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Representations of Coxeter Groups and Hecke Algebras
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! Harvard University, Department of Mathematics, Cambridge, MA 02138, USA
2 MIT, Department of Mathematics, Cambridge, MA02139, USA

§ 1. Introduction

Let Wbe a Coxeter group and let S be the corresponding set of simple reflections.
Following [2, Ch. IV, §2, Ex. 34], we define an algebra J# over the polynomial ring
Z[q] as follows. # has basis elements T,,, one for each we W, The multiplication is
defined by the rules

T,T,=T,,, if l(ww)=I(w)+Iw)

(L+1)(T,—q)=0, if seS$;

here I(w) is the length of w.

In the case where Wis a Weyl group and q is specialized to a fixed prime power,
H ®gz4; € can be interpreted as the algebra of intertwining operators of the space of
functions on the flag manifold of the corresponding finite Chevalley group G(F)
(see [loc. cit., Ex.24]). Therefore, the problem of decomposing this space of
functions into irreducible representations of G(F,) is equivalent to the problem of
decomposing the regular representation of # g, €. It is known that, in this case,
H ®Zm(E is isomorphic to the group algebra of W; however, in general, this
isomorphism cannot be defined without introducing a square root of g (see [1]).

It is therefore, natural to extend the ground ring of J# as follows. For any
Coxeter group (W, S) we define the Hecke algebra # to be # ®zi4 4, Where A is the
ring of Laurent polynomials with integral coefficients in the indeterminate ¢*/2.

Our purpose is to construct representations of J# endowed with a special basis.
They will be defined in terms of certain graphs. We define a W-graph to be a set of
vertices X, with a set Y of edges (an edge is a subset of X consisting of two elements)
together with two additional data: for each vertex xe X, we are given a subset I of S
and, for each ordered pair of vertices y, x such that {y, x} € Y, we are given an integer
K(y, x)#0. These data are subject to the requirements (1.0.a), (1.0.b) below. Let E be
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the free A-module with basis X. Then

for any seS
X if sel
T, ’ ) ¥ 1.0.a
)= {qx+q”2 Y Xy, il sél ) (102
Sl
{y, x}eY

defines an endomorphism of E (i.e. the sum over y is assumed to be always finite),
and

for any s#1¢ in S such that st has finite order m, we require that

T T Tgere =T, T Tyenns (1.0.b)
[l LI
m factors m factors

In other words, there is a unique representation ¢: # — End (E) such that ¢(T))
=1, for each seS.

We shall construct, for any W, such a graph. First, we give some definitions. Let

a—a be the involution of the ring A defined by ¢'/2=g~'/2. This extends to an
involution h—h of the ring #, defined by

Zaw Tw =Z(_1u Tw_’ll'

(Note that T, is an invertible element of J#, for any we W, for example, if se S, we
have T, '=q~ ! T,+(q~ ' —1).) For any we W, we define ¢, =¢'™, &, =(—1)'™. Let
< be the usual order relation on W (defined, for example, in [ 11]). We can now state

Theorem 1.1. For any weW, there is a unique element C e # such that

C,=C, (1.1.a)
C,=Y ¢e,q%q BT, (1.1.b)
yEw

where P, | €A is a polynomial in q of degree < S(w)=I(y)=1) fory<w,and P, , =
The following statement is equivalent to Theorem 1.1:

For any we W, there is a unique element C', € # such that C,,= C., and
C,=4q,'* Y P, T, where P, €A is a polynomial in q of degree

§%(1(W)-—l}t)=/)w——1 ) for y<wand P, , =1. (1.1.c)

The elements C,, and C), are related by the identity C' =g, j(C, ), where j is the
involution of the ring # given by j(} a, T,)=) a,¢,q;' T,.

It may be conjectured that all coefficients of the polynomial P, , are non-
negative integers.

Definition 1.2 Given y, weW we say that y<w if the following conditions are
satisfied: y<w, e, = —e, and P, | (given by Theorem 1.1) is a polynomial in q ofdegree
exactly 3(l(w)— ( )——1) in thlS case, the coefficient of the highest power of g in P, i
denoted p(y, w). It is a non-zero integer. If w<y, we set pu(w, y)=u(y, w). '
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Let W° be the group opposed to W. Then (W x W°, S118°) is a Coxeter group.
Let I, be the graph whose vertices are the elements of Wand whose edges are the
subsets of W of the form {y, w} with y<w. For each we W, let I =2 (w)uZ(w)°
cS118° where L (w)={seS|sw<w}, Z(w)={seS|ws<w}.

Theorem 1.3. I, together with the assignment w— I, and with the function u defined
above, is a W x W°-graph.

Now, given any W-graph I, and a subset S’ of S, we can regard I" as W’-graph
(where W' is the subgroup of W generated by S’) by replacing the set I, = S, for each
vertex x of I, by the set I, nS’. In particular, I, can be regarded as a W-graph and as
a WOgraph.

Given any W-graph, I', we define a preorder relation < on the set of vertices I as

T
follows: we say that the vertices x, x’ satisfy x <x’, if there exists a sequence of
r

vertices X =X, X,, ..., X, =X" such that for each i, (1 Zi=<n), {x,_,, x;} is an edge of
I'and I, _ ¢1I, . The equivalence relation on the set of vertices, corresponding to

this preorder is denoted o2 (Thus, x ?«x’ means that x <x' <x.) Each equivalence
r r

class, regarded as a full subgraph of I' (with the same sets I, and the same function p)
isitselfa W-graph. The set of equivalence classes is an ordered set with respect to <.
r

In the case of the W x W°-graph I, the equivalence classes for o are called the 2-

sided cells of W. When I, is regarded as a W-graph, we shall use the notation <, ~
L

instead of <, okt the corresponding equivalence classes are called the left cells of W.
I'm 'W

When I, is regarded as a W°-graph, we shall use the notation <, ~ instead of <,
R

I'w
ot the corresponding equivalence classes are called the right cells of W.

In the case where W is the symmetric group s,, we have

Theorem 1.4. Let X be a left cell of W=s,, let I be the W-graph associated to X and
let p be the representation of # (over the quotient field of A) corresponding to I.
Then p is irreducible and the isomorphism class of the W-graph I depends only on the
isomorphism class of p and not on X.

This gives, in particular, a distinguished basis (defined uniquely up to
simultaneous homotety) for any complex irreducible representation of g,, with
respect to which s, acts through integral matrices.

Our investigation has started from trying to understand Springer’s work
connecting unipotent classes and representations of Weyl groups. This had led us to
the following question on singularities of Schubert varieties. Let G be a semisimple
group over an algebraically closed field, and let 4 be the variety of Borel subgroups
of G. We fix B,e 4, and for each w in the Weyl group W, let &, be the set of all Be #
such that B, and B are in relative position w (a Bruhat cell of dimension I(w).) Let
4., be the closure of 2,, (a Schubert variety). Let T*(£) be the cotangent bundle of
2 and let A, = T*(%) be the conormal bundle of %,,. Its closure .4,, in T*(%) is an
1rreduc1ble  variety of dimension equal to dim (%). There is a natural pl’O_]CCthﬂ
T, A, —4A,,. Now let ye W be such that t y<w. Then Q c4A,,. The question is: for
Wthh pairs y <wis it true that dim 7, ' (8,) = dim (%) — 1‘7 It seems likely that when
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G =GL,, the condition is precisely that y<w in the sense of Definition 1.2. (When
G+GL,, this is not, in general, true.)

Our polynomials P, ,, appear to be very closely connected with the structure of
singularities of Schubert varieties. More precisely, B, , can be regarded as a
measure for the failure of local Poincaré duality on the Schubert cell £, in a
neighborhood of a point in #,. Some results in this direction are formulated in the
Appendix.

Another starting point of our investigation was trying to understand the work
of Jantzen [6] and Joseph [7, 8] relating primitive ideals in enveloping algebras
with representations of Weyl groups.

Let g be a semisimple complex Lie algebra. We wish to state a conjecture
relating our results with the theory of infinite dimensional representations of g. We
shall need some notations. Let & be a Cartan subalgebra of g and let b be a Borel
subalgebra containing h. Let p: h—C be the linear function on s which takes the
value 1 on each simple coroot vector. Let Wbe the Weyl group of g with respect to h
and let S be its set of simple reflections determined by b. For each we W, let M, be
the Verma module with highest weight —w(p)—p and let L, be its unique
irreducible quotient. We can now state

Conjecture 1.5

Cth= Z sygsz,w(l) ChMy (153)
yEw

chM, =3 P, ., wo,(1)chL, (1.5.b)
yEw

for all weW, where P, , is the polynomial in q given by Theorem 1.1, and P, (1)
denotes its value for g=1.

1.6. Remarks. a) The identities (1.5.a) and (1.5.b) are equivalent (see Theorem 3.1).
b) It is known and easy to prove that

chL,= 3 Y (—1YdimExt/(M,, L,)chM,
yEw j
where Ext is taken in the category @ of Bernstein-Gelfand-Gelfand. (See, for
example, [4].) It is also known that Ext/(M, L,)=0 if j>I(w)—[(y). (Casselman
and Schmid; see also Delorme [4].)
David Vogan has proved [14] that our conjecture 1.5 is equivalent to the
formula

B.,=Y ¢ dimExt™--2(M L)  (y=w)

y
iz0

and it is also equivalent to the vanishing of Ext/(M, L, ) for j% I(w)—I(y) (mod 2).

c) Conjecture 1.5, together with the results of Joseph [8] and Vogan [13] would
imply that the ideal Ann(L,,) of the universal enveloping algebra of g, annihilat-

ing L, contains the ideal Ann(L,,) if and only if w=sw'.
L
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1.7.1In [6] a distinguished class %, of irreducible representations of a Weyl group W
was introduced. (Its definition, which will not be reproduced here, was suggested by
the representation theory of finite Chevalley groups.) Let X be a left cell of W; it
gives rise to a W-graph hence to a representation of #. Specializing q'/* to 1, we get
an integral representation of W. The corresponding representation over @ is not, in
general, irreducible. However, it seems likely that it contains a unique irreducible
component in the class &,. We expect that all representations in %, are obtained in
this way and that two left cells give rise to the same representation in %, if and only
if they are contained in the same 2-sided cell.

§2. The Proofs of Theorems 1.1 and 1.3
Let us define for each x, yeW, an element R, €4 by the formula

T-! —ZRX LqI'T. (2.0.a)

The following formulae provide an inductive procedure for computing R

R ={Rsx,_w, if sx<x and sy<y
X,y

20b
R, if xs<x and ys<y ( )
R, ,=@—-1R,, ,+qR,, ,,, if sx>x and sy<y. (2.0.0)

It follows easily that R,  #0ifand onlyif x<y; whenx <y, R, | isa polynomial in
q of degree I(y)—I(x). Here are some further properties of R,

Lemma 2.1

() R, ,=¢64d.9;"'R,,
(i) ) & R, R, —6x},forallx§yinW.

xSty
(i) R, ,=(@—1)'"=' for all x<y such that 1(x)Z1(y)—2.
(iv) If Wis finite and w,, is its longest element, we have R, =R, | for all

x,yeW.
Proof. (i) follows easily from (2.0.b), (2.0.c). Applying the involution & — h to (2.0.a),

we get

TZR T

xydx Ix

hence the matrices (R, , q,),(R,,, 5 ') are inverse to each other. By (i), the matrices
(R,,,4.): (e.&,R, ,q; ') are inverse to each other, hence (ii). The formula (iii) is
obvious for x=y. Assume now that x<y and I(x)=I(y)— 1. There is a reduced
expression y=s, ... s;... s,such thatx=s, ... §; ... s,. Using (2.0.b), the computation
of R » s reduced to the case where 1 =i=n, in which case (iii) is obvious. Assume
now that x <y and I(x) =1I(y) — 2. There is a reduced expression y =s, ... s;...s;... s,

such that x=s, ... §;...§;...s,. Using (2.0.b), the computation of R is reduced to
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the case where i=1, j=n. Using then (2.0.c) with s=s;, we see that

Rx,y=(q_1) RS;.." § ...§,,+qu1...'

Sns §1 S$ns 81...8n

By the prev1ous case, R, —1; moreover, R, . =0, since

.S, %5,...8,. Thus, (111) is proved (1v) follows easily by 1nductxon from (2.0. b),
(2.0.c).

2.2. Proof of Theorem 1.1
Uniqueness. The equality C, = C,, can be written in the form

stewalz _1P T 28 ;1/2 szxyqx x

xX=w y=w xSy

or, equivalently, in the form

e,ql2q:? ﬁx Y e6,45%q,q5" ﬁx,y B, (forall xsw). (2.2.a)

xSysw

This is also equivalent to

q,/2q;'"? P;c,w ‘1/2 ‘Ix/ZP
Y ece,q,'q,q7 R, B, (for all x<w). (2.2.b)
X<ysEw

If the B, ,, are known for all y, x <y <w (where x <w is fixed), the Eq. (2.2.b)
cannot have more than one solution P, . Indeed, our assumptions on P, , imply
that ¢, '?qL/* P, is a polynomial in ¢~'/* without constant term, while
e P ., is a polynomial in g*/? without constant term. Thus, there cannot be
cancellatlons between these two expressions.

Existence. Clearly, C,=T,. Assume now that wse and that the existence of C,,
satisfying (1.1.a) and (1.1.b) has already been proved for elements w’ of length <I(w).
We can write w =sv, where seS and l(w)=1I(v)+ 1. Thus C, is already constructed;
the Definition 1.2 can be applied to C,, so that the relation z<v and the
corresponding integer u(z, v) have a meaning. We now define

C,=@'"?T,—q"*) C,— }, ulzv)C..
z<v

To check that C, satisfies (1.1.a) it is enough to observe that
q 1/2 n_quz =q- 1/2 Ts—ql/z
A straightforward computation shows that

Cw= Z 8y‘c;wq‘lv/zqy 11:—;,W’1-'y

yEw
where
P, ,=q'"°B, ,+q'F,,— Y u(zv)q;'*q)*q"?B,, (y=w) (2.2.0)

z
ysz<v
sz<z
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and c=1ifsy<y, c=0if sy>y. (We shall make the convention that P, ;=0 when
x£v.)

(2.2.c) shows that P, , is a polynomial in g of degree <3(I(v)—I(y))if y<w and
that B, ,=1. Thus, C, satisfies (1.1.b) and Theorem 1.1 is proved.

2.3. Proof of Theorem 1.3. In the process of proving Theorem 1.1, we have seen that

T.C,=qC,+q"*C,+q'* Y p(z,v)C,, if seS and sv>v. (2.3.2)
z<v

A similar proof (interchanging left and right) shows that

C,T.=qC,+q'*C,+q'* Y p(z,v)C,, if seS and vs>v. (2.3.b)
z<v

We now show that
T.C,=—C, if se§ and sv<uv. (2.3.9)

We may assume that (2.3.c) is known for elements v’ satisfying sv' <v’, I(v") <I(v).
Using (2.3.a) with v replaced by sv, we see that

T;Cv= Ts(q_ 1z Tvcsv_ql/z Csv_ Z ﬂ(Z,SU) Cz)

z<sv
sz<z

:q_ 1/2((q— 1) T;"‘q) Csv—qI/ZT_;Csu_}_ Z ﬂ(Z,SU) Cz
z<sv

=q'?C,,—q "*T.C,,+ Y. ulz,sv)C,
z<sv
sz<z

= — Cl)
as required. An entirely similar proof shows hat
C,T,=—-C, if seS and vs<v. (2.3.d)

To complete the proof of Theorem 1.3 it is now enough to verify the following
two statements.

Let x, ye W, seS be such that x<y, sy<y, sx>x.
Then x<y if and only if y=sx.
Moreover, this implies that u(x, y)=1. (2.3.¢)

Let x, ye W, seS be such that x<y, ys<y, xs<x.
Then x<y if and only if y=xs.
Moreover, this implies that u(x,y)=1. (2.3.f)

Comparing the coefficients of T, in the two sides of (2.3.c) with v =y, we see that,
B, =P, ,, if x<y, sy<y, sx>x. (23

Ifsx %y, it follows that deg B ,=degPh, < L(1(y)—=1(x)) <3((y)—I(x)— 1) hence the
relation x <y is not satisfied. If sx =y, it follows that B, ,=P =1, hence x<yand
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u(x, y)=1. This proves (2.3.¢). The proof of (2.3.f) is entirely similar. This completes
the proof of Theorem 1.3.

We now state a property of the preorders < and =< on W,
L R

Proposition 2.4. (i) If x=<y, then #(x)>#(y). Hence, if x ~V then R(x)=R(y).
L
(ii) If x<y, then ¥ (x)> % (y). Hence, ifx;«y, then £ (x)=2%(y).
R
Proof. 1t is easy to check that, given seS, we have
sy>y = R(sy)>A(y) (2.4.2)
ys>y = ZL(ys)oZL(y). (2.4.b)

Assume now that x<y and % (x)¢ Z(y). From (2.4.b) we see that x~! y¢S. Using
(2.3.f), we see that Z(x)>Z(y). This, together with (2.4.a), show that
x=<y = R(x)>2Z(y). The proof of (ii) is entirely similar.

L

2.5. For each y<w in W we define

N,w=4, > R,.. (2.5.2)
ySzsw
The following result is stated for future reference.
Lemma 2.6. (i) For each x<y in W, P,  is a polynomial in q with constant term 1.
(ii) Given y<w in W, the following two conditions are equivalent:

B, ,=1 foral ysysw (2.6.3)
and
N, ,=4q,, forall y<y =w. (2.6.b)

(iii) For each y<w such that l(w)=I(y)+1, we have N, ,=q, and P, ,=1. In
particular, we have y<w and u(y,w)=1.

(iv) For each y<w such that l[(w)=1(y)+2, we have N, ,=q,, and B,  =1.
(v) For each we W, we have

a," Z 4,B,.= Z 4,8,
y=w

y=w

(vi) If W is finite and wy, is its longest element, then P, , =1 for all ye W.

Proof. (i) follows immediately from the inductive formula (2.2.c). To prove (ii), we
may assume, by induction on I[(w)—I(y), that B, =1 for all y’ such that y <y’ sw.
Then, the identity

» Wo

_ -1
R', w Z &8y Ry, y R} wdy 4w
y

Sy sw

A
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(see 2.2.a) becomes

wa q + Z gygy'Ry,y’q;qu'

y<y =w

Using Lemma 2.1(i) this can be also written as

P.=4;'4,B.+ Y R,.4;'q,

y<y =w

=4, '9,B,,—a;'9,+4q, Y R, .4,
yEy' sw
hence

P.,-4;'q,P,,=4,N,,—d;'4q,. (2.6.c)

If B, ,=1, it follows that N ,=gq,. Conversely, if N, =g, it follows that

q,%q,'* (B, ,,—1)=q}*q,"*(P,,,—1).

But ¢;/q,, '/*(P, ,— 1) is a polynomial in q without constant term; therefore it
can be fixed by the involution a — a only if it is zero. It follows that P, | =1 and (ii) is
proved. Using Lemma 2.1(iii), we see that with the assumptions of (iii) we have N,,
=q,R, ,+q,R, ,=q,+q,(q—1)=q,,. Using (ii), we deduce that P, =1, hence (iii).
Under the assumptions of (iv), it is known that there are exactly two elements z,, z,
such that y<z, <w, y<z,<w. Using Lemma 2.1(iii), we see that

—1/2

Nv,w:qy(Ry,)'+R)',z1 +Ry,zz+Ry,w) :qy(l +(q~1)+(q— 1)+(q_ 1)2)=

Using (ii) and the fact that N, ,=N,, ,=gq,, (given by (iii)) it follows that P, ,
The identity (v) is just the identity Z(C,,)=%(C,,), where Z: # — A is the algebra
homomorphism defined by & (T,)=¢, for all y. (vi) follows by applying repeatedly

2.3.9).

§3. An Inversion Formula
Our next result describes, in the case where W is finite, the inverse of the triangular
matrix (B, ), where B, , is defined to be zero if x£y.

Theorem 3.1. Assume that W is finite and let w,, be its longest element. We have

Y &&P. P . .=6., forall x<yinW. (3.1.a)

xSz<=y
Proof. Let M, , be the left hand side of (3.1.a). We may assume that x <y and that
M, ;=0forall t <ssuch that I(s)— [(t) <I(y) — [(x). We start with the identity (2.2.a):

B.= Y e&&R, . P.q 'q, (xSzin W)

xSt=<z
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It follows that

Z 8xaz Z & stgygst IR szoy. wos Pwos, w0z qt qzqz_ qs
x<z<=y xStz
z=s=Zy
— -1
- Z Sygsqt qux,tany, woth,s‘

t,
été sy

The only t,s which can contribute to this sum satisfy t=s or t=x, s=y. Thus,

Mx;yzq;lq.va,,v-i_ Z gyatRx,tR

xSty

woy, wot*

Using Lemma 2.1(iv) and (ii), we see that the last sum (over t) equals

Y &¢&R, R, ,=0.

xSty

Thus M, ,=q; 'q,M, , hence g''q; > M, ,=q; '/ q!>M, . The bounds on the
degree of the polynomlals P, ,, described in Theorem 1.1 1mply that g7 1/2q1/2M

is a polynomial in ¢'/2 w1thout constant term. Hence it cannot be fixed by the
involution a—a, unless it is zero. Thus, M, =0, as required.

Corollary 3.2. Let x <y be two elements of W (assumed to be finite ). The following
conditions are equivalent: x<y and wyy<wqx. If these conditions are satisfied, we

have p(x, y)=p(woy, wox).
Proof. We can assume that ¢, = —¢, . The difference F, —P, , is equal to

woy, woXx y
Y &P, B, w,. and one checks easily that the last expression is a poly-
x<z<y
nomial in g of degree <(I(y)—I(x)—1). Therefore, the 1(I(y)—I(x)— 1)-th power
of g appears in B, , with the same coefficients as in P,

woy,wox*

3.3. Remarks. a) The map x — wyx reverses each of the preorders <, <, < on W.
L R LR

Hence it induces an order reversing involution on the set of left cells of W, on the set
of right cells of W and on the set of 2-sided cells of W.

b) Setting q=0 in the identity (3.1.a) and using Lemma 2.6(i) we get the
following known identity [11]:

Y. ee~=9d,, forall x<y in W
xSzZy
§ 4. Some Preliminaries to the Proof of Theorem 1.4
4.1. Let us fix two reflections s,t in S such that st has order 3. Let

D.(s,t) ={weW|ZL(w)n{s,t} has exactly one element}
Dr(s,t)={weW|R(wW)N{s,t} has exactly one element}.

If we 2, (s, t), then exactly one of the elements sw, tw is in 2, (s, t); we denote it
*w. The map w— *w is an involution of 2, (s, t). Similarly, we have an involution
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w—w* of D (s, t): w* is the unique element of P (s, t) N {ws, wt}. Let {s,t) be the
group of order 6 generated by s,t. We shall prove

Theorem 4.2. Let y,w be two elements in 9 (s, ).

() If yw='¢<(s,t), then we have y<w if and only if *y<*w, and then u(y,w)

=u(*y,*w).

(i) If yw='eds,t), then we have y<w if and only if *w<*y. and then u(y,w)
=p(*w,*y)=1.

Let y, w be two elements in Dy(s,t).

(iil) If y~'we{s,t), then we have y<w if and only if y*<w*, and then u(y,w)
= pu(y*, w¥).

(iv) If y~'wels,t), then we have y<w if and only if w*<y*, and then u(y,w)
=pw*, y*)=1

Proof. Throughout this proof, we shall use the following notations. For any x <x’in
W such that ¢ = —¢,, we set d(x,x)=1(/(x)—1(x)—1) and let u(x,x’) be the
coefficient of g***)in P, .. Thus x<x’ifand only if u(x, x") % 0. If P’ is a polynomial
in g, we say that P, .~P" if P_.—P" is of degree <d(x,x’). In particular,
P o~ p(x,x') g™,

It is enough to prove statements (i) and (ii). With the assumptions of (ii), we have
y<wifand onlyif y<wand I(w)=1(y)+ 1 and then u(y, w)=1.(See Lemma 2.6(iii).)
The conclusion of (ii) follows immediately. In the remainder of the proof we shall
assume that y,we %, (s,t) and yw~'¢s,t>. We may assume that ¢, = —¢,,. (This is
equivalent to €y = — &4, .} There are two cases to consider. )

Case 1. *y.-y~'=*p.w!

In this case, we may assume without loss of generality that tsy<sy<y<ty and
tsw<sw<w<tw, so that *y=sy, ¥*w=sw. It is clear that the conditions y <w and
sy <sw are equivalent. Thus, we may assume that y <w. From (2.2.c), it follows that
P .= if y£sw and

¥ ‘\\ sw

B, ,~P, o +qPB o~ Y u(y,z)uzsw)q (4.2.2)

if y <sw. Thus, we can assume that y <sw. This implies that t y <sw, since te £ (sw).
From (2.3.e), we see that for any z in the last sum, such that z=ty, z#tws, we have
teL(sw) = te ¥ (z) = te#(y), a contradiction. On the other hand, z =ty satisfies
sz<z,while z=tws doesn’t satisfy sz < z. Thus the sum over z has exactly one term:
z=ty. We have u(y,ty)=1, hence (4.2.a) becomes

P~y 4B, — u(ty, sw) g .

By (2.3.g), wehave B, =P, ,, so that gP, . — pu(ty,sw)q">* is a polynomial in ¢

of degree <d(y,w). It Tollows that P, ,~P, ., as required.

sy, SW
Case 2. *y.y=l*w.w- !,

In this case, we may assume without loss of generality that tsy<sy<y<ty,
SW<w<tw<stw, so that *y=sy, *w=tw. We can clearly assume that sy <tw:
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This implies that tsy <w and y <stw. From (2.2.c), it follows that

P P if sygw

sy, tw = tsy,w
and

Pyiw~Boywtdby = 3 sy, 2) u(z,w)g" ™
sy<z<w
tz<z
if sySw. We have se Z(w), s¢ Z(tsy) and w=stsy, hence, by (2.3.e), the relation
tsy<w cannot hold. Thus, if sy £ w, we have B, ~0, hence sy <tw fails to be true.
On the other hand, if sy £w, we must have also y £ w (since se.#(w)), hence y<w

also fails to be true. Thus, we may assume that sy <w, so that

d(sy,tw)

I.)sy,tWNqu,w_ Z N(Sya Z)Au(z’ W)q

sy<z<w
tz<z
From (2.3.e) we see that for any z in the last sum, such that z=y, z4sw, we have
seL(w) = se L(z) = se L(sy), a contradiction. On the other hand, neither z=y
nor z=sw satisfy tz <z. It follows that B, , ~qP, . By(23.g), we have B, =P |
(we must have y <w, since sy <w and se #(w)). Thus, B ,,~qP, ,,, hence u(sy, tw)
= u(y,w), as required.

Corollary 4.3. (i) Let y,w be two elements in 9 (s, t). Ify;«w, then *y;w*.

(i) Let y,w be two elements in D g(s, t). Ify:w, then y* ~w¥*,
L

Proof. We first note that, if xe Z, (s, t), then *x 3 x, hence, by Proposition 2.4(i), we
have Z(*x)=%(x). Now let y, w be two elements in &, (s, t) such that yxw. Then

there exists a sequence y=y,,y,,...,y,=wsuch that {y,,y, } isan edge of I;;, and
R(y)ER(y;, ) fori=1,...,n—1, and there exists a sequence w=w,,w,, ..., w, =y
such that {w;,w;,,} is an edge of I, and Z(w)ER(w;,,) for j=1,...,m—1.
Clearly, all elements y;, w; are in the same right cell, hence, by Proposition 2.4(ii), we
have Z(y,)=2(y) for all i, £ (w;)=Z(y) for all j. Since ye P, (s, 1), it follows that
Yi€9D(s,1) for all i and w;e 2, (s, 1) for all j. Hence *y; and *w; are well defined.
Theorem 4.2 shows that {*y,,*y,, ,} is an edge of I, for i=1,...,n—1 and that
{*w;,*w;, ,} is an edge of I, for j=1,...,m— 1. By the remark at the beginning of
the proof, we have Z(y;)=Z(*y,) for all iand Z(w;) = Z(*w,) for all j. It follows that
RC*Y)ER(*y; 1) fori=1,...,n—1and #*(w)ER(*w;, ) forj=1,...,m—1.This
shows that *y=*y <*y, < .. <*y =w=*w <*w,< ... <*w,=*y hence
R R R R R R
* y;*w and (i) is proved. The proof of (ii) is entirely similar.

§ 5. Proof of Theorem 1.4

In [12], Vogan defines for any Weyl group W, an equivalence relation on W by
means of a “generalized t-invariant”. In his language, Corollary 4.3 can be
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reformulated to say that two elements y,we W such that yyw, must have the

same generalized t-invariant (provided that the Coxeter graph of W is simply
laced). Moreover, in the case where W is the symmetric group s,, Jantzen and
Vogan have shown [loc. cit,, Thm. 6.5] that if y, we W have the same generalized
t-invariant, then y~w, where = is the equivalence relation generated by the
relations x=~sx where s€S, x <sx, £ (x)¢ ZL(sx). On the other hand, it is clear
that two elements equivalent under &~ are equivalent under ot Thus, for W

=s,, the equivalence relations ¥ and = coincide. The equivalence relation =~

on s, has been studied by combinatorists (see, for example [9, 5.1.4 and Ex. 5]).
The following result is known: If X is an equivalence class for ~ (i.e. a left cell)
and if y, )" are distinct elements of X!, then the ~ equivalence classes X Xy
containing y, )’ respectively, are disjoint; moreover X =X for some ye X~ We
now show that the W-graphs I, I, associated to the left cells X, X . (y,y'e X~ 1
are isomorphic. We have y~!=xy'~!, hence, by the definition of ~, we are
reduced to the case where there exist s, teS such that (st)* =1, yeZ,(s,t) and y*
=)' (* defined with respect to s, ). It follows that all elements of X ,and of X,
are in Zg(s,t) (cf. Proposition 2.4(i)) and that w—w* is a bijection of X, onto
X, (cf. Corollary 4.3(ii)). It defines an isomorphism between the W-graphs r,r,
(cf. Theorem 4.2). In particular, for any y,y’eX ", the representations p,, p,. of
A associated to I, are isomorphic. The sum of the representations of #
associated to the various left cells is equal to the regular representation (over
some field containing A). If p is the representation corresponding to X, then

Y p,=(dim p) p is a subrepresentation of the regular representation. It follows
yeX !

that p is irreducible, and that the left cells which give rise to a representation
isomorphic to p are exactly the left cells X, (yeX~'). This completes the proof
of Theorem 1.4.

§ 6. Examples

6.1. Let W be a Weyl group of type 45 with S={s,,s,,s,} such that s;s;=55s,.
There are exactly two pairs of elements y <w in W such that y<w, I(w)—I(y)> 1.
These are s,<s,s,5;5, and 5,55 <s,535,535,. For both pairs we have P, =1
+q.

6.2. Let (W, S) be a Coxeter group such that for any s+t in S, the order m_, of st
is 2,3,4,6 or oo. There is a standard graph I' associated to (W,S): its set of
vertices is S and {s,f} is an edge precisely when m,,=3. We associate to each
s€S the set I,={s} and we consider a function u on the set of ordered pairs, s,t
which are joined in I such that u(s,t) u(t, s) =4 cos® n/m . This is a W-graph (see
the work of Kilmoyer [3]).

We shall now give some examples of W-graphs associated to left cells in the
Coxeter group (W,S). In all these examples, the function u is identically 1, hence
it will be omitted. The vertices will be represented by circles, inside which we
describe the corresponding subset of S.
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If W is of type A, with Coxeter graph L—«lz the W-graphs arising from the
left cells of W are:

ea ®—®» '

If W is of type B, with Coxeter graph }::.-32, the W-graphs arising from the
left cells of W are:

@’ @Ma Wﬁ '

. . 2 .
If W is of type 45, with Coxeter graph 1+——~|—~—§, the W-graphs arising from
the left cells of W are:

©,0—0—0 02D—0 C3OH»—U3D—UD A2

An example of W-graph associated to a left cell of W of type A, (with

Coxeter graph L—%———?——ﬂ'):
(3
@

An example of W-graph associated to a left cell of W of type D, (with

Coxeter graph 1»—%<: i):
®

An example of W-graph associated to a left cell of the non-crystalographic
finite Coxeter group W of type H, with simple reflections s,,s,,s;,s, such that
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(5152)3 =(5,53)> =(s35,) =1:

O——O0—~0——0B—0—0—0 (6.2.c)

An example of W-graph associated to a left cell of the affine Weyl group W with

2
Coxeter graph N\

1 3
O—00—0B3—O0—0—=0B o (6.2.d)

6.3. Let u be a unipotent element in GL,(C) and let 4, be the variety of Borel
subgroups containing u. Let X be the set of irreducible components of 4,. We
associate to u a graph I, as follows: the set of vertices of I} is X ; two vertices are
joined precisely when the corresponding components of 4, have an intersection
of dimension equal to dim (#,)— 1. To each component C of #,, we associate a
set I of simple reflections in the Weyl group W as follows. We identify the set of
simple reflections in W with the set of conjugacy classes of rank 1 parabolic
subgroups. Let 2 be the class of parabolic subgroups corresponding to s and let
n: # — P be the natural projection. We say that sel, if C is a union of fibres of
the map n.. We have verified that, for n<6, I, together with the assignment
C — I and with the function p=1 is a W-graph, and that the W-graphs obtained
in this way from the various unipotent classes in GL,(T) are the same as the W-
graphs associated to the left cells of W. We have also shown that the graph

(6.2.b) has an analogous geometric interpretation in terms of a unipotent class in
SO4(CT).

Appendix

We will discuss here some algebraic geometry related to the polynomials R,
and P, .

Tﬂé lemmas in this Appendix are not difficult to prove and their proofs will
be generally omitted.

Let k be an algebraic closure of the prime field F, with p elements. We will
consider algebraic varieties over k. For any such variety we denote by H*(X) the
¢tale cohomology of X with values in the constant sheaf @,, where [ is a fixed
prime #p. If xe X, we denote by H¥,,(X) the cohomology of X with support in
x (see [5, Exp. 13, p. 2]). There is an exact sequence

o= HI(X) > HI(X —x) > HE (X) » H (X) - ..

If X is non-singular, of dimension d at x, then H/,, (X)=0 if i+2d and
HE () =Qu(—d).

Definition A1. Let X be an irreducible variety of dimension d.



180 D. Kazhdan and G. Lusztig

(a) X is rationally smooth if for all xeX, we have H<‘x>(X)=0 if i+2d and
HZL(X)=Q;(—d).

(b) We say that xeX is a rationally smooth point of X if there exists an open,
rationally smooth neighborhood of x in X.

(¢) We denote by F(X)< X the set of all points of X which are not rationally
smooth.

F(X) is a closed subset of X, contained in the set Sing(X) of singular points
of X.

Let G be a semisimple adjoint algebraic group over k. Let B, be a Borel
subgroup, T, = B, a maximal torus and let W be the corresponding Weyl group.

The set # of Borel subgroups of G has a natural structure of projective G-
variety: (g,B)—>B% The set #"°c# of Ty-invariant points is in 1-1 cor-
respondence with W: we Bjy. Given two points B, B, in 4, we say that B,, B,
are.in relative position w (we W) if, for some geG, we have B =B, B§ =B} (we
then write B,—*- B,). For any we W, we denote by 4, the set of all Be# such
that B, —* B. Its closure 4, is called a Schubert variety. It is known that, given
two elements y, we W, we have y<w if and only if u@jc@;

Theorem A2. Given y<w in W, the following conditions are equivalent:
(a) B,nS(B,)=0
(b) Ny =4, forall y', y<y' =w
(©) B.,=1 foraly, y<y <w.

We have seen already (Lemma 2.6(ii)) that (b), (c) are equivalent. By
induction on I(w)—I(y), we can restrict ourselves to the case where, for all y',
y<y £w, we have 8, N ¥ (4,)=0 and P, , = 1. In the rest of the proof, y and w
are fixed.

We now fix an F,-rational structure on G such that G is F,-split and T, B,
are defined over F,. Then #, %), and, more generally, all algebraic varieties X
we will deal with will be F,-varieties. For such a variety, we denote by |X|, the
number of F,,-rational points of X.

The Hecke algebra # will enter in the proof by means of the following

Lemma. For any tripe w,, w,, w;eW, let 4" (w,, w,, w;)c % be the set of all points

Be# such that B,—2> B2 B,

Lemma A3. There is a unique polynomial c(W,,w,,ws;q) such that
c(Wy, Wy, Wy p)=|A (W, w,, wy)|, for all r=1. We have

T, T,= Y cw,wy,wsq)T,,.

wieW

For any w',w"eW, we denote by 4,.(w") the set of points BeZ# such that
By 5 B. We define
U=RB,nB, (ywo), V=%B,nB,,,(w).

Then U is an open neighborhood of %, in &,,. We have UT°=VTo={b}, where b
=By).
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Lemma A4. (a) |U[,=N_  (p").

(b) There is a canonical Ty-invariant isomorphism

U~3B, xV.

Part (a) follows from Lemma A3 and the following elementary statement:
the polynomials R, (see (2.0.a)) satisfy the identity

TwTwo= Z R

w Sw

ww T’ Tw,wo.

The isomorphism in (b) is the restriction of an isomorphism
eOzwb(y WO) E/'@y X gwoy(wo)'
Remark A 5. Our assumptions imply that V' —0 is rationally smooth.

Lemma A6. There exists an F,-isomorphism of algebraic varieties ¢: L ~k" (where
n=I(w,y)) such that

(a) ¢(b)=0,

(b) the induced action of T, on k" is given by

t:(eg,.ne) = (xy (D) ey, ... xa(0) ey)

where y, ..., x, are characters of T,.

(c) There exists an imbedding j: G,,— T, such that for all i, 1<i<n, the
composition y;-j: G,,— G,, is given by A— 1", a,>0.

We will identify L with k" via ¢ and V' with the corresponding subvariety of
k". We will regard L and V as G, -varieties.

Lemma A7. Let Z be an algebraic variety with an action ¥: G, xZ—Z of G,
and let zyeZ be a G, -invariant point. Suppose that G,, “contracts Z to z,” i.e. Y
can be extended to a morphism

V: A'xZ—7Z

|

|
V: G xZ—Z

such that (0 x Z)=z,. Then H., , (Z)=H'"'(Z—z,) for i+1 and H,,(Z)=0.

Definition A8. (a) Let Y be an affine algebraic variety with a G,,-action. We say
that this action is standard if there exists a finite group I' = G,,, a variety Y, and
an action of T' on Y, such that Y is isomorphic as a G,-variety to I'\(G,, x Y;)
where I' acts diagonally on G,, x Y,.

(b) We say that an action of G,, on an algebraic variety X is locally standard if
there is a covering X =Y, uY,u...UY,, where Y; are open, G,-invariant affine

1

subsets of X such that the action of G,, on each Y, is standard.
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Lemma A9. Let X be an algebraic variety with a locally standard action of G,,.
Then

(a) the geometric quotient n: X — X (=set of G,,-orbits on X) exists.

(b) R'n, (@) is zero if i+0,1 and is isomorphic to @, (resp. Q,(—1)) for i=0
(resp. i=1).

(¢) X is rationally smooth if and only if X is rationally smooth.

(d) 1X1,=@" —1)IX],, for all r=1.

(e) If X' is a G,,-invariant closed subset of X, then the G,, action on X' is
locally standard.
Lemma A10. The action of G,, on L—0 (and, hence on V —0) is locally standard.

Corlsider the geometric quotients (for the G,,-action) n: L-0-L and n: V
—0— V. It follows from Lemmas A6, A9, A10 and Remark A5 that L and V
< L are projective, rationally smooth varieties and that

R N . —rl(y)__l
7] = yow(P }rp
pr—1

r ’

for all r=1. It is easy to see that the function

f N, g7 =1
a() & S D~
q—1
is a polynomial in q. By the Lefschetz fixed point formula, we have
2d

a(p)= Y. (— 1) Tr(F", H{(7))

i=0

where d=l£w)—l(y)— 1=dim (7) and F is the Frobenius map relative to the F,-
structure. V' is rationally smooth, projective, hence it satisfies the Weil conjec-
ture. (P. Deligne, La conjecture de Weil, I1.) It follows that H**+(V)=0 for all i
and that all eigenvalues of F on H? (V) are equal to p'.

Using the Leray spectral sequence for m: ¥—0— V¥, we get an exact sequence

s HY YV =0)» H (P)(— )22 H+2(D) 25 HiY2(V—0) - ... (1)

where we H?(V)(1) is the restriction oof the corresponding class in H2(L)(1).
Let

IT,,=coker (H¥-2(V)(—1)-22 H¥ (D)),
Li=ker (HE(V)(—1)22 HE+2(1)).
By Poincaré duality on ¥, we have
dim IT,,=dim IT,,_,;. 2

Since H**'(V)=0, it follows from (1) and Lemma A7 that H,,~H**'(V
—0)xHZG$*(V) and that, for i+0, IT,, = H*(V —0)= HZ* (V), for i=0. Hence,
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dim [Ty, =dim HZ2(V)=dim HZ®'+2+2(U)

=dim H<2b’>())+2i+2(%) o
dim H2i=dim H<26;1(V)=dlm H<2bl>(y)+2i+1(U)
=dim H<2b’;y)+2i+1(gf;)’ for 140, “

We have:
N, (") p~ "V —1=|V|(p —1)
=Y Tr(F, H¥ (D) 1)

=Z(TF(F',H2i(‘7)(— 1) =Tr(F", H**+*(V))
=Z(Tr(F’, II15,)—Tr(F", I1,)))
=Zp’““’dim Ty — ) p" dim IT,,
=Zp""‘i+ Ddim HZI.—Zp”' dimIT,;, (by (2)).
Since this is true for all r, we have an identity of polynomials in g:
N, ,,-4; —1—qu “lg~idim I, — Zq dim I7,;.
On the other hand, in the proof of Lemma 2.6(ii), we have seen that

N,wd;'=1=PB 4,49, " —B

y,w

It follows that

4, ”ZQ§’2(R»,W—Zq‘-dim m,)=q,"2¢;*(R,,— X q'-dimIT). ()

By the Lefschetz theorem [5, Exp. 13] for V, we have dimIT,,=0 if i>d/2
=1/2(l(w)—1(y)—1). It follows that the left hand side of (5) is a polynomial in

1/2

q~''* without constant term, hence it cannot be fixed by the involution a—a
unless it is zero. Thus, we have
= i;() q'dimIl,, =1+ @Z} q'dim H3V*+*+1(A,) (6)
and
l;)q dimIT,, ,;= l;)q dim H3"~*(2,,). (7

Moreover, it follows from Lemma A7 that <,,>(J3 )=0 for j<2I(y)+ 1. Note
also that dim H<‘x>(93 ) is constant when x runs through #,. Using now (6) and
(7) it follows directly that P, ,=1if and only if #,n¥(#,)=0, and Theorem
A2 is proved.
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Remark A1l In the process of proving Theorem 2, we have also obtained the
explicit formulae (6), (7) for P, , valid for any y<w in W such that P, =1 for
all y<y =w. From this, we see that for such pairs y<w, we have y<w if and
only if (with the notations of the previous proof) we have d=0(mod?2) and
dim I1,#0 (ie. if ¥ has non trivial “primitive cohomology” in the middle
dimension).

Corollary A12. For any weW, #(#,,) has codimension=3 in A,
(See Lemma 2.6(iii), (iv).)

This is in contrast with the behaviour of the singular set of 4,,. For example,
if G=Sp, and w,w’ are the two elements of length 3 in W, then one of the
Schubert cells #,,,4,, is non-singular, and the other one has a singular set of
codimension 2.
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