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0. Introduction

Let G be a semisimple, affine algebraic group over an algebraically closed field
of characteristic 0 and A(G) the algebra of regular functions on G. In [18],
Richardson considered A(G) as a C(G)G-module, where C(G) is the algebra
of regular class functions and G is acting via the conjugating representation.
Richardson proved that, when C(G) is a polynomial algebra, the G-homogeneous
component of A(G) indexed by weight 1 breaks up as a tensor product
C(G)® E;, where E, is a direct sum of irreducible G-modules of highest weight
A. Here we consider the conjugating representation in arbitrary characteristic
and prove the appropriate version of Richardson’s Theorem (under small, and
almost certainly unnecessary, characteristic/root-system restrictions). One can
no longer decompose 4(G) into homogeneous components but instead we prove
the existence of an ascending C(G)G-module filtration, indexed by the set X *
of dominant weights and successive quotients of the form C(G)® E,(AeX ™),
where E, is a direct sum of induced modules of highest weight A.

Richardson’s Theorem is a rather precise analogue of a theorem of Kostant,
[16], concerning the action of the adjoint group of a semisimple complex Lie
algebra g on the algebra A(g) of polynomial functions of g. We prove the appro-
priate version of this result in characteristic p (with small, and not entirely
unnecessary, characteristic/root system restrictions). The filtrations of both A(G)
and A(g) are obtained as special cases of the corollary to the theorem which
we prove in § 1.5.

The results in this paper are obtained by combining the geometric algebra
in [18] (which is characteristic free) with methods and results developed over
the last few years in characteristic-free representation theory of reductive groups,

[9].

Acknowledgement. I am grateful to the referee for some useful comments.
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1. (C, G)-modules

1.1. Let k be an algebraically closed field. All modules for an affine algebraic
group over k will be supposed rational (see [6], 1.1) but not necessarily finite
dimensional. Let G be a reductive group over k, B a Borel subgroup, T< B
a maximal torus and U the unipotent radical of B. Let X be the character
group of T For a T-module V and ieX, V* denotes the A-weight space of
V. We choose the system of positive roots @* in the root system of G so that
B is the negative Borel subgroup. Let W= Ng(T)/T be the Weyl group and
wo€ W be the longest element. For Ae X, let A* = —w, 4.

For AeX, k;, denotes the one dimensional B-module on which T acts with
weight A. We denote by Y (1) the induced module Ind§ k. Then Y (4)# 0 precisely
when A belongs to the set X* of dominant weights and, for AleX*, Y(4) has
formal character given by Weyl’s Character Formula (see [6], Ch. 1).

1.2. Let C be a commutative k-algebra. Given a C-module V and a k-space
M we write |M|® V for the vector space M ® V viewed as a C-module with
C acting via c(m®v)=m®cv, for ceC, meM, veV. By a (C, G)-module we
mean a k-vector space V which has the structure of a C-module and a rational
G-module in such a way that c(gv)=g(cv) for all ceC, geG, ve V. Morphisms
of (C, G)-modules, (C, G)-submodules etc. are defined in the usual way. Given
a (C, G)-module V and a G-module M we regard the C-module |M|® V as
a (C, G)-module with G acting diagonally. We occasionally regard C as a (C, G)-
module on which C acts via the regular action and G acts trivially.

By a good filtration of a G-module V we mean an ascending filtration O
=V,, V4, ... of V such that, for each i>0, V;/V,_, is either 0 or isomorphic
to Y (A, for some 1,6 X *. For a fixed Ae X *, the number of successive quotients
isomorphic to Y(4) in such a filtration is independent of the choice of good
filtration ([6], (12.1.1)) and denoted (V: Y(4)).

Let n be a finite subset of X which is saturated in the sense that pern
whenever Aem, ueX™ and p is less than A in the natural partial order on X.
We say that a G-module V belongs to = if every dominant weight of V belongs
to m. Among all submodules belonging to =, of an arbitrary rational G-module
¥, there is a unique maximal one, denoted O, (V). Notice that a G-module homo-
morphism V; — V, induces a homomorphism O,(V;) - O,(V,) by restriction, mak-
ing O, a left exact functor. Notice also that if V is a (C, G)-module, O,(V) is
a (C, G)-submodule of ¥ and O, determines a left exact functor on (C, G)-modules.

Propeosition. Let V be a (C, G)-module which (as a G-module) has a good filtration.
Let 7 be a finite, saturated subset of X *, A a maximal element of m and n’ =7\ {A}.
Then 0,(V)/0,.(V) and | Y ()| ® O,(V)* are isomorphic C-modules.

Proof. Let M =0,(V)/0,.(V). Then M, as a G-module, is isomorphic to a direct
sum of copies of Y(4), by [6], (12.1.2) and (12.1.2). Moreover, Endg (Y (4)) =k,
e.g. by [6], (1.5.3) and therefore the map ¢: Y (1) ®@ Homg(Y (4), M) » M defined
by o (y ® 0)=0(y), ye Y(A), 0eHomg(Y (1), M), is a k-space isomorphism. Regard-
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ing Homg (Y (4), M) as a (C, G)-module on which C acts via (c6) (y)=c8(y) (ceC,
0eHomg(Y(4), M), ye Y(4)) and on which G acts trivially, ¢ is a (C, G)-module
isomorphism |Y (1)) ® Homg(Y (1), M) > M. Again, since M is a direct sum of
copies of Y(2), restriction to the A-weight space shows that Homg(Y (1), M)= M*,
as (C, G)-modules (with trivial G-action). Hence we have M ~|Y(1)|® M* But
the natural map O,(V)— M induces an isomorphism O,(V)*— M?* so that
0,(V)/0,.(V) is isomorphic to | Y (1) ® 0,(V)*, as required.

1.3. We regard the following as the characteristic-free analogue of [18], Proposi-
tion 3.1.

Proposition. Let A be a finitely generated, commutative, k-algebra on which G
acts rationally as k-algebra automorphisms. Suppose that A has a good filtration
and let C= AS, the algebra of invariants. Then, for every finite, saturated subset
nof X*, 0,(A) is a finitely generated C-module.

Proof. Let A be a maximal element of = and =n'==n\{A}. Then
0,(4)/0,.(4)=|Y (1) ® 0,(A4)* by 1.2 Proposition, so by induction on |z it suf-
fices to show that 0,(4)" is a finitely generated C-module. Moreover, multiplica-
tion by a coset representative of w, in Ng(T) induces an isomorphism O,(4)*
— 0,(A)** so it suffices to show that O,(4)"°* is finitely generated.

Let Ao=AY. Since w, 4 is a lowest weight of O,(A4), we have O,(4)"°* < Ao,
On the other hand, we have A*°*=0 by [6], (12.1.6) and (1.5.2), where 4
=(A/0,(A)V so that O,(4)"°*=Ax°* Furthermore 4, is a T-module and A}
=AB=C, by [4], (2.1) Theorem and A, is finitely generated, e.g., by [8], Corol-
lary, § 3. Therefore we may (and do) replace 4 by AY and G by T. Let y= —wy 4.
Then A®k[y] is a finitely generated k-algebra on which T-acts and so
(A®k[x])T is finitely generated (e.g. by [12], 14.3 Theorem and exercise 1,
Ch. V), by a;® y* say, 1<i<n, d;=0. Then A"°* is generated as C-module
by {a;: 1<i<nand d;=1}.

1.4. For a C-module or (C, G)-module V we denote by w.h.d.(V) the weak homo-
logical dimension of V(as a C-module).

Proposition. Suppose C has finite global dimension and V is a (C, G)-module with
a good filtration. Then w.hd.(V)=max{w.hd. O,(V): s}, where & is the
set of finite, saturated subsets of X *.

Proof. Let d=max{w.h.d. 0,(V): 6e ¥} and let n be such that d=w.h.d. O,(V).
We claim that

w.h.d. 0,(V)/0,(V)<d

for every ¢,7€% with ¢ > 1. By induction on |o|—|7| it suffices to consider
the case 0 =1 U {4} for some A¢t. Then we have O,(V)/0,(V)=|Y ()| ® O,(V)*o*
by (1.2b) Proposition. Now O,(V)*°* is a C-module summand of O,(V) so that
w.h.d. 0,(V)**<d and hence w.h.d. 0,(V)/0,(V)<d, proving the claim.

Let M be a C-module. By the claim and the long exact sequence we have
that

Torg (0(V), M) - Torg (0,(V), M) 1
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is injective for all 1, 6€.%, t = ¢ and e2d. Label the elements of X * in sequence
A1, Az, ... such that i<j whenever 4;<1; and n={4,4,, ..., 4,} for some n.
We set n(r)={;, A3, ..., 4,} and V,=0,, (V) for r= 1. We have that

Toré(V, M)= lim Toré(,, M)

and that TorS$(V,, M) - TorS(V,, ,, M) is injective, for r=1 and e=d, by (1)
and [3], Ch. VI, Proposition 1.3. Hence TorS(V, —)=0 for e>d. Choosing M
so that Tor§(0,(V), M)%0, ie., Tor§(V,, M)%0 we get Tor(V, M)%0 and so
w.h.d.(V)=d.

1.5. Our main result is the corollary given in this section. In the rest of paper
we apply this in the important special cases 4= A4(G) and A(g), the coordinate
rings of G and its Lie algebra g.

Theorem. Let A be a finitely generated commutative k-algebra on which G acts
rationally as k-algebra automorphisms and put C= A®. Suppose that A has a
good filtration (as a G-module), that C is a free polynomial k-algebra and A
is a flat C-module. Let 7 be a finite saturated subset of X*, A a maximal element
of m and ' =7\ {A}. Then 0,(A)/0,.(A) is isomorphic to |E|® C as a (C, G)-module,
where E is isomorphic to a direct sum of a finite number of copies of Y (4).

Proof. By 1.4 Proposition, O,(A) is flat over C, and therefore O,(4)*, a C-module
summand of O,(4), is also flat. Now by 1.2 Proposition, M =0,(A4)/0,.(A) is
also a flat C-module. Moreover O,(A4), and therefore M, is a finitely generated
C-module by 1.3 Proposition. Hence M is a finitely generated projective C-
module by [3], Ch. VI, Ex. 3. Now M, as a (C, G)-module is isomorphic to
| Y{1)| ® M* (where C acts trivially on M%) by the proof of 1.2 Proposition. Now
M?* is a C-module direct summand of M and hence also a finitely generated
projective C-module, and therefore free by the Serre Conjecture [17], [21]. Hence
M*=|V|® C for some finite dimensional, trivial G-module V and so M=
YA ®(V|® C)=|E|® C, where E=Y(A)® V, a direct sum of dim V copies
of Y(A).

Corollary. Under the hypotheses of the Theorem, A has an ascending (C, G)-module
filtration 0= Ay, Ay, ... where A;/A;_=|E;|® C, E; a finite direct sum of copies
of Y(A) (i=1) and Ay, 2,,... is a labelling of the elements of X* such that i<j
whenever 2;<A;. For a given labelling, the multiplicity (E;:Y(4;) is independent
of the choice of such a filtration.

In particular, A is a free C-module.

Proof. Let n(i)={Ay,As,..., 4} and A4;=0,,(A) for i=1. Put 4,=0. Then
Ai/A;—=|E|®C, for i=1, with E; a direct sum of finitely many copies of
Y(4), by the Theorem. let .# be a maximal ideal of C. Then A/A.# has a
G-modules filtration with quotients isomorphic to the E; (i=1). Hence
(Ei: Y(4))=(A/A M :Y (1)), and is therefore independent of the filtration.
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2. Conjugating representations and adjoint representations

2.1. We adopt the following conventions. For a k-space V, we denote the dual
space by V*. If Vis a finite dimensional G-module, V* is viewed as a G-module
in the usual way. The coordinate ring of an affine k-variety Z is denoted by
A(Z); if G acts on Z then we put C(Z)=A(Z)¢, the algebra of invariants. For
a finitely generated, reduced commutative k-algebra A, we denote the corre-
sponding “classical” variety by Spm(A) (the maximum spectrum).

Let p be the characteristic of k. Recall that, for an indecomposable root
system ¥, p is called good unless one of the following holds: ¥ has type B,
C or D and p=2; ¥ has type E4, E,, F, or G, and p=2 or 3; ¥ has type
Eg and p=2, 3 or 5. We call p very good for ¥ if p is good and, in addition,
if ¥ has type A, then pt I+ 1. We call p good (resp. very good) for an arbitrary
root system if it is good (resp. very good) for each indecoomposable component.
We call p good for G (resp. very good for G), or simply good (resp. very good),
if it is good (resp. very good) for the root system of G.

Let g=Lie(G) and t=_Lie(T). For the rest of the paper r=dim T, the rank
of G. We call an element xeg strongly regular if the centralizer Z (x) of x
in g has dimension r. In applying 1.5 Corollary to A(g) we shall use the following
collection of more or less known results.

Proposition. Suppose that either G is almost simple, simply connected and p is
very good or that G=GL,(k) for some n= 1.
(i) The restriction map 0: C(g)— A(t)" is an isomorphism.

(ii) C(g) is a free polynomial ring in r indeterminates.

(iii) g contains a non-empty open set of strongly regular, semisimple elements.

(iv) A(g) is a flat C(g)-module.

(v) Spm(A4(g)) - Spm(C(g)) is separable.

(vi) A(g) has a good filtration.

Proof. First consider the case in which G is semisimple. If p=0, (i) and (ii)
are well known results of Chevalley; for (iii) see [11], p. 133/134. Also, (iv)
is true since A(g) is free over C(g) by Kostant, [16]. Separability is automatic
in characteristic 0 and every G-module of countable dimension has a good
filtration (the Y(4)’s are the irreducible G-modules). We therefore suppose p+0.
Let u=Lie(U) and n=Lie(U*), where U™ is the unipotent radical of B, the
Borel subgroup opposite to B. As in [14], we identify t* with {leg*:
I(n)=1(u)=0} and n* with {leg*: I(t)=1(1)=0}.

There is a G-invariant, non-degenerate, bilinear form on g (see [19], I,
5.3. Lemma) inducing a G-isomorphism g* — g taking t* to t. In proving (i),
(ii) and (iv) we may therefore replace g by g* and t by t*. Hence (i) is true
by [14], Theorem 4(i), and (ii) is true by (i) and [5], Corollary of Theorem 3.
To prove that A(g*) is flat over C(g*) we use the criterion of Lemma 2.2 of
[18]. We must show that ¢: g* > Y=Spm(C(g)) is surjective and the fibres
have all irreducible components of dimension d=dim g*—dim Y=dimg—r.
Surjectivity follows from (i) and the fibers are irreducible by [14], Theorem 4
(vii). For yeY we have dim ¢ ~'(y)=d on general grounds ([12], 4.1 Theorem)
so we only need check that dim ¢ ~'(y)<d. By [14], Theorem 4 (iv), ¢~ '(y)
contains an element [=I[,+1,, with [, et*, l,en* By [14], 3.10, ¢~ '(y)
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=G.(l; +n*). Now I, +n* is stable under the action of B so we get ¢~ '(y)
= (J Uw(l,+n*), by the Bruhat decomposition, and therefore dim ¢ ~'(y)

weW
<dim U +dim n* =d, as required.

Note that the centraliser Z,, (t)={1}, by [14], 2.3 Proposition. Hence there
exists xet such that s,(x)=+ x, for every reflection s,eW, i.e., da(x)#0, for every
ae®. Now x is strongly regular with centraliser t in g and (iii) follows as in
[20], 6.8. We have (v) by [2], AG, (2.4) Proposition and the argument of [19],
p. 200 (3). For (vi), see [1], 4.4 Proposition.

Now let G=GL,(k). Then by the fundamental theorem of symmetric func-

tions C()V is freely generated by e,,...,e,, where e;=0(dy;) (1<i<n) and
1:€ C(G) is the trace function on the i*" exterior power of the natural representa-
tion. Hence 0 is surjective. Now (iii) follows as in the semisimple case above
and the injectivity of @ follows as in [11], p. 133/134. Moreover, (ii) follows
from (i). It follows, also from (i), that ¢: g — Spm(C(g)) is surjective. One obtains
that the fibres are connected, as in [14], 3.10, and have dimension dim g—r,
as above. Hence (iv) holds by [18], Lemma 2.2. We have C(g)= A(g)®°, where
Go,=SL,(k), since the centre of G acts trivially on A(g), so (v) follows as in
the semisimple case above. We have (vi) by [1], 4.3 (and [6], Proposition 3.2.7
(id)).
2.2. Theorem. Let Z=G (resp. Z=g) with G acting on Z via conjugation (resp.
the adjoint action). Assume the either G=GL,(k) for some n=1 or that G is
almost simple, simply connected and p=+2 or G does not have type E, or Eg
(resp. G is almost simple, simply connected and p is good). Let A= A(Z) and
C=C(Z). Then A has a (C,G)-module filtration 0=Ay, A, A,,... where
Ai/Ai-=|E;|®C, fori= 1, E, is a finite direct sum of copies of Y (1,)and A, 4,,...
is a labelling of X* such that i<j whenever A;<A;. For a fixed labelling, the
multiplicity (E;: Y(2,)) is dim Y (1,)T (i=1).

In particular A is a free C-module.

Proof. First suppose that Z is not isomorphic to si, (k).

If G is semisimple and Z =G then C is a polynomial algebra in r indetermin-
ates by [20], 6.1 Theorem and A is flat over C by [18], Proposition 2.3. The
same holds for Z =GL, (k) as one may see, e.g., from the proof of 2.1 Proposition.
Also A has a G-module filtration with sections Y (1) ® Y(1*) (le X *), [7], 1.4(17)
(or [15], Theorem 1 or [13], II, 4.20 Proposition). Hence A has a good filtration
by [6], (10.8.5) Theorem and [6], Proposition 3.1.1. If Z=g then C is a polyno-
mial algebra in r indeterminates, A4 is flat over C and 4 has a good filtration,
by 2.1 Proposition, (ii), (iv) and (vi). Hence in all these cases, A satisfies the
hypothese of 1.5 Corollary and hence has a filtration of the required form. For
Z =G semisimple, Richardson shows [18], Lemma 8.3, that there is a maximal
ideal # of C such that A/A.# is isomorphic, as a G module, to A(G/T), and
the argument works to for G=GL,(k). (Actually, in [18], Lemma 8.3, k has
characteristic 0 but the proof works generally, it is based on the separability
of G —» Spm(C(G)), which is true in arbitrary characteristic by [20], 6.9 Theorem
and [2], AG, (2.4 Proposition.)

We shall now show that the same holds for Z=g (G not isomorphic to
SL,(k)). By 2.1 Proposition, (iii) and (v) we can pick xet such that x is strongly
regular and d ¢, is surjective, where ¢: g— Spm(C(g)) is the natural map. Let
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O, be the G-orbit of x. Then O, is closed, [2], Theorem 9.2 and it is not difficult
to see that O,=¢~!(y), where y=¢(x). By [18], Lemma 8.2, A.# is a prime
ideal, where .# <C is the ideal of y. Hence A(O,) is isomorphic to A/A.# as
a G-module and k-algebra. Consider the map n: G - O,, n(g)= Ad(g) x for geG.
Then Zg(x)=T and the kernel of dn, is Z,(x)=t. Hence, by dimensions, dr,
is surjective, and 7 in separable. Hence by [2], (6.7 Proposition, n induces an
isomorphism G/T— O,. Where therefore have that A/A.# is G-isomorphic to
A(G/T), as required. Hence, for Z not isomorphic to sl,(k), we have (E;: Y(4))
=(A4/A MY (L)) (see the proof of 1.5 Corollary) and so (E;: Y(4))
=(A(G/T): Y(4)) which is dim(A(G/T)®Y(4¥)°, by [6], (12.1.1). However,
A(G/T) is the induced module Ind§k and so by reciprocity and the tensor
identity, [6], (1.1.2), (1.1.7) we obtain (E;: Y(4;))=dim Y (1¥)T. However, the for-
mal character of Y(1}) is equal to the formal character of Y(1)* (e.g., by Weyl’s
Character Formula, [6], (2.2.6)) and so dim Y(A¥)"=dim Y(/)7, giving the
desired multipicity assertion.

It remains to deal with the Lie algebra of a special linear group. Let
G=GL,(k), Go=SL,(k), go=Lie(G,). Let fe A(g) be the trace function. Then
we have a short exact sequence

0—f.A(g) > A(g) > A(g0) > 0 ()]

where the first map is inclusion and the second is restriction. By 2.1 Proposition
(vi), A(g) has a good filtration as a G-module, and hence by [6], Proposition 3.2.7
(ili), as a Gy-module. Moreover, f.A(g)=~A(g) as a Gy-module so that
H'(Gy,f-A(g))=0, by [10], Corollary 6. Hence we get a short exact sequence
0—f.A(g)% — A(g)% — A(go)® — 0. But G is the product of G, and the centre
so A(g)% = A(g)® and we get a short exact sequence

0—/.C(g) > C(g) = C(g0) ~ 0. @

Now C(g) is a free polynomial ring in n variables, one of which is f (see
the proof of 2.1 Proposition (ii)) and so, by (2), C(g,) is free on n—1 variables.
By 2.1 Proposition (iv), A(g) is a flat C(g)-module. Hence C(go)®cA(g) is
a flat C(go)-module, ie., 4(g,) is a flat C(go)-module. Hence by 1.5 Corollary,
A(go) has a filtration of the required form and it only remains to calculated
the multiplicities.

Let X* be the set of dominant weights of the diagonal torus T of G and
Xg the set of dominant weights of the diagonal torus T, of G,. The kernel
of restriction X(T)— X(T,) is Zw, where w is the determinant function on
T Let s be the set of AeX™* such that Y(1)T40 and 4, the set of Ae Xy such
that Y5(4)To+0 (Y,(4) the module induced from the module k, for the Borel
subgroup B, of lower triangular matrices). If 1, ues then A—ueZ & and, since
ZdNZw=(0), the restriction @: s— 44 is injective. It is also easy to check
that ¢ is surjective. From what has already been proved, it follows that A(g)
has a (C(g), G)filtration 0= A(g), A(g)y,..- Where A(g);/A(g);-1 =|E(g):| ® C(g),
for iz 1, E(g); isomorphic to dim Y(1,)T copies of Y(4) and 4,, 4,,... a labelling
of 4 such that i<j whenever A;<4;. By tensoring with C(go) over C(g), and
using (1), (2), we obtain a (C(go), Go)-filtration 0=A(g¢)o, A(80)1,-.. Of
A(80)i/A(8); - 1 =|E(80)i| ® C(go) for i >0, E(go); = E(9)ilg,- Hence, by [6], Propo-
sition 3.2.7 (i), E(g,); is isomorphic to dim Y(4;)T copies of Yy(¢(4y). It follows,
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from the injectivity of restriction Z ® — X (Ty) and [6], Proposition 3.2.7 (i), that
dim Y(4)" =dim Y,(¢(4;))"°. Hence the multiplicities in the filtration A(g,); (i=0)
of A(g,) are as stated in the theorem. One has. the same multiplicities in any
such filtration by 1.5 Corollary.

Remarks. 1. In the course of the proof we obtained that C(g,) is a free polynomial
algebra so that one only requires p to be good for 2.1 Proposition (ii) to hold.
For p=2, G,=SL,(k), A(t,)” has a non-zero, degree one element and C(g,)
does not so 2.1 Proposition (i) fails in that case.

2. The characteristic/root-system restrictions in the case Z =G come entirely
from [6], (10.8.5) Theorem and are almost certainly unnecessary. In any case,
by Richardson, [18], Theorem C, 4(G) is always free over C(G) (G semisimple,
simply connected). On the other hand, for Z=g, some restriction is definitely
necessary. It follows from the conclusion of the theorem that A(g) has a good
filtration and this is not always the case for G semisimple, simply connected
(see [9], for a counterexample).

3. One quickly obtains Richardson’s result. [ 18], Theorem A (for G semisim-
ple, simply connected) from the above theorem. Suppose k has characteristic
0. Let A4, 4,,... be as in our theorem. The 4= 4, homogeneous component A(G),
of A(G) is the G-submodule of A(G); generated by A(G)}. We have A(G);
=A(G);, ® A(G);-, as (C, G)-modules. Hence A(G), is isomorphic to |E;| @ C(G)
(by the above theorem) as asserted by [18], Theorem A.

4. Assume the hypotheses of 2.2 Theorem and let P be a parabolic subgroup
of G with unipotent radical V. Then one obtains a filtration of 4" as a (P/V, C)-
module, of the kind given in 2.2 Theorem, since the V-fixed point functor is
exact on G-modules with a good filtration (see [8], 1.4 Proposition and §2,
Proposition). In particular, A" is a free C-module.

5. As in [18], Theorem A, our result is not constructive. However, in the
case A=A(G), G=SL,(k), we can give a more concrete description, as follows.
We regard 4 as a G x G-module in the usual way. By [7], 1.4 (16), (17), there
is a uniquely determined G x G-submodule A(m) say (m=0) with sections
YO)® Y(0), Y(I)® Y(1),..., Y(m)® Y(m) (identifying weights with integers in
the usual way). Now regard A(m) as a G-module via the diagonal action. By
[6], (10.8.5) Theorem, A(m) has a good filtration and so by [6], (12.1.6) there
is a uniquely determined G-submodule A(m, n), for n <m, such that 4(m, n) has
a good filtration and (A4 (m, n): Y(j))=0 for j>2n and (A(m)/A(m, n): Y(j))=0 for
j<2n. Then C(G)= U A(m,0) and it is possible to show that A(m, n).A(r,s)

mz0
=A(m+r,n+s) (for m2n, r=s). We put Ag=0and A4, ,={) A(m,i), for i=0.
One may deduce that A4;,,/4;=|Y(2i)® C(G) (i20) and the transversal Y(2i)
may be realised in A4, , ,/A4; as (A(i) + 4))/A;.
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