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Merkur’ev and Suslin [16] have recently established some fundamental facts
about the group K, of an arbitrary field. It is clear to anyone conversant with
the work of Spencer Bloch [2-4] that these facts, when applied to the function
fields of algebraic varieties, will greatly improve our knowledge of the Chow
group CH?*(X) of codimension 2 cycles modulo rational equivalence on a
smooth variety X.

For X a projective surface over a field k, let 4,(X)= CH?*(X) be the group
of classes of degree zero O-cycles. A smooth, projective, geometrically integral
k-surface X is called rational if there exists an algebraic extension K/k such
that the function field K(X) of X x,K is purely transcendental over K. In [4],
Bloch applied the methods of algebraic K-theory to the study of 4,(X) for X a
rational k-surface; Sansuc and the author obtained some refinements in [9]. In
both these papers, finiteness results for 4,(X) when k is of an arithmetic nature
were only obtained for special rational surfaces, namely conic bundles over the
projective line, for which appeal could be made to the algebraic theory of
quadratic forms (most notably to the Arason-Pfister theorem). In the present
paper, I show that Merkur’ev and Suslin’s results are enough to extend most of
the results of [4] and [9] to all rational surfaces. For several reasons, I shall
restrict myself to ground fields of characteristic zero.

Theorem A. Let X be a rational k-surface, char. k=0.

(i) If k is finitely generated over Q, and if there is a rational k-point on X (or
a O-cycle of degree 1), then A (X) is finite;

(ii) If k is a local field, and if there is a rational k-point on X, then Ay(X) is
finite;

(iii) If k is a p-adic, field, and if X has good reduction, then A,(X)=0;

(iv) If the cohomological dimension cd k of k is at most one, then A, (X)=0.

* C.N.RS. Paris; the work for this paper was done while I was enjoying the hospitality of
D.P.M.M.S., Cambridge, England
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Let k and X be as above, and let K/k be a Galois splitting field for X (cf.
[4], Introduction). Let G=Gal(K/k), and let S be the k-torus dual to the
G-module Pic Xy (here X=X x,K). Bloch has produced an exact sequence:

HY(G, K, K(X)/K,K)— Ao(X)—2~ HY(G, S(K))

and one knows ([4], [9]) that the image of & is finite if k is finitely generated
over Q, or (trivially) if k is a local field, and that it is zero in case (iii) of
Theorem A and (trivially) in case (iv). In case (iii), X is known to have a
k-point (the reduction of X is a rational surface over a finite field, which has a
rational point according to a theorem of Weil). Granted these facts, the
missing half of the proof of Theorem A is provided by the following
Theorem B, which is the main result of the present paper, and which should also
be of use in the study of rational equivalence on varieties other than rational
surfaces.

Theorem B. Let K/k be a Galois extension of fields, char. k=0, G=Gal(K/k).
Let X be a geometrically integral k-variety. If there is a smooth rational k-point
on X, or ifcdk<1, then

H'(G,K,K(X)/K,K)=0
and the natural map

j: K, K(X)/K , k— (K, K(X)/K, K)°
is an isomorphism.

The analogy with classical results on K, k(X)/K, k=k(X)*/k* is striking.
Theorem B also yields the computation of the (Zariski) J¢,-cohomology of
rational surfaces with a k-point.

Theorem C. Let X be a rational k-surface with a k-point, char. k=0. Then the
natural map

K2 k— HO(Xa %)
and the natural “reciprocity” map (cf. [4] (A.11))
HY(X, A,)— S(k)

are both isomorphisms.

Of course H*(X, #,)~ CH*(X) (Bloch, Quillen). That the reciprocity map
should be an isomorphism was conjectured by Bloch, who proved it for conic
bundles over the projective line ([5]).

Theorem B is proved in §1. The applications to rational surfaces
(Theorem A and C) are dealt with in §2.

When k is a local or a global field (char. k=0) and no (smooth) k-point is at
hand, the paper I originally submitted had a rather involved proof of the
following facts:
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- For K/k finite, Theorem B holds up to finite groups
- For X a rational k-surface, Ay(X) is always finite
- Theorem C holds up to finite groups.

However, partially building upon an earlier version of this paper, Suslin
[18] has managed to show that the map j in Theorem B and the map
K,k—H°(X,#,) in Theorem C are always isomorphisms (without any con-
dition on k or on X(k)). This leads to a simplified proof of an improved
version of the three facts above. At the referee’s request, it is this better way of
handling the case k local or global, X(k)=#§, which is presented - apart - in § 3.

The papers [9] and [10] together with the present paper yield complete
answers to the questions raised by Bloch in the introduction of [4], when
char. k=0. The main problem now is to “determine” (the order of) the finite
group A,(X), for X a rational surface over a number field. I refer the reader to
[97, §4, for the precise conjectures which Sansuc and I have made.

Here is a list of the results of [16] which will be used in the proof of
Theorem B. Let k be a field, p a prime with p=char. k, and assume k contains
a primitive p-th root of unity {.

MSa The Galois symbol K,k/pK,k— Brk, which to the symbol {a,b} as-
sociates the class of the cyclic algebra (a,b),, is an isomorphism onto the p-
torsion subgroup Br k of the Brauer group Brk ([16], 9.4, 11.4, 11.5).

MSb (Hilbert’s Theorem 90 for K,) Let K/k be a cyclic extension of degree n
prime to char.k and let o be a generator of Gal(K/k). Then
Ker(Ng,: K, K—K,k)=(1-0)K,K. ([16] 14.1)

MSc Any p-torsion element of K, k may be written as a symbol {a,(} for some
aek* ([16] 10.4).

Another key ingredient in the proof of Theorem B for arbitrary varieties
will be the following theorem of Bloch, proved by transcendental methods:

B6 Let k(X) be the function field of a curve X over an algebraically closed field
k of characteristic zero, and let { be a primitive n-th root of unity in k. For
fek(X)*, the symbol {f,(} is zero in K,k(X) (if and) only if fek(X)*" ([6],
1.24).

Acknowledgements. This paper would not exist without the previous work of Bloch and of
Merkur’ev-Suslin. I would like to thank J.-J. Sansuc and C. Soulé for many discussions and Soulé
for letting me have copies of [16], [5] and [18].

§ 1. On the theme of Hilbert’s Theorem 90 for K,

Proposition 1. Let k be a field, char.k=0, k an algebraic closure of k, X a
geometrically integral k-variety. Let { be a primitive n-th root of unity in k (n
integer ), and let fek(X)* be such that {f,{)=0€K, k(X). There then exists ack*
and gek(X)* such that f=u-g".

Proof. For k algebraically closed and dimX =1, this is Bloch’s result B6. Let k
be arbitrary but dim X =1. By B6, we may write f=g", with gek(X)*. For o
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varying in g=Gal(k/k), the elements “g/g define a (continuous) 1-cocycle of g
with values in the group p, of n-th roots of unity in k. By the Kummer
sequence
1—p,— k= kx5

and the usual Theorem 90, any such cocycle is of the form ?B/B, for a fixed fek*
with f"=aek*. Hence (g/f) is fixed under g, i.e. (g/f)ek(X)*, and f=a-(g/B)"

Lemma 1. Let k be an algebraically closed field of characteristic zero. Any
Sfunction field k(X), for X an integral k-variety of dimension d, may be written as
L(C), where L=k(T,,..., T,_,) is purely transcendental, and C is a geometrically
integral L-curve with a smooth rational L-point.

Proof of Lemma. We may assume d2>2, and realize X as a hypersurface in
P{*+1 In view of the Bertini theorems ([13] 6.10, 6.11) it is possible to find a
line D=P¢*! which cuts X transversally (hence avoids the singular locus) and
which is such that the general P? through this line cuts out on X an integral
curve with no singularity at any of the finitely many points of DnX. The
family of P? going through D defines a dominating rational map X "> P¢~1,
the generic fibre of which is a geometrically integral L-curve - here
L=k(P¢{~1'). Any point PeD n X defines a smooth rational L-point of this curve
(the rational section of 7 being given by the projective space on the tangent
space to X at P; to make all this more “morphic”, one may blow up DnX by
looking at the incidence correspondance in X xP{~'). =

End of Proof of Proposition 1. The proof will be by induction on dim X.
Assume it has been proved for dim X <d. Assume first that k is algebraically
closed, and let dim X =d, and fek(X)* be such that {f,{} =0 in K, k(X). Write
k(X)=L(C) as in the Lemma. By the one-dimensional case, there exist gel¥
and heL(C)* such that f=g-h". Hence

{80 ={g- 1" ={f{}=0eK, L(C).

But {g,{} belongs to K,L, and the natural map K,L— K, L(C) is injective, in
view of the existence of specialization maps corresponding to some smooth
L-rational point (cf. e.g. [16] §2). Therefore {g, {} =0€K, L. By induction (or,
since L=k(P{~ '), by the following Remark 1), ge*" (k is algebraically closed).
Hence fek(X)*". The proposition for dimX =d and k arbitrary follows from
the special case k algebraically closed exactly as it did for dimX =1. =

Remark 1. Let k and X be as in the proposition. Assume moreover that X =
X x, k is locally factorial (e.g. X/k is smooth), that X/k is proper and that Pic X
has no torsion (If X/k is smooth and proper, this amounts to: H'(X,04)=0
and the Néron-Severi group of X has no torsion). The proof of the proposition
now becomes very easy, and does not use B6. By the Galois cohomology
argument in the above proof, it is enough to assume k=k. If {f{}
=0eK, k(X), then for any prime divisor 4 = X, with associated valuation v, the
tame symbol T,({f, {})={"" vanishes, hence n divides v(f). Since the divisor of
f is divisible by n, the assumptions imply that f is an n-th power in k(X)*. =
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Proposition 2. Let X be a geometrically integral k-variety (char.k=0), and
assume that either X has a smooth k-point or cdk<1. For any algebraic
extension K/k the natural map

K, k(X)/K,k— K,K(X)/K,K

is injective.
Proof. Since any element of the group K, of a field is the sum of finitely many
symbols, we may restrict ourselves to the case K/k finite. Now, we may assume
K/k is finite and Galois. The existence of a transfer map with the usual
properties ([1] 1§5, [17] §14, [14] §1.7, § 2.4 Cor. 2), Bézout’s lemma and the
existence of Sylow subgroups of a finite group enable us to consider just the
case where Gal(K/k) is a p-group. The structure of p-groups reduces us to the
case where K/k is cyclic of prime degree p. Finally, since for such K/k, the
extensions K/k and k({'ﬁ) are linearly independent, a last transfer argument
and Bézout’s lemma allow us to assume that k contains a primitive p-th
root of unity (.

Let now zeK, k(X) be such that zxx,=fxx)> With feK, K. Taking trans-
fers, we get:

pz=yeK, k(X)

with yeK, k. If X has a smooth k-point, a specialization argument (cf. e.g. [16]
§2) then shows the above equality to imply y=pdek, k, for some d€K, k.
Such an equality always holds when cd k<1, since in that case K, k/pK, k=0,
([1] 1.5.12; also, MSa). Combining both equalities, we see that (z—J) belongs
to the p-torsion of K, k(X). By MSc, there exists fek(X)* such that

z=o={f,{}eK, k(X) 1)
Since 2y, comes from K, K, so does {f, {}. Going over to k(X), we see that

{f, (}eK,k(X) comes from K,k, hence is zero (by a specialization argument,

{£,.0={f(M),{} for some smooth k-point M, and {f(M),(} ={}/ f(M),(}=0).
By Proposition 1, there exist ack* and gek(X)* such that f=o-g?. Hence {f,{}
={a, {} belongs to the image of K, k in K, k(X), and so does z by (1). =

Theorem 1. Let k be a field, char.k=0, and let X be a geometrically integral k-
variety. Assume that either X has a smooth k-point or cdk<1. For any Galois
extension K [k with group G-

(1) The natural map

j: K, k(X)/K , k— (K, K(X)/K,K)°
is an isomorphism;
(i1) H'(G,K,K(X)/K,K)=0.

The proof will be in several instalments. A crucial technical point is that it
seems necessary to prove (i) to be able to embark on the proof of (ii) (see
StepsI and IV) - although (ii) was our initial point of interest (see the
introduction).
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Step 1. Assume G is finite cyclic. Then (i) holds.

We have an obvious commutative diagram of exact sequences:

0—o K,K — K, K(X) — K,K(X)/K,K — 0

! M I

0—> K,k — K, k(X) — s K,k(X)/K,k —> 0 (2)

|

K, k/NK,K —> K, k(X)/NK,K(X)

If X has a smooth k-point, a specialization argument shows 6 to be injective,
and K, k/NK,K=0 if cdk=1 (as follows immediately from the projection
formula). The snake lemma therefore gives a surjection

KerN, —> KerNj.

The commutative diagram ([7], proof of lemma 3.5.3)
K,K(X) —2— K,K(X)
N2 i (3)

K, k(X)

where N,=) g, and i is induced by k(X)=K(X), induces the following dia-

geG
gram (since we may write the same diagram as above for K/k instead of

K(X)/k(X)) .
K,K(X)/K,K — K,K(X)/K,K

. j @
K, k(X)/K, k

and under the assumptions of Theorem 1, Proposition 1 says that j is injective.
Hence KerN,=KerN, in the above triangle. By MSh, KerN, consists of
elements of the shape (y—y) for ¢ a generator of G and yeK,K(X). Since
KerN, maps onto KerN; which coincides with KerN,, we conclude
H-(G,K,K(X)/K,K)=0, hence H'(G, K,K(X)/K,K)=0 since G is cyclic.
Step II. Assume that k contains a primitive p-th root of unity { and that K/k is
cyclic of prime degree p. Then (i) holds.

By Proposition 2, the map is injective. Let aeK, K(X) be such that its class
in K,K(X)/K,K is G-invariant. To prove that the class of o comes from
K, k(X), we shall be free to modify « by (the image of) an element of K, k(X),
or of K, K. Using triangle (4), we see:

pa=p+5eK,K(X) )
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with e K, k(X) and 6€ K, K. By specialization to a smooth rational k-point M,
and with an obvious (great) abuse of notation, we get pa(M)=p(M)+deK,K,
so that by changing o to « —a(M) we may assume

po=peK,K(X) ©)

with BeK, k(X). We may also assume (6) in the cd k<1 case, since K, K/pK,K
=0 in that case, hence ¢ in (5) is a p-th power.

Let us write K =k(b), with b? =ack*. It is a direct consequence of [16] that
any element in the kernel of the obvious map

K, k(X)/pK, k(X)— K, K(X)/pK , K(X)

may be represented by a symbol {a,f} for some fek(X)* (One only needs to
use the classical exact sequence

0— k(X)*/Ng , K(X)* — Br, k(X) - Br, K(X),

where ¢ associates to fek(X)* the class of the cyclic algebra (a,f),, and to
replace Br, by K, /p, thanks to MSa). From (6) we therefore deduce:

B=py+{afieK,k(X) (7

with fek(X)* and yeK, k(X).
Putting (6) and (7) together, and changing o to (¢ —7), we may assume:

pa={a,f}eK,K(X) (3)
that is
p(a—1{b,f})=0eK,K(X)

(since b? =a). The description of torsion in K, given by MSc then provides us
with some geK(X)* such that

a={b,f}+{{,g}eK,K(X) ©

(note that {g~*,{} ={(,g}).
Fix a generator ¢ of G by the condition

b/b="_

Since the class of o in K,K(X)/K,K is G-invariant, applying ¢ to (9) and
taking differences yields

{(.f-78/g} =0eK,K(X)/K, K.

Going over to K=k, we conclude by a_ specialization argument at some
smooth k-point that {{,f-°g/g}=0 in K,k(X) (cf. end of proof of Proposi-
tion 2). Hence, by Proposition 1, there exist Ae K* and heK(X)* with:

f-°g/g=A-hPe K(X)*. (10)
Taking norms for K/k, we get (f/Nh)Pek*, hence there exists uek* with
f=u-N(h). (11)
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Completion of the proof - first method (suggested by Bloch). First fix a smooth
k-point M, and a regular systems of parameters at M, defining (compatible)
specialization maps k(X)* —k* K,k(X)—K,k, K(X)*->K* K,K(X)—-K,K
(the last two being G-linear). Plugging (11) in (8), we get (projection formula):
pa={a,u}+{a, Nh} ={a, u} + N, {a, h}
= {a, ,u} + NK/k{bp’ h}
={a, u} +p Ni, {b, h} K, K(X).

We are free to modify o by Ng, {b,h} €K, k(X). Now:
po=¢ecK,K(X)

with eeK, K. A specialization argument shows ¢epK, K, so we may modify a
by an element of K, K and assume

poa=0eK, K(X).
By MSc, there exists ge K(X)* such that
a={{,g}eK, K(X).
Proceeding as above with (9), we here get
°glg=A-h"

with leK* and heK(X)*. Changing g to g/g(M), h to h/h(M), and « to
a—{{, g(M)}, we now have

a={(,g}eK,K(X)
with
’g/lg=h?;

hence N(h)ek* and in fact N(h)=1 since h(M)=1 (recall M is k-rational). By
the usual Theorem 90 for K(X)/k(X), we find ueK(X)* such that h=u/u;
hence by the above equality, “(gu~?)/(gu?)=1, that is gu~Pek(X)*. Now

a={{,g} ={{,gu ?}eK,K(X)

comes from K, k(X).

This method is easily adapted in the case where cdk<1, but no smooth
k-point is at hand. However, because of its use when extending part of Theo-
rem 1 to the case when k is arbitrary and no smooth k-point is available, I
shall describe an alternative approach. This approach, which was actually the
initial one, and which evolved in conversations with Sansuc, has since then
been used by Suslin ([18]) in his proof that Theorem 1 (i) holds without any
restriction.

Completion of the proof - second method (suggested by Sansuc). We start again
at (11). From N(4)=yu?, that is N(1/u)=1€k*, and from the usual Theorem 90
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for K/k, we find peK* with A/u=p/°p. Summarizing, we get uek*, peK* and
heK(X)* such that:

ptf=N(h)
-1 m=h1)
a pg '

We are free to change f to u~'f (this modifies « by {b,u~'}€K,K) and g to
p g (analogous reason). We now have:

b/b={
f=N(h) (12)
’g/g=h?/N(h) (13)

with he K(X)*.
As a direct computation shows, (13) is equivalent to saying that the func-
tion

tzg/ha+202+...+(p—1)ap-l
is invariant under o, that is tek(X)*. We have
{La={LOH{LRYHO P+ {7 ek K(X)

and since {{,t} comes from K, k(X), we may change « to a—{(, ¢}, and (9) and
(12) now give
a={b,h} +{b,h°} +... +{b, k" "}
+{{h Y+ LT
={b,h} +{b,h}+{b 2R+ . 4+ {bP )
=(). 8 {b,h}

geG

(since o' b={"b). In view of triangle (3), this shows that « comes from K, k(X).
This step was really the core of the proof (once the results of [16] are
known). The remainder is a sequence of easy reductions.

Step IIL. (i) holds for any cyclic extension of prime degree.
Let L=k(§'/I) and let M be the composite field of K and L, which is Galois

over L, with group G=Gal(K/k). Note that [K:k] and [L:k] are coprime.
Consider the commutative diagram:

(K, K(X)/K,K)® —— (K, M(X)/K,M)% 2%, (K, K(X)/K ,K)°

K kX)/K, kb —— K,LX)K,L " K,k(X)/K, k.

Let o be in (K,K(X)/K,K)°. Using the fact that the middle vertical arrow is
an isomorphism (Step II) and that the composition of the horizontal arrows at
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each level is multiplication by [L:k], we find that [L:k]Ja comes from
K, k(X)/K, k. On the other hand, the commutativity of triangle (4) and the
assumption that o« is fixed under G show that [K:k]o comes from
K, k(X)/K, k; as [L:k] and [K: k] are coprime, we are done.

Step IV. (i) and (ii) hold for G =Gal(K /k) a finite p-group (p prime).

From the previous steps, we know this for G=Z/p. The proof will be by
induction on n, where p" is the order of G. Let us assume we know the
statement for any p-group of order <p"~?!, and let G be of order p". From the
structure of p-groups, we know there exists a normal subgroup H of G with
H=Z/p. Let T=G/H, let L=K¥, so that T=Gal(L/k). We have the restriction-
inflation sequence:

0— H'(T,(K ,K(X)/K ,K)")— H'(G, K ,K(X)/K ,K)— H'(H, K, K(X)/K , K)

where the last term vanishes by Step I and (K, K(X)/K,K)® may be identified
with K,L(X)/K,L by StepIIl. By the induction hypothesis,
HY(T,K,L(X)/K,L)=0, and we are done as far as (ii) is concerned. But (i) is
immediate: one need only consider the injections (Prop. 2):

K, k(X)/K, k—K,L(X)/K,L—>K,K(X)/K,K
and apply the induction hypothesis.
Step V. (ii) holds for any G=Gal(K/k) finite.
Indeed, for G, a Sylow p-subgroup of G, the restriction map

H*G,M)— HXG,, M),

for M any G-module, is an injection on the p-primary subgroup of the torsion
group HG, M) (k=1).
Step VL (i) holds for any G=Gal(K/k) finite.

Let ae(K,K(X)/K,K)%; using diagram (4), we see that [G]a comes from
K, k(X)/K, k. Let p be a prime, and G,=Gal(K/L) be a Sylow p-subgroup of
G. The proof that (3) commutes given in [7], 3.5.3, extends to give a com-
mutative diagram:
PN
K,L(X)/K,L —=% K,K(X)/K,K

Nr/x J

K, k(X)/K , k.

According to step IV (applied to K/L), there exists feK, L(X)/K,L with image
a in K,K(X)/K,K. From the above triangle, we deduce that n,o comes from
K, k(X)/K, k, where n,=[L:k] is prime to p. We can repeat the same argu-
ment for each p|[G]. As noted, [G]a also comes from K,k(X)/K,k. There is
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no prime number which divides [G] and all n,, for p|[G], and we conclude
with Bézout’s lemma.

Step VIL. The theorem holds for any Galois extension K /k.

Any element of K,K(X) may be expressed as a finite sum of symbols and
therefore comes from some K,L(X) for LK and L/k finite. Part (i) of the
theorem therefore extends from the finite case to the profinite one. Part (ii)
therefore extends as well: by the initial remark, K, K(X)/K,K is a continuous
discrete G-module in the profinite case, and H!(G, K,K(X)/K,K) is the direct
limit of all H*(G/H,(K,K(X)/K,K)") for H open normal subgroup of G. =

Corollary 1. Let k be a field, char.k=0, and k an algebraic closure of k. Let X
be a geometrically integral k-variety, and assume that either X has a smooth
rational k-point or cdk<1. Then H'(Gal(k/k), K ,k(X)=0.

Indeed, there is an exact sequence
0—>K,k—K,k(X)—K,k(X)/K,k—0

(the injection K, k=K, k(X) follows from a specialization argument at some
smooth k-rational point), and H'(Gal(k/k),K,k)=0 because K,k is uniquely
divisible ([1] [.1.3). =

Remarks 2

2.1. As easy transfer arguments show, Proposition 2 and Theorem 1 hold un-
der the mere assumption that X has a “smooth O-cycle of degree one”, that is
that the g.c.d. of the degrees of all finite extensions L/k, for which X has a
smooth L-point, is one.

2.2. By Remark 1, the proofs of all results in this section need no reference to
B6, when one restricts attention to smooth proper geometrically integral
k-varieties X such that Pic X has no torsion, for instance rational varieties.

§ 2. The Chow Groups of Rational Surfaces

Let k be a field of characteristic zero, let X be a rational k-surface (by
definition, X is smooth and projective). I first recall a few facts from Bloch’s
paper [4]. For any extension K/k, taking sections of the Quillen resolution of
the Zariski-sheaf ¢, x  gives exact sequences:

0

0->Z— @ KoF—> @ Z (15)
yeX{h PeX®
0— K, K(X)/H°(Xg, #3) — Zx— H (X, #;) 0. (16)

The first sequence may be completed by a zero on the right as soon as X is
K-birationally equivalent to P2 (since the cokernel of the last map is
Ay(X ).
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In [4], Bloch shows that the natural maps
K,K—H(Xg, o)) (17
Pic Xx @, K*=H" (X, #1) ®,H(Xg, #) > H' (X, #3) (18)
are isomorphisms as soon as K is a splitting field for the rational k-surface X.
In view of the Appendix of [4], (18) may be reinterpreted as follows: for K/k a

Galois splitting field of X with Galois group G, the natural “reciprocity” map
(which is a G-homomorphism):

H' (X g, #3) - Homy(Pic X ¢, K*) (18))

is an isomorphism (of G-modules). We shall denote by S the k-torus, the group

of characters of which is Pic X (for any Galois splitting field K, e.g. K=k, the
algebraic closure of k).

Propeosition 3. For X a rational k-surface (char. k=0), the natural map
K,k—H°(X, A,)

(i) is an isomorphism if X has a rational point;

(ii) is surjective if cdk< 1.

Proof. (i) That the map is injective follows, readily from the existence of a
k-point. Let K/k be a splitting field for X. Let z be in

HO(X, #;) =Ker[K, k(X) —> @ k(;)*].

yeX()

Since all tame symbols of zeK, k(X) are trivial, so a fortiori are those of
Zkx €K, K(X), so that z belongs to H°(Xg, A,), which is none but K,K by
Bloch’s result. We conclude that the class of z belongs to the kernel of

K, k(X)/K, k— K, K(X)/K, K,
known to be zero by Proposition 2.
(i1) Same proof. =
Proposition 4. Let X be a rational k-surface (char.k=0). There are natural maps:
@: Ay(X)—> H (K, S)
r: HY(X, A;)— S(k)
If X(k) is not empty, or if cdk<1, @ is an injection and r an isomorphism.

Proof. Choose a Galois extension K/k which splits X, let G=Gal(K/k), and
consider the commutative diagram of exact sequences:

0 — K KX)HOX, ) —> 2, — H'(X, ;) — 0
0 (K,KX)K,K)® — (Z)° —>  Sk) - (19)

= H‘(G,KZK(X)/KZK)—»AO(X)—{» HY(G,S(K))
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which is obtained as follows. The second line is deduced from (16) by taking
G-cohomology; the isomorphism (18') has been used to identify (H'(Xg, #3))¢
with S(k)=Homg(PicXg, K¥*), and the exact sequence (15) - completed by a
zero - has been used to identify H'(G,Z%) with A,(X), as in [4]. The
map Z, —(Zx)¢ is obviously an isomorphism. The proposition is now an
immediate consequence of Theorem 1. =

In view of the finiteness results of [4] and [9], as recalled in the In-
troduction, the proof of Theorems A and C is complete.

~ Proposition 5. Let X be a rational k-surface over a local field k (char.k=0) and
assume X(k)#0. Then the natural pairing

Ao(X)xBrX —Brk cQ/Z

is non-degenerate on the left hand side.

Here BrX denotes the Brauer group of X, and the pairing is described in
[4], Appendix.

Proof. This follows from [4], A.l (compatibility of certain pairings), local
duality (cf. [4], 2.1) together with Proposition4. =

Remarks 3

3.1. In view of Remark 2.1, Propositions 3 and 4 hold under the mere assump-
tion that X has a O-cycle of degree one.

3.2. By Remark 2.2, the proofs of the results in this section, hence of
Theorems A and C, need no reference to B6.

3.3. In contrast with Proposition 3, the natural map
KZ k/pK2 kb“)HO(Xa %/p%)9

with p a prime number, need not be surjective even if X(k) is not empty. Let
K /k by cyclic of degree p, assume k contains a primitive p-th root of unity, and
let K=k(%) for ack*. Let X be a rational k-surface with a k-point. We shall
see that the above map is not surjective as soon as X has a non-trivial rational
function fek(X)* the divisor of which is a norm for the extension K/k (non-
trivial=f is not of the shape o-Ng,(g), with aek* and geK(X)*), in other
words as soon as H~!(Gal(K/k), PicXz)+0. Many such examples are known,
for instance the Chatelet surfaces (p=2). I claim that for f as above, all tame
symbols mod.p of {a,f} are equal to 1. Indeed, for yeX®), the value of the
tame symbol (mod.p) of {a,f} at y is a”ek(y)*/k(y)*’. Now, either yy is
irreducible, in which case p divides v,(f), or yx is reducible, and K<k(y), so a
is a p-th power in k(y). If {a,f} came from K, k, a specialization argument at a
(smooth) rational k-point would imply

{(l,f} ={a’ a}EKZ k(X)/pKZk(X)

for some aek*, hence {a,a='f}=0 in K, k(X)/pK, k(X). But then o~ 'f would
lie in Ny, K(X) (apply the Galois symbol and use the sequence preceding (7) in
the proof of Theorem 1): this we had excluded.
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3.4. The finiteness of 4,(X) for any rational surface over a local field of zero
characteristic also follows from the conjunction of MSa and of [2], Corol-
lary 3.6: Indeed, A,(X) is killed by [K:k] for any extension K/k with X
K-rational, and the quoted result of Bloch holds for k p-adic or real, along with k
finite.

3.5. For X a rational variety over a finite field, Bloch [12] proved the vanish-
ing of A,(X). He also gave (letter to the author) a very geometric proof of the
vanishing of A,(X) for X a rational surface over a p-adic field, with good
reduction.

3.6. Let X be a rational R-surface. In this case 4,(X)=0 if X(R)=0 (easy,
since Ay(X¢)=0) and 4,(X)=(Z/2)*~" if X(R) is not empty and s denotes the
number of connected components of X(R); also, two points of X(R) are
rationally equivalent over X if and only if they lie in the same component of
X(R) ([8]; these results extend to higher dimension). Proposition 5 therefore
implies that there are enough elements in the Brauer group of X to separate
the real connected components by means of the obvious pairing

X(R)xBrX —>Z/2.

This may be reinterpreted as follows: on a rational R-surface, there are enough
rational functions with divisor a norm (for C/R) to tell apart different con-
nected components of X(R).

§ 3. The Case where no (Smooth) Rational Point is Available

As mentioned in the Introduction, Suslin has recently extended some of the
results of Sections 1 and 2:

Sa ([18], 5.8). Let K/k be a Galois extension of fields, G=Gal(K/k). Let X be
a geometrically integral k-variety. The natural map
j: Ko k(X)/K 5 k— (K, K(X)/K ,K)°
is an isomorphism.
In other words, Theorem 1 (i) holds without any restriction.

Sb ([18], 5.6). Let X/k be a complete smooth rational k-variety. Then the
natural map

K,k—H(X, A)
is an isomorphism.

In other words, Proposition 3 holds without any restriction. For char. k0,
the proof of these results uses recent work of Bloch-Gabber-Kato.

Proposition 6. Let K/k be a finite cyclic extension of fields, G=Gal(K/k), and let
X be a geometrically integral k-variety. There then exist isomorphisms:

H'(G,K,K(X)/K,K)=H (G, K,K(X)/K,K)
— Ker[K, k/NK,K — K, k(X)/NK ,K(X)]
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the first one relying on the choice of a generator of G, the second one being
canonical.

Proof. Inject Sa into the proof of Theorem 1, Stepl. =

Lemma 2.
a) K,R/NK,C=Z/2;
b) For K/k a finite extension of p-adic fields, K, k/NK,K =0;

c) For K/k a finite extension of number fields, K, k/NK, K is finite; in fact,
there is a natural isomorphism

K,k/NK,K—> @ K,k /NK,(K®,k,)

veSw

where S denotes the set of real places of k. For K /k Galois, this simply reads

K,k/NK,K—> @ K,k/NK,K®,

veSw
where K? denotes the completion of K at an arbitrary place above v.

Proof. a) and b) are well known (cf. [17], Appendix, A.15) or may be proved in
the same manner as c). For K/k as in ¢), let n=[K:k], and consider the
commutative diagram ([14], §1.2, Lemma 3):

K K/nK K — HYK, 1?)
Nk/x Cork/k
KoknK ok — HAk 1%

where Corg, denotes the cohomological trace (corestriction) map. According
to Tate’s theorem, both horizontal arrows are isomorphisms. The cokernel of
the left vertical map is none but K, k/NK, K. Consideration of the analogous
diagrams at the places v (here K ®, k, need not be a field, but this does not
matter) enables us to identify the restriction map

K, k/NK,K— @ K, k,/NK,(K®,k,)

veSw

with the restriction map:

H?(k, 3 ?)/Cor HA (K, p2%) — G‘S) H?(k,, 4?)/Cor H(K ®,k,, 1>%).
Let Ry, u2? be the Galois module (over k) obtained by pushing down the
Galois module u®?> from K to k. There is a natural surjective
map Ry, 12?— p®? of Galois modules over k, which induces the corestriction
map:
H*(K, /J:?Z)QHZ(k’RK/kﬂ?Z)”"Hz(k’/";;ez)

(the isomorphism being Shapiro’s lemma). Define a finite Galois module M
over k by the exact sequence:

0—M— Ry 17> > p?—0
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and look at the commutative diagram of exact sequences:

0—  H(uPH/HkRgu®) — HKM) —  H(kRy, 1)

0— @ [Hz(kw M?Z)/Hz(kaK/k /‘?2)] — ® H3(k,),M) — @ Hs(kv’RK/kun®2)‘

veSw veSw veSw

The two right vertical arrows are isomorphisms (Poitou, Tate), hence also the
left one. m

Theorem 2. Let K/k be a Galois extension of fields, G=Gal(K/k). Let X be a
geometrically integral k-variety.

a) If k is a p-adic or a totally imaginary number field, then
H'(G,K,K(X)/K,K)=0;

b) For K/k=C/R, there is a natural embedding
HY(G,K,C(X)/K,C)—Z/2

which is zero if X has a smooth R-point, and which is an isomorphism if and only
if (—1) is a sum of 4 squares in R(X), as is always the case when dimX <2 and
X has no smooth R-point.

¢) For k a number field, there is a natural embedding
HY(G,K,K(X)/K,K)—(Z/2)",

where T denotes the set of real places v of k such that X has no smooth k -point.

Proof. a) Note first that any finite extension of k is of the same type. For k as
in a), the previous lemma shows

K,k/NK,K=0

for any finite extension K/k. We only have to go through the analogues of
Steps ,IV,V and VII in the proof of Theorem 1. Proposition 6 and the pre-
vious remarks take care of Step I. In Step IV, one uses Sa, Steps V and VII are
unchanged.

b) The natural embedding is given by Lemma2 and Proposition 6. Since
K,R/NK,C is generated by the class of the symbol {—1, —1}, the embedding
is an isomorphism if and only if {—1, —1} belongs to NK, C(X)cK,R(X).
That this is the case when (—1) is a sum of 4 squares in R(X) follows from an
easy computation with symbols. Conversely, from {—1, —1}eNK, C(X) fol-
lows {—1,—1, —1}e2K¥R(X), where K™ denotes Milnor’s K-group. Going
over to the Witt ring, one finds

(~1,—1, -1 =0e*R(X)/I*R(X),
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hence {—1,—1, —1)=0eW(R(X)) thanks to the Arason-Pfister theorem
([15], X, 3.1).
(Let k be any field, char. k%2, and let «, §,y be in k*. The same proof shows

“}(ﬁ) if and only if

{o, f}eNK, k(]/;)CK2 k. Such an equivalence holds more generally for cyclic
algebras of prime degree, as follows from [16], 12.1, 15.6, MSa.)

The last assertion is a special case of a celebrated theorem of Pfister ([15],
XI, 1.8).

that y is a reduced norm of the quaternion algebra (

c) Let G,=G be the decomposition group associated to a place w of K,
G,=Gal(K,/k,). In view of b) and of the fact that G, and G, are conjugate in
G as soon as w and w' induce the same place on k, it is enough to show that
the restriction map

p: H'(G,K,K(X)/K,K)- [] H'(G,,,K,K,(X)/K,K,)
wef2
is an injection; here Q denotes the set of archimedean places of K in-

cluding the complex ones. To prove this, we shall go through the same steps
I, IV, V, VII as in Theorem 1.

Step L. p is an injection when G is finite cyclic.

Choosing a generator of G determines a generator for any subgroup of G. It is
then an exercise in Galois cohomology to check that the following diagram is
commutative:

H'(G,K,K(X)/K,K) < K,k/NK,K

p

[[ H'G,. K, K, (X)/K,K,) = [] K, k,/NK,K,;

we wef
here the vertical arrows are the obvious ones and the horizontal ones are the
injections associated by Proposition 6 to the (compatible) choice of generators
mentioned above. Since any place of k extends to a place of K, the right
vertical arrow is an injection by Lemma 2, hence also p.

Step IV. p is an injection if G is a (finite) p-group (p prime).

As in the proof of Theorem 1, the proof will be by induction on the order of G.
Let H=G be as in that theorem, with T=G/H and L=K". Any place w of K
induces a place (also denoted by w) on L and k, and determines subgroups
G,<G,H,<H, T,=T, with T,=G,/H,, and G,=Gal(K,/k,), H,=Gal(K,/L,),
T,=Gal(L,/k,). The restriction-inflation sequences at the global and local
level are immediately seen to be compatible; using Sa, we thus obtain the
following commutative diagram of exact sequences:
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0—  HYTK,LX)K,L) —  H'(GK,K(X)/K,K)

PL/k PK/k

0— [] H'(T,.K,L(X)/K,L,) — [] H'(G,,K,K,(X)/K,K,)

we2 weR

——  H'(H,K,K(X)/K,K)
PK/L
— [] H'(H,,K, K, (X)/K,K,).
weR

The two extreme vertical arrows are injective by the induction hypothesis (any
place of L extends to a place of K), hence so is the middle one.

Step V. p is an injection if G is finite.

Follows from Step IV exactly as in Theorem 1.

Step VIL p is an injection if G is profinite.

Let H=G be a normal open subgroup, T=G/H, L=K". In view of Sa, the

inflation maps at the global and local levels yield a commutative diagram:
HYTK,L(X)/K,L) <  H'G,K,K(X)/K,K)

PL/k PK/k

[1 HY(T,.K,L(X)/K,L,) = [] H'(G,, K, K (X)/K,K,).

we wef

Since any place of L extends to a place of K, the left vertical arrow is injective
by Step V. As explained in the proof of Theorem 1, this is enough to con-
clude. =

Remark 4. For X/k a rational surface over a number field and K=k, the
embedding in Theorem 2c) always is an isomorphism (Proposition 7). I do not
know if this true for all surfaces.

Proposition 7. Let X be a rational k-surface (char. k=0).

a) The natural map r: H (X, #,)— S(k) is injective; for k a local or a global
field,

Coker[H'(X, A#,)—— S(k)]= H'(Gal(k/k), K , k(X)/K , k)=(Z/2)"

with T=0 if k is p-adic or X(k)+0, T={1} if k=R and X(R)=0, and T the set
of real places v of k with X(k,)=0 if k is a number field.
b) For k a local or a global field, the map

&: Ay(X)— H'(k,S)
is injective and A, (X) is finite.

(Notations are as in §2)
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Proof. That r is injective follows from Sa and diagram (19). The case X(k)=+0
has been dealt with in §2. If k is a p-adic field, everything follows from
Theorem 2 a) together with (19). If k=R and X(R)=0, then A,(X)=0 (cf. 3.6),
and everything follows from Theorem 2 b) together with (19). Note that k in a)
could be replaced by K for K any Galois extension of k which splits X. Let
now k be a number field, and K/k be such an extension. For each place veT,
fix a place of K above v, denote by K" the completion of K at this place and
by G, the decomposition group G,=Gal(K"/k,). Since A,(X,,)=0 for each
place veT, it follows from (19) that the map

S(k,)—H'(G,,K,K*(X)/K,K")  (=Z/2)

is surjective. Restriction from k to each place veT yields a commutative
diagram:

S(k) ——  HYG,K,K(X)/K,K)

[T0Sk,)/28k,)] — [] H'(G,,K,K*(X)/K,K").

veT veT

We have just seen that the lower horizontal arrow is surjective, and the right
vertical map is injective (proof of Theorem 2 c)) Since each torus S, is
certainly split by a cyclic extension, S(k) is dense in the product of the S(k)
and the left vertical map is surjective. Therefore the right vertical arrow is an
isomorphism and the top map is surjective, which together with (19) implies
that @ is injective. That A,(X) is finite now follows from the fact that the
image of @ is finite. =

Remarks 5

5.1. For k an arbitrary field, the map & in Proposition 7 need not be injective
when X(k)=0. Examples with Ker ® 40 and k=Q(T), Q,(T)), C(Ty, T, T;) are
given in [10].

5.2. Since Sa also holds for char.k=p>0, so does Theorem 1. Proposition 4
then extends if X has a Galois splitting field. Once §1 of [9] is extended to the
case where the ground field need not be perfect, it is an easy matter to extend
the whole of Theorem A to char. k>0, when X has a Galois splitting field. In
the general case, one only obtains finiteness up to p-torsion. Such a result had
already been proved in [11], starting from [16], but using ideas different from
those of the present paper.
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