

Werk

Titel: Vorlesungen über Zahlentheorie

Autor: Dirichlet, Peter Verlag: Vieweg Ort: Braunschweig lahr: 1871

Kollektion: Mathematica

Digitalisiert: Niedersächsische Staats- und Universitätsbibliothek Göttingen

Werk Id: PPN30976923X

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN30976923X **OPAC:** http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=30976923X

OG Id: LOG 0017

LOG Titel: §.11. Bestimmung der Anzahl *, welche angiebt, wie viele der ersten m Zahlen I, 2, 3 ... m relative Primzahlen zu

der letzten m sind **LOG Typ:** chapter

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions. Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further

reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de nehme man sie als Factor in das kleinste gemeinschaftliche Multiplum auf; sind aber $a, b, c \dots$ die sämmtlichen Primzahlen, welche in den einzelnen Zerlegungen der gegebenen Zahlen vorkommen, so erhält man nach dieser Regel das gesuchte kleinste gemeinschaftliche Multiplum in der Form

$$a^{\alpha'}b^{\beta'}c^{\gamma'}\ldots$$

wo z. B. der Exponent α' dadurch bestimmt ist, dass die Primzahl α in mindestens einer der gegebenen Zahlen genau α' mal, in allen übrigen aber nicht öfter als Factor enthalten ist. Der Beweis liegt hier darin, dass die gesuchte Zahl jeden Primfactor enthalten muss, der in einer der gegebenen Zahlen enthalten ist, und zwar mindestens ebenso oft, als diese.

Endlich können wir aus den vorhergehenden Principien noch ein Kriterium ableiten, nach welchem zu erkennen ist, ob eine Zahl

$$m = a^{\alpha}b^{\beta}c^{\gamma}\dots$$

eine genaue rte Potenz einer ganzen Zahl k ist. Dazu ist offenbar erforderlich und hinreichend, dass alle Exponenten α, β, γ . . . durch r theilbar sind, wie man sogleich aus der Annahme

$$m = k^r$$
 $K_{\geq N^{-1} + r^{-r}}$

erkennt.

§. 11.

Wir gehen nun zu einer Untersuchung über, welche an sich schon interessant und ausserdem für die Folge von der grössten Wichtigkeit ist. Denken wir uns einmal alle ganzen Zahlen

$$1, 2, 3, 4 \dots m$$

bis zu einer beliebigen letzten m aufgeschrieben, und zählen wir ab, wie viele von ihnen relative Primzahlen gegen die letzte m sind. Diese Anzahl bezeichnet man in der Zahlentheorie durchgängig mit $\varphi(m)$, wo der Buchstabe φ die Rolle eines Functionszeichens spielt*). Da die Einheit relative Primzahl gegen sich selbst ist, so folgt zunächst

$$\varphi(1)=1;$$

durch wirkliches Abzählen findet man ferner

^{*)} Gauss: Disquisitiones Arithmeticae art. 38.

$$\varphi(2) = 1, \ \varphi(3) = 2, \ \varphi(4) = 2, \ \varphi(5) = 4$$

u. s. w. Allein es kommt darauf an, einen allgemeinen Ausdruck für die Function $\varphi(m)$ zu finden, und wir werden sehen, dass man zu diesem Zweck nur die sämmtlichen von einander verschiedenen Primzahlen $a, b, c \ldots$ zu kennen braucht, welche in m aufgehen. Unsere Aufgabe ist nämlich identisch mit dieser: die Anzahl der obigen Zahlen zu bestimmen, welche durch keine dieser Primzahlen $a, b, c \ldots$ theilbar sind; und diese ist wieder nur ein specieller Fall der folgenden:

Wenn $a, b, c \dots$ relative Primzahlen sind und sämmtlich in einer Zahl m aufgehen, so soll die Anzahl derjenigen der Zahlen

$$1, 2, 3 \ldots m \tag{M}$$

bestimmt werden, welche durch keine der Zahlen $a, b, c \dots$ theilbar sind.

Es zeigt sich nun, wie es häufig geschieht, dass die allgemeinere Aufgabe leichter zu lösen ist, als der direct angegriffene specielle Fall. Zu diesem Zweck scheiden wir zunächst aus dem Zahlencomplex (M) alle diejenigen aus, welche durch die Zahl a theilbar sind; es sind dies offenbar die Zahlen

$$a, 2a, 3a \ldots \frac{m}{a}a;$$

die Anzahl derselben ist m:a; es bleiben daher, nachdem dieselben aus dem Complex (M) ausgeschieden sind, nur

$$m - \frac{m}{a} = m\left(1 - \frac{1}{a}\right) \tag{1}$$

Zahlen übrig, welche nicht durch a theilbar sind, und deren Complex wir mit (A) bezeichnen wollen.

Aus diesem Complex (A) sind nun zunächst alle durch b theilbaren Zahlen auszuscheiden; es sind dies offenbar alle diejenigen Zahlen des Complexes (M), welche der doppelten Forderung genügen, erstens dass sie nicht durch a, zweitens dass sie nicht theilbar sind. Alle Zahlen nun, welche der zweiten Forderung genügen, sind die folgenden

$$b, 2b, 3b, \ldots \frac{m}{h}b;$$

damit aber eine dieser Zahlen, z. B. rb, auch der ersten Forderung genüge, ist erforderlich und hinreichend, dass der Coefficient r

nicht durch a theilbar sei; denn da der Annahme nach a und b relative Primzahlen sind, so ist rb theilbar oder nicht theilbar durch a, je nachdem r durch a theilbar ist oder nicht (§. 5, 2). Die Anzahl der noch aus dem Complex (A) auszuscheidenden Zahlen stimmt daher überein mit der Anzahl derjenigen der Zahlen

$$1, 2, 3 \ldots \frac{m}{b},$$

welche nicht durch a theilbar sind. Da nun m durch a und b, folglich auch durch ab theilbar ist, so ist die letzte dieser Zahlen m:b theilbar durch a; unsere Frage ist also dieselbe für die Zahl m:b wie diejenige, welche wir durch den ersten Schritt für die Zahl m gelöst und durch die Formel (1) beantwortet haben. Die Anzahl der aus (A) auszuscheidenden Zahlen ist daher gleich

$$\frac{m}{b}\left(1-\frac{1}{a}\right)$$

und wir erhalten

$$m\left(1-\frac{1}{a}\right)-\frac{m}{b}\left(1-\frac{1}{a}\right) = m\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right) \tag{2}$$

als Anzahl derjenigen im Complex (Λ) enthaltenen Zahlen, welche nicht durch b theilbar sind, oder, was dasselbe ist, als Anzahl derjenigen in (M) enthaltenen Zahlen, welche veder durch a noch durch b theilbar sind.

Bezeichnen wir den Complex dieser Zahlen mit (B), so kann man in derselben Weise fortfahren und gelangt so durch Induction zu dem Resultat, dass die Anzahl derjenigen in (M) enthaltenen Zahlen (K), welche durch keine der Zahlen $a, b, c \ldots k$ theilbar sind, gleich

$$m\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\left(1-\frac{1}{c}\right)\cdots\left(1-\frac{1}{k}\right)$$
 (3)

ist. Um die Allgemeingültigkeit dieses Gesetzes nachzuweisen, nehmen wir an, dass die Richtigkeit desselben für die Zahlen $a, b, c \dots k$ schon bewiesen sei, und untersuchen, was geschieht, wenn zu denselben noch eine andere l hinzukommt, wobei natürlich wieder vorausgesetzt wird, erstens dass l in m aufgeht, zweitens dass l relative Primzahl gegen jede der vorhergehenden Zahlen $a, b, c \dots k$ ist.

Um die Anzahl aller in (M) enthaltenen Zahlen zu bestimmen, welche durch keine der Zahlen $a, b, c \dots k, l$ theilbar sind, haben

wir aus dem Complex (K) derjenigen Zahlen, welche durch keine der Zahlen $a, b, c \ldots k$ theilbar sind, und deren Anzahl durch die Formel (3) gegeben ist, nur noch die auszuscheiden, welche durch l theilbar sind; es sind dies alle diejenigen in (M) enthaltenen Zahlen, welche erstens nicht theilbar durch $a, b, c \ldots k$, zweitens theilbar durch l sind. Alle durch l theilbaren Zahlen des Complexes (M) sind diese

$$l, 2l, 3l \ldots \frac{m}{l}l,$$

und damit irgend eine derselben, z. B. rl, durch keine der Zahlen $a, b \dots k$ theilbar sei, ist erforderlich und hinreichend, dass der Coefficient r dieselbe Eigenschaft habe. Die Anzahl der auszuscheidenden Zahlen stimmt daher überein mit der Anzahl derjenigen unter den Zahlen

$$1, 2, \ldots \frac{m}{l},$$

welche? durch keine der Zahlen $a, b \dots k$ theilbar sind; diese ist aber nach der als richtig vorausgesetzten Formel (3) gleich

$$\frac{m}{l}\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\cdots\left(1-\frac{1}{k}\right);$$

nach Ausscheidung derselben aus dem Complex (K) bleiben daher

$$m\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\cdot\cdot\cdot\left(1-\frac{1}{k}\right)$$

$$-\frac{m}{l}\left(1-\frac{1}{a}\right)_{*}\left(1-\frac{1}{b}\right)\cdot\cdot\cdot\left(1-\frac{1}{k}\right)_{*}$$

$$=m\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\cdot\cdot\cdot\left(1-\frac{1}{k}\right)\left(1-\frac{1}{l}\right)$$

Zahlen übrig, nämlich diejenigen, welche durch keine der Zahlen $a, b, c \dots k, l$ theilbar sind.

Hiermit ist die Allgemeingültigkeit unseres Satzes bewiesen; kehren wir nun zu unserer ursprünglichen Aufgabe zurück, so erhalten wir das Resultat*):

^{*)} Euler: Theoremata arithmetica nova methodo demonstrata, Comm. nov. Ac. Petrop. VIII. p. 74. Speculationes circa quasdam insignes proprietates numerorum, Acta Petrop. IV, 2. p. 18. — Eine höchst werthvolle Sammlung der arithmetischen Abhandlungen Euler's ist von den Brüdern Fuss unter folgendem Titel herausgegeben: Leonhardi Euleri Commentationes Arithmeticae Collectae. Petropoli 1849. 2 tom.