

Werk

Titel: Vorlesungen über Zahlentheorie

Autor: Dirichlet, Peter Verlag: Vieweg Ort: Braunschweig lahr: 1871

Kollektion: Mathematica

Digitalisiert: Niedersächsische Staats- und Universitätsbibliothek Göttingen

Werk Id: PPN30976923X

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN30976923X **OPAC:** http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=30976923X

LOG Id: LOG_0171

LOG Titel: §. 152. Composition der Geschlechter

LOG Typ: chapter

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

from the Goettingen State- and University Library.
Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions.
Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de

§. 152.

Wir beschränken uns nun im Folgenden auf die Composition von ursprünglichen Classen erster Art, und behalten ausserdem, wenn die Determinante D negativ ist, nur die positiven Classen bei, deren Zusammensetzung offenbar immer wieder zu positiven Classen führt. Diese h Classen, welche eine Gruppe $\mathfrak F$ bilden, zerfallen (§. 122) je nach dem Ausfall der λ Charaktere C, welche dieser Determinante D entsprechen, in Geschlechter, und es ist mit Hülfe des Reciprocitätssatzes gezeigt (§. 123), dass höchstens der Hälfte aller angebbaren Totalcharaktere wirklich existirende Classen entsprechen. Gauss*) leitet nun diesen letzteren Satz aus der Theorie der Composition ab, und er benutzt ihn, um darauf einen neuen, den zweiten Beweis des Reciprocitätssatzes zu gründen. Da diese tiefsinnigen Principien sich auf die Beweise von höheren Reciprocitätsgesetzen übertragen lassen**), so theilen wir dieselben in diesem und den folgenden Paragraphen mit.

Sind ε , ε' die Werthe eines Charakters C resp. für die Classen H, H', so ist $C = \varepsilon \varepsilon'$ für die Classe HH'.

Man kann als Repräsentanten der Classen H, H' immer zwei einige Formen nehmen, deren erste Coefficienten a, a' relative Primzahlen zu 2D sind; da die aus ihnen zusammengesetzte, also der Classe HH' angehörende Form den ersten Coefficienten aa' hat, welcher ebenfalls relative Primzahl zu 2D ist, so ergiebt sich der zu beweisende Satz unmittelbar, wenn man bedenkt, dass der Charakter C oder C(n) ein Ausdruck von der Art

$$(-1)^{1/_{2}(n-1)}, (-1)^{1/_{6}(n^{2}-1)}, (-1)^{1/_{2}(n-1)+1/_{6}(n^{2}-1)}, \left(\frac{n}{l}\right)\cdots$$

ist (§. 122), und dass folglich die drei Werthe C(a), C(a'), C(aa'), welche dieser Charakter resp. in den drei Classen H, H', HH' besitzt, der Bedingung C(a) C(a') = C(aa') genügen.

Aus diesem Satze ergiebt sich, dass, wenn die Classen K, K' resp. denselben Geschlechtern G, G' angehören, wie die Classen

^{*)} D. A. artt. 257 - 262.

^{**)} Kummer: Ueber die allgemeinen Reciprocitätsgesetze unter den Resten und Nichtresten der Potenzen, deren Grad eine Primzahl ist. 1859. Vergl. Berliner Monatsbericht vom 18. Febr. 1858.

H, H', dann auch die Classen KK' und HH' sich in einem und demselben Geschlechte finden, welches das aus G, G' zusammengesetzte Geschlecht heissen soll*). Sind ferner N, N' zwei Classen des Hauptgeschlechtes, d. h. desjenigen Geschlechtes, in welchem sich die Hauptform (1, 0, -D) findet, und folglich alle Charaktere C den Werth +1 haben, so gehört die zusammengesetzte Classe NN' ebenfalls diesem Geschlechte an, mithin bilden alle n Classen des Hauptgeschlechtes eine Gruppe n vom Grade n (§. 149); zugleich zerfallen die sämmtlichen n Classen in n Complexe n n von je n Classen, welche jedesmal einem und demselben Geschlecht angehören; zwei verschiedene solche Complexe gehören, wie man leicht erkennt, auch zu verschiedenen Geschlechtern; mithin ist n n n0, und n0 die Anzahl der wirklich existirenden von einander verschiedenen Geschlechter**).

Die Determinante D heisst regulär oder irregulär, je nachdem die von den n Classen des Hauptgeschlechtes gebildete Gruppe regulär ist oder nicht (§. 149); bedeutet im letztern Falle δ den Grad der grössten in ihr enthaltenen regulären Gruppe, so heisst die ganze Zahl $n:\delta$ der Irregularitätsexponent der Determinante***).

Aus dem obigen Satze über den Charakter einer zusammengesetzten Classe ergiebt sich ferner unmittelbar der folgende:

Jede Classe Q, welche durch Duplication einer Classe entsteht, gehört dem Hauptgeschlechte an.

Die Anzahl q der verschiedenen Classen Q, welche durch Duplication der sämmtlichen h Classen entstehen, ist daher $\leq n$ (da diese Classen, wie leicht zu ersehen ist, eine Gruppe Ω bilden, so muss q gewiss ein Divisor von n sein). Um sie genauer zu bestimmen, nehmen wir an, Q entstehe durch Duplication der bestimmten Classe H, und fragen nach allen Classen H', durch deren Duplication dieselbe Classe Q entsteht. Aus der Annahme H'H'=Q=HH folgt nun, wenn man H'=AH setzt, AA=1, also $A=A^{-1}$, d. h. die Classe A ist identisch mit der ihr entgegengesetzten Classe, und folglich ist sie eine ambige Classe (§. 148, 2., §§. 56—58). Umgekehrt, ist H'=AH, und A eine ambige Classe, so ist auch H'H'=HH. Schreibt man daher alle a ambigen Classen A auf, welche offenbar eine Gruppe $\mathfrak A$ bilden, so zerfallen alle h Classen

^{*)} Gauss: D. A. artt. 246, 247.

^{**)} Gauss: D. A. art. 252.

^{***)} Gauss: D. A. art. 306. VII.