

Werk

Titel: Vorlesungen über Zahlentheorie

Autor: Dirichlet, Peter Verlag: Vieweg Ort: Braunschweig lahr: 1871

Kollektion: Mathematica

Digitalisiert: Niedersächsische Staats- und Universitätsbibliothek Göttingen

Werk Id: PPN30976923X

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN30976923X **OPAC:** http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=30976923X

LOG Id: LOG_0021

LOG Titel: §. 15. Bestimmung der höchsten Potenz einer Primzahl, welche in dem Producte 1.2.3 . . . m der ersten m ganzen

Zahlen aufgeht. Folgerungen

LOG Typ: chapter

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de

$$\alpha'$$
 die Zahlen 0, 1, 2 . . . α β' , , γ 0, 1, 2 . . . β γ' , 0, 1, 2 . . . γ u. s. w.

durchlaufen lassen. Bildet man nun das Aggregat aller entsprechenden Werthe $\varphi(n)$, so leuchtet ein, dass dasselbe mit dem Product aus den folgenden Summen

$$\varphi(1) + \varphi(a) + \varphi(a^{2}) + \cdots + \varphi(a^{\alpha})$$

$$\varphi(1) + \varphi(b) + \varphi(b^{2}) + \cdots + \varphi(b^{\beta})$$

$$\varphi(1) + \varphi(c) + \varphi(c^{2}) + \cdots + \varphi(c^{\gamma})$$

übereinstimmt. Die erste dieser Summen ist aber gleich

$$1 + (a-1) + (a-1) a + \cdots + (a-1) a^{\alpha-1}$$

= 1 + (a^{\alpha} - 1) = a^{\alpha};

ebenso ist b^{β} die zweite, c^{γ} die dritte Summe u. s. f. Es ergiebt sich daher, dass das Aggregat

$$\sum \varphi(n) = a^{\alpha} \cdot b^{\beta} \cdot c^{\gamma} \cdot \cdot \cdot = m$$

ist, was zu beweisen war.

§. 15.

Wir wenden uns nun noch zu einer Aufgabe, deren Lösung zu einem rein arithmetischen Beweise eines Satzes führt, welcher sonst gewöhnlich durch andere Betrachtungen erwiesen wird. Es handelt sich darum, wenn m eine beliebige ganze Zahl und p eine beliebige Primzahl ist, den Exponenten der höchsten Potenz von p zu bestimmen, welche in der Facultät

$$m! = 1 \cdot 2 \cdot 3 \cdot \ldots m = !(m)$$

aufgeht. Bezeichnen wir mit m' die grösste in dem Bruch m:p enthaltene ganze Zahl, so sind unter den m Factoren von m! nur die folgenden m' durch p theilbar

$$p, 2p, 3p \ldots m'p;$$

und da die übrigen Factoren bei unserer Frage keine Rolle spielen, so stimmt der gesuchte Exponent mit dem Exponenten der höchsten Potenz von p überein, welche in dem Product

$$1 \cdot 2 \cdot \dots m' \cdot p^{m'}$$

dieser Multipla von p aufgeht, und ist daher gleich der Summe aus m' und dem Exponenten der höchsten Potenz von p, welche in der Facultät

$$m'! = 1 \cdot 2 \cdot \ldots m'$$

aufgeht. Hieraus ergiebt sich unmittelbar, dass der gesuchte Exponent gleich

$$m'+m''+m'''+\cdots$$

ist, wo m'', m''' ... die grössten in den Brüchen m': p, m'': p... enthaltenen ganzen Zahlen bedeuten. Offenbar ist die Reihe der Zahlen m', m'', m''' ... eine abnehmende und folglich eine endliche; der gesuchte Exponent wird = 0 sein, wenn p > m ist; denn dann ist schon m' = 0. Es mag beiläufig noch bemerkt werden, dass die Zahlen m', m'', m''' ... auch die grössten resp. in den Brüchen $m: p, m: p^2, m: p^3$... enthaltenen ganzen Zahlen sind; ist nämlich r die grösste in m: a, und s die grösste in r: b enthaltene ganze Zahl, so ist s auch stets die grösste in m: ab enthaltene ganze Zahl.

Ist z. B. m = 60 und p = 7, so ist die grösste in

$$\frac{60}{7}$$
 enthaltene ganze Zahl $m' = 8$

und die grösste in

$$\frac{8}{7}$$
 oder in $\frac{60}{49}$ enthaltene ganze Zahl $m''=1$

und die grösste in

$$\frac{1}{7}$$
 oder in $\frac{60}{243}$ enthaltene ganze Zahl $m''' = 0$;

also ist

$$7^{8+1} = 7^9$$

die höchste Potenz von 7, welche in der Facultät 60! aufgeht.

Durch das so gewonnene Resultat sind wir in den Stand gesetzt, folgenden Satz zu beweisen: Ist

$$m = f + g + h + \cdots,$$

so ist

$$\frac{m!}{f! \; g! \; h! \; \dots}$$

eine ganze Zahl.

Denn wenn p irgend eine im Nenner aufgehende Primzahl ist, und wenn wir eine der frühern analoge Bezeichnung beibehalten, so sind

$$f' + f'' + f''' + \cdots$$

 $g' + g'' + g''' + \cdots$
 $h' + h'' + h''' + \cdots$
u. s. w.

die Exponenten der höchsten Potenzen von p, welche resp. in f!, in g!, in h! u. s. w. aufgehen, und folglich ist

$$(f' + g' + h' + \cdots) + (f'' + g'' + h'' + \cdots) + (f''' + g''' + h''' + \cdots) + \cdots$$

der Exponent der höchsten Potenz von p, welche in dem ganzen Nenner aufgeht. Andererseits ist

$$m'+m''+m'''+\cdots$$

der Exponent der höchsten im Zähler aufgehenden Potenz von p; es ist daher nur zu zeigen, dass die letztere Summe nicht kleiner ist als die erstere. Da nun

$$\frac{m}{p} = \frac{f}{p} + \frac{g}{p} + \frac{h}{p} + \cdots$$

ist, so leuchtet unmittelbar ein, dass

$$m' \geq f' + g' + h' + \cdots$$

sein muss; hieraus folgt aber wieder

$$\frac{m'}{p} \ge \frac{f'}{p} + \frac{g'}{p} + \frac{h'}{p} + \cdots$$

 $m'' \ge f'' + g'' + h'' + \cdot \cdot \cdot$

also a fortiori

u. s. f., woraus die Richtigkeit der obigen Behauptung erhellt. Da nun jede im Nenner aufgehende Primzahl mindestens ebenso oft im Zähler aufgeht, so ist der Zähler theilbar durch den Nenner, der Bruch selbst also wirklich eine ganze Zahl.

Hieraus folgt auch, dass jedes Product von m successiven ganzen Zahlen

$$(a+1) (a+2) \dots (a+m-1) (a+m)$$

stets durch das Product der ersten m ganzen Zahlen

$$m! = 1 \cdot 2 \cdot 3 \cdot \dots (m-1)m$$

theilbar ist; denn der Quotient

$$(a+1)(a+2)\dots(a+m-1)(a+m)$$

1 2 ... $(m-1)$ m

ist gleich

$$\frac{(a+m)!}{a! + m!}$$

und folglich eine ganze Zahl. $\frac{(a+m)!}{a! \ m!}$ $\frac{1}{3}$ $\frac{1}{3}$