cos R}{\cos (R - r)}$$

$$\tan S' = \cos T' \cdot \tan (R - r)$$

$$\sin \lambda = \frac{\sin r \sin T}{\cos S'} = \frac{\sin r \sin T'}{\cos S}$$

Dritte Methode

In Beziehung auf die Kürze der Rechnung hat die dritte Methode einigen Vorzug vor den beiden andern, während diese im Allgemeinen die Re-

sultate ein wenig schärser geben können, namentlich λ immer mit völlig genügender Schärse: T' wird aber, wenn es einem rechten Winkel nahe kommt, durch die erste Methode vergleichungsweise nur ungenau bestimmt. Verlangt man aber alle drei Resultate mit gleichmässiger und, aus dem Gesichtspunkte des 10 Art. betrachtet, zureichender Schärse, so ist zu einer directen strengen Auslösung solgende Umformung am vortheilhastesten, wobei die beiden ersten Formeln dieselben bleiben, wie in der ersten Methode.

Vierte Methode

tang
$$s = \cos T \tan g r$$

tang $\lambda = \frac{\tan g T \sin s}{\cos (S - s)}$
tang $t = \sin T \sin r \tan g (S - s)$
 $\sin x = \sin T \tan g \frac{1}{2} r \sin s$
 $\sin \sigma = \tan g t \tan g \frac{1}{2} \lambda \cos (S - s)$
 $S' = S - s - \sigma$
 $T' = T - t - \pi$

Diese vierte Methode lässt für die Schärfe nichts zu wünschen übrig; aber die unmittelbar in dieser Form geführte Rechnung erfordert ein etwas beschwerliches Interpoliren bei Bestimmung der kleinen Bögen durch die Logarithmen der Tangenten oder Sinus: man kann jedoch diesem Übelstande leicht ausweichen, indem man die trigonometrischen Functionen in Reihen entwickelt, wodurch man in den Stand gesetzt wird, ohne Nachtheil für die Schärfe, die Rechnungen vermittelst der Logarithmen der Zahlen zu führen. Es wird zureichend sein, von dieser Verwandlung nur die Hauptmomente hieher zu setzen.

Es' sei

$$r \cos T = s^0$$

$$r \sin T = s^0$$

Es wird dann, wenn zur Abkürzung die Grösse des Bogens von einer Secunde in Theilen des Halbmessers oder der Bruch $\frac{75}{648000}$ durch ρ bezeichnet und r wie eine Grösse erster Ordnung betrachtet wird, bis auf Grössen fünfter Ordnung (ausschliesslich) genau

$$s = s^{0} \cdot (1 + \frac{1}{3} \varrho \varrho rr - \frac{1}{3} \varrho \varrho s^{0} s^{0}) = s^{0} \cdot (1 + \frac{1}{3} \varrho \varrho \rho \rho)$$

Setzt man dann ferner

$$v \tan (S - s) = t^{0}$$

$$\frac{v}{\cos (S - s)} = \lambda^{0}$$

so wird

$$t = t^{0} (1 - \frac{1}{6} \varrho \varrho rr - \frac{1}{8} \varrho \varrho t^{0} t^{0})$$

$$\lambda = \lambda^{0} (1 - \frac{1}{6} \varrho \varrho s^{0} s^{0} - \frac{1}{3} \varrho \varrho t^{0} t^{0})$$

$$\sigma = \frac{1}{2} \varrho v t^{0} (1 - \frac{1}{12} \varrho \varrho rr - \frac{1}{4} \varrho \varrho s^{0} s^{0} - \frac{1}{4} \varrho \varrho t^{0} t^{0})$$

$$\tau = \frac{1}{2} \varrho v s^{0} (1 + \frac{5}{12} \varrho \varrho rr - \frac{1}{2} \varrho \varrho s^{0} s^{0})$$

für t und λ auf die fünste, für σ und τ auf die sechste Ordnung (ausschl.) genau. Noch bequemer und eben so genau ist es, hiebei sogleich die Logarithmen zu gebrauchen, wodurch die Formeln, wenn man zur Abkürzung das Product der Grösse $\frac{1}{12} gg$ in den Modulus der briggischen Logarithmen mit μ bezeichnet, folgende Gestalt erhalten:

$$\begin{array}{l} \log s = \log s^{0} + 4 \, \mu \, rr - 4 \, \mu \, s^{0} s^{0} \\ \log t = \log t^{0} - 2 \, \mu \, rr - 4 \, \mu \, t^{0} t^{0} \\ \log \lambda = \log \lambda^{0} - 2 \, \mu \, s^{0} s^{0} - 4 \, \mu \, t^{0} t^{0} \\ \log \sigma = \log \frac{1}{2} \varrho \sigma t^{0} - \mu \, rr - 3 \, \mu \, s^{0} s^{0} - 3 \, \mu \, t^{0} t^{0} \\ \log \sigma = \log \frac{1}{2} \varrho \sigma s^{0} + 5 \, \mu \, rr - 6 \, \mu \, s^{0} s^{0} \end{array}$$

Diese fünf Formeln in Verbindung mit den vorhergehenden für s^0 , t^0 , λ^0 bilden eine fünfte Auflösungsart, deren eigenthümliches es ist, dass genäherte VVerthe der Grössen s, t, λ , σ , τ durch kleine sehr leicht zu berechnende an den Logarithmen anzubringende Correctionen zu scharfen erhoben werden. Die hiebei vorkommenden geonstanten Logarithmen sind

log
$$\varrho = 4,6855748668$$
 (— 10)
log $\frac{1}{2}\varrho = 4,3845448712$ (— 10)
log $\iota\iota = 7,9297527989$ (— 20)

oder wenn jene Correctionen sofort als Einheiten der siebenten Decimale erscheinen sollen

17.

Viel einfacher lassen sich aber die Relationen zwischen den Grössen

119 UNTERSUCHUNGEN ÜBER GEGENSTÄNDE DER HÖHERN GEODAESIE.

 x_{V} S, S', T, T', λ ausdrücken, wenn man von dem Mittel der beiden Breiten und der beiden Azimuthe ausgeht. Schreiben wir

$$\sin \frac{1}{2} r \sin A = \sin \frac{1}{2} \lambda \cos B$$

$$\sin \frac{1}{2} r \cos A = \cos \frac{1}{2} \lambda \sin \frac{1}{2} b$$

$$\cos \frac{1}{2} r \sin \frac{1}{2} a = \sin \frac{1}{2} \lambda \sin B$$

$$\cos \frac{1}{2} r \cos \frac{1}{2} a = \cos \frac{1}{2} \lambda \cos \frac{1}{2} b$$

wonach man also, wenn A, B, r als gegeben betrachtet werden, a und λ durch die Formeln

$$\frac{\sin A \, \tan g \, B \, \tan g \, \frac{1}{2} \, r \, = \, \sin \frac{1}{2} \, a}{\frac{\sin A \, \sin \frac{1}{2} \, r}{\cos B}} = \sin \frac{1}{2} \, \lambda$$

und sodann b aus

$$\frac{\cos A \, \tan \frac{1}{2} \, r}{\cos \frac{1}{2} \, a} = \tan \frac{1}{2} \, b$$

oder

$$\frac{\cos A \sin \frac{1}{2} r}{\cos \frac{1}{2} \lambda} = \sin \frac{1}{2} b$$

bestimmt. Anstatt dieser Formeln wird man aber, wegen der Kleinheit von r, a, λ , b, lieber die folgenden anwenden, welche viel bequemer, und bis auf die fünfte Ordnung (ausschl.) genau sind:

$$a^{0} = r \sin A \tan B$$

$$\lambda^{0} = \frac{r \sin A}{\cos B}$$

$$b^{0} = r \cos A$$

$$\log a = \log a^{0} + \mu rr + \frac{1}{2} \mu a^{0} a^{0}$$

$$\log \lambda = \log \lambda^{0} - \frac{1}{2} \mu rr + \frac{1}{2} \mu \lambda^{0} \lambda^{0}$$

$$\log b = \log b^{0} + \frac{1}{2} \mu a^{0} a^{0} + \mu \lambda^{0} \lambda^{0}$$

wo, wie man sieht, die dritte Correction der Summe der ersten und der doppelten zweiten gleich ist.

Mathem. Classe. II.

34 CARL FRIEDBICH GAUSS UNTERSUCHUNGEN ÜBER GEGENSTÄNDE etc.

Für unsere Ausgabe geben zwar diese Formeln keine directe Auflösung: indessen kann man sie als Controlle oder als concentrirte übersichtliche Inhalts-wiederhohlung der directen Auflösung gebrauchen. Wer aber in numerischen Rechnungen einige Gewandtheit besitzt, wird sie auch leicht zu einer indirecten Auflösung benutzen können, und dieser, zumahl wo-anderer Zwecke wegen eine grob genäherte schon vorangegangen ist, wegen ihrer Bequemlichkeit und Schärfe vor allen andern Auflösungen den Vorzug geben.

the state of the s

of man also, vani 1. B. r also we can be noted weeden, and he

. militaria

16 11/11 30

>− 1 1 1

12 1, 20 2 20 28 12

A remain sight of the control of the

Tafeln.

() W .

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	log m	ο 1 1/2 z		log m
Q+q	$\int_{-\infty}^{\infty} P + p + 1$	+	Q+q	$P+p$ \"	1 V
		1			+ "
460 40'	460 41' 24" 74900	10559 7"141	470 20' 470	04/ 20/08/08	WATER THE
41	42 24,88515	10472 7, 101	-121		7431 5"68
42			1 1 6 h h	22 30, 18788	7362 5,62
	43 25,02142	10385 7,062		23 30,31687	7293 5,58
43	44 25, 15692	10299 7,024	23	24 30, 44569	7225 5,5
44	45 25, 29255	10213 6,985	24	25 30, 57433	7157 [5,51
45	46 25, 42799	10128 6,946	25	26 30, 70279	7090 5,48
46	47 25, 56327	10043 6,907	26	27 30,83108	7023 5,44
47	48 25, 69837	9959 6,869	27	28 30,95920	6956 5,41
48	49 25, 83330	9875 6,830	28	29 31,08714	6890 \$5,38
49	50 25, 96805	9792 6,792	29	30 31,21491	6825 5,34
				1	
50	51 26,10262	9709 6,754	11 (-30 -711	31 31,34250	6759 \$5, 31
-51	52 26, 23702	9626 6,716	31	32 31,46992	6694 5,27
.52	53 26, 37125	9544 6,678	32	33 31,59717	6630 5,24
. do .53	54 26, 50530	9462 6, 640		34 31,72424	6566 5, 21
54	55 26, 63918	9381 6,602		35 31,85113	6502 5, 17
55	56 26,77288	9301 6,565		36 34,97785	6439 5,14
56	57 26,90641	9221 6,527	36 1011	37 32,10440	6376 5, 11
57	58 27, 03977	9141 6,490	11.37 16.11	38 92,23677	6314 5,07
58	59 27, 17295	9062 6,452	11 138 100 E	39 '92, 35696'	6252 6,04
59	47 0 27 30595	8983 6,415	1 39 Live.	40 32,48299	a a a d d a a a a
		0,220		40 02, 40233	6190 5,01
47 0	1 27, 43878	8904 6,378	", " 40 kgc .	41 32,60883	6129 4,97
1	2 27,57144	8826 6, 341	· · · · · · · · · · · · · · · · · · ·	42 32,73451	6068 4,94
2	3 27,70392	8749 6, 304		43 32,86001	6008 4, 91
	4 27 83622	8672 6, 267	0.43 2000	44) 32, 98533	
i :.4	5 27,96836	8595 6, 230	44 16	45 33, 11048	4
256.15	6 28, 10031	8519 6, 194	45	46 33, 23546	5888 4,84 5829 4,81
6	7 28,23210	8444 6, 157	46 -16.	47 33,36026	
. 7	8 28,36370	8369 6, 121	47 708	48, 35, 48488	
	28,49514	8294 6, 084	3611 84, -4	9 39,50934	5712 4,75
Q2. 477	1210 28, 62640	0234 0,004	3508 24, 496	o balandical	5654 4,71
	- 10-20;02040	8219 6,048		0 88,78861	5596 4, 687
10	11 28,75748	9146 6 040	Col . \$0 0 5.68	33,85772	EEOO DE CT
	49 08 88820		51	05, 80772	5539 4,658
11 12	14 20,00009	8072 5,976	51	2 38,98165	5482 4,624
18		7999 5,940	52 -7	3 34, 10540	5426 4, 592
200 43		7927 5,904	13430 64 , 357	4 34,22898	5370 4, 560
	115 29, 28007		000,84 0888	5 34, 35239	5314 +4, 529
	16 29 41028	7783 5,833	6.5.5.5 P. 1.5.5	6 34,47562	5259 4,498
0.0 v.	180117029,54082V	7712 5,798	V 0.56 WE	7 34,59867	5204 4,466
74 294	118.29,67018	7641 5,762	57	8 34,72156	5149 4, 435
84 272	19 29, 79987	7570 5,727	14.1.58 1- 5	9 34,84426	5095 4, 404
0-249	20 29, 92938	7501 5,692	59 48	0-34,96680	5042 4,373
* 12 \ 20	····21 30,05872	7431 5,657	480 40 2118	1 35,08916	4988 4, 343
Transaction of the same					, A Non 107

Acceptant to 12 There's										
	log n		log m			901			log m	
Q + q	I con	7 + 194	_	-	Q + q	3	P+i	p ; - 4	_	, k
1,	1-1-		+	1 ' '			í		+	1
490 01	1400 4	125"00046	4000	4//242	400 40/	1400.	44/201	04064	1. 2440	1 27400
480 .0'	F	35"08946		4"343	480 40'			84061,		3'199
220,34		35,21134		4,312	41			95583.	3109	3,173
		35, 33,335		4,281	42	1	1	07087	F 1	:3, 146
{ 3		35,45519		4, 251				18574	3031	3,120
4		35,57685		4, 221	44			30043		3,094
5		35,69834		4,190	: 45	, ,	46 40,	41495)	2956	3,068
6		35,81965		4,160	¹, 4 6	27.1	47 40,	52929	2918	3,042
7,67	, , 8	35,94079	4625	4, 130	47	- 0	48 40;	64347	2881	3,017
8	9	36,06175	4575	4,100	. 48	l	49 40,	75746	2844	2,991
9 .,, 3	10	36, 18254,	4525	4,070	· 49,		50 40,	87129	2808	2,965
			- 1	[]	, , , _ ,	```	: '	(- • = = = = = = = = = = = = = = = = = =		'
818.40	Dr 5 1 11	36,30316	4475	4,041	1.7.7.50c		51. 40.	98494	2772	;2, 940
1:72,41	Son 12	36,42360	4426	4,011	017.51			09841		2,915
54.2.12	13	36,54387	4377	3,982				21171		2,889
		36,66396		3, 952	U.O. 53			32484	2665	2,864
12.80	0. 15	36,78388	4280	3, 923	54			43780		2,839
	10 14 1A	36,90362	4232	3,894				55058	2595	2,814
	1610 19	37,02319	4184	3,865	56 ;			66318		
	10	27 44050			90 ,					2,790
- 70 17	120 40	37,14259	4137	3,836	57	437	00,41,	77561	2527	2,765
, , 18	49	37,26181	4090	3,807,	y 58 .	1:02	09 441,	88787	2493,	2,740
19	10 46	37,380,86	4044	3,778	., 59	49	U.47,	99996	2460	.2,716
ما	مل ا	27 42270	2000	2 740		1			2400	
	E 6124	37,49973	3998	3,749	498.091	653		11187	2427	2,692
		37,61843		3,721	111 4	,		2236 0		:2,667
	0000 23	37,73695;	3907	3,692	2	}		33517	2362	2,643
OSE 23.	100 24	37, 85530	3862	3,664	, 3	i,		44655	2329	2,619
		37, 97348		3,636	4			55777		$^{1}2,595$
		38,09148		3,608	- ≥1.,65	١.		66881	2266	2,572
	1776 27	26,20931	3729	3, 580	151,661			77968,		2,548
167.27	28	38,32696	3685	3, 552	1.07	11 3	8,42,	89037	2203	(2, 524)
e. 5.28	29	. 38 , 44444	3641	3, 524	- 8ن (۱۰			00089		2,501
29	[] 30	38, 56175	3598	3,496	9	ŀ		11124		2,477
! !	1									
340,30	316	38, 67,888	3556	3,469	(11),10	35.9	11 43,	22141	2112	2,454
120.31	32	38,79583	3514	3,441	070 A1	'	12 43.	33141	:2082	2,431
202. 32	hein 33	38,91262	3472	3,414	, 12	, ,	13 43.	44123		2,408
605 33	527 34	.39,02923	3430	ૄૈર્ફે, 387)(: 13		14 43,		2023	2, 385
22.34	1 2 35	39,14566	3389	3 , 360	14			66036		2, 362
800 25	Sec. 36	39, 26192	3348	3, 333	1.00.45			76967	1965	2,339
36	37	39,37801	3307	53, 306				87880		2,317
	38	39,49392	3267	3, 279	17		18 43,		1908	2, 294
₹ 37 38	30	39,60966	3227	3, 252	- 18					0 070
39				3, 232			19 44,		1880	2,272
		39,72522			19		20 44,		1853	2,250
40	, , 41	39,84061	3140	₀ 3, 199	20		44,	31398	€1825 ±	2,227

-					***************************************			76. 60 pm ;	* **	*****
Q.	+ 9		P	+p	log m	k	Q+q	P+p	log m	k
100		lead		1.411040*	Lagne	laubaa	~ ~ ~	1-56	1	<u>'</u>
490				44"31358		2"227		500 148"50876	936	1"429
07	21			44, 42184		2, 205	100	2 48,61009	919	1,412
	22	100		44, 52993		2 , 183	007.02	3 48,71124	1 902	1,394
133	23			44, 63784		2, 162	3	4 48,81222	885	1,377
3 7 7	24	1		44, 74558	1718	2, 140	4	5 48,91303	868	1,359
٠,	25			44, 85315	1692	2, 118	5	6 49,01367	852	1,342
į	26,	:		44, 96054	1666	2,097	6	7 49,11413	835	1,325
١.,	27	ļ		45,06777	1641	2,075	7	8 49,21442	819	1,308
	, 28,			45, 17481	1615	2,054	· '8	9 49,31454	803	1,291
! { :	29	2	30	45, 28169	1.1590	2 , 033	. 9	10 49;41448	787	1,274
įč	30	١.		45, 38838	1566	2,012	10	11 49,51425	772	1,257
١,	31	٤. '		45, 49491	1541	1,991	11	12 49, 61385	757	1,241
ź	32	_		45, 60126	1517	1,970	12	13 49,71327	· 742	1,224
	33	10	34	45, 70744		1,949	13	14 49, 81253	727	1,208
115	34		35		1469	1,928	14	15 49,91161	712	1,191
1.5	35	-	3 6	45, 91928	\$1446	1,908	15	16 50,01051	697	1,175
€ 34.º	36	`0		46, 02494		1,887	16	17750 10925	683	1,159
1 12	37	Ğ.		46, 13043	4.1399	4,867	(17,	18 50,20781	· 669	1,143
11(38	, · ·	39	46, 23574	€1377	1,847	111 18	- 19 50, 30619	655	1, 127
ľ,	3 9	<u>.</u> .	40	46, 34088	1354	1,827	19	20 50,40441	641	1,112
	40	r.	41	46,44584	1332	1,807	20	21 50; 50245	628	1,096
	41	1		46, 55063	1310	1,787	21	22 50,60032	615	1,080
100	42			46, 65525	1288	1,767	22	23 50, 69802	601	1,065
1201	43			46,75970	1267	1,747	23	24, 50, 79554	589	1,050
170	44		45	46,86397	1245	1,728	24	25 50, 89290	576	1,034
2 7	45		46	46,96807	1224	1,708	25	26 50, 99007	563	1,019
	46			47,07199	1203	1,689	26	27 51,08708	551	1,004
. :	47			47, 17574	1183	1,670	27	28 51, 18891	539	0,990
	48			47, 27932	1163	1,651	28	29 51,28058	527	0,975
2	49			47, 38273	1142	1,632	29	30 51,37706	515	0, 960
desire u	50	`	51	47,48596	1123	1,613	30	31 51,47338	503	0,946
	51			47, 58902	1103	1,594	31	32 51,56952	492	0,931
ម្រ				47,69191	1084	1,575	32	33 51,66549	480	0,917
# + C.				47,79462	1064	1,556	33	34 51,76129	469	
111	54			47,89716	1045	1,538	34	35 51,85692	458	0,903 0,889
1.11		1	561	47,99952	1027	1,520	35	36 51,95237	447	0, 875
1	56			48, 10172	1008	1,501	36	37 52,04765	437	0, 861
3	57			48, 20374	990	1,483	37	· 1		
,	58			48,30559	972	1,465	38	38 52,14276 39 52,23770		0,847 0,833
<u> </u>	E	50		48,40726	954	1,447	39	40 52, 33246		
	99	ου 		48,40720 48,50876		1,429	40	41 52, 42705		0,820 0,806
50	υ' ••••••••		1	*O; 00010.	JJU .	1,740	70	TI UA, TATUU		v, 600 j

Q+q		P	+ p	log m	k	Q	+ q	P	+	р	log m	k
52° 0'	520	1	59"43754	15	0"090	520	40'	520 42	' 2'	′532 5 1	· 0	0′′000
1		2	59,51823	14	0,086		41	43	2.	60640		0,000
2		3	59, 59876	13	0,081		42	1		68013	l	0,000
3			59,67911	12	0,077		43	45		75368		0,001
4	1	5	59,75929	11	0,073		44	46		82706	l	0,001
5	l	6	59, 83931	10	0,069	İ	45	47	2,	90027		0,001
6	l	7	59,91915	9	0,065		46			97331		0,002
7	l	8	59,99882	8	0,061		47			04619		0,003
8		10	0,07832	8	0,058		48			11889		0,004
9	:	11	0, 15765	7	0,054	'	49	51	3,	19143		0,005
10		12	0, 23681	6	0,051		50	52		26379		0,006
11		13	0,31580	6	0,047		51			33599		0,007
12		14	0,39462	5	0,044		52	54		40802	0	0,008
13		15	0,47327	5	0,041		53	55		47987	1	0,010
14		16	0,55175	4	0,038		54	56		55156	1	0,011
15		17	0,63006	4	0,035	`	55	57	3,	62308	1	0,013
16		18	0,70820	3	0,032		56	58		69443	1	0,014
17		19	0,78617	3	0,030		57			76561	1	0,016
18		20	0,86397	2	0,027		58	53 0		83662	1	0,018
19	-	21	0,94159	2	0,025		59	1	3,	90747	2	0,020
20		22	1,01905	2	0,023	53	0	2	3,	97814	2	0,023
21		23	1,09634	2	0,020		1	3	4,	04864	2	0,025
22		24	1,17346	1	0,018		2	4	4,	11898	2	0,027
23		25	1,25040	1	0,016		3	5	4,	18915	3	0,030
24		26	1,32718	1	0,014		4	6	4,	25914	3	0,033
25		27	1,40379	1	0,013		5	7	4,	32897	4	0,036
26		28	1,48023	1	0,011		6	8	4,	39863	4	0,038
27		29	1,55649	1	0,010		7	9		46813	5	0,041
28		30	1,63259	0	0,008		8	40	4,	53745	5	0,044
29	•	31	1,70852		0,007		9	11	4,	60660	6	0,048
30	:	32	1,78428		0,006		10	. 12	4,	67559	6	0,051
31	:	33	1,85986		0,005		11	13	4,	74440	7	0,054
32		34	1,93528	l	0,004		12	14	4,	81305	8	0,058
33		35	2,01053		0,003		13	15		88153	8	0,062
34		36	2,08561	1	0,002		14	16		94984	9	0,065
35		37	2,16052	1	0,001		15	17		01798	10	0,069
36		38	2,23526		0,001		16	18		08595	11 `	0,073
37		39	2,30982		0,001		17	19		15376	12	0,078
38		10	2,38422		0,000		18	1	5,	22139	14	0,082
39		11	2,45845		0,000		19	21		28886	14	0,086
40 1	4	12	2,53251	0 1	0,000		20	22	5,	35616	15 i	0,091

Q.	+ 9	P+p	log m	k	Q+q	P+p	log m	k
			<u> </u>	<u> </u>	,		<u> </u>	<u> </u>
53	20'	530 22'5"35616"	15	0''091	540 0'	540 2' 7"91036	119	0"363
1	21	23 5,42329	16	0,095	1	3 7,97078	123	0,373
1	22	24 5, 49025	17	0,100	. 2	4 8,03103	128	0,382
į	23	25 5,55705	18	0, 105	3	5 8,09111	132	0,391
1	24	26 5,62367	20	0,110	4	6 8,15103	137	0,401
ł	25	27 5,69013	21	0, 115	5	7 8,21079	142	0,411
l	26	28 5,75642	22	0,120	6	8 8,27037	147	0,420
1	27	29 5,82254	24	0,125	7	9 8,32979	153	0,430
i	,28	30 5,88849	26	0,131	8	10 8,38904	158	0,440
	2 9	31 5,95428	27	0,136	9	11 8,44812	163	0,450
'	30	32 6,01989	29	0,142	10	12 8,50704	169	0,460
1	31	33 6,08534	31	0,147	11	13 8,56579	175	0,471
	32	34 6, 15062	33	0,153	12	14 8,62438	180	0,481
	33	35 6,21573	34 .	0,159	13	15 8,68279	186	0,492
	34	36 6,28068	$\frac{36}{38}$	0,165	14	16 8,74104	192	0,502
	35	37 6, 34545	38 41	0, 171	15	17 8,79913	199	0,513
	36 37	38 6,41006 39 6,47450	43	0,178	16	18 8,85705	205	0,524
1	38	39 6,47450 40 6,53877	45	0,184 0,191	17	19 8,91480	212	0,535
	39	41 6,60288	47	0,191	18	20 8,97238	218	0,546
	JJ	41 0,00288	4,	0,197	19	21 9,02980	225	0,557
	40	42 6,66681	50	0,204	20	22 9,08705	232	0,569
	41	43 6,73058	53	0,211	21	23 9, 14413	239	0,580
	42	44 6, 79418	55	0,218	22	24 9, 20105	246	0,592
	43	45 6,85762	58	0,225	23	25 9, 25781	253	0,604
	44	46 6,92088	61	0,232	24	26 9,31439	261	0,615
	45	47 6,98398	64	0,240	25	27 9,37081	268	0,627
	46	48 7,04691	67	0,247	26	28 9,42706	276	0,639
	47	49 7, 10967	70	0, 255	27	29 9,48315	284	0,652
	48	50 7, 17227	73	0,262	28	30 9,53907	292	0,664
	49	51 7, 23470	76	0,270	29	31 9,59483	300	0,676
4	50	52 7, 29696	79	0, 278	30	32 9,65042	309	0,689
•	51	53 7,35905	83	0, 286	31	33 9,70584	317	0,701
	52	54 7, 42098	86	0, 294	32	34 9,76110	326	0,714
	53	55 7,48273	90	0,303	33	35 '9,81619	335	0,727
	54	56 7,54432	94	0,311	34	36 9,87111	344	0,740
	55	57 7,60575	98	0,319	35	37 9,92587	353	0,753
,	56	58 7,66700	102	0, 328	36	38 9,98046	362	0,766
	57	59 7,72809	106	0, 337	37	39 10,03489	372	0,780
	58	54 0 7, 78901		0,345	38	40 10,08915		0,793
E.A	59	1 7,84977		0, 354	39	41 10,14325	391	0,807
54	0 '	2 7,91036	119	0, 363	40	42 10,19718	401	0,820

6+	9		p	+ p	log m	k	Q+q	P -	+ p	log m	k
540 4	0':	540	42	10"19718	401	0"820	550 20	1550 22'	12"21889	953	1"463
	1	• •		10, 25094	411	0,834	21		12, 26605	971	1,481
	2		44	10,30454	421	0,848	22		12, 31306	989	1,500
	3.		45	10, 35797	432	0,862	23		12,35990	1008	1,519
	4		46	10,41124	443	0,876	24		12,40657	1026	1,538
	15		47		453	0,890	25		12,45308	1045	1,557
	6		48	10,51727	464	0,905	26		12,49943	1064	1,576
4	17		49	10,57004	476	0,919	27	29	12,54561	1084	1,595
4	18		50	10,62265	487	0,934	28	30	12,59163	1104	1,614
4	19		51	10,67509	498	0,949	29	31	12,63749	1123	1,633
5	0		52	10,72736	510	0,964	30	32	12,68318	1144	1,653
	1		53	10,77947	522	0,978	31	33	12,72870	1164	1,673
5	2		54	10,83142	534	0,994	32	34	12,77407	1185	1,692
5	3		55	10,88320	546	1,009	33		12,81927	1205	1,712
5	4		56	10, 93481	559	1,024	34		12,86430	1226	1,732
5	5		57	10, 98626	571	1,039	35		12,90918	1248	1,752
5	6		58	11,03754	584	1,055	36		12,95389	1269	1,773
5	7		59	11,08866	597	1,071	37		12,99843	1291	1,793
5	8	55	0	11, 13961	611	1,086	38		13,04282	1313	1,813
5	9		1	11, 19040	624	1,102	39	41	13,08703	1336	1,834
55	0		2	11,24102	638	1,118	40		13,13109	1358	1,855
	1		3	11, 29148	651	1,134	41		13, 17498	1381	1,875
	2		. 4	11,34177	665	1,151	42		13,21871	1404	1,896
	3		5	11,39190	680	1,167	43		13, 26228	1428	1,917
	4		6	11,44186	694	1,184	44		13,30568	1451	1,939
	5		7	11,49166	709	1,200	45		13,34892	1475	1,960
	6		8	11,54129	723	1,217	46		13,39199	1499	1,981
	7		9	11,59076	738	1,234	47	1	13,43491	1524	2,003
	8 9		10 11	11,64007 11,68921	754 769	1,251 1,268	48 49	ł	13,47766 13,52024	1548 1573	2,024 2,046
			41	,					Í		
	0		12	11,73818	_ 785	1,285	50		13, 56267	1598	2,068
1	1		13	11,78699	800	1,302	51		13,60493	1624	2,090
1	2		14	11,83564	817	1,320	52		13,64703	1650	2,112
1	3		15	11,88412	833	1,337	53		13,68896	1676	2,134
	4			11,93244	849	1,355	54		13,73074	1702	2, 157
	5		17		866	1,372	55	_	13,77235	1728	2,179
	6			12,02858	883	1,390	56		13,81379	1755	2, 202
	7		19	12,07640	900	1,408	57		13,85508	1782	2,225
	8		20	12, 12406	917	1,426	58	}	13,89620	1810	2,247
	9			12, 17156	935	1,445	59		13,93716	1837	2,270
2	0		22	12, 21889	953	1,463	56 0	21	3,97795	1865	2, 293

	- 1	log m				log m	
Q+q	P+p	_	k	Q+q	P+p	_	k
560 0'	ECO 0/49//07705	1865	2"293	700 404	1 40/45//47703	2024	0//044
30° 0	56° 2'13"97795 3 14,01859	1894	2,317	56° 40′ 41	56° 42′ 15″ 47703 43 15, 51120	3231 3272	3"314
2	4 14,05906	1922	2,340	42	44 15, 54521	3313	3,342 3,370
3	5 14,09937	1951	2,363	43	45 15,57906	3355	3,398
4	6 14, 13952	1980	2,387	44	46 15,61275	3396	3,426
5	7 14,17950	2009	2,411	45	47 15,64627	3439	3,455
6	8 14,21932	2039	2,434	46	48 15,67964	3481	3,483
7	9 14,25898	2069	2,458	47	49 15,71285	3524	3,512
8	10 14,29848	2099	2,482	48	50 15,74589	3567	3, 541
9	11 14,33782	2130	2,506	49	51 15,77878	3611	3,570
4.0	40 44 27600	0161	0.524	50	70 AF 04AF0	2074	
10 11	12 14,37699	2161 2192	2,531	50	52 15,81150	3654	3,599
. 12	13 14,41600 14 14,45485	2223	2,555 2,579	51 52	53 15,84407	3699	3,628
13	15 14,49354	2255	2,604	52 53	54 15,87647 55 15,90872	3743 3788	3,657
13	16 14,53206	2287	2,629	54	55 15,90872 56 15,94080	3834	3,686
. 15	17 14,57043	2319	2,654	55	57 15,97273	3879	3,716
16	18 14,60863	2352	2,679	56	58 16,00449	3925	3,746 3,775
17	19 14,64667	2385	2,704	57	59 16,03610	3972	3,805
18	20 14,68455	2418	2,729	58	57 0 16,06754	4019	3,835
19	21 14,72226	2452	2,754	59	1 16,09883	4066	3,865
	00 44 85000	0400	0.700		·		
20	22 14,75982	2486	2,780	57 0	2 16, 12995	4113	3,896
21 22	23 14,79721 24 14,83444	$\begin{array}{c} 2520 \\ 2555 \end{array}$	2,805	1	3 16,16092	4161	3,926
23	24 14,83444 25 14,87151	2589	2,831	2	4 16, 19172	4210	3,956
23 24	26 14,90842	2625	$egin{array}{c c} 2,857 \ 2,883 \ \end{array}$	3	5 16,22237	4258	3,987
$\frac{27}{25}$	27 14,94517	2660	2,909	4 5	6 16,25286 7 16,28318	4307 4357	4,018
26	28 14,98175	2696	2,935	6	8 16,31335	4406	4,049
27	29 15,01818	2732	2,961	7	9 16,34336	4457	4,080 4,111
28	30 15,05444	2768	2,988	8	10 16,37320	4507	4,142
29	31 15,09054	2805	3,014	9	11 16,40289	4558	4,173
30	32 15,12648	2842	2 044	4.0	40 40 400	1	Í
30 31	33 15,16226	2842 2880	3,041 3,067	10	12 16,43242	4609	4,205
31	34 15,19788	2917	3,007 $3,094$	11	13 16,46179	4661	4,236
33	35 15,23334	2955	3, 121	12 13	14 16,49100	4713	4,268
34	36 15,26863	2994	3,148	13 14	15 16,52005 46 46 54805	4766	4,300
35	37 15,30377	3033	3, 176	15	16 16,54895 17 16,57768	4818 4872	4,332
36	38 15,33874	3072	3,203	16	18 16,60625	4925	4,364
37	39 15,37356	3111	3, 230	17	19 16,63467	4979	4,396 $4,428$
38	40 15,40821	3151	3,258	18	20 16,66293	5034	4,428
39	41 15,44270	3191	3,286	19	21 16,69102	5089	4,493
40	42 15,47703	3231	3,314		22 16,71896		4, 526

Q.	+ 9	P	+ p	log m	k	Q+q	P	+ p	log m	k
										l
570	20'	570 90	16"71896	5144	4"526	580 0'	580 2	17"70678	7698	5"933
137	21	23		5200	4,559	1		17,72825	7771	5,970
	22	24		5256	4,592	$\frac{1}{2}$		17,74956	7844	6,008
1	23	$\frac{24}{25}$		5312	4,625	3		17,77072	7918	6,046
1	24	26		5369	4,658	4		17,79171	7993	6,084
ł	25	27		5426	4,691	5		17,81255	8067	6, 122
1	26	28		5484	4,724	6		17,83324	8143	6, 160
1	27	29		5542	4,758	7		17,85376	8218	6, 199
1	28	30		5600	4,792	8		17,87414	8294	6, 237
l	29	31		5659	4,825	9		17,89435	8371	6,276
1			,		-,			,		
1	30	32	16,98962	5719	4,859	10	12	17,94441	8448	6,315
1	31	33		5778	4,893	11		17, 93431	8526	6,354
	32		17,04185	5839	4,927	12		17,95406	8604	6,393
1	33	35		5899	4,962	13	15	17,97365	8682	6,432
į	34	36	17,09344	5960	4,996	14	16	17,99308	8761	6,471
1	35	37		6021	5,030	15	17	18,01236	8841	6,511
l	36	38	17,14441	6083	5,065	16	18	18,03148	8921	6,550
	37	3 9	17,16965	6146	5, 100	17	19	18,05045	9001	6,590
l	38	40	17,19474	6208	5, 135	18		18,06925	9082	6,630
1	39	41	17,21967	6271	5, 170	19	21	18,08791	9164	6,670
I										
	40		17,24444	6335	5,205	20		18, 10641	9246	6,710
I	41	43	17,26905	6399	5,240	21		18, 12475	9328	6,750
I	42		17,29351	6463	5, 275	22		18, 14293	9411	6,790
İ	43	45		6528	5, 311	23		18, 16097	9495	6,830
1	44	46		6593	5, 346	24		18, 17884	9578	6,871
i	45		17, 36593	6659	5,382	25	27	18, 19656	9663	6,912
1	46	48		6725	5, 418	26		18,21412	9784	6,952
1	47	49		6792	5,454	27		18,23153	9833	6,993
1	48		17, 43693	6859	5,490	28		18,24879	9919	7,034
ł	49	51	17,46028	6926	5,526	29	31	18, 26588	10006	7,075
ŀ	50	50	17 19210	6994	5, 563	30	รถ	18, 28283	10092	7, 117
ł	51		17,48348 17,50652	7063	5, 599	31		18, 29962	10180	7,158
	52	53 54	17,50052	7131	5,636	32		18, 31625	10268	7, 200
ł	53	55	17, 52940 17, 55212	7201	5,672	33		18, 33272	10356	7,241
1	54	56	17,57468	7270	5,709	34		18, 34905	10335	7,283
l	55	57	, ,	7341	5,746	35		18, 36521	10535	7, 325
	56	58	17,61935	7411	5, 783	36		18, 38123	10625	7, 367
l	57	59	17,64144	7482	5, 820	37		18,39708	10715	7,409
		58 0	17,66338	7554	5,858	38		18,41279	10806	7,451
	59	1	17,68516	7626	5,895	39		18,42833	10898	7,484
58	0		17,70678	7698	5,933	40		18,44373		7, 536
100	υ,	4	11,10010	1000	ν, συσ	40	74	10, 120101	-00001	.,

. · -