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On the Finiteness of the Number of Unipotent Classes

G. Lusztig (Coventry)

Let G be a reductive connected algebraic group over an algebraically closed field
k; we identify G with the set of its k-rational points. Let n(G) be the number of G-
conjugacy classes of unipotent elements in G. In his talk at the International
Congress in Moscow [7, Problem 10], Steinberg asked whether n(G) is always
finite. In this paper it will be shown that n(G) is indeed finite. When k has charac-
teristic 0, this follows from work of Dynkin and Kostant (see [3]). More generally,
Richardson [5], has shown that n(G) is finite if the characteristic of k is either 0
or p>1 with pa good prime for G (i.e. p does not divide any coefficient of the highest
root of any simple component of G). In the general case, a simple argument, which
was shown to us by Deligne, shows that n(G) remains unchanged when the scalars
are extended from k to an algebraically closed field containing k. Therefore, in
order to prove that n(G) is finite when the characteristic of k is a prime number
p>1, one can assume, without loss of generality, that k is an algebraic closure of
the finite field with p elements. In the rest of this paper, we shall adhere to this
assumption.

Let g be a power of p. We shall always assume that G has a given F -rational
structure, where F_ is the subfield of k with g elements. We denote by F the corres-
ponding Frobenius endomorphism of G.

The idea of the proof is roughly as follows. Using results from the representation
theory (over fields of characteristic 0) of the finite groups G**=G(F,,), (s21),
one shows that the unipotent G*’*-conjugacy classes in G** can be separated by the
characters of a relatively small number of irreducible representations of G,
the number of representations needed is bounded by a number depending only
on the type of G, and in particular is independent of s. This gives a bound indepen-
dent of s for the number of G"*-conjugacy classes of unipotent elements in G*".
As G is the union of the finite groups G**, the same bound will give an estimate for
n(G). For example, when G is simple, adjoint, of rank r=1, we get the explicit
estimate n(G) < |W|?(r + 1)?; here Wis the Weyl group of G. (We have not attempted
to get the best possible estimate for n(G)).

In this paper we make an extensive use of the methods and results of [2]. We
also need a generalization of the basic construction in [2,1.17,1.20]. Let L be an
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F-stable subgroup of G such that there exists a (not necessarily F-stable) parabolic
subgroup P of G such that L is a Levi subgroup of P (equivalently, L is the central-
izer of some F-stable torus in G). Using [-adic cohomology, we define a homo-
morphism R§cp: (L") — R(G) (here #( ) denotes the Grothendieck group of
representations of a finite group over an algebraic closure Q, of the l-adic numbers,
15 p), see Section 1. When L is an F-stable maximal torus, this reduces to the con-
struction in [loc. cit.]. On the other hand, in the special case where P itself is F-
stable this is just inflation from If to PF followed by induction from PF to GF.
In the case where all simple factors of L are of type A4, the above homomorphism
R(IF)— 2(GF) was constructed independently by B.Srinivasan [6], by a different
method which makes use of [2] and which is valid only for q sufficiently large; she
also proves results similar to our Propositions 9 and 10 under the same restrictions
on L and q.

A key result on RY_p is the orthogonality Theorem 8, which is a partial genera-
lization of [2, Theorem 6.8]. Using this result one can prove that, for G of type B
or D (possibly twisted) and g =2¢, the number of G"-conjugacy classes of unipotent
elements in G equals the number of isomorphism classes of irreducible unipotent
representations (in the sense of [2, 7.8]) of G*. (This fact will be proved elsewhere).
For example, SO (F,.), corresponding to a split quadratic form over F,., has 14
unipotent representations; exactly one of them is cuspidal.

It is likely that the homomorphism R¢ _, is actually independent of the choice
of the parabolic subgroup P; Deligne has an argument to show that this is true
provided that q is large. (For the case where L is an F-stable maximal torus, this
is again true, cf. [2, 4.3]).

The work on this paper was started during a visit at the IHES in December
1974; the paper was completed during another visit at the IHES in December
1975. On these and other occasions, the author has had valuable conversations
with Deligne and now wishes to thak him.

Notations. Let H be a finite group. All representations of H will be assumed to be
over Q, and of f finite dimension; we shall also call them H-modules. We put
HY =Hom(H, Q}). If p, p’ are two H-modules we put

psp>u=IH|"' ), Tr(h, p) Tr(h™", o).
heH

If X is a scheme over k, we put H:(X)= Hi(X, Q,) (l-adic cohomology with compact
support). Unless otherwise stated, the notations will be consistent with those of

[21.

1. Consider a pair Lc P where P is a parabolic subgroup of G and L is a Levi
subgroup of P. We assume that L is F-stable, but make no assumption on P. Let
U, be the unipotent radical of P. The scheme over k

S=S1cpc={geGlg ' F(g)e FUp}

is acted on by the finite group GF x I as follows:

(80-D: 8808l ((80,NeGF x IF, geSs).
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By transport of structure, G x IF acts on the vector space H:(S) (for any i=0)
by the maps (g,, [)* 1.

Let 7 be an I-module. We may regard = as a G* x If-module, with G* acting
trivially. The tensor product (over Q,) H:(S)® = is again a G* x If module in a
natural way. Clearly, the If-invariant part (H(S)® n)"" is GF-stable. Taking
alternating sum over i, we get a virtual GF-module

Ricp(m=} (-} (H(S)® 0"
Its character at g,eG is given by

(1.1) T (go, REcp(m)=IL17" 3 ¥ (= 1) Tr((go, D* ', HUS) Tr (I, m).

leLF i

Clearly, n—R¢ _ p(r) can be regarded as a homomorphism R _ p: Z(IF) — %#(GF).

2. Lemma. If g€ GF is unipotent, we have

Tr (8o, REcp(m)=|L7| " l; 2 (=1 Tr((go, D* ', HUS) Tr (1, m).
unipotent

Let le L; we can write |=su=us with seIf semisimple, ue If unipotent. Using
[2, 3.2] we see that

QD X(=1)'Tr((go, D* 1, HAS) =2 (— 1) Tr (g0, D* ', H(S*)

where S° is the fixed point scheme of s on S. Clearly, $* is empty when s=1, i.e.
when [ is non unipotent; in this case, the expression (2.1) is zero and the lemma
follows.

3. Lemma. Let T be an F-stable maximal torus in L and let B be a Borel subgroup
of G such that T< B< P. Let B; = Bn L. The map which sends (g,8')eS.cp, ¢ X Spcp,.L
to g'=gg defines an isomorphism

LF| (SLCP,G X STcB,,L)‘:—’ Step,6-

(I acts on Sycp X Srep, L by I: (g g)—(gl7",1g))

If geG, g'eL satisfy g~' F(g)e FUp, g "' F(g')e FUy,, we have

(8g) ' F(gg)=g 'g 'F(g)F(g)eg "' FUpF(g)=g "' F(g)FUp<FUy FU,

=FUB

so that gg'eSycp - Now let g”€Sycp g, so that g’ ! F(g")e FUz. We may write
g’ "' F(g")=u, u, withu, e FUp , u, € FUp uniquely determined. By Lang’s theorem,
we can find g'e L such that ¢~ F(g')=u,;if we put g=g"g’'~!, we have g~ F(g)=
F(g)u,F(g)"'e FUp. Any other choice for g'eL is of the form Ig' (leIFf); this
changes g into /= g. Thus we have defined a morphism

STcB,G—’LFKSLcP, ¢ XStep, 1)

which is clearly the inverse of the morphism in the lemma.
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More generally, let Q be a parabolic subgroup of G such that Q < P and let M

be a Levi subgroup of Q such that M < L. We assume that FM =M. As Deligne
has observed, in this situation one has the transitivity formula Rfc poRjycp o=
Rf,cQ as homomorphisms #(MF)— #(GF); the proof is identical to the one given
above, using the appropriate generalization of Lemma 3.
4. Now let 0e(TF)" and let 7, be a one dimensional T -module with character 6.
Clearly, RS . g(m,) is the same as R% of [2,4.3] (at this point, the reader is warned
that the action of TF on Sy p ¢ considered in 1 is the inverse of that in [2, 1.17]).
In particular, RS _g(m,) is independent of B. We shall denote it here as R$(6).
Similarly, Rf. p, () = R%(6) is independent of B.

5. Corollary. If 0 is as above, we have R§ - p(R%(0))=R$(0).

Using Lemma 3 and the Kiinneth formula we see that for any integer ¢t =0:
@ (Hi(Sper,6)® Hi(Stcp, )" =Hi(S1cp,0),

i+j=t
(the isomorphism being compatible with the natural action of G*x T¥). For any
TF-module M, we denote by M, the part of M on which TF acts by §~!. We then
have an isomerphism of G'-modules
(5.1) . @ (H(Spcp,6) @ Hi(Srcp, o) =H.(Srcp 6l

i+ j=t

Taking alternating sum over ¢, we get

R?(0)=Z (_l)tHz(STCB, G)9=Z (- l)i‘”(Hi(SLCP, 6)® Hi(STCBl, L)o)LF

t [}

= (=1)Rfcp(Hi(Srep, L)) =Ricp(RE(0)).

6. Corollary. Let 0 be as above and let n be an IF-submodule of Hi(Sycp, 1)s- Then
R§ . p(m) can be regarded as a Z-linear combination of irreducible G*-submodules of
H(Stcp, gl (for t variable).

By (5.1), (H.(Sycp,¢) ® M)~ is isomorphic to a GF-submodule of H:*/(Src 5 ¢)
and the result follows.

7. Let (T, 6) be as above. Using a fixed isomorphism of k* with the part of order
prime to p of Q/Z, we may identify TF with Y(T)/(F —1) Y(T) where Y(T) is the
lattice of one parameter subgroups of T. (See [2, 5.2]). Thus we may regard 0
as a homomorphism Y(T)— Q}. We now consider another F-stable maximal
torus 7' Land §'e(T'F)". Let neG be such that n T'n~* =T. The map t'—nt'n~*
(' e T') induces a homomorphism ad(n): Y(T')— Y(T). Let

Ny.o={neGInT'n"'=T, 0cadn)=0};

here §oad(n) and @ are regarded as homomorphisms Y(T")— Qf.

8. Theorem. Let T, T', 0, & be as above. Let B, B' be Borel subgroups in G such that
TcBcP, T"cB'cP; we put Bj=BnL, Bij=B'AnL. Let n, ' be irreducible
IF-modules such that {m,R%(0)>.r+0, (', R%(0')>.r+0. Assume that Ny 4 <L.
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Then

(8.1) (Rfcp(n), REcp(n))gr=<m, 1 )pr.

Let @ be the I'-module dual to n', so that Tr(l,7)=Tr(I"!, ), leIf. Then
RS _p(T) is the dual of R§_p(n'); this follows from (1.1) and from the fact that
Y (=1 Tr((go, * ', H{(SLcp,g)) is an integer for any (go,)eG" (see [2,3.3]).
Similarly, Y (—1YHI(Sq-cp )o-+ is the dual of Y (—1YHJ(Sr cp. 1)e hence

i i
@, ), (= 1Y HI(Spcp, Lo -1 )rr#0. We may identify 7' with an '-submodule

J
of HI (St-<p;, L)o -+ for some j'. Similarly, we may identify = with an L-submodule
of Hi(Sycp, 1)s- We have

(Rfcp(m), REcp(W)>er=IG"I"" 3 Tr(go,Ricp(m) T (8o, REcp(®))

goeGF
=|G"|~ |2 Z(—l)i+i' ZF Tr (g0, )* ', H(S)) Tr (g0, )* ', H (S))
-Tr(Ln) Tr (', )
=dim ()} (— 1) H(G"|S x )@ n@7)L" *L"),
where the action of G¥ on Sx S is go: (2, 8)— (208, 80 &), 80€GF, (g, g)eS xS and
the action of I¥ x If on H{(G"|SxS)@n®7 is
LD:a@BRy—(LI* La@IBRy.

The map (g, g)—(x,x,y), x=g ' F(g), X =g 'F(g), y=g '¢, defines an iso-
morphism of G¥|SxS with

S={(x,x",y)eFUpx FUp x G| xF(y)=yx'}.

Under this isomorphism, the action of If x I on G*|S x S becomes the following
action of I x I on &:

e, x, = (Uxl=L X -1y 7Y, (Lelf xIF.
We must show that dim(} (= 1)(H:(S)®@n®@ )" )=<m,n'>,r. This will
clearly follow from the result below:

Lemma. With the assumptions of the theorem, dim (H.(S)® n ®@ T')*" ** is equal
to {m, 'y r if i=2d (d=dim Up +dim(Up FUp)) and is zero if i+2d.

The partition S=G'U&"” with &'={(x,x,y)eS|yeP}, S"={(x,x,y)e
S| ye G — P} is stable under the action of IF x I and gives rise to a natural long
exact sequence

= HH(@) - Hi(@") - HY(S) - H(&) — -
This, in turn, gives rise to an exact sequence

82 ...»H(S)@r@T) M - (H(S")@r@7) 1 -
- (H(S)@m@T)" " - (H(S)@r@T)" M — ...
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If (x, x', y)e &', we have ye P; we may write y=1Iu with /e L, ue Up uniquely deter-
mined. We show that we must have leIf and ue U, FU,. First note that P, FP
have L as a common Levi subgroup; it follows that PN\ Upp=Upn FP=Upn Upp
(they all coincide with the unipotent radical of P~ FP). From xF(y)=yx we get
xF()F(u)=lux’ hence u=I"'F()u’ with v'=F()"'xF()F(ux'eF Up. Thus
ueUpNn FP=UpNFUp, and I"* F()=uu'eLn FUp={1}, so that leIF. Conver-
sely, if xe FUp and ye If(Up n FU,) are given, there is a unique x'e FU, such that
(x,x,y)e@’; in fact, x' =y 'xF(y) clearly belongs to FUp. Thus the map
(x, x', y)—(x, y) is an isomorphism of & with FUp x I¥(Upn FU,). As FU, and
Upn FU, are affine spaces and IF is a finite set, we see that H:(S')=0 for i%2d
and H24(&")=H2(If)(—d). This last isomorphism is compatible with the action
of I x I¥, where the action of IF x If on ¥ is (I, I'): y+slyl' Y, (L )eF x I, ye IF.
It follows that

dlm((H?d(e')® 7[@ 7—tl)LFxLF)=dim((H?(LF)® n,@ ﬁ’)LFXLF)
=172 Y #{yelly=Ilyl "} Tr(l,n) Tr(', )

Ll'eLF

=172 Y, Tr(bn)Tr(y~ty, @)=|L"" ) Tr(,n) Tr(l, @) =<{m, 2> r.
leLF

l,yeLF

Using (8.2) we see that it is enough to prove that (H{(S")@n® )L™ *" =0
for all i. As nc Hi(Stcp,, 1)o» T < HI (S1 ;. L)o -1, it is also enough to prove that,
for all i, j, j/, we have

(8-3) (Hi(gﬁ)® Hr{:(STCBl,L)9®H{ (ST’CBi, L)o'-l)LFXLF =0.

Let &' ={(% %, eFUyxFUg x(G—P)|XF(y)=7X'}. The map which sends
(x,x,¥), 8, 8)€@" X Spcp, X Scpy,L to (87" xF(g), g "' x'F(g), g~ ! yg) defines
an isomorphism

(Fx D)€" X Syep, X Srep)——S".

This can be seen just as in the proof of Lemma 3. It follows that (8.3) is equivalent
to

84) H(&")4-1=0, forall i,

where, for any TF x T'F-module M, M, ,.-: denotes the part of M on which T* x T'F
acts by (871, 8); the action of TF x T'F on &" is:

~

1) &%, Pzt ex e Ltpr ), (x,x,y)eS”, (t,)eTF x T'T.
The rest of the argument is based on [2,6.6 and 6.7]. Let N(T, T")={ne G| Tn=nT"}
and let W(T,T)=T~N(T, T)=N(T, T")/T". For any we W(T,T') we put
G,,=Bw B where w is a representative of w in N(T, T"). Then the G,,, forwe W(T, T")
such that w¢P form a finite partition of G—P into locally closed subschemes;
for any such w, let &/ ={(%, %, 7)) &"|jeG,}. The &, for w such that w¢P form

a finite partition of &” into locally closed subschemes, stable under TF x T'F. As
in [loc. cit.] we see that in order to prove (8.4) it is enough to show that

(8.5) H.(S[)s-1=0, foralli,and all we W(T, T") such that w¢P.
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According to [loc. cit.] we have Hi(@(;)o'o,-. =0 for all i, provided that w¢Np 4.
If we W(T, T’) is such that w¢ P, we have also w¢ L and our assumption N, o< L
shows that w¢ Ny o . This ends the proof of the lemma, hence that of the theorem.

9. Proposition. Let L<P be as in 1 and let 6: If— Qf be a homomorphism whose
restriction to the image of I - I¥ is trivial. (Here L— L is the simply-connected
covering of the derived group of L). Then

(9.1) |7 Y |TFIR$(O|TF) (summation over all F-stable maximal tori in L)

T<L

is a virtual representation of G*.

According to [2, (7.14.1)], the unit representation of If can be expressed as a
sum

I=|E|7t Y ITFIRE(1)

T<L

We now tensor both sides of the last equality by 0 and use that 6 ® R%(1)=
RL(O|TF), cf. [2, 1.27]. We get

0=|L171 3 |TFIRZ(60IT).

T<L

We now apply R¢_, to this equality and use Corollary 5. We see that the ex-
pression (9.1) equals R¢_ »(0). This ends the proof.

10. Proposition. Let TcL<P be as before and let 0e(TF)”. We assume that
Ny o< L. Write RE(0)= Y c;m; with ¢; non-zero integers and m; mutually non-iso-

i=1
morphic, irreducible IF-modules. Then there exist well-defined signs e;= +1 such
that

Rg(@) = ; (& ))& Rgc p(my)

with & RS p(n;) mutually non-isomorphic, irreducible G*-modules. In particular,
any irreducible G*-module p such that {p, R%(0)>r =0 is of the form p= +R¢_ p(m),
for some well-defined irreducible I¥-module n with {n, R%(0)>.r*0.

By (8.1) we have
<Rgcp(“i), RgCP(nj)>GF ={m, nj>LF

for all i, j. It follows that there exist well defined signs ¢;= +1 (1 <i<n) such that
& R§ p(m;) are mutually non-isomorphic, irreducible GF-modules. By Corollary 5,

we have Rf.p(R%(6))=R$(6). Applying R p to the equality R%(0)= Y c¢;m; we
n i=1
get R§(0)= ) ¢; Rf < p(m;). This ends the proof.
i=1

11. Remark. The signs ¢; in Proposition 10 are given by
(11.1) g=(—1)°@-°D
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where 0(G) is the dimension of a maximal F-split torus of G and ¢(L) is defined
analogously; we shall not make use of this result in this paper. Clearly, (11.1) is
a consequence of the following result.

12. Proposition. For any irreducible I¥-module n, we have
(12.1) (=1)©@-*L RS _(M)®St;=Ind,r 16r(m@Sty)

where Stg (resp. St;) is the Steinberg representation of G* (resp. IF). (Compare
[4, Cor. 1.3]).

Under the assumption that (n, R%(0))r+0 for some pair (7, 6) as in 4, with
N, = L, the identity (12.1) can be deduced from (8.1) and results of [2] (especially
[2,6.3], [2, 7.6]); this is already sufficient for the proof of (11.1). Deligne has shown
that the assumption on =« is actually unnecessary. We ommit further details.

13. Theorem. There are only finitely many G-conjugacy classes of unipotent ele-
ments in G. In fact, if G is simple, adjoint of rank r =1, there are at most |W|?(r+1)?
such classes.

In the rest of this paper (except in section 20), G will be assumed to have a
smmoth and connected centre; it is clearly sufficient to prove the theorem under
this assumption.

14. Let G* be the group dual to G as in [2, 5.21]. The derived group G*' of G*
is simply connected ([2, 5.23]) hence the centralizer of any semisimple element
in G* is connected.

We shall say that a semisimple element xe G* is exceptional if x is in the
derived group of G* and if its centralizer Z;.(x) in G* has semisimple rank equal
to that of G*. (We shall also use the term “G*-exceptional”). Of course, for this
definition, the F, structure on G is not needed.

Now, any pair (T,60) with T an F-stable maximal torus in G and Oe(TF)":
gives rise to a semisimple element xe G*F well defined up to G*F-conjugacy, cf.
[2, (5.21.6)]; this correspondence depends on the choice of an embedding k* = QF.
If (T,0), (T, @) give rise to xe G*F, x' e G*F then (T, 0), (T, &) are geometrically
conjugate (in the sense of [2, 5.5], i.e. Ny ¢ is non-empty) if and only if x, x" are
G*F-conjugate (cf. [2, 5.24]); moreover, any semisimple class in G*F comes from
some pair (T, 0).

We shall say that a pair (T, 6) is exceptional (or G-exceptional) if it gives rise
to an element xe G*¥ which is exceptional.

Now, a semisimple element xe G*'F is exceptional if and only if Zg.(x) is not
contained in any F-stable Levi subgroup ¥ of a proper parabolic subgroup of
G*. In fact, if Zg«(x) has semisimple rank strictly less than that of G*, then the
centralizer in G* of the identity component of the centre of Zg.(x) would be such
an L*.

It follows that a pair (T, 6) in G is exceptional if and only if 0 is trivial on the
intersection of TF with the centre of G and if Nj 4 is not contained in any F-stable
Levi subgroup of a proper parabolic subgroup of G.

15. The adjoint group of G (G modulo its centre) will be denoted G. It has a
canonical direct product decomposition G =G, x G, with G, a product of simple
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groups of type A,(r=1) and Gy without simple factors of type A,(r=1). This
decomposition is over k but it is automatically F-stable. Similarly, the derived
group G*'F of G*F has a canonical, F-stable direct product decomposition
G*' =G*' x G¥' with G* a product of groups isomorphic to SL(n), n=2 and
G}’ with no such factors.

Let £(G) be the set of all pairs (T;6) with T an F-stable maximal torus in G
and 0e(TF)" such that there exists an F-stable Levi subgroup L of a parabolic
subgroup in G with the following properties:

(@) T<L and (T, 0)is L-exceptional.

(b) If T is the image of T in L, then the character of TF defined by @ is trivial
on TFnL,.

We also define £*(G) to be the set of all semisimple elements xe G*F for which
there exists an F-stable Levi subgroup I* of a parabolic subgroup in G* with the
following properties:

(a*) xeI* and x is [*-exceptional.
(b*) xel%.

16. Lemma. Let p be a virtual GF-module. There exist irreducible G"-modules
p;(1<j<n) and numbers c;e Q,(1 < j<n) such that

(16.1)  for any j, (1<j<n) there exists (T, 0)e 6 (G) such that {p;, R$(0))6r+0
(16.2) Tr(go, p)=Y. c; Tr(go, p;) for any unipotent element goe G*.

We may assume that dim G >0 and that the lemma is proved for groups with
smooth and connected centre and whose dimension is <dim G.

The natural map G — G induces a bijection from the set of GF-conjugacy
classes of unipotents in GF to the set of GF-conjugacy classes of unipotents in
G" (since the centre of G is connected.) It follows that any class function on G*
will agree, on the unipotents in G¥, with a class function on G which is constant
on the fibres of G — GF. Thus, we may assume that p comes from a virtual G*
module (under the map #(G*)— 2(G")). If dim G <dim G, the lemma is true
for G by assumption; using the previous argument, we deduce that it is also true
for G. Thus, we may assume that G=G.

Write G=G, x Gg as in 15. If G, and Gg have both dimension >0, the lemma
will be true for G, and Gg; it follows easily that it is also true for their product G.
Thus, we may assume that G equals G, or Ggz. To prove the lemma, we may
now also assume that p is irreducible. According to [2 7.7], there exists an F-stable
maximal torus T<G and 0e(TF)¥ such that {p, R$(0))¢r+0. Assume first that
for such a pair (7, 0) there exists an F-stable Levi subgroup L of a proper para-
bolic subgroup P of G such that N, g L (hence T<L). By Proposition 10, there
exists an irreducible I*-module n such that p=¢R¥_p(n), e=+1. As L has a
smooth and connected centre and dim L <dim G, we may apply the induction
hypothesis and conclude that there exist irreducible L'-modules n;(1<j<m) and
numbers b; eQ, such that (m;, R% (0;)>+0 for some (T}, J)eeg’(L) (1Zj=m)
and Tr(l, n) Zb Tr(l,nj) for any unlpotent element leIf. Using Lemma 2, we
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see that for any unipotent element g,e G¥ we have
Tr (80, p)=€Tr (8o, REcp(m)=1L|" & ). 3 (—1) Tr((g0, D* =", HU(S)) Tr(l, m)

leLF i
unipotent
=|L|- ISIXLZ 2 (=1) Tr((go, I* H'(S))Zb Tr(l, 7))
unipotent
—Zb IE1~"e ) Y (= 1) Tr((go, D* ~*, HS)) Tr (I, mj)
leLF i
unipotent

=Y. eb; Tr(go. Rfc p(m)).
(Here S=S;, . P,JG). By Corollary 6, R{.p(rn) is a Z-linear combination Y aj, pj,
of irreducible G*-submodules p;, of @ Hi(St,< B,.6)s, fOr a suitable Bohrel sub-
group B;, T,c B;<P. For each p, thc;e exists a pair (T”, 6') such that
Pins R§.(0'))r +0.

As pjc H(St,cB,, 6o, for some t, we see from [2, 6.2] that (T}, 0)) and (T', 9)
are geometrically conjugate. As (T}, 0)e&(L) and &(L)<=&(G), we have (T}, 0))e
€(G). As (T;,0) and (T, ) are geometrically conjugate, we must also have
(T", 8)e&(G). We have

Tr (8o, p)=28bjzajh Tr(go, Pjh)
7 h

for any unipotent element g, e G, as required.

It remains to consider the case where there is no L (an F-stable Levi subgroup
of a proper parabolic subgroup) with Ny L. As G is adjoint, (T, 6) must be
G-exceptional. If G=Gg then clearly (T, 0)e&(G) and there is nothing to be
proved.

Assume now that G=G 4. The semisimple conjugacy class in G*F determined
by (T, 6) (cf. 14) is represented by a semisimple element xe G*F whose centralizer
has the same semisimple rank as G*. As G* is isomorphic over k to a product
of SL(n)’s, we see that x must be in the centre of G*. It follows that 6 must be the
the restriction to TF of a homomorphism 6': G¥ — Q} such that ¢ is trivial on
n(GF), where n: G— G is the simply connected covering of G. According to
[2, 1.27], we have R$(0)=0'® R%(1). Hence <0 ' ® p, R§(1))gr = {p, R§(0))gr +O0.
Clearly, (T, 1)e&(G) and Tr(go, p)=Tr(go, &' "' ® p) for all unipotent elements
g0€G" (indeed, 6'(g,)=1 for such g,). This ends the proof.

17. Lemma. Let e(G) be the number of G*F-conjugacy classes of elements in £*(G).
The number of GF-conjugacy classes of unipotent elements in G* is at most equal
to |W)? e(G).

Lemma 16 shows that the number of G-conjugacy classes of unipotent
elements in G' is at most equal to the number of distinct irreducible GF-modules
p such that {p, RE()>++0 for some (T, 0)e&(G), hence it is at most equal to

Y. <R7(O), RFO)¢r

(T, 0)eé(G)
mod GF
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According to the orthogonality formula [2, 6.8], we have (R$(0), R%(0)) g+ < |W|
for any (T, ) hence the previous sum is at most equal to

|W|4 (T, 0)e &£(G) mod GF).

The correspondence (T, 0)—xeG*F in 14 defines a surjective map &(G)/GF —
&*(G)/G*; the fibres of this map can be described as the sets of GF-conjugacy
classes of pairs (T 6) in a fixed geometric conjugacy class (cf. 14) or, alternatively
as the sets of Zg.(x)F-conjugacy classes of F-stable maximal tori in G* con-
taining x, for various xe &*(G). In particular, these fibres have at most |W| ele-
ments. Thus

#((T, 0)e £(G) mod GF) < |W |4 (xe&*(G) mod G*F)=|W|e(G).
and the lemma is proved.

18. Lemma. Assume that G is simple, adjoint, of rank r<1. Then e(G)<(r+1)%

Let £*(G) be the set of semisimple elements xe G* such that there exists a
Levi subgroup I* of a parabolic subgroup of G* such that I*' is almost simple
of type + A,(n=1) and has the property that xe I* and x is [*-exceptional (cf. 14).
Here we regard the group with just one element as being almost simple of type 4,.

Let &(G) be the number of G*-conjugacy classes of elements in £*(G). We
now note that there are at most (r+1) G*-conjugacy classes of G*-exceptional
elements in G*. This fact is implicit in the work of Borel-de Siebenthal [1] (see
also [8, §1]). It can be seen as follows. Consider a maximal torus T* in G* and
let Y be the lattice of its one parameter subgroups so that T*~ Y ® k*. By identi-
fying k* with the part of order prime to p in Q/Z, we get an exact sequence
0-Y->Y®Q,— T*—0, where Q, denotes the ring of rational numbers
with no p in denominator. We regard Y® Q,, as a subgroup of Y®R. The
roots of G* with respect to T* may be regarded as homomorphisms Y— Z or
Y® R — R. The set of points in Y® R where all roots take non-integral values
is a union of (open) simplices. Let us choose one of these simplices C. Let C be
the closure of C and let C'=Cn(Y® Q). The map Y® Q,)— T* defines a
bijection of C’' with a subset of T* which contains precisely one representative
in each G*-conjugacy class of semisimple elements in G*. Moreover, a point in
C’ corresponds to an exceptional class if and only if it is a vertex of the closed
simplex C. It remains to observe that C has exactly (r+ 1) vertices; note that in
general not all vertices of C are in Y® Q).

Next we note that there are at most (r+ 1) G*-conjugacy classes of subgroups
of G* which are Levi subgroups of parabolic subgroups and whose derived group
is simple of type +A4,(n=1). In fact, there are at most (r+ 1) connected (possibly
empty) subgraphs of type +A4,(n=1), of the Coxeter graph of G*; this can be
easily checked using the classification of Coxeter graphs. It follows that é(G)<
(r+1)%

It is easy to see that &*(G)=&*(G). Two elements in &*(G) which are con-
jugate under G* are actually conjugate under G*F (since the centralizer of any
semisimple element in G* is connected). It follows that e(G)<¢é(G) and the lemma
is proved.

Combining Lemmas 17 and 18, we deduce
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19. Lemma. With the assumptions of Lemma 18, the number of GF-conjugacy
classes of unipotent elements in G¥ is at most equal to |W |*(r +1)2.

We now prove Theorem 13. We may clearly assume, without loss of generality,
that G is simple, adjoint of rank r>1. Let n=|W|?(r+1)%. Assume that there
exist unipotent elements u,, u,, ..., u,,, in G such that no two of them are con-
jugate under G. We shall derive a contradiction as follows. We can find integers
s;21 (1<i<n+1) such that u; is fixed by F* for all i, 1<i<n+1. Let s=[]s;.

Then u;eG¥ for all i, 1<i<n+1. Applying Lemma 19 with F replaced by F¥,
we see that there must exist i=j, 1 <i, j<n+1 such that u;, u; are conjugate under
G hence also under G. This contradiction completes the proof of the theorem.

We now state our final theorem. (We no longer make assumptions on the
centre of G).

20. Theorem. There exists a number N depending only on the Dynkin diagram of
G, such that the set of restrictions to the unipotent elements in GF of the irreducible
characters of G¥ has at most N elements.

It is easy to see that there exists a number m depending only on the Dynkin
diagram of G, such that the number of G"-conjugacy classes of F-stable Levi
subgroups of parabolic subgroups of G is at most m.

Let L be such a Levi subgroup. Let v, be the number of distinct functions on
the unipotent elements in I which are restrictions of irreducible characters of
If. When = runs through the irreducible representations of I, the restrictions
of the characters of RY_p(n) (with P a fixed parabolic subgroup for which L is a
Levi subgroup) to the unipotent elements in G* form a set with at most v, ele-
ments; this is a consequence of Lemma 2. It follows that the restrictions of the
characters of +R¢_p(n) to the unipotent elements in GF form a set with at most
2v, elements. Let & be the the set of isomorphism classes of irreducible represen-
tations of G* which are not of the form + R§_ p(n) with L+ G and = an irreducible
IF-module. Let a be the the number of distinct functions on the unipotent ele-
ments in G* which are restrictions of characters of representations in &. We
have clearly

veSa+2) vy

(sum over a set of representatives of the GF-conjugacy classes of subgroups L as
above, with L+ G). It follows that vg<a+2m sup (v.).
L*G

We may assume that the theorem is true for G replaced by L(L # G). Thus, it
is enough to show that « is bounded above by a number depending only on the
Dynkin diagram of G.

Let pe¥ and let (T, 0) be a pair as in 4 such that {p, R$(0))>¢+0, cf. [2, 7.7].
Let #(T) be the set of all @eTF such that there is no L as above (L + G) with
Ny, ¢ = L. Using Proposition 10, we see that Oe.#(T). Next, we observe that for
any homomorphism y: GF — Q} such that y is trivial on G'F (G is the derived
group of G), the characters of 7, #® y have the same restriction to the unipotent
elements in GF. Moreover, R$(0)® y=R$(0®y). Let #(T) be the the quotient
set of #(T) obtained by identifying €', 0" .#(T) if and only if 8”"=60'® y, for
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some y as above. Now, there exists a number m’ depending only on the Dynkin
diagram of G such that #(T) has at most m' elements. (This can be seen using the
method of proof of Lemma 18.) Note also that, for any pair (T, 6), there are at
most |W| distinct irreducible GF-modules p such that {p, R$(0)>6r+0 (see the
proof of Lemma 17). The previous discussion shows that

a< #{Tmod G} |W|m'S|W|>m'

and the theorem follows.
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