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Cancellation Problem of Complete Varieties

Takao Fujita

Department of Mathematics, College of General Education, University of Tokyo,
Komaba, Meguro, Tokyo 153, Japan

We consider the following problem: Let M, V and W be complete varieties
such that M x V=M x W. Then VxW?
We will see that the obstruction is caused by the Picard schemes of them.

Note. In the following, variety means an irreducible reduced proper k-scheme
where k is a fixed field of any characteristic.

Definition 1. Let P(X) denote the Picard scheme of a variety X parametrizing
all the invertible sheaves on X algebraically equivalent to zero. For any variety
S, we denote by g4(X) the dimension of the closed group subscheme of P(X)
generated by the images of all the morphisms ¢: S— P(X) such that ¢(S)30,
the point on P(X) corresponding to 0.

Obviously we have the following

Proposition 2. a) gg(X x Y)=q4(X)+4q5(Y). b) q5(X)=qp(X) if there is a sur-
jective morphism T—S.

Proposition 3. Let X and Y are varieties. Then the following conditions are
equivalent to each other: a) q4(Y)=0. a') qy(X)=0. b) For any invertible sheaf
&L on X xY, there are o/ ePic(X) and BePic(Y) such that ¥ =p* o Qp* B,
where p;: X xY—>X and p,: X x Y- Y are projections.

Proof is easy.

Definition 4. X and Y are said to be Picard independent if the conditions in
Proposition 3 are satisfied.

Proposition 5. Let X, Y be Picard independent varieties and let f: X x Y— M be
a morphism onto a projective variety M such that f, Oy, y=0,,. Then there exist
varieties S and T, an isomorphism i: M — S x T, morphisms g: X >S and h: Y->T
such that iof=gxh: XxY—>SxT
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Proof. Let H be a hyperplane section on M cIPV, Then f*|H|=|f* H| since
foOx . y=0,. SO X x Y—>M cIP¥ may be identified with the rational mapping
p associated with the linear system |f* H|. By assumption we have .o/ € Pic(X)
and ZePic(Y) such that f* H=p¥ o ®p} B. Restricting to fibers of p, and p,,
we infer that o/ and # are generated by global sections. Let a: X —IP* and f:
Y—IP® be the rational mappings (morphisms in this case) associated with ./
and 4. We have natural isomorphisms H°(M, H)~H%(X x Y, f*H)=H°(X
xY, p¥od QpiB)=H’(X, #/)QH (Y, #). This induces an imbedding ¢: IP*
x IP°cIPY such that a(a(x), B(y))=p(x,y) for any xeX, yeY. Letting S=1Im(x)
and T=Im(f), we easily see that M=Im(p)=Sx T. Now our assertion is
obvious.

Theorem 6. Let M, V and W be varieties such that M x V=M x W. Suppose that
M and V are Picard independent and that M is projective. Then V=W.

Proof. We use the induction on m=dim M. Let f M x V— M x W be the given
isomorphism and let n,: MxV->M, n,: MxV—-V, p;: MxW-M and p,:
M x W— W be projections. Applying Proposition 5 to p;of: M xV—>M, we
obtain varieties S and T together with morphisms g: M-S, h: V- T and i:
M —>Sx T such that iop,of=gxh and i is an isomorphism Consider first the
case in which dim S=m. Then dim T=0 and T 1s a pomt So p1 of =gom,:
xV—-M(=S). For 0eM, we have Loy f-! ( =(p,of)” 1(0)
=n7'(g~'(0)), which is a union of fibers of nl, each of which is isomorphic to
V. Hence V= W.

Second consider the «case in which O<dim S<m. We have
47(5)<ar(M) < q,(M)=0 and q,(T) £ q,(M)=0. Hence g(S x V)=q5(S) +q(V)
=0. Therefore we can apply the induction hypothesis to Tx(Sx V)M
X VM x Wx=Tx(Sx W) to obtain S x V=S x W. Again by the induction hy-
pothesis we infer VW, since q,(S)<q,(M)=0.

Thus we have reduced the problem to the case in which dim S=0. In other
words, S is a point and p,of=hom, for some h: V— M. Note that gq,(W)
=qu(M X W)—q(M)=qp (M xV)—q(M)=¢q,,(V)=0. Namely M and W are
Picard independent. So, by the same argument as above, we reduce the prob-
lem to the case in which m,of ~'=jop, for some morphism j: W— M. Now,
for a simple point 0 on M, let U=(hon,) ' (0)nn;7'(0). Then

T1O)=(pyof) 1 0)=(hom,) 1 (O)=M x U. Note that U=f(U)
= p1 1(O)r\(l pz)"l(O) So, similarly as above, we infer V=M x U. Thus we
prove V=W. q.e.d.

Corollary 7. Let M, V and W be compact complex manifolds such that M
x V=M x W. Suppose that M is projective and that Alb(M)=0 or Alb(V)=
Then V= W.

Indeed, the preceding arguments work also in the analytic category.

Remark 8. Cancellation is not always true in the category of abelian varieties
(cf. [7]). But we have the following

Proposition 9. Let M, V and W be abelian varieties such that M x V ~ M x W, where
~ denotes the isogeny equivalence. Then V~W.
This follows easily from the observation below.
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a) Any abelian variety is isogeneous to a product of simple abelian va-
rieties.

b) gq,(B) depends only on the isogeny classes of the abelian varieties 4, B.

c) If A and B are simple abelian varieties, q ,(B)>0 if and only if 4~ B, and
q(A)=dim A.

Problem 10. Write X ~Y in general if there exists a variety Z equipped with
finite unramified morphisms Z—X and Z—Y. Then, does MxV~MxW
imply V~ W for general varieties M, V and W?

The author would like to express his hearty thanks to the referée, who pointed out many papers
on the cancellation problem of which the author was unaware during the preparation of this note.

References

1. Brun, J.: On the cancellation problem for compact complex analytic manifolds, Proc. of
Symposia in Pure Math. 30, 245-247, (1976)

2. Brun, J.: Sur la simplification dans les isomorphismes analytiques, Ann. Sc. Ecole Norm. Sup., 4
eme serie 9, 533-538 (1976)

3. Brun, J.: Sur la simplification par les variétés homogénes, Math. Ann. 230, 175-182 (1977)

4. litaka, S., Fujita, T.: Cancellation theorem for algebraic varieties, J. Fac. Soc. Sci., Univ. of
Tokyo, Sec. IA 24, 123-127 (1977)

5. Mumford, D.: Abelian Varieties, London: Oxford Univ. Press 1970

6. Parigi, G.: La simplification par les variétés de Demazure, C.R. Acad. Sci. paris, 287, Sér. A,
535-538 (1978)

7. Shioda, T.: Some remarks on abelian varieties, J. Fac. Sci. Univ. of Tokyo, 24, 11-21 (1977)

8. Simis, A.: On the cancellation problem for projective varieties, Comm. Algebra, 2, 535-557
(1974)

Received December 22, 1980






