

Werk

Titel: Vorlesungen über Zahlentheorie

Autor: Dirichlet, Peter Verlag: Vieweg Ort: Braunschweig lahr: 1871

Kollektion: Mathematica

Digitalisiert: Niedersächsische Staats- und Universitätsbibliothek Göttingen

Werk Id: PPN30976923X

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN30976923X **OPAC:** http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=30976923X

LOG Id: LOG_0063

LOG Titel: §. 55. Zusammengesetzte Substitutionen

LOG Typ: chapter

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions. Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de

Determinanten = 0 sind, so betrachten wir deshalb auch nur solche Substitutionen $({}^{\alpha}_{\gamma}, {}^{\beta}_{\sigma})$, für welche die Coefficientenverbindung $\alpha \delta - \beta \gamma$ (die sogenannte Determinante der Substitution) einen von Null verschiedenen Werth hat. Hieran knüpft sich jedoch noch eine wichtige Unterscheidung; je nachdem nämlich dieser Ausdruck $\alpha\delta - \beta\gamma$ einen positiven oder negativen Werth hat, soll die Substitution $\binom{\alpha}{\gamma}$ eine eigentliche oder uneigentliche heissen, und diese Ausdrucksweise soll auf die Beziehung zwischen den Formen (a, b, c)und (a', b', c') übertragen werden, indem wir sagen, dass die Form (a', b', c') eigentlich oder uneigentlich unter der Form (a, b, c) enthalten sei, je nachdem die Substitution $\binom{\alpha}{\gamma}$, $\binom{\beta}{\delta}$, durch welche die letztere in die erstere übergeht, eigentlich oder uneigentlich ist. Um Missverständnisse zu vermeiden, fügen wir sogleich hinzu, dass eine Form eine andere sowohl eigentlich als auch uneigentlich enthalten kann; denn es tritt häufig der Fall ein, dass eine Form einmal durch eine eigentliche, ein anderes Mal durch eine uneigentliche Substitution in eine und dieselbe zweite Form transformirt wird. z. B. geht die Form (3, 13, 18) durch die eigentliche Substitution $\begin{pmatrix} +1, & 0 \\ -1, & +1 \end{pmatrix}$, und ebenso durch die uneigentliche Substitution $\begin{pmatrix} +1, & +2 \\ -1, & -3 \end{pmatrix}$ in die andere Form (-5, -5, 18) über; die erstere enthält daher die letztere sowohl eigentlich als auch uneigentlich.

Man nennt ferner zwei Substitutionen gleichartig, wenn sie beide eigentlich, oder beide uneigentlich sind, ungleichartig, wenn die eine eigentlich, die andere uneigentlich ist.

§. 55.

Behalten wir die vorhergehenden Bezeichnungen bei, und nehmen wir an, dass die Form

$$a'(a', b', c') = a'x'^2 + 2b'x'y' + c'y'^2$$

durch eine neue Substitution

$$x' = \alpha' x'' + \beta' y''$$

$$y' = \gamma' x'' + \delta' y''$$

in die Form

$$(a'', b'', c'') = a'' x''^{2} + 2 b'' x'' y'' + c'' y''^{2}$$

übergeht, so geht offenbar die erste Form (a, b, c) durch die Substitution

$$x = \alpha (\alpha' x'' + \beta' y'') + \beta (\gamma' x'' + \delta' y'')$$

$$y = \gamma (\alpha' x'' + \beta' y'') + \delta (\gamma' x'' + \delta' y'')$$

oder

$$x = (\alpha \alpha' + \beta \gamma') x'' + (\alpha \beta' + \beta \delta') y''$$

$$y = (\gamma \alpha' + \delta \gamma') x'' + (\gamma \beta' + \delta \delta') y''$$

in die dritte Form (a", b", c") über. Hieraus folgt der Satz:

Enthält eine Form eine zweite, diese wieder eine dritte, so enthält auch die erste Form die dritte.

Bezeichnet man nun die Coefficientenverbindung

$$(\alpha\alpha' + \beta\gamma') (\gamma\beta' + \delta\delta') - (\alpha\beta' + \beta\delta') (\gamma\alpha' + \delta\gamma')$$

mit ε , so ist nothwendig die Determinante der dritten Form $D'' = \varepsilon^2 D$; da aber andererseits

$$D' = (\alpha \delta - \beta \gamma)^2 D, D'' = (\alpha' \delta' - \beta' \gamma')^2 D',$$

also auch

$$D'' = (\alpha \delta - \beta \gamma)^2 (\alpha' \delta' - \beta' \gamma')^2 D,$$

und D von Null verschieden ist, so schliessen wir hieraus, dass

$$\varepsilon^2 = (\alpha \delta - \beta \gamma)^2 (\alpha' \delta' - \beta' \gamma')^2$$

ist, und man überzeugt sich leicht durch Vergleichung beider Seiten, dass die Quadratwurzel in folgender Weise auszuziehen ist:

$$\varepsilon = (\alpha \delta - \beta \gamma) (\alpha' \delta' - \beta' \gamma').$$

Aus dieser Gleichung (welche einen der einfachsten Sätze der Determinantentheorie enthält) folgt noch eine wesentliche Vervollständigung des obigen Satzes, nämlich:

Die erste Form enthält die dritte eigentlich oder uneigentlich, je nachdem die erste die zweite in derselben oder in entgegengesetzter Art enthält, wie die zweite die dritte.

Fährt man in derselben Weise fort und transformirt die dritte Form in eine vierte, diese in eine fünfte u. s. f., so ergiebt sich unmittelbar der allgemeine Satz: Wenn von einer Reihe von Formen jede die nächstfolgende enthält, so enthält die erste Form auch die letzte, und zwar eigentlich oder uneigentlich, je nachdem die Anzahl der hierbei auftretenden uneigentlichen Substitutionen gerade oder ungerade ist.

Die Substitution, durch welche die erste Form unmittelbar in die letzte transformirt wird, heisst zusammengesetzt aus den einzelnen successiven Substitutionen; um die Zusammensetzung von