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On the Compactification
of Strongly Pseudoconvex Surfaces III.
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To the memory of my father.

Throughout, we shall freely use the definitions and notations introduced in
[9a,b]. In particular, all C-analytic surfaces (compact or non compact) are
assumed to be minimal.

1. Situation of the Problem

Definition 1 [2, 9a, b]. A non compact C-analytic surface X is said to be strongly
pseudoconvex if

i) X is holomorphically convex;

ii) there exists a compact analytic curve E = X such that T<E for any irre-
ducible compact analytic curve T< X.

E is called the exceptional curve of X.

In the special case where E=0, X is called a Stein surface.

Definition 2. A non compact C-analytic surface X is called compactifiable if
there exist

i) a compact C-analytic surface M

ii) a compact analytic curve I'c M such that X is biholomorphically equiva-
lent to M\I.

M is called an algebraic (resp. a non algebraic) compactification if M is
an algebraic (resp. a non algebraic) surface.

In this paper we continue to investigate the global structure of

i) compactifiable Stein surfaces;
ii) compactifiable strongly pseudoconvex surfaces which are not Stein (i.e.

E+0).

Remark 1. By definition, Stein surfaces are just special cases of strongly pseudo-
convex surfaces; so one might ask why the treatment of those two surfaces

* The author gratefully acknowledges the generous support from the College of Arts and Sciences
which makes this work possible



260 Vo Van Tan

has to be dealt with separately. In fact, one of the main purposes of this paper
is to point out the sharp contrast between those two surfaces from the view-point
of compactification. So from now on, as we did in [9a, b] strongly pseudoconvex
surfaces are meant to be Non Stein !

Our present investigation is motivated by the following results:

Theorem 1 [4, 1c]. Let M be a compactification of some Stein surface X. Then
M is either
i) an algebraic surface;
ii) a non elliptic Hopf surface containing exactly one compact analytic curve
(see Definition 3) or
ili) a parabolic Inoue surface containing exactly one compact analytic curve
(see Definition 5).

Theorem 2 [9a,b]. Let M be a compactification of some strongly pseudoconvex
surface X. Then M is either

i) an algebraic surface or
ii) a parabolic Inoue surface containing exactly two connected compact analytic
curves (see Definition 5).

Remark 2. Notice that all the alternatives in Theorems 1 and 2 do indeed occur
[1b, 4,9a].

Theorem 3 [9b, c]. (Existence of compactifications.)
Let X be a strongly pseudoconvex surface (resp. a Stein surface). Then X
is compactifiable iff X is algebraic.

Naturally, Theorem 3 leads us to the question of uniqueness of compactifica-
tion for strongly pseudoconvex surfaces (resp. Stein surfaces); however, Theo-
rems 1 and 2 guide us to the following precise formulations:

Problem 1. Let M, and M, be two algebraic (resp. non algebraic) compactifica-
tions of some Stein surface X. Do M, and M, birationally (resp. bimeromorphi-
cally) equivalent ?

Problem 2. Let M, and M, be two algebraic (resp. non algebraic) compactifica-
tions of some strongly pseudoconvex surface X. Do M, and M, birationally
(resp. bimeromorphically) equivalent ?

As explained in Remark 1, the outcomes for these two problems turn out
to be at the two extreme ends of the logic scale. In fact, the answer for Problem 1
is no which is the main topic of Sect. 2. Meanwhile in Sect. 3, an affirmative
answer for Problem 2 will be given. Finally, the affine structure (resp. strongly
pseudo affine structure) of compactifiable Stein surfaces (resp. compactifiable
strongly pseudoconvex surfaces) will be taken up in Sect. 4.

2. Compactifiable Stein Surfaces
We are now in a position to exhibit counterexamples for Problem 1.

A) Let us consider the following construction which is due to Serre (see
[3a]). Let 4 be a non singular elliptic curve and let JE— 4 be a holomorphic
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vector bundle of rank 2 which is not a trivial extension of O, by itself, namely
one has the following exact sequence

0-0,-E->0,-0.

Let Z:=P(IE) be the associated elliptic ruled surface with its natural projection
n: Z —A. Now one can check that the line bundle Ox(1) defines an effective
divisor Y on Z which is the unique section of 7 with Y?=0; furthermore, Z\' Y
~(C* x C* where C*:=C\ {0}.

Now let M,:=Z and I:=Y and let M,:=IP, and I,:= the union of three
lines in general position. Then

M\ ~C* x C*~ M,\T;.

Hence one obtains a Stein surface X :=C* x C* which admits two algebraic
compactifications which are not birationally equivalent: M, an irrational surface
and M, a rational surface.

B) Let U:=C?\{0,0} and let g: U— U be an automorphism of U defined
by
g(zla 22) :=(am Zy + A'Z'Zna 0(22)
where m is a fixed positive integer, LeC*, ae C with 0 <|a|<1.

Now one can check that [6] the cyclic group <{g) is properly discontinuous
and the quotient space H,:=U/{g) is a compact C-analytic surface with

b(H)=1 and b,(H,)=a(H,)=0.

Furthermore, the punctured line U n {z, =0} is invariant under g, so it is mapped
by the projection n: U — IH, onto a non singular elliptic curve I5:=C*/<a> which
is the only compact C-analytic curve in H,.

Definition 3. H, is called a non elliptic Hopf surface containing exactly one
compact analytic curve 1.
Now one can check easily the following

Lemma 1. H, is biholomorphically equivalent to Hy iff o= .

Remark 3 [4]. Let us consider the following functions

2nio™z
f1(21,22)==eXP<?§,—1)

and
a™z

flers zab=(ifz2) exp (% 5 loge)

which are defined and holomorphic on U\{z,=0}.

One can check that fi=(f, f,) maps U\{z,=0} onto {€?|z,z,+0} and
f@)=f(2) iff z=g*(z) for some k. Consequently H,\I,~ {€C?|z,2, 0} =C*
x C*.
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Now let M, :=H,, I :=I; and let M,:=Hj, I, :=I; with a + . Then Remark
3 tells us that
M \Ty >~ M\~ C* x C*.

Hence one obtains a Stein surface X :=C* x €* which admits two non alge-
braic compactifications M; and M, which, in view of Lemma 1, are not bimero-
morphically equivalent.

3. Compactifiable Strongly Psendoconvex Surfaces

In this section, we shall provide positive answers for Problem 2.

A) Definition 4 [5, 7, 8]. Let M be a compact C-algebraic surface, let I' be
a compact analytic curve in M and let X =M\TI. Now let L be a holomorphic
line bundle on M. For a positive integer m, let

Ame: M - Py
be a meromorphic map defined by
we[do(W): ... 2 py(W)]

where {¢;} is a basis for H*(M, O(mL)).
Let N(L, M):={m>0|dim H°(M, O(mL))>0}. Then one defines

w if N(L, M)=0
(L, M)zz{maxm {dim @y (M)} if N(L, M)=+0.

Now the number x(X):=k(KK+ I, M) is called the logarithmic Kodaira dimension
of X, where K is the canonical bundle of M.

Remark 4. i) By definition, x(X) can assume only the following values — co,
0,1o0r2.

ii) If X=M and I'=9, the logarithmic Kodaira dimension coincides with
the notion of Kodaira dimension for compact surfaces; in fact x(M)=x« (K, M).

iii) One always has x(X) =« (M).

Now some basic ingredients are in order.

Lemma 2. Let M be a complete algebraic surface with a complete curve I' in
M and let X:=M\TI with k(X)=0 or 1. If k(M)=0 then X is neither Stein
nor strongly pseudoconvex.

Proof. i) Cases where x(X)=0.

By hypothesis, one must have x(M)=0; therefore, it follows from [6] that
M is either an abelian surface, a hyperelliptic surface, a K5 surface or an Enriques
surface. Now if M is either an abelian surface or a hyperelliptic surface, it
follows from [5] (Example 4) that x(X)=1 which is excluded in our current
situation.
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On the other hand, if M is either a K5 surface or an Enriques surface,
again it follows from [5] (Example 4) that I'> <0 which in turn implies that
X is not holomorphically convex (see e.g. Theorem B of [9a]).

ii)) Cases where k(X)=1.

By hypothesis xk(M)=0, hence a result in [7] (Theorem 2.3.1) tells us that
M has a structure of an elliptic surface n: M — 4 over a non singular complete
curve 4 and I' consists of finitely many fibres of n. Consequently X contains
infinitely many compact analytic curves; hence X can be neither strongly pseudo-
convex nor Stein. Q.E.D.

Corollary 3. Let M be an algebraic compactification of some Stein surface (resp.
some strongly pseudoconvex surface) X. Then k(M)= — o0 if k(X)<2.

We are now in a position to provide a positive answer for the first half
of Problem 2.

Theorem 4. Let M, and M, be two arbitrary algebraic compactifications of some
strongly pseudoconvex surfaces X. Then M, and M, are birationally equivalent.

Proof . Let E be the exceptional curve in X and let M be an algebraic compacti-
fication of X.

i) If k(X)=—o00, 0 or 1, in view of Corollary 3, k(M)= — o0, i.e. following
[6] M is either a IP, or a ruled surface. Since X is strongly pseudoconvex,
M cannot be a IP,. Hence M is a ruled surface. Let n: M — B be a surjective
morphism onto some compact C-analytic curve B. It is known that M ~IP(EE)
where [E is a locally free sheaf of rank 2 on B. Let ¢ be the divisor on B
corresponding to A%IE, and let e:= —dege - ¢ is an invariant for M.

Now let us fix a section 5 of M with Oy (Z)~Op(1) and let us denote
the fibres of M by F. It is shown [3b] that

2= —e. (%)
Claim. E~E.
In fact, since H2(M, Z) is generated by Z and F, one can write
0=aZ+bF (x%)
where a, beZ and 6 is some irreducible component of E. Since E is exceptional,

hence
0% <0. M

Now let us assume that 0=+ Z, F; in view of (x) and (xx) 0>=2ab—a’e.

Case 1. For =0, one has (see [3b] Prop. V.2.20) a>0, b=ae. Therefore 6>
>2a?e—a*e=a?e20, contradicting (}).

Case 2. For e <0, one has (see [3b] Prop. V.2.21) either

i) a=1,b=0o0r
i) a=2, b=1/2ae which in either cases, imply that 6*>0, contradicting

(t)-

! We would like to thank the referee who pointed out a fatal error in our previous proof
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Since 60 is exceptional so 8=F. Therefore E is irreducible and our claim
is proved..

In particular M is birationally equivalent to E x IP,. Hence it follows readily
that M; and M,, as ruled surfaces, are birationally equivalent.

ii) If x(X)=2, then a result in [8] (Sect. 4) tells us that M, and M, are
birationally equivalent. Q.E.D.

Remarks. i) Although E is a section for the ruled surface M, I''=M\ X in general,
is not, as shown by the following example which was communicated to us
by the referee:

Let M be a Hirzebruch surface with a section E such that E?= —2. Let
I' be an irreducible compact C-analytic curve in M such that '=2E-+4F.
Since I'’>0 and since I'-E=0, X:=M\TI is a strongly pseudoconvex surface
with exceptional curve E, but I' is not a section of M.

ii) In parallel with Theorem 4, let us consider the following class of non
compact C-analytic surfaces:

Let X be a non compact C-analytic surface satisfying the following condition:

(f) there exists an irreducible compact C-analytic curve E on X such that
the normal bundle Ny is ample.

Notice that such surfaces exist; in fact let E be a hyperplane section in
PP, and let xelP,\E. Then X:=IP,\{x} is a non compact C-analytic surface
satisfying (f). In fact one can show that X is strongly pseudoconcave in the
sense of Andreotti-Grauert (see e.g. [3a]). Notice also that strongly pseudocon-
cave surfaces are in duality with strongly pseudoconvex surfaces.

Now in view of important results by Hironaka and Matsumura on formal
meromorphic functions along E (see [3a] for precise references) an analogue
for Theorem 4, for non compact C-analytic surfaces satisfying (1) can be stated
as follows:

Theorem 4’. Let X be a non compact C-analytic surfaces satisfying (1) and let
M, and M, be 2 algebraic compactifications of X.
Then M, and M, are birationally equivalent.

B) Definition 5. In [1a] Enoki constructed compact C-analytic surfaces, denot-
ed by S, . . where n>0, 0<|a| <1 and t:=(¢,, ..., t,— ;)€ C". Those surfaces are
completely characterised by the following intrinsic properties: (see [1a] for com-
plete details)
1) S, 4 .is of class VII,

ii) by(Sy,q,)=n

iii) S, , . contains a connected compact analytic curve D, , , with (D, , )?
=0.

The surfaces S, , , are called parabolic Inoue surfaces.

Following closely an idea in [la,b] an affirmative answer for the second
half of Problem 2 can be stated as follows:

Theorem 5. Let M, and M, be two arbitrary non algebraic compactifications
of some strongly pseudoconvex surface X.
Then M, and M, are biholomorphically equivalent.
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Proof. Let E be the exceptional curve in X and let M; with i=1 or 2, be some
non algebraic compactifications for X.

In view of Theorem 2, M;~S, ., for some fixed n, « and t. Let I be a
compact analytic curve in M; such that X is biholomorphic to M\I;. Since
X is strongly pseudoconvex and a(M;)=0, I} is necessarily connected and I;>=0;
hence in view of the construction of the S, . ,, one has I;~D, , ,.

Claim:

i) t=0

ii) n=—E? and

iii) E=C*/{a).

In fact, by construction [1a] one has a biholomorphic map

T (EX q:*/<gn,a,t>'L’Sn,a,t\Dn,a.th

where
o CxC*—>CxC*

@+ T on) (t

i=0

is an automorphism of € x C*.
The natural projection € x €C* — €C* induced a map

72 € X C*{gy 4, >= B — A:=C*/<a)

which, in turn, provides A a structure of an affine C-bundle over an elliptic
curve 4.
By hypothesis, the compact analytic curve E:=7Y(E) sits in A. So let

{a,, ...,a,}=1"(x)n E for some general point xed and let 6(x):= )’ a;. Then
o defines a section for 7. =t

n—1
Consequently (f) implies that ) t,w'=01ie.t=0.
i=0
Therefore A is actually a holomorphic line bundle of degree = —n over

A and E is a section for =; in particular, E~A~@*/{a) and E*= —n. Hence
our claim is proved.

Now it follows readily from this claim that M, and M, are biholomorphically
equivalent. Q.E.D.

Remark 5. In retrospect the counterexamples exhibited in Sect. 2 are in some
extent unique. In fact, with arguments similar to the ones in Theorems 4 and
5 one can easily establish the following:

Theorem 6. Let M; withi=1 or 2 be two algebraic (resp. non algebraic ) compacti-
fications of some Stein surface X.

Let us assume that M; are not ruled surfaces (resp. not non elliptic Hopf
surfaces ).

Then M, are birationally equivalent (resp. biholomorphically equivalent ).
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We refer to [9c] for complete proof of this result and further detailed
accounts on compactifiable Stein surfaces.

4. The Affine Structure

Recently Enoki raised the following

Problem 3. Let X be a compactifiable Stein surface. Does X always admit some
affine structure ?
Analogously, we would like to consider the following

Problem 4. Let X be a compactifiable strongly pseudoconvex surface. Does
X always admit some strongly pseudo affine structure ?

Definition 6 [3a]. A non complete C-algebraic variety Z is called a “modifica-
tion” (of some affine variety) if

i) there exists an affine variety Y and a proper morphism rn: Z — Y inducing
an isomorphism n, (0z)~Oy;

ii) the set B:={ye Y|dimg 7" (y)>0} is finite.

Remark 6. Notice that for a given C-algebraic variety Z which is a modification,
Z is affine iff Z does not contain complete algebraic varieties of positive dimen-
sion.

Definition 7. Let X be a C-analytic space. We say that X admits a strongly
pseudo affine structure if there exists a C-algebraic variety Z which is a modifica-
tion such that X is biholomorph to Z,,, the analytic space associated to Z.

In order to establish the connection between Problems 3 and 4, we would
like to mention the following results:

Theorem A [4]. Let M be a complete C-algebraic variety and let Yo M be
a closed subvariety.

If there exists an effective ample divisor D on M such that supp (D)=, then
X:=M\Y is affine.
Theorem B [2]. Let D be an effective divisor on a compact C-analytic surface
M. Let us assume that D>>0. Then D is ample iff M\D contains no compact
analytic curves.

In view of Theorems A and B, Problems 3 and 4 are equivalent to the
following

Problem 5. Let X be a compactifiable Stein (resp. strongly pseudoconvex) surface.
Does X always admit some algebraic compactification M such that D? >0 where
D is an effective divisor in M with supp (D)=M\X ?

Acknowledgement. We would like to thank Prof. Enoki with whom we had some helpful communica-
tion.



Strongly Pseudoconvex Surfaces 267

References

1. Enoki, I.: a) Surface of class VII, with curves. Tohoku Math. J., (2) 33, 453492 (1981)
b) On parabolic Inoue surfaces. Preprint
2. Grauert, H.: Uber Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331-368
(1962)
3. Hartshorne, R.: a) Ample subvarieties of algebraic varieties. Lect. Notes in Math. 156. Berlin
Heidelberg New York: Springer 1970
b) Algebraic Geometry. Graduate Texts in Math. #52. Berlin Heidelberg New York: Springer
1977
4. Howard, A.: On the compactification of Stein surfaces. Math. Ann. 176, 221-224 (1968)
Iitaka, S.: On logarithmic Kodaira dimension of algebraic varieties. Complex analysis & Algebraic
geometry, pp. 175-189. Tokyo: Iwanami 1977
6. Kodaira, K.: On the structure of complex analytic surfaces. Am. J. Math. 86, 751-798 (1964);
ibid, 88, 682-721 (1966); ibid, 90, 55-83, 1048-1063 (1968)
Miyanishi, M.: Theory of non complete algebraic surfaces. Lect. Notes Math. 857. Berlin Heidelberg
New York: Springer 1981
Sakai, F.: Kodaira dimensions of complements of divisors. Complex analysis & Algebraic geometry,
pp- 239-257. Tokyo: Iwanami 1977
9. Vo Van Tan: a) On the compactification of strongly pseudoconvex surfaces. Proc. Am. Math.
Soc. 82, 407-410 (1981)
b) On the compactification of strongly pseudoconvex surfaces II. Proc. Am. Math. Soc. 90, 189-194
(1984)
¢) On the compactification problem for Stein surfaces. Preprint

v

=~

o

Received August 10, 1985; in final form January 5, 1987

Note added in proof.

Let us use the same notations as in Definition 4 for logarithmic Kodaira dimension x(X); there,
if one replaces the vector space H°(M,O(mL)) by H°(M, O(m K+(m—1) I)), then the number
K(X):=k(L, M) is called the analytic Kodaira dimension for X (see [8] and [9c] for more details).

Now, by using similar arguments as in the first part of the proof of Theorem 4, our Corollary 3
can be strengthened as follows:

Theorem 3'. Let X be a compactifiable Stein surface. Then K(X)= — oo or 2.

Certainly this result is false, if one replaces the analytic Kodaira dimension & (X) by the logarithmic
Kodaira dimension x(X). We refer to [7] section 5 for counterexamples.

Furthermore, it would be interesting to find out whether Theorem 3’ still holds for compactifiable
strongly pseudoconvex surfaces.






