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SALAT, T.
Math. Zeitschr. 85, 209—225 (1964)

On subseries

By
TIBOR SALAT

This paper studies several questions concerning the notion of subseries and
their asymptotic density in the original series and also some properties (topo-
logical and metrical) of the sets

o). (3

which are defined in the theory of subseries.

1. Asymptotic densities of subseries
Let
(1) Zdn=d1+d2+...+d"+,,,
=1

n
be an infinite series, let

ey <ky <o <y <o

be (some) increasing sequence of natural numbers. The series
o0
@) Y dy, =dy, +dy,+ +dy +oo
n=1

is called the subseries of the series (1).

If we express the numbers of the interval (0, 1) in their dyadic expansions
with infinitly many digits equal to 1, then to each xe€(0, 1,

3 X =k§18k (x)27%

[e,(x)=0 or 1, for an infinite number of k ¢, (x)=1] we can associate an infinite
series

@ )= e(x) s
k=1

[this is a subseries of the series (1)] and also conversely, every subseries (2) of the
series (1) may be expressed in the form (4) if we put ¢, (x)=1(n=1,2,3,..))
and g,(x)=0 (k *+k,, n=1,2,3,...).

In such a way we get a transformation of the set of all subseries of a given
series into (0, 1. Briefly we shall say, that a number x expressed by means of
the expression (3) corresponds to the subseries (x) [see (4)]and conversely.
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This correspondence makes possible ““to measure” certain subsets of the set of
all subseries of a given series. Thus we say that some property ¥ is valid for
almost all subseries of a given series if the set of all xe(0, 1), corresponding to the
subseries having the property ¥, has the Lebesgue measure 1. Let us note the
well-known classical result (see e.g. [2], p. 404, or [I]), according to which
almost all subseries of a divergent series are divergent. An analogous result is
true also for the subsequences of a given divergent sequence.

In the following we introduce this notation. Let (4) be a subseries of the
series (1), let

P )= T ().
Then the numbers

p1(x)=lim inf p( nx) , Da(x)=lim sup

n—ow n—>ow

p(n,x)
n

will be called lower and upper asymptotic density of the series (4) in the series (1).
If there exists
p(x)=lim 282

n—> o

then the last number will be called asymptotic density of the series (4) in the
series (1). Obviously p(x), py (x), p,(x)e<0, 1).

In this part of the paper we shall prove two theorems on subseries of
divergent series with non-negative terms.

In paper [5] and [6] it is proved that if d,=1/n (n=1, 2, 3, ...) and the series
(4) is convergent, then p(x)=0. This result is generalized in the following
theorem.

Theorem 1. Let d,|0 and lim inf nd,>0. Let the subseries

(=Y e (x) d
k=1

o0
of the series Y d, be convergent. Then

n=1

p(x)=limp—(%—-’£)——=0.

n—o

Proof. Obviously it suffices to prove that

®) pa(=timsup 2% > ¢

n—> oo
implies: (x) is divergent.
Let (5) be valid. Then there exists ¢’ >0 such that for an infinite number of n
p(n, x)>6&'n. Further, according to the proposition of the theorem there
exists 6 >0 such that nd, =6 foralln=1,2,3,....
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Let now N be an arbitrary natural number. Let us put e=166'>0 and
choose the natural number 7, such that

l.ng>N,
2. p(ng, x)>6'ny,
3.Nd, <} =e.
This is evidently possible. Then for such n, we get by means of simple estimation

no

2 &(x)d,2(8'ng—N)d,, 255 ~Nd, >e.

r=N+1
Consequently for the series (x) the Cauchy-Bolzano condition is not fulfilled.
This completes the proof.
Note 1. The condition
dizdyz--2d,2

is in the foregoing theorem substantial as it is shown in the following example.

S 1 1,1 1 1 1 1 1 1
;d,,—1+2+—2—;+2+—2-§+7+ ottt
-—

0
The subseries ) 1/2" of this series is convergent and its asymptotic density in the
n=1
original series is obviously 2.

Note 2. We shall show by an example that the condition

liminfnd,>0

in the foregoing theorem cannot be substituted by the weaker condition
Yd,=+o0.

n=1

Let us put for fixed n(n=1, 2,...)
1
Apn sk )= —5 >

n"+k (n) )
where k(n) is an integer, 0<k(n)<(n+1)"*'—n". Evidently d,>d, >
d,=---, and when n is fixed, then for each k(n), 0<k(n)<(n+1)""*—n"

ar 101 1 1y
(n"+k(n))d,,,.+k(,,)__(n+1)+1 5 7<1+—><1+'—l>.

v

n
From this it is seen that lim / d,=0. According to (n is fixed)
-
(n + 1)n +1__ nn

dun s i (€ I T E—
0k (m)<(n+ 1)n+i—pn n

(n+1)n+l_nn=(n+1)n"{(14—%)"_1}’



212 TiBOR SALAT:

(n+ 1"t —n">cn"*!, ¢ >0 independent of n, we get id,=
Let us define now ® o
xe(0,1), x=k;sk(x)2—"
(a dyadic expansion) in this way: for fixed n we put
Emiim@®=1, if 0ZI(n)=n",
i) =0, if n"<l(m)<(@+1)""'—n"

Let us construct the subseries

(X)=k _lek(x) dy.
For fixed n it is
I'+1

5522 )d Z ll+2 —22 17

From this it is seen that (x) is convergent. Further, according to the notation of
Theorem 1, we have

p2n",x)=2n"(n=1,2,3,...),

consequently p,(x) =% and the conclusion of Theorem 1 is false. Let us note
that if we take p((n+1)""*—1, x) (n=1, 2, ...), then it is not difficult to sce that
p1(x)=0.

Theorem 2. Let Y d,= + o, let there exist s such that
=1
ds>ds+1— >ds+n—-"'
Let
(x)=28k(x)dk< +OO .
k=1

Then

pq(x)=lim inf ——— P (n x)

n-» o0

=0.

Proof. Evidently it suffices to prove, that if p, (x) >0, then (x) is divergent.
So let p; (x)>0. There exists 6 >0 such that for all

n=rxs, r=2, pn,x)zndé>0.

By means of ABEL’S partial summation we get

r+t

ng(x)dk= -—p(r—l,x)d,.+p(r, x)(dr_dr+l)+

k=r
+p(r+1,x)(dps1—dpin) + +p(r+1=1,X)d s -1 —drs) +
+p(r+6,x)d, 1 2 —p(r—1,x)d, +6(d, +d, 11+ +d, 1)

and the right side of the last inequality has for # —co the limit + co. This ends
the proof.
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2. The sets C(Zd,,), D(Zd,,)
1 1
Let ) d, in this part of the paper denote a series with real terms. The set

1
of all those

0

xe(0,1), x=Y gx)27*

k=1

(a dyadic expansion of x), for which the subseries
(9= % () dy
is convergent (divergent) will be denoted

G4) ()

Already in the preface of this paper we have mentioned the classical result

0
according to which, if Y d, is a divergent series,
1

(<)

(| H | denotes the Lebesgue measure of the set H).
In this part of the paper the properties of the sets

(+) o

o0
for various classes of the series ) d, will be studied more precisely.
1

1

=0 and consequently ’D (Z d,,>

1

For the following purposes let us introduce this notation: for fixed » the
interval (0, 1) is a union of 2" pairly disjoint intervals of the order #:

s s+1
6 —s )
( ) (2" 2n >
where s=0, 1,... 2"—1. All the numbers of an interval (6) have on the first »

places in their dyadic expansions the same numbers &, €,, ..., §,. Briefly
we say that (6) belongs to the finite sequence ¢,, &5, ..., &,.

In what follows M° denotes the set of all condensation points of the set M.

Theorem 3. Let Y |d,|=+ oo, let 0 be a limit point of the sequence {d,}7.
Then t

c @ d,,>0=D (i:j d,,>o= 0, 1).

Mathematische Zeitschrift, Bd. 85 15



214 TiBOR SALAT:

Proof. Let

®©

x=Y g(x)27%€(0,1).

k=1

We shall show, that x is the condensation point of the set

c @ d,,).

S(x,8)=(x—8,x+8)n(0,1), 5>0.

Let

According to the assumption of the theorem there exists a sequence
ki<k,<--<k, <
so that d,_—0, which implies that there exists a sequence of natural numbers

Li<l,<--<l, <
such that

Y ld,|<+o.
n=1

Let us choose a natural number r such that (0<s<2"—1)

s s+1
<~2T,—21r—>c5(x, 9).

Evidently this is possible. Let M denote the set of all those
e s s+ 1 \
y 21,- 4 21,- /
whose dyadic expansions are of the form
y=Y (27 &()=0 orlfori=r+l,r+2, ..,
k=1

for an infinite number of i >r is ¢,(»)=1 and &(»)=0 for each k [, i=
r+1,r+2,.... Obviously M is an uncountable set of the power of the con-

tinuum,

© © 0
McS(x,8), McC (Z d,,> , consequently xeC (Z d,,) .
1 1

We shall show that x is also an element of
) 0
D (z d,,) |
1

Yldyl=+o
1

From the condition
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it follows, that the series constructed from the non-negative terms of the sequence

{d,}¥ or the series constructed from the negative terms of the mentioned
sequence is divergent. Let e.g.

Y max (d,, 0)= + oo
1

(in the other case the proof is analogous). There exists a sequence of natural
numbers

Fi<ry< o <pp<ee
such that

dr,-;o (l=1,2,), Zdﬂl:-}-m.

According to the foregoing part of the proof there exists a sequence of natural
numbers

L<lh<o<l, <
such that

o0
Yld,|< +ow.
n=1

Let R denote the set of all those terms of the sequence {r,}>, which do not

n=1
appear in {/,};>,. Evidently R is an infinite set. Let us form an ascending
sequence from its elements

S1<Sz<~'-<S"<-" .
Evidently

0
Yd,=+o0.
n=1
Let S(x, 0) have the previous meaning. Let us choose ¢ such that

(%,—s;—1>cS(x,5), 0<s=2'—1.
Let M’ denote the set of all those

it _ s s+1
y=k;18k(y) 27%e (? s —‘2‘,—>

for which the following is valid: &, (»)=0or 1for/;>t,¢,(y)=1 for s;>¢ and
e(¥)=0forl>t,1+s5(i=1,2,..), [ +l,(i=1,2, ...). Obviously M’ is uncoun-
table of the power of the continuum,

) © 0
M'<S(x,8), M'cD <Z d,,> , consequently xeD <Z d,,) .
1 1

In an analogical way we can see that also O is an element of both sets

(o). o(34)

15*
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and
0 V] 0 1]
C (Z d,,) <(0,1>, D (2 d,,) <{(0,1>.
1 1

( )
1

The character of the sets
depends on the series Y d,. If 0 is not a limit point of the sequence {d}?, then
1
Cc (Zd,,)=ﬂ and if ) |d,|<+o, then C <Z d,,):(O, 1.
1 1 1

Those are extrem and from our point of view uninteresting cases.

We have seen, that if Y d, fulfills the properties
1

(a) Zldnl': + 0,
1
(b) 0 is the limit point of the sequence {d,}7,

then
“(34)
1
has the following properties
c($a)
1
© 0
®) C (Z d,,) ={0,1.
1
The following question arises: Does there exist to every set P<(0, 1) with the
properties

@) |P|=0,
(b") P°=(0, 1)
a series f:d,, with the properties (a), (b) such that
1
pP=C (Z d,,)?
1

It is not difficult to show that the answer is negative.

@) =0,

Theorem 4. There exists a system U of the power 2¢ (c is the power of the
continuum) of sets P<(0, 1) with properties

@) |P|=0,
() P°=X0, 1)
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0
such that for each series Y d, with real terms and for each Pe is
1

o @ d,,) +P.

Proof. Let A’ denote the Cantor discontinuum constructed on <0, 1), let
A=4'—{0}. If r is rational, re<0, 1), let us put A(r)=[xe(0, 1>:x=y+r
where ye A]. Letus put E= U A(r). Evidently |E|=0.

0sr<i1
Now, let X run through the system of all subset of the set 4. Let us associate
to each X'theset P (X)=E—X. If X' X", then evidently P (X') P (X'')and
each of the sets P (X) has the properties (a’), (b’). The power of all the sets
P (X) is 2° and the power of all

9

is not greater than the power of all the series with real terms, consequently
not greater than c. Let W (B’) denote the system of all P (X)), for which there
does not exists (there exists)

id,, such that C <§: d,,>=P(X) .
Then ' '
W+ B =2°
(]l; is the cardinal number of the set M) and as
a=ﬂ=3'§c, z=‘2=1'§2c,

we get
X=z4+a<z+cL2°+c=2°

(see [8], p. 168 —170). From the last we get z+c=2°, z=2°.
The proof is complete.
Let Zd be a convergent series, let Z |d,| =+ oo, then (see [3]) for all
xe(0, 1) w1th the exception of a set of the first category
liminf ¥ g,(x)dy=—oc0, limsup), g(x)dy=+c0.
n-wo k=1 n—o k=1

It is seen from the proof of this theorem that in the case of the unboundedness
of the partial sums of the series

Yd,, theset C (Z d,,)
1 1

is a set of the first category in (0, 1).
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3

is divergent, therefore it is a natural problem to examine the Hausdorff dimen-
sions of these sets. As to it, the following theorem is an improvement of the
classical result (7) in the case of the series with non-negative terms which form
an ascending sequence.

Let us note that in what follows the Hausdorff dimension will be taken with
respect to the system of measure functions

pP@®=1%, 1te0, +0), ae(0,1)

In view of

Q)

=0 if Yd,

1

(see [7], [9D).
Theorem 5. Let Y d,= + oo, let there exist s such that
1

(8) dsgds+1_2_"'gds+ng"'
Then

Proof. Let us denote by the symbol M (0) the set of all those

o0

xe(0,1y, x=Y g()27*
k=1
(a dyadic expansion) for which

py(x)=lim inf”—(';ﬂ=o .

n—oo

As VL. KNIcHAL has proved (see [4] or [9]) dim M (0)=0 holds. According
to Theorem 2 of the present paper

C <Z d,,) =M(0)
1
and from this fact

dim C <§ d,,>=0

follows.
Note 3. If we take in account that the series ) d,= + oo fulfilling the con-
1

dition (8) are of extremly various kind and some of them (see note 2) fulfill so
much as the necessary condition for the convergence

©)] limnd,=0,

n— oo
one could expect that among a great number of these series [especially among
those, where the condition (9) is valid] the sets

9
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will be sufficiently rich and that their Hausdorff dimensions will be positive.
As to the above mentioned, Theorem 5 is relatively surprising.

Theorem 5 leads us to the question, whether it is possible, that the set
[eo] o0
c <Z d,,) , where Y d,
1 1

is divergent, has a positive Hausdorff dimension. This question will be ans-
wered in what will follow (see the corollary of Theorem 6 and the note 4),

where we show (under certain restricting hypothesis on Z ') the upper and

lower estimation of
dimC (Z d,,) .
1

a0
Theorem 6. Let Y d, be a series with positive terms, let
1

(x0) =k§18k (xg)dy< + 0.
Then
dimC <i:: d,,) =pi1(x0).
Corollary. If p,(x,)=1, then
dim C <§ d,,) =

Example. Let us put g,(x,)=0 if k£ is a prime number, &,(x,)=1 in other
cases. Further let d,=1/n if n is a prime number and d,=1/2" in other cases.
Then

Pi(x)=p(xo)=1 and Y.d,=+oo

as it is known from the number theory. Consequently

‘c@d,,) =0, dimC(i;d,,):

Proof of Theorem 6. 1f p,(x,)=0, the theorem is trivial. Let us suppose
that p, (x,) >0. It will be proved by means of the Theorem 1 of the paper [7].
Let us denote for » natural by the symbol I, (/) the system of all the inter-

vals of the order n
s s+1 \ s s+ 1 >>
2,, ’ on / n ’ o

belonging to such sequences &, &, ..., &, for which ¢;=0 if ¢;(x,)=0 and
g;=0or 1if g;(xo)=1(=1,2,... n). By means of the same symbol I, (I,) we
shall denote also the union of such intervals.
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The length of each interval of the system I, is 4,=1/2", consequently

N S |
A,—0 and h,r.r-l»:onfT—§>0'

The intervals i=i’, i, i’eI, have no common inner points and each of the inter-
vals i el, contains the same number of the intervals i €l,,, [this number is
1, if &,41(x0)=0, and 2, if &,,,(xo)=1].

Now if we show that for 0<a < p; (xo)
(10) lim g, p®(4,)= + 0

n—+ow

[g, denotes the number of the intervals of the system I, and u® () =1%), from
the Theorem 1 of the paper [7] we get

(11) dim M =dim N I,=p, (xo) <M= N 1").
n=1 n=1

We shall prove (10). Evidently g,=2°P®*), Let 0<a< p;(x,). Then there
exists ¢ >0 and a natural number n, such that for

____p(r;, Xo) >o+e

n>n, is

and so (for n>n,)

g 1P () =27 "9 2—1a >2"

From this it is obvious that (10) is valid and so is (11).
Now let us put

M'=nNI,.

n=1

Evidently M'cM and M —M' is a countable set, consequently (see [7]
Lemma 3) is dim M’'=dim M = p,(x,). Obviously from the definition of the
set M’ we have

McC (Z d,,)
1
and therefore also
dimC (Z d..) 2p1 (o).
1

This ends the proof.

For the following purposes let us define the function d({) in this way:
d(0)=d(1)=0 and for {€(0, 1) we put

{log{+(1—-{log(1-0)
log$ '

d(Q)=
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It is not difficult to see, that for {€(0, 1) we have d({) >{. It follows from the
fact, that for {e€(0, 3) we have (as we can easily see) d’({) > 1, further ddH>1
and d’({) >0 on the interval <3, }). Further we can see that d(3)=1.

Theorem 7. Let
Yd,=+o0, d,>0,
1

(x0) =k218k (x0)di< + 0.
Let p,(x,)€<0, 3>. Let us put

B=[n:e,(xo)=0]={l <l <---<l,<---}.
Let
d,l0 and liminfnd, >0.

n— o

Then

dim C (i d,,) <d(p;(xo))-
1

Proof. Let
e} o0
xeC<Zd,,), x=Yg(x)27%,
1 k=1
let A=N —B, N is the set of all natural numbers. Take in account that

p(n,x)= Zek(X)— ) sk(X)+ Z £;¢(J€)< > 1+ Y &

k=n,keA ks=n,kedA k=n,keB

=p(n, %)+ 2 &(x).

<n,keB

(12)

All natural numbers /;€ B appearing in the sequence 1, 2, ... nare [y, I, ..., Ig,
(B(n) denotes the number of those / € B, for which I <n), therefore

B (n)
2 &)= Z ez,(x)
kZn,keB
From the convergence of the series
2e(x)dy
k=1
taking into account that d, >0(k=1, 2, ...) the convergence of the series
.leh (x) dl‘
follows and as the series ) d,, fulfills the assumptions of the Theorem 2
i=1 B(w
Z 81( (x)
lim ———=0

n-w B( )
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and obviously
B (n)
Z &,(x)
lim =1 ——=0.
n—o h
From the last and from (12) we get
B (n)

Z &, (x)

i=1

(n,x)
n

lim sup p <lim sup P (n’xO)-{—lim

n—> o n—oo n— oo

=p,(Xo) -
Consequently it was show, that

C(f dn>cR(p2(xo>),

where R({), {€(0, 1) denotes the set of all these xe(0, 1) for which the sequence

p(n,x) |*
n n=1
has some limit point 7, n <¢(.
On the basis of a certain result of B. VOLKMANN (see [9]) we get

dimC (i:: d,,) <dim R(p,(x¢))=d(p2(x0)).

The proof is complete.
Sumarizing Theorem 6 and 7 we get the following theorem, which gives for a

o0
certain class of series with positive terms ) d, a lower and an upper estimation of
1

dim C <Z d,,) .
1
Theorem 8. Let

d,=+x, d,>0,

»-Mg

let
(x0) =k218k (xo)dp< +o0.

Let us assume that there exists p(x,)€(0, ¥). Let us put

B=[n:g,(xo)=0]={l,<l,<---<l, <},
let
d, 10 and liminfnd, >0.

n— o

Then
0<p(xo)=dimC (Z dn>§d(p(x0))< 1.

1
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Note 4. From Theorem 8 it follows that there exists a certain class of

00
divergent series with positive terms > d,, for which
1

0<dimC<Zd,,>< 1.
1
Example. Let us put

dyi= )2(k 1,2,3,..)

Gk
and d,=1/n for other n +3k. Let us define

Xo= Zlgz(xo) 27
1=

such that ¢, (xo)=1, if /=3k(k=1,2,3,...) and &,(x,)=0, if /=3k+1 or
3k+2(k=0,1,2,...). Then evidently

(x0) =k218k(x0) dy<+00, p(xo)=3

and using the notation of Theorem 8 we have /,, ,,=3k+1, Lis=3k+2.
It is not difficult to see that

d,l0 and liminfnd, =3>0.

n- o0

So on basis of Theorem 8

§d1mC<Zd><d<;>—log(3/V4)

log2

Now we show, that we can get for a class of divergent series with non-
negative terms an upper estimation of

dimC <§ d,,)

with the help of the same idea, on which the proof of Theorem 5 is based.

In what follows N denotes the set of all natural numbers and if 7 < N, then
T (n) denotes the number of all those ¢ €T, for which ¢ <n is true.

Theorem 9. Let
Z dn= + o0 s dngo ’

n=1

let there exist
K={k1<k2<"'<kn<“'}
such that
1
() lim infE—(r—:i= , <61,

n—* oo

B Sdp=+00; d,2d,Z2d =
=1
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Then
dim C (Z d,,> <d(9)

(d(C)= “°g¢+(11;gcil°g(l“o for (0, 1),d(0)=d(1)=0).

Note 5. If we put in the foregoing theorem 6 =1, then we get an improvement
of Theorem 5.

Proof of Theorem 9. 1f
x= i &(x)27%€(0,1),
then we put =
PU0=T 0,00
We put K*=N—K, let

xeC(
n

Ms

d,,) , x=Y g (x)27%,
k=1

1
then from

Y g(x)dy< + 0
k=1
it follows that

“;lek,(x) di, < +©
and from this and from the Theorem 2 (Wwith respect to (8)) we have

(13) tim inf 25 _o.

1= l

Let s be a natural number, let us denote by ky, k,, ... k; all the numbers
k;eK for which k;<s. Then (the notation is the same as in Theorem 5) we have

s 1
PEX)=Ya@=Tea+ T @Sl +K ).

r<s,rek*
From this we get
’ *
14) p(s,x)é P 1 K@)
s 1 s s

From (13) it follows, that there exists a sequence of natural numbers

Li<l,<oe<l, <
such that
p'(ls,%)

—0 as n—ooo.
Ly
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Let us put 5,=k;, (n=1, 2, 3,...), then from (14) we get

’ *
(15) PGn,X) o Plan¥) I | K7(sy)
sn lll sn s’l
If we consider that
*
K S(S") =1—liminf ———Ks(s) =1-6

s 00

lim sup

n—+ o

<lim sup

s 0

K*(s)
s
and [,<s,(n=1, 2, ...), we get from (15)

fim sup 282 <1 _s

n-—o0 n

{p(s, x)}‘”
s s=1

has a limit point {, for which { <1— 6<% is valid and so xe R(1—6) (R({) has
the same meaning as in the proof of the Theorem 7).
So we get

so the sequence

C (Zd,,)c:R(l—é)
1
and with the help of the mentioned result of B. VOLKMANN (see [9]) we get

dim C <Z d,,)gdim R(1=6)=d(1—-06)=d(9).
1
The proof is complete.
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