

Werk

Titel: Vorlesungen über Zahlentheorie

Autor: Dirichlet, Peter Verlag: Vieweg Ort: Braunschweig lahr: 1871

Kollektion: Mathematica

Digitalisiert: Niedersächsische Staats- und Universitätsbibliothek Göttingen

Werk Id: PPN30976923X

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN30976923X **OPAC:** http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=30976923X

LOG Id: LOG_0085

LOG Titel: §. 77. Jede reducirte Form von positiver Determinante hat eine und nur eine nach rechts benachbarte reducirte

Form, und ebenso eine und nur eine nach links benachbarte reducirte Form.

LOG Typ: chapter

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de

§. 77.

Nachdem in den beiden vorhergehenden Paragraphen dargethan ist, dass jede Form von positiver Determinante einer reducirten Form äquivalent ist, und dass nur eine endliche Anzahl von reducirten Formen für jede gegebene Determinante existirt, so folgt hieraus unmittelbar:

Die Anzahl der Classen nicht äquivalenter Formen von positiver Determinante ist stets endlich.

Allein es bleibt noch die Hauptfrage zu beantworten, ob zwei nicht identische reducirte Formen derselben Determinante einander äquivalent sein können; denn erst dann haben wir (wie in §§. 65, 66 für negative Determinanten) die Mittel gewonnen, um über die Aequivalenz von zwei gegebenen Formen derselben positiven Determinante entscheiden zu können. Diese Untersuchung stösst bei positiven Determinanten auf bedeutende Schwierigkeiten, da in der That immer mehrere nicht identische und doch äquivalente reducirte Formen existiren.

Um einen sichern Boden für diese Untersuchung zu gewinnen, stellen wir zunächst die bestimmte Frage*):

Kann eine reducirte Form (a, b, a') eine ihr nach rechts benachbarte Form (a', b', a'') haben, welche ebenfalls reducirt ist?

Nehmen wir einmal an, dies sei möglich, und es sei $\begin{pmatrix} 0, & 1 \\ -1, & 0 \end{pmatrix}$ die Substitution, durch welche die reducirte Form (a, b, a') in die ebenfalls reducirte Form (a', b', a'') übergeht. Sind dann ω und ω' zwei gleichnamige Wurzeln der ersten und der zweiten Form, so hängen diese (nach §. 73) durch die Gleichungen

$$\omega = \delta - \frac{1}{\omega'} z^{-1} \omega' = \frac{1}{\delta - \omega}$$

mit einander zusammen. Wir wollen der Einfachheit halber festsetzen, dass ω und ω' die beiden ersten Wurzeln der beiden Formen bedeuten (obgleich dieselbe Relation auch zwischen den beiden zweiten Wurzeln Statt findet). Da in einer reducirten Form die beiden äusseren Coefficienten entgegengesetzte Zeichen haben, und die erste Wurzel stets das Zeichen des ersten Coefficienten besitzt, so haben die beiden unechten Brüche ω und ω' bezüglich die Vorzeichen von a und a', also entgegengesetzte Vorzeichen, da der erste

^{*)} Gauss: D. A. art. 184.

Coefficient a' der zweiten Form zugleich der letzte Coefficient der ersten Form ist. Zufolge der obigen Relationen muss daher $\omega - \delta$ ein *echter* Bruch sein von gleichem Vorzeichen wie ω ; es muss daher δ diejenige vollständig bestimmte ganze Zahl sein, welche dem absoluten Werth nach nächst kleiner als ω ist und dem Vorzeichen nach mit ω übereinstimmt. Wir schliessen hieraus, dass eine reducirte Form (a, b, a') höchstens eine einzige nach rechts benachbarte Form (a', b', a'') hat, welche ebenfalls reducirt ist.

Aber es existirt auch wirklich immer eine solche der reducirten Form (a, b, a') nach rechts benachbarte und reducirte Form (a', b', a''). Denn es sei ω die erste Wurzel der reducirten Form (a, b, a'), also ein unechter Bruch, dessen Vorzeichen mit dem von a übereinstimmt; so wähle man die ganze Zahl δ so, dass ihr absoluter Werth (δ) die grösste ganze in (ω) enthaltene ganze Zahl (also nie = 0) wird, und gebe δ das Vorzeichen von ω ; dann geht die gegebene Form (a, b, a') durch die so bestimmte Substitution $\binom{0}{-1}$, $\binom{0}{\delta}$) in eine benachbarte Form (a', b', a'') über, deren erste Wurzel

$$\omega' = \frac{1}{\delta - \omega}$$

ein unechter Bruch ist, dessen Vorzeichen dem von ω und a entgegengesetzt ist und also mit dem von a' übereinstimmt. Bezeichnen wir nun mit ω_1 und ω'_1 die beiden zweiten Wurzeln, so besteht zwischen ihnen dieselbe Relation

$$\omega'_1 = \frac{1}{\delta - \omega_1};$$

da nun ω_1 ein echter Bruch ist, dessen Vorz chen dem von ω , und also auch dem von δ entgegengesetzt, und da δ eine von Null verschiedene ganze Zahl ist, so folgt, dass $\delta - \omega_1$ ein unechter Bruch, und also ω'_1 ein echter Bruch ist, dessen Vorzeichen mit dem von δ , ω und a übereinstimmt, also dem von ω' und a' entgegengesetzt ist. Es ist also bewiesen, dass die beiden Wurzeln ω' und ω'_1 der neuen Form (a', b', a'') entgegengesetzte Zeichen haben, ferner dass die erste ω' ein unechter, die zweite ω'_1 ein echter Bruch ist; folglich ist diese Form in der That eine reducirte, was zu beweisen war.

Jede reducirte Form hat daher eine und nur eine nach rechts benachbarte Form, welche ebenfalls reducirt ist, und diese kann auf die angegebene Weise immer leicht gefunden werden.

Genau ebenso liesse sich nun auch beweisen, dass jede redu-