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Bezeichnungen.

Vorbemerkung. Volumen, Entropie und thermodynamische
Potentiale sind, fiir jeden Teil eines homogenen Stoffes berechnet,
der Masse dieses Teiles proportional; dagegen sind Druck und Tem-
peratur von der Abgrenzung der Masse unabhiingig. Als Zeichen fiir
die erstgenannten Begriffe werden wir gewGhnlich grosse Buchstaben
benutzen, um anzudeuten, dass sie sich auf den ganzen Korper, kleine
Buchstaben, um anzudeuten, dass sie sich auf die Masseneinheit des
Korpers beziehen. Bei den thermodynamischen Potentialen wird diese
Unterscheidung in den Indices vorgenommen wetden, z. B. F»r, &p-
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Die folgende Ubersicht giebt die in diesem Artikel und die von

anderen Autoren benutzten Bezeichnungen.

Die beigefiigten Formeln

beziehen sich hauptséichlich auf ,einfache thermodynamische Systeme®.

Name Zeichen B ez;?:li?zig on Formeln

Volumen ......... V v
Dichte ........... o 0= %
Druck ........... P
Absolute Temperatur Ty 0,9
Wirmezuwachs . . . . dQy dq dH
Entropie ......... SV s VRN dS =adQT
Aussere Arbeit. ... aw dw z.B.dW = pdV
Energie (innere

Arbeit) ........ UY u e, EY  dU=dQ—padV
Nutzbare Energie

(Arbeitsfihigkeit,

Wirkungsfihig-

keit)........... A
Thermodynamische

Potentiale . . . ... v T P, F9) —H® Fy=U—1T8

g & (& 9N —HOF=U-TS+pV
§ & Fs— UtV

AllgemeineZustands-

koordinaten .. .. x4, Xy,
Zugehorige Kraft-

komponenten ...| X, X,,.. AW = S Xda
Differentialquotient

von y nach x bei
festgehaltenem #
Spezifische Wirme
oder Wirmekapa-
zitét (allgemein) .
Spezifische Wirme
bei konst.Volumen
Spezifische Wirme
bei konst. Druck

Vs

Vp

1
4 )) k) cv

N Ky | 7=

!

=

& 38
Sl L)

CH



Bezeichnungen.
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Name

Zeichen

Andere

Bezeichnungen

Formeln

Verhiltnis der spe-
zifischen Warmen

Latente Wérme der
Voluménderung
bei konst. Tempe-
ratur ..........

Latente Wirme der
Druckéinderung
bei konst. Tempe-
ratur ..........

Kubischer Ausdeh-
nungskoefficient
bei konst. Druck

Kubischer Ausdeh-
nungskoeffizient
bei konst. Entropie

Elastizititsmodul bei
konst. Temperatur
Elastizitdtsmodul bei
konst. Entropie. .

Mechanisches Wiir-
medquivalent oder
spezifische Wirme
des Wassers .

In der Massenein-
heit der Mischung
zweler Phasen be-
findet sich in der
héheren Phase die

In der niederen Phase
die Masse ......

Spezifisches Volu-
men fiir die héhere
und niedere Phase

kY, y

MS)CG

Yo

J 1/49, EY

{ o= (@),

dg=y,dT+1,dv

[ b= (a3)s

dq=y,dT+l,dv

— 1 (%
“p_?(dr),,

v=x0+ (1—a)0v”
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And
Name Zeichen Bez ei(ﬁllfliflgen Formeln
Spezifische Wirme Y = (d_q )
im Sittigungszu- aT)y=0
stande fiir die h- "= (di) ,
here und niedere ( d;)""oo
Phase. .. ... v,y ¢, &Y, hy, BOWO PP, L) =
4 P T e Gleichung der
Sattigungskurve
Latente Wirme des .
Uberganges aus 1
der hoheren in die P
i 1) = (%4
niedere Phase . .. ) r A= ( d.’l:)'.r
Die Massen der Kom
ponenten eines ;
chemischen Ge- |
misches ....... Mgy My, . o . My, ,
Thre Potentiale . ...| u,, u,, .... w2 | AU="TdS—pdV
| + Sudm

Bedeutung der Ziffern in den mittleren Rubriken:

1) Clausius und die meisten deutschen Schriftsteller. 2) Gibbs
und die Amerikaner. 3) Thomson, Tait und andere englische Forscher.
4) Duhem und andere Franzosen. 5) Helmholts. 6) Massieu.

I. Der erste und zweite Hauptsatz.

1. Aquivalenz von Arbeit und Wirme. In der theoretischen
Dynamik ist es iiblich, die Begriffe Kraft und Arbeit an die Spitze
zu stellen. Die lebendige Kraft oder die kinetische Energie des
Systems kann dann als diejenige Arbeitsmenge definiert werden, die
das System in Folge seiner Bewegung zu verrichten im Stande ist,
und als Ausdruck der lebendigen Kraft ergiebt sich von da aus der

Wert 2(% mvz). Sind die im System wirksamen Krifte ,konser-

vativ¥, d. h. lassen sie sich in bekannter Weise aus dem Begriffe der
potentiellen Energie ableiten, so bleibt die Summe der potentiellen
und kinetischen Energie dauernd ungeéndert. Dies ist der Satz der
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lebendigen Kraft, ein Ausfluss des allgemeinen Gesetzes von der Er-
haltung der Energie.

In Wirklichkeit, unter irdischen Verh#ltnissen, sind aber die Kriifte,
auf die es ankommt, keineswegs konservativ. Man denke an die Reibung
rauher Korper gegeneinander, die Zusammenst6sse unvollkommen
elastischer Korper, die Bewegung zdher Fliissigkeiten, den Luftwider-
stand, an schnelle Verdichtungen von Gasen, an Explosionswirkungen
und so fort. Alle diese Vorginge konnen die Gesamtenergie der sicht-
baren Bewegungen eines Systems abiéndern, d. h. denjenigen Energie-
betrag, den wir in der Form von kinetischer oder potentieller Energie
wahrnehmen. In vielen derartigen Fillen ldsst sich aber nachweisen,
dass in dem Maasse, wie Energie verloren geht, Warme entsteht. Man
wird so zu der Vermutung gefiihrt, dass die verlorene Energie in
Wirme verwandelt wird, dass Wirme eine Erscheinungsform der
Energie ist.

Bis zum Ende des 18. Jahrhunderts hielt man die Wirme im
allgemeinen fiir einen Stoff, den man Feuerstoff, Phlogiston, calorisches
Fluidum nannte, wenngleich sich Ansétze zu einer kinetischen Theorie
der Wirme, in der die Wérme als Molekularbewegung aufgefasst
wurde, bereits in den Schriften von Hooke'), Descartes®), Locke®) u. a.
finden. Im Jahre 1798 beschrieb Graf Rumford?) seine in Miinchen
angestellten Beobachtungen iiber die beim Kanonenbohren entstehende
Wirme. Da die Bohrspéne gleiche Temperatur und gleiche spezifische
Wirme besassen wie das Metall, aus denen das Kanonenrohr gebohrt
wurde, so schloss er, dass die Warme nicht von den Bohrspénen herkam
und kein Stoff sein konne; er kam so zu der Ansicht, dass Warme
nichts anderes wie Bewegung sei. Ungefihr gleichzeitig erzeugte
Davy®) Wirme, indem er zwei Kisstiicke aufeinander rieb und sie
zum Schmelzen brachte, trotzdem die spezifische Warme des Wassers
grosser ist wie die des Eises. Die neue Auffassung drang aber so
wenig durch, dass z. B. J. Fourier in seiner Théorie de la chaleur
(1822) an der stofflichen Vorstellung der Wirme festhielt.

1) Hooke, Micrographia, London 1663, p. 12.

2) Cartesius, Principia philosophiae, Amsterdam 1656; hier ist (IV. p. 157)
die im Text genannte Auffassung der Warme ausgesprochen und (II p. 37, 41,
II, p. 65) das Prinzip von der Erhaltung der Energie aufgestellt.

8) Locke, A Collection of several pieces never before printed, London 1720,
p. 224.

4) Rumford, London Phil. Trans. 1798, p. 80—202. Kleine Schriften II?
p. 353—388.

5) Davy, Collected works 2, p. 5, London 1839,
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Die ersten zahlenmissigen Bestimmungen des Verhiltnisses zwischen
verlorner Arbeit und erzeugter Wirme®) verdankt man Robert Mayer™)
in Heilbronn (Mai 1842) und James Prescott Joule®) in Manchester
(August 1843 und die folgenden Jahre). Mayer ging von den seiner
Zeit vorliegenden Werten der spezifischen Wirmen der Luft bei kon-
stantem Druck und konstantem Volumen aus und errechnete das frag-
liche Verhdltnis, wihrend Joule darauf zielende direkte Messungen
unternahm. Z. B. setzte Joule das in einem geschlossenen Gefiss
enthaltene Wasser durch ein rotierendes Schaufelrad in Bewegung,
das seinerseits durch ein herabfallendes Gewicht getrieben wurde.
Dadurch konnte er die Arbeitsmenge bestimmen, die zu einer ge-
gebenen TemperaturerhGhung des Wassers erforderlich ist. Joule
hat noch eine ganze Reihe anderer Bestimmungen jenes Verhiltnisses
ausgefiihrt (aus der bei der Kompression von Gasen erzeugten Wirme,
aus der Wirmewirkung elektrischer Strome etc.).

Die Resultate, die auf verschiedenen Wegen von Mayer, Joule
und spiteren Forschern?) erhalten wurden, stimmen unter sich so gut
iiberein, wie man es mit Riicksicht auf die Beobachtungsfehler nur
erwarten kann. Sie fithren zu dem ersten Hauptsatz der Thermodynamik,
dessen weltumspannende Bedeutung von seinem Entdecker, Robert
Mayer, bereits voll gewiirdigt wurde. Dieser Satz lautet: Wenn
Arbeit in Warme oder wmgekehrt Wirme in Avrbeit dibergefithrt wird,
ist die dabei gewonmmene oder verlorene Wiirmemenge proportional der
dabei verlorenen oder gewonnenen Arbeitsmenge.

2. Wirmeeinheiten. So wie Newfon's Bewegungsgesetze ein
zahlenmissiges Kraftmaass festlegen, so liefert der erste Hauptsatz
der Thermodynamik ein Wiarmemaass. Die dynamische Wirmeeinheit
ist diejenige Wiirmemenge, die der Arbeitseinheit dquivalent ist*). Im
C-G-S-System ist daher die dynamische Wirmeeinheit das Erg.

Bei Experimentaluntersuchungen ist es oft bequemer, als Warme-
einheit die Calorie zu benutzen (kleine Calorie, Grammcalorie), d. i.
diejenige Wirmemenge, die die Temperatur von 1 gr Wasser von (°

6) Mit teilweisem Erfolg wurde diese Frage auch von Séguin (Etudes sur
I'influence des chemins de fer..., Paris 1839) und Colding (Forhandlinger Skand.
Naturforsk, Stockholm 1851, p. 76) behandelt.

7) Bemerkungen iiber die Kriifte der unbelebten Natur, Ann. Chem. Pharm.
42 (1842), p. 283 = Ges. Werke. 3. Aufl,, Stuttgart 1893, p. 23. '

8) Phil. Mag. (3) 23 (1843), p. 442.

9) z. B. G. A. Hirn, Recherches sur ’équivalent mécanique de la chaleur,
Colmar 1858, 1, p. 58; Edlund, Ann. Phys. Chem. 126 (1865), p. 539.

10) Von Rankine eingefiihrt, London Trans. 144 (1854), p. 115; Misc. scient.
papers, London 1881, art. 20, p. 340.
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auf 1°C. oder, wie man sie heutzutage aus experimentellen Griinden
zu definieren vorzieht!!), von 14%,° auf 15Y,° steigert'?). Die grosse
Calorie (Kilogrammecalorie) ist diejenige Wirmemenge, durch die 1 kg
Wasser von 0° auf 1°C. erwirmt wird; sie ist gleich 1000 kleinen
Calorien.

Das sog. mechanische Wirmedquivalent ist die Zahl der Arbeits-
einheiten, die in Warme umgesetzt werden miissen, um eine Wirme-
einheit zu erzeugen. Sein Wert hiingt von den Einheiten ab, die man
zur Messung von Arbeit und Warme benutzen will. Die gewdhnliche
Bezeichnung ist J. Aus den Messungen von Joule, Hirn und anderen
ergiebt sich J = 426, wenn die Wérme in grossen Calorien, die Arbeit
in Kilogrammmetern gemessen wird, bez. J = 4,18-107, wenn die
Wirme in kleinen Calorien, die Arbeit aber in Erg gemessen wird??).

Bei theoretischen Untersuchungen scheint es indessen angemes-
sener, die Wirme selbst in Arbeitseinheiten zu messen. So soll es
durchgehends in diesem Artikel geschehen, wenn nicht das Gegenteil
hervorgehoben wird. Das mechanische Wirmedquivalent wird dann
gleich 1; gleichzeitig nehmen die thermodynamischen Gleichungen eine
einfachere und symmetrischere Form an.

Man beachte, dass von diesem Standpunkt aus die Messungen des
Wirmeiiquivalentes eine andere Bedeutung gewinnen. Versteht man
namlich unter der spezifischen Wirme eines Stoffes die Warmemenge,
die die Temperatur der Masseneinheit des Stoffes um 1° steigert und
misst man diese Warmemenge ebenfalls in Arbeitseinheiten, so erkennt
man, dass die Mayer-Joule’sche Maasszahl, welche eine Calorie in Erg
ausdriickt, gleich der spezifischen Warme des Wassers wird.

11) Vgl. Warburg, Bericht iiber die Warmeeinheit. D. Naturf. u, A.-
* Versammlung in Miinchen 1899.

12) In einer durchaus konsequenten Behandlung der Thermodynamik wird
der Begriff der Temperatur erst auf Grund des zweiten Hauptsatzes eingefiihrt.
Die vorherige Benutzung der Calorie setzt eine von den Beobachtungen her-
genommene Kenntnis des Temperaturbegriffes voraus.

Zuweilen wird die Calorie etwas unbestimmt als diejenige Warmemenge
erklirt, die ein Gramm Wasser um 1° erwiirmt, ohne Angabe der Anfangstem-
peratur. Es ist aber die Wirmemenge, die Wasser von 20° auf 21° erwirmt,
nicht genau dieselbe, wie die normale Calorie, durch die das Wasser von 0° auf
1° erwérmt wird. So definiert ist daher die Calorie keine absolute Wirmeein-
heit, sondern variiert etwas mit der Temperatur, #hnlich wie die technische
Krafteinheit (kg) wegen der Schwereverteilung auf der Erdoberfiiiche variiert.

13) Die einschligigen experimentellen Arbeiten sind zusammengestellt in
J. 8. Ames, L’équivalent mécanique de la chaleur, Rapports Congrés de physique,
Paris 1900. Die genaueren Resultate liegen zwischen 4,171 - 107 und 4,190 - 10",
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3. Thermodynamik einfacher und zusammengesetzter Systeme.
Auf den ersten Hauptsatz griindet sich die Wissenschaft der Thermo-
dynamik. Sie befasst sich allgemein mit den Anderungen, die in einem
Korper oder einem System von Korpern Platz greifen, wenn dem-
selben Wirmeenergie zugefithrt oder entzogen wird.

Als einfaches thermodynamisches System definieren wir ein System,
dessen Zustand vollstindig durch Angabe einer Variabeln bestimmt
ist, solange ihm keine Wirme zugefiihrt oder entzogen wird. Ein
homogenes Gas oder eine homogene Fliissigkeit bildet das bekannteste
Beispiel eines solchen Systems. Wenn man eine Gasmenge zusammen-
driickt oder sich ausdehnen lisst, ohne dass sie Wirme gewinnt oder
verliert, so hingt der Druck allein von der augenblicklichen Grosse
des Volumens ab; wir konnen daher ein Gas bezeichnen als ein
System wvon einem mechanischen Freiheitsgrade. Das Volumen spielt
dabei im Sinne der allgemeinen Mechanik die Rolle der Lagen-
koordinate des Systems. Wenn indessen ein Gas in einem geschlossenen
Gefiiss erwirmt oder abgekiihlt wird, so dndert sich sein Druck, ohne
dass sich das Volumen #ndert. Insofern sind zwei Variable erforder-
lich, um den Zustand des Gases zu definieren. Wir konnen proviso-
risch als diese zwei Variabeln bei einer beliebigen homogenen (tropf-
baren oder gasformigen) Fliissigkeit den Druck p und je nach Be-
diirfnis entweder das Gesamtvolumen V oder das Volumen der Massen-
einheit » wihlen. Wenn das Volumen ¥V zunimmt um dV, so leistet
die Fliissigkeit nach aussen die Arbeit dW = pdV. Insofern ist p
im Sinne der allgemeinen Mechanik die Kraftkoordinate, die zu der
Lagenkoordinate V' gehort.

Unter einem zusammengesetzten thermodynamischen System werden
wir ein System verstehen, welches mehr als einen mechanischen Frei-
heitsgrad besitzt; die Anzahl der mechanischen Freiheitsgrade wird
dabei gemessen durch die Anzahl der Variabeln, die erforderlich sind,
um den Zustand des Systems fiir den Fall festzulegen, dass dem System
keine Wirme zugefiihrt oder entzogen wird. Diese Variabeln konnen
die mechanischen Koordinaten des Systems heissen.

Sitze, welche allgemein fiir eine Fliissigkeit ohne Bezugnahme
auf ihre etwaigen besonderen Eigenschaften bewiesen sind, diirfen
ohne weiteres auf jedes einfache System, in dem ¥ und p die Lagen-
und Kraftkoordinate bedeuten, iibertragen werden; sie sind auch
anwendbar auf solche Zustandséinderungen zusammengesetzter Systeme,
bei denen nur eine der mechanischen Koordinaten variabel ist.

In der Thermodynamik werden als einzige Energieformen Wirme-
energie und mechanische potentielle Energie in Betracht gezogen,
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wihrend von der kinetischen Energie im allgemeinen abgesehen wird.
Es bedeutet dieses, dass alle Anderungen der mechanischen Koordinaten
als hinreichend langsam vorausgesetzt werden. Soll dagegen ein Fall
untersucht werden, wo Wirme oder Arbeit in kinetische Energie oder
umgekehrt diese in jene umgesetzt wird, so reicht die Thermodynamik
nicht aus, sondern muss durch die Prinzipién der gewohnlichen Dynamik
erginzt werden.

4. Innere Energie. In der Dynamik lernt man, dass die Energie
eines Korpers, an dem eine Kraft eine Arbeit leistet, um den Betrag
der geleisteten Arbeit wichst. Da nun Wirme und Arbeit gleich-
artig sind, so muss auch eine Erwirmung des Korpers seine Energie
steigern und es muss, wenn der Kérper bei der Erwirmung keine
Arbeit verrichtet, die Zunahme der Energie gleich der in mechanischen
Einheiten gemessenen Wérmemenge sein. Die Gesamtenergie, die ein
Korper enthilt, heisst seine ¢nnere Energie'*).

Die innere Energie einer Gasmasse wird z. B. vermehrt, wenn
man das Gas komprimiert oder wenn man es in einem geschlossenen
Gefdss erwiirmt; dieselbe wird vermindert, wenn man das Gas sich
ausdehnen oder sich abkiihlen lisst. Jede Anderung der inneren
Energie des Gases ist von einer Anderung seines Zustandes begleitet:
es dndert sich entweder Druck oder Volumen oder beide gleichzeitig.

Wir sprechen daher das folgende Axiom aus, welches von vielen
Schriftstellern *®) als die grundsitzliche Fassung des ersten Hauptsatzes
angesehen wird: Die innere Energic eines jeden materiellen Korpers
oder materiellen Syslems, welches entweder nach aussen hin abgeschlossen
ist, also keinen dusseren Einwirkungen unterliegt, oder dessen Begrenzung
mechanischen und thermischen Einfliissen (Oberflichendrucken und Wirme-
zufuhren) seitens der unmittelbaren Umgebung ausgesetzt ist, hingt nur
von dem augenblicklichen Zustande des Systems ab: wenn das System
eine Reihe von Zustandsinderungen erfahrt und schliesslich zu seinem
Anfangszustande zuriickkehrt, kehrt auch die innere Energie zu threm
wrspriinglichen Betrage zuriick.

Wenn das System aus zwei Teilen besteht, deren innere Energie

14) Dies ist Lord Kelvin's ,mechanische Energie* (vgl. On the dynamical
theory of heat, Edinburgh Trans. 20. Mérz 1851, p. 475; Phil. Mag. 4 (1852) § 20}
Papers 1, p. 186, 222) oder mit Umkehrung des Vorzeichens Kirchhoff’s ,,Wirkungs-
funktion* (Ann. Phys. Chem. 103 (1858), p. 177 oder Zeuner’s ,innere Wirme*
(Grundziige), oder C. Neumann's ,Postulat® (Die elektr. Kriifte 1, Leipzig 1873).
Die jetzt gebriuchliche Bezeichnung ,innere Energie* rihrt von Clausius her,
Abhd. zur mechan. Wirmeth. 1, p. 280 (Braunschweig 1864).

15) Vgl. z. B. Buckmgham, Outlines of Thermodynamics, p. 58

Encyklop. d. math, Wissensch. V 1,
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bezw. U, und U, heisst, so ist die innere Energie des ganzen
Systems
d U="0,+ 10,

falls die Teile von einander vollstindig abgeschlossen sind oder falls
sie nur durch Druckiibertragung an der gemeinsamen Beriihrungs-
fliche aufeinander wirken. Finden dagegen Fernwirkungen zwischen
den Teilen statt, so nimmt der Ausdruck fiir die Gesamtenergie die

16
Form an’®) U=U,+ U, + U,

wo U, die gegenseitige potentielle Energie ist, die den Fernwirkungen
zwischen den Teilen des Systems entspricht.

Ahnlich hiimgt die innere Energie des Systems, wenn dasselbe Fern-
wirkungen von Korpern ausserhalb desselben ausgesetzt ist, nicht nur von
dem Zustand des Systems selbst, sondern auch von der relativen Lage
dieser Korper zum System ab. Im Folgenden wird das Vorhandensein
solcher Fernwirkungen ausgeschlossen werden.

Es werde einem System die Wirme d¢ mitgeteilt, gleichzeitig
moge es die Arbeit d W verrichten; dann ist der Zuwachs der inneren
Energie!”) gegeben durch

) AU =dQ — dW.

Infolge dieser Definitionsgleichung ist die innere Energie nur bis auf
eine Integrationskonstante bestimmt. Der Wert der letzteren hingt

16) Vgl. C. Neumann, Leipz. Ber. 43 (1891), p. 98—103. W. Voigt, Com-
pendium I. p. 517—520.

17) Clausius und Rankine haben versucht, die innere Energie zu zerspalten
1) in ,wirkliche Wirme*, ,merkliche Wirme* oder ,kinetische Energie der
Molekularbewegung* und 2) in potentielle Energie der Molekiile, herriihrend
von ihrer gegenseitigen Gruppierung. Vgl. Clausius, Abhandl. 1, p. 252; Rankine,
London Trans. 1854, § 3 u. 5 oder Misc. scient. pap., p. 342, 845. Indem er die
beiden Bestandteile H und J nennt und dQ = d H + dJ 4+ dW setzt, bezeich-
net Clausius den Term dJ -+ dW als Arbeit der ,Disgregation* des Korpers
(Ann. Phys. Chem. 116 (1862), p. 73; Phil. Mag. (4) 24 (1862), p. 81). Diese Unter-
scheidung lisst sich indessen nicht strenge durchfihren. Von einem allgemei-
neren Standpunkt aus wird man sich daher begniigen, rein formal diejenigen
Teile von dU zu unterscheiden, die man erhdlt, indem man dU durch die
Differentiale der zur Festlegung des Zustandes gewithlten unabhiingigen Variabeln
ausdriickt; da diese Grossen aber keine vollstiindigen Differentiale sind, kann
man nicht zugleich von den entsprechenden Teilen der inneren Energie selbst
reden. Im ibrigen unterscheidet man, je nach dem besonderen, gerade vor-
liegenden Problem 1) die nutzbare Energie (vgl. Nr. 15), die aber nicht allein
von dem Zustande des Korpers selbst, sondern auch von der Temperatur der
Umgebung abhéngt; 2) die freie Energie (vgl. Nr. 16), die auch als thermo-
dynamisches Potential bezeichnet wird.
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von dem Nullpunkte der Energie ab und bleibt daher unbekannt, so-
lange wir keine experimentelle Kenntnis von einem Zustande haben,
der keine Energie enthilt. Bezeichnet U, und Uy die innere Energie
des Systems in zwei verschiedenen Zustiinden 4 und B, so folgt:

@) U — U, =t/;m—'/zzw.

Geht das System vom Zustande A zum Zustande B {iber und
kehrt dann event. durch eine andere Reihe von Zwischenzustinden
hindurch zu A zuriick, so sagt man, das System habe einen Kreis-
prozess oder einen Cyklus ausgefiihrt. Bezeichnet man die Integration

tiber einen Kreisprozess durch ( f), so gilt fiir einen solchen:

(3) ([)ae=(f)aw

Die aufgenommene Wirme ist also beim Kreisprozess gleich der
geleisteten Arbeit.

In einem einfachen System ist dW = pdV; aus (1) folgt also
4) AU =d@ —pdV.
Unser obiges Axiom berechtigt uns zu behaupten, dass wenn auch
d@ und dW selbst keine vollstindigen Differentiale sind, jedenfalls
dU=d@Q — dW das Differential einer Funktion derjenigen unab-
hingigen Variabeln z und y ist, durch welche wir den jeweiligen

Zustand des in Rede stehenden einfachen Systems festlegen. Clausius
schliesst daher, dass!®)

5) d d@ d dQ ddw  ddWw
( Tdy " dyde —dwdy  dy dw
oder, indem er p und ¥ als Variable wihlt,
©) ddQ ddQ_

dpdV ~— dv dp
Jede der vorangehenden Gleichungen (1) bis (3) kann als voll-
wertiger analytischer Ausdruck des ersten Hauptsatzes angesehen
werden, ebenso Gl. (5) und (6) fiir den Fall eines einfachen Systems.

5. Das Carnot-Clausius’sche Prinzip. Wihrend eine jede Arbeits-
menge (etwa durch Reibung) in Wirme verwandelt werden kann, ist
es im allgemeinen unmdglich, die so erzeugte gesamte Wirmemenge

18) Die hier vorkommenden Quotienten zusaminengehoriger Zuwichse d ¢
und dzx ete. sind nicht partielle Differentialquotienten im gewdhnlichen Sinne,
da @ und W nicht Funktionen von z und % im gewShnlichen Sinne sind; trotz-
dem haben jene Quotienten fiir jeden Zustand x, y einen bestimmten Sinn und
sind bestimmte Funktionen von x und y.

6*
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riickwiirts in Arbeit umzusetzen; man nennt daher den erstgenannten
Vorgang drreversibel, nicht wmkehrbar. Als Beispiel kann die gewohn-
liche Dampfmaschine dienen, wo ein Teil der durch Verbrennen der
Kohle erzeugten Wérme durch den auspuffenden Dampf fortgefithrt
wird, oder bei einer Kondensationsmaschine im Kiihler verloren geht;
dieser Teil der Wirme wird also nicht in Arbeit verwandelt.

Das scharfe Gesetz zur Bestimmung des grossten Wirmebetrages,
der in irgend einer Maschine noch in Arbeit verwandelt werden kann,
beruht auf einem Prinzip, welches vom Standpunkte der stofflichen
Wiirmetheorie aus zuerst von Sadi Carnot'?) im Jahre 1824 aus-
gesprochen und von demselben Standpunkte aus von Clapeyron®) im
Jahre 1834 niher untersucht worden ist. Seine genaue Form und
Bedeutung fiir die mechanische Warmetheorie wurde durch Clausius®')
in Deutschland in einer Arbeit vom Jahre 1850 und durch W. Thom-
son (Lord Kelvin)®®) in England in einer Arbeit vom Jahre 1851 klar-
gestellt.

Das so entdeckte Prinzip ist der zweite Hauptsatz der Thermo-
dynamik (auch Carnot’sches Prinzip, Clausius’sches Prinzip etc. genannt).
Er ist virtuell in dem folgenden Axiom **) enthalten: Es kann nie Warme
aus einem kalteren in einen wirmeren®) Korper iibergehen, wenn wicht
gleichzeitig eine andere damit zusammenhingende Anderung eintritt.

Dieses Axiom fithrt sofort zur Definition des Begriffes

6. Gleiche und ungleiche Temperaturen. Yon zwei Massen-
elementen sagt man?), das eine habe eine hohere oder mniedrigere

19) Réflexions sur la puissance motrice du feu et sur les moyens propres
3 la développer, Paris 1824. Insbesondere p. 38: ,La puissance motrice de la
chaleur est indépendante des agens mis en oeuvre pour la réaliser; sa quantité
est fixée uniquement par les températures des corps, entre lesquels se fait en
dernier résultat le transport du calorique.

20) J. éc. polyt. 14 (1834), cah. 23.

21) Ann. Phys. Chemie 79 (1850), p. 500; Phil. Mag. (4) 2 (1851), p. 102; Ab-
handlg. I, p. 16.

22) Edinb. Proc. 1851 ; Phil. Mag. (4) 4 (1852), p.13; Math. Phys. Papers 1, p. 174.

23) R. Clausius, Ann. Phys. Chem. 93 (1854), p. 488; Phil. Mag. (4) 12, p. 81;
Abhdlg. 1, p. 184. W. Thomson (s. vorige Anm.) sagt: It is impossible by
means of unanimate material agency to derive effect from any portion of
matter by cooling it below the temperature of the coldest of the surrounding
objects.*

24) Es empfiehlt sich, wenigstens #usserlich das Wort Temperatur bei der
Fassung dieses Axioms zu vermeiden, da es erst durch den zweiten Hauptsatz
mdoglich wird, den Begriff Temperatur zu definieren.

25) Lord Kelvin, Edinb. Trans. 21 (1854), p. 125, oder Math. Phys. Papers 1,
_p. 236.
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Temperatur wie das andere, das eine sei wdrmer oder kdilter wie das
andere, je nachdem Wirme vom einen zum anderen oder vom anderen
zum einen iiberzugehen strebt. Findet kein Wirmeiibergang statt,
trotzdem die Massenelemente in solche gegenseitige Lage gebracht
sind, dass ein Warmeiibergang mdglich wire, so sagt man: die Ele-
mente haben gleiche Temperatur, sie sind gleich warm.

Wir schliessen noch auf die folgenden Eigenschaften der Tem-
peratur: Wenn A eine héhere Temperatur hat wie B, und B eine
héhere wie C, so hat 4 eine hohere Temperatur wie C. Es kann
nimlich Wirme von 4 nach B und von B nach C, also auch von
A durch B nach C iibergehen, was unmoglich ist, wenn nicht 4
héher temperiert ist wie C. Geht man zum Grenzfall iiber, so er-
kennt man, dass, wenn 4 und B einerseits, B und C andererseits
dieselbe Temperatur haben, auch 4 und C gleiche Temperatur be-
sitzen. Die Bedingung des Wirmegleichgewichtes zwischen drei Massen-
elementen lautet also:

Ty=Tp=T¢

hier bedeutet 7, T's, T eine Grosse, die nur von dem physikalischen
Zustand des Elementes A4, B, C abhingt und die seine Temperatur
genannt wird.

Es folgt also: Jedes Massenelement besitzt eine gewisse quali-
tative®) Eigenschaft, Temperatur genannt, welche nur von seinem
eigenen physikalischen Zustande abhingt und unabhingig ist von den
Zustinden anderer Massen.

Wenn alle Massenelemente eines Korpers im Warmegleichgewicht
mit einander stehen, so folgt dass sie alle dieselbe Temperatur haben.
Diese Temperatur heisst auch die Temperatur des Koérpers und man
sagt von dem Korper, dass er gleichmdssige Temperatur habe oder dass
er thermisch homogen sei.

Als weitere Folgerung aus dem Clausius'schen Axiom ergiebt sich
noch, dass der Ubergang der Wirme von einem wirmeren zu einem
kiilteren Korper durch Leitung oder Strahlung irreversibel ist.

7. Wirkungsgrad der Warmemaschinen. Es handelt sich jetzt
um die Frage, unter welchen Bedingungen Wirme in Arbeit umge-
setzt werden kann.

Man nehme einen Stoff, den Arbeifsstoff und dehne ihn durch
Wirme aus. Die dabei geleistete Arbeit ist ﬁdV, wo p den Druck,
V das Volumen des Stoffes bedeutet. Soll dieser Stoff fortgesetat

26) Wegen der quantitativen Definition der Temperatur vgl. Nr. 9.
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Arbeit leisten, so muss er fortgesetzt in seinen Anfangszustand zuriick-
gebracht werden, er muss also einen Kreisprozess ausfiihren. Soll
ferner die bei der Ausdehnung geleistete Arbeit bei der Zusammen-
driickung nicht vollstéindig verbraucht werden, so muss der Arbeits-
stoff abgekiihlt werden. Fortgesetzte Arbeitsleistung verlangt also
Wiérmeaufnahme von einem warmen Korper, der Quelle, und Wirme-
abgabe an einen kilteren Korper, den Kiikler, deren Temperaturen
als unverinderlich vorausgesetzt werden. Zusammenfassend werden
beide als Wirmereservoire bezeichnet. Es kann zunichst vorausgesetzt
werden, dass der Arbeitsstoff, wihrend er mit der Quelle oder dem
Kiihler im Warmeaustausch sich befindet, gleiche Temperatur mit
diesen hat. Unter Wirkungsgrad versteht man nun das Verhiltnis
der erzeugten Arbeitsmenge zu der aus der Quelle entnommenen
Wirmemenge. Nennt man die letztere ¢, und die an den Kiihler
abgegebene Wirmemenge ¢),, beide gemessen in Arbeitseinheiten, so
ist die geleistete Arbeit @, — @, und der Wirkungsgrad
Ql - Qz .
&

Unter einer vollkommen umkehrbaren Maschine versteht man eine
solche, die einen Kreisprozess in direkter und in umgekehrter Richtung
ausfiihren kann, derart, dass die erzeugte Arbeit im ersten Fall gleich-
kommt der verbrauchten Arbeit im zweiten, dass die der Quelle ent-
nommene Wiarme im ersten Falle gleich ist der an die Quelle im
zweiten Falle abgegebenen, dass endlich die an den Kiihler im ersten
Falle abgegebene Wirme gleich ist der vom Kiihler entnommenen
Wirme im zweiten Falle.

Aus dem Clausius'schen Axiom folgt nun: Unter allen Wirme-
maschinen, die zwischen gegebenen Temperaturen arbeiten, hat die voll-
kommen wmkehrbare den grossten Wirkungsgrad.

Von den beiden Wirmemaschinen M und N sei nidmlich N voll-
kommen umkehrbar und man nehme an, dass M einen grosseren
Wirkungsgrad wie N habe. Beiden Maschinen mégen Quelle und
Kiihler gemeinsam sein und es moge M Wirme in Arbeit, N bei
dem umgekehrten Prozess diese Arbeit in Wirme verwandeln®). Da
der Wirkungsgrad von M der grossere sein sollte, so entnimmt M
aus der Quelle weniger Wirme, wie N notig haben wiirde, um im
gleichen Sinne wie M arbeitend die gleiche Arbeit zu verrichten.

27) Dieses Beweisverfahren, niimlich durch eine nicht umkehrbare Maschine
eine umkehrbare im entgegengesetzten Sinne treiben zu lassen, ist zuerst von
Carnot (Réflexions, p. 20) benutzt und spiter von Clausius und Lord Kelvin
iitbernommen worden, ‘
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Jene Wirmemenge ist daher auch kleiner wie diejenige, die N an die
Quelle beim umgekehrten Prozess abgiebt. Also empfingt die Quelle
mehr Wirme als sie abgiebt. Diese Wirme kommt aber aus dem
Kiihler, da im Ganzen keine Arbeit verrichtet ist. Also geht Wirme
von dem kilteren Kiihler zu der wirmeren Quelle ohne Arbeitsauf-
wand iiber, entgegen dem Clausius’'schen Prinzip. Also kann der
Wirkungsgrad von M nicht grosser sein wie der von N.

Zugleich zeigt dies, dass alle umkehrbaren Maschinen, die zwischen
den gleichen Temperaturen arbeiten, den gleichen Wirkungsgrad haben.

8. Carnot’s Kreisprozess. Derselbe wird definiert als ein voll-
kommen umkehrbarer Kreisprozess, in welchem ein zwischen gegebenen
Temperaturen 7, und T, (T, > T,) wirkender Korper Arbeit erzeugt.
Der Prozess besteht aus vier Teilen:

1) Der Korper befindet sich auf der Anfangstemperatur 7, und
wird, ohne Wirme abzugeben oder aufzunehmen, durch geeignete
dussere Einwirkungen auf die Temperatur T, gebracht.

2) Der Korper nimmt von der Quelle eine gewisse Wirmemenge
@, auf, wihrend seine Temperatur T festgehalten wird.

3) Man lésst die Temperatur des Korpers bis 7, abnehmen, ohne
dass er Wirme aufnimmt oder abgiebt.

4) Der Zustand des Kérpers wird, bei festgehaltener Temperatur
T,, solange geéindert, bis der Anfangszustand (d. h. gleiches Volumen etc.
wie zu Anfang) erreicht ist. Dabei wird eine gewisse Warmemenge
@, an den Kiihler abgegeben werden.

Ist der Kérper ein .
einfaches System (vgl. 7

+»Nr. 3), so kann der
Kreisprozess geome-
trisch dargestellt wer-
den, indem man Druck
und Volumen als Ko-
ordinaten eines den je-
weiligen Zustand cha-
rakterisierenden Punk-
tes der Zeichenebene
wihlt.

Wihrend des Teil-
prozesses 1) bewegt
sich dieser Punkt auf —
der Linie 4 B(s.Fig.1). Fig. 1.
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Man nennt eine Zustandséinderung, bei welcher Wirme weder aufge-
nommen noch abgegeben wird, eine adiabatische Zustandsinderung;
AB heisst daher eine Adiabate. Bei dem Teilprozess 2) bewegt sich
der Punkt auf BC. Man nennt eine Zustandsinderung bei festgehaltener
Temperatur eine ¢sothermische Anderung. BC heisst daher eine Iso-
therme. Bei 3) beschreibt der Punkt wieder eine Adiabate CD, bei 4)
eine Isotherme DA, die zum Anfangspunkte A zuriickkehrt.

Da die ganze Arbeit des Kreisprozesses gleich f pdV ist, wird
sie durch den Inhalt des krummlinigen Vierecks A BCD gemessen.
Unser Diagramm heisst ein Indikatordiagramm des Kreisprozesses®).

Bei den wirklichen Prozessen muss die Quelle betrichtlich hoher
wie T und der Kiihler betrichtlich niedriger wie 7, temperiert sein,
damit ein Wirmeiibergang iiberhaupt stattfindet; dieser Ubergang ist
aber nicht umkehrbar. In dem Grenzfall, wo die Leitfahigkeit
zwischen dem Korper und der Quelle bez. dem Kiihler vollkommen
ist, kann man dagegen die Temperaturen 7; und 7, mit den Tem-
peraturen von Quelle und Kiihler identisch annehmen. Der Prozess
wird dammn vollkommen wmkehrbar.

Nach Nr. 7 war der Wirkungsgrad aller umkehrbaren Prozesse
bei gleichen Temperaturen T, und T, der gleiche; es ist also 1 — @,/Q,
eine Funktion dieser Temperaturen allein und man kann schreiben:
(M) o 11y, 1),

Man nehme jetzt statt eines zwei Korper, welche je einen Kreis-
prozess zwischen den Temperaturen T, 7, bez. T, T, ausfiihren, so-
dass Wirme von dem ersten zu dem zweiten Korper bei der Tem-
peratur 7' tibergeht. Der Wirkungsgrad dieses Doppelprozesses ist
derselbe wie vorher; die Darstellung der beiden Einzelprozesse (4 BCD®
und ADEF) ist in Fig. 2 gegeben; @, und @, moge wieder die der
Quelle entzogene bez. an den Kiihler abgegebene Wirme und @, die-
jenige Wirme sein, die vom ersten zum zweiten Korper bei der
Zwischentemperatur T iibergeht. HEs gilt dann neben (7)

& (1, T, B =T, T)
und daher fiir alle moglichen Werte von T, T, und 7}:

f(Tu Ta) = f(Tu Ts) ‘f(Ts; Tz)
(T, Ty)
f(T3, Tz) = fETu Ts).

28) Das Indikatordiagramm ist von James Watt bei der Dampfmaschine
eingefiihrt und von Clapeyron weiter ausgebildet.

oder
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Der letztgenannte Quotient ist also unabhingig von 7, und kann mit
o(T,)/p(T,) bezeichnet werden. Solcherweise ergiebt sich:

(8) QzA — o (Ty) _Qs_ — o (Ty) 9-1_ — (1) .
@ o(Ly) @ o(1,)’ ¢ o (Ty)
B
P

Fig. 2.

9. Absolute Temperatur. Bis jetzt ist von den Eigenschaften

der Temperatur nur die Definition gleicher und ungleicher Tempera-
turen benutzt. Diese Definition ist nur eine qualitative und ldsst
das quantitative Maass von Temperaturunterschieden unbestimmt. Die
Form der Funktion ¢(7) hingt aber von der Wahl dieses Maasses
ab. Wir konnen daher die Temperaturskala so einrichten, dass ¢(T')
der Temperatur 7' proportional wird, ¢(7") = kT, wo k konstant ist,
und dass mithin die Gleichungen (8) iibergehen in
9 Q:Q: Qs =T1,:T,:T;.
Alsdann heisst 7' die absolute Temperatur und es gilt die folgende
Definition: Die absoluten Temperaturen zweier Korper verhalten sich
wie die Warmemengen, welche von den Korpern verloren oder gewonnen
werden, wenn n einem vollkommen umkehrbaren Kreisprozess der eine
die Rolle der Quelle, der andere die des Kiihlers spielt®®).

Die Einheit der absoluten Temperatur ist hierdurch noch nicht
festgelegt. Als solche wird gewdhnlich die Einkeit der Celsiusskala

29) Diese Definition riihrt von Lord Kelvin her; vgl. die Arbeit ,,On thermo-
electric currents*, Edinb. Trans. 21 (1854), p. 125; Math. Phys. Papers 1, p. 235.
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gewihlt, indem der Unterschied der absoluten Temperaturen am Ge-
frierpunkte und Siedepunkte des Wassers gleich 100 gesetzt wird
Da aus den Beobachtungen folgt, dass sich die absoluten Tempera-
turen des Gefrier- und Siedepunktes etwa wie 273 zu 373 verhalten,
so sind sie auf Grund der genannten Festsetzung selbst annihernd
gleich 273 bez. 373 zu setzen. In diesem Sinne sagt man in den
Lehrbiichern der Experimentalphysik gewohnlich, dass die Temperatur
des absoluten Nullpunktes gleich — 273° C. sei.

10. Die Carnot’sche Funktion w ist dadurch definiert, dass man
den Wirkungsgrad einer umkehrbaren Maschine, die zwischen den un-
endlich benachbarten Temperaturen 7' und 7'— 0T arbeitet, gleich
u0T setzt. Sie wird daher gleich dem Verhiltnis ¢ (7)/@(T)
(s. GL (8)) oder gleich 1/T, wenn T’ absolut gemessen wird®). Der
hierbei benutzte Grenzfall eines Carnot’schen Kreisprozesses zwischen
unendlich benachbarten Temperaturen mége ein Carnot’scher Elementor-
prozess heissen.

In den é&lteren Schriften von Carnot, Clapeyron, Thomson, Tait
und Rankine wird die folgende Berechnungsweise der Carnot’schen

Funktion benutzt. Man

betrachtet einen Carnot-

schen  Elementarprozess,

dessen Indikatordiagramm

A BCD ein unendlich klei-

nes Parallelogramm wird.

Die Seiten BC, DA des-

7 selben entsprechen den
Temperaturen 7T  und

r-6T T — 0T; die der Quelle
entnommene Wirme heisse
0@ und man definiere eine
0 P ] Grosse I, (,latente Wirme
Fig. 3. der Voluménderung®, vgl.

»Bezeichnungen pag. 75)

dadurch, dass man die Wirmemenge, welche erforderlich ist, um das
Volumen des Arbeitsstoffes bei festgehaltener Temperatur 7' um oV

p

30) Im Anschluss hieran hat Lord Kelvin 1848 eine absolute Temperatur-
skala vorgeschlagen, bei welcher p = 1 genommen wird. Die Temperaturen
dieser Skala sind die Logarithmen der Temperaturen der jetzt gebriuchlichen
Skala. (Vgl. Cambridge Phil. Proc. 1 (1848), p. 66; Phil. Mag. 33 (1848), p. 313;
Math, Phys. Papers 1, p. 100).
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zu vermehren, /07 nennt. Dann wird die bei dem ganzen Kreis-
prozess verrichtete Arbeit (vgl. Fig. 3) gleich
Fliche A BCD = Fliche BCEF = FB- PqQ.

Es ist aber FB= (¢p/0T)dT, wo V bei der Bildung von (8p/oT)
festgehalten wird, und PQ — 6 @/l,; also wird die genannte Arbeit

op aQ
o107 7
oder mit Riicksicht auf die Definition von p auch gleich:
udTaoQ.
Durch Gleichsetzen der beiden vorangehenden Ausdriicke folgt®!)
0
(10) 5% = lf:‘

Nach dem zweiten Hauptsatz ist g eine Funktion von 7' allein. Wird
die Temperaturskala wieder so gewihlt, dass u = 1/T ist, so schreibt
sich die vorstehende Gleichung:

’ l 0
(10') b oder k=1,
Dies Resultat werden wir spéter aus einer allgemeineren analytischen
Betrachtung wiederfinden.

11. Die Entropie eines einfachen Systems. Durch den zweiten
Hauptsatz wird eine neue thermodynamische Grosse eingefiihrt, welche
die Entropie®®) heisst. Wir beschréinken uns zunichst auf Fliissig-
keiten oder andere einfache Systeme, deren Zustandséinderungen durch
ein Indikatordiagramm dargestellt werden konnen. Gleichung (9) aus
Nr. 9 liefert fiir ein System, das zwischen den absoluten Tempera-
turen 7, und 7, einen Carnot’schen Kreisprozess ausfiihrt, die Beziehung
(1) e—%—o,
wo ¢, die bei der Temperatur T, verlorene Wirme bedeutet und auch

31) Diese Formel riihrt von Clapeyron her (J. éc. polyt. 14 (1834) cah. 23, p. 173;
Ann. Phys. Chem. 59 (1843), p. 568); sie geht in England unter dem Namen der
Thomsow’schen Gleichung (Edinb. Trans. R. Soc. 20 (1851), p. 270; Math. Phys.
Papers 1, p. 187). Schreibt man C (Carnot'sche Funktion) statt w, bezeichnet
mit M die in Calorien gemessene Wirmemenge I, und nennt J das mechanische
Wirmeiquivalent, so lautet sie g—lto =.J.C-M. Die Buchstaben rechter Hand
sind die Initialien von James Clerk Maxwell, der daher %%) als Schriftsteller-
namen benutzte.

32) Vgl. Clausius, Ann. Phys. Chem. 125 (1865), p. 390. Die Entropie ist
identisch mit Rankine’s ,,thermodynamischer Funktion*; Clausius benutzte friher
dafiir das Wort ,,Aquivalenzwert‘_‘.
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aufgefasst werden kann als eine negative Wirmemenge — ¢,, welche
bei der Temperatur T, gewonnen wird. Diese Gleichung kann auf
einen beliebigen umkehrbaren Kreisprozess iibertragen werden, wenn

p

Fig. 4.

man denselben als Grenze eines Netzwerkes von solchen Carnot’schen
Prozessen ansieht, bei welchen die in jedem Prozess aufgenommene
und abgegebene Wirmemenge unendlich klein ist (vgl. Fig. 4; die das
Indikatordiagramm durchsetzenden Linien bedeuten Adiabaten, die
kiirzeren Verbindungslinien Bogen von Isothermen). Bezeichnet all-
gemein d@ die (positive oder negative) Wirmemenge, die bei der
Temperatur 7' aufgenommen wird, so gilt

(12) ()% —o.

Es sei A der Anfangszustand (p,, ¥;) und B der Endzustand
(py, V,) des Systems. Der Ubergang von A nach B kann entweder
auf dem Wege APB oder auf dem Wege 4 QB erfolgen. Nach (12)
muss der Wert des Integrals

B

aQ
T
s .
derselbe sein fiir die beiden Wege APB und AQB. Dieses Integral
héngt also nur von den Koordinaten der Punkte 4 und B, d. h. von
Anfangs- und Endzustand ab, und wir konnen schreiben:
B
ae
13 % =, V) — (o V) = 51— Sa.

A
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S bedeutet eine nur von dem augenblicklichen Zustand des Korpers
abhiingige Grosse und S,, Sz ihre Werte in den Zustinden 4 und B.
Wird die Zustandséinderung unendlich klein, so ergiebt sich

Q
(14) X —as.

S heisst die Entropie des Systems. Ihre Definition ist in der Aus-
sage enthalten: Wenn ¢in System eine Wirmemenge d @ bei der abso-
luten Temperatur T in einem umkehrbaren Prozesse aufnimmt, so wichst
die Entropie um den Betrag d@Q/T .

Diese Uberlegung gilt auch in dem Falle, wo das betrachtete
System Wirme von Korpern erhilt, deren Temperatur von seiner
eigenen verschieden ist, vorausgesetzt, dass man unter 7' die beim
Wiirmeaustausch ¢ @ im System selbst, nicht die in den umgebenden
Kérpern statthabende Temperatur versteht. Denn fiir das System
selbst macht es keinen Unterschied, ob man sich die umgebenden
Korper durch Korper von der Temperatur des Systems 7' ersetzt und
von diesen die Wirmemenge d¢@ hergenommen denkt. Bei dieser
Auffassung wird die ganze Folge von Zustandsinderungen, die z. B.
durch Fig. 4 dargestellt wird, vollig umkehrbar33).

Die Entropie enthélt ebenso wie die innere Energie eine unbe-
stimmte Integrationskonstante; um sie festzulegen, miisste man irgend
einen bestimmten Zustand 4 des Systems als ,Entropie-Nullpunkt“
definieren.

12. Ubertragung des Entropiebegriffes auf zusammengesetzte
Systeme. Um die Definition der Entropie auf ein thermodynamisches
System von gleichférmiger Temperatur mit einer beliebigen Anzahl
von Freiheitsgraden auszudehnen, muss gezeigt werden, dass fiir ein
solches System (f) d @/T fiir jeden Kreisprozess verschwindet, gleich-
viel wie die verschiedenen Koordinaten des Systems wihrend des
Prozesses variiert werden. Ein allgemeiner Beweis hierfiir ldsst sich
folgendermassen fithren:

Ein beliebiges System M mache einen beliebigen umkehrbaren
Kreisprozess K durch; es seien d@ die dem System nach einander
zugefithrten Wirmemengen, 7' seine Temperatur. Um dem System
die Wirmemenge d@ zuzufiihren, benutzen wir einen Hilfskorper (etwa

33) Man hat hierin ein Beispiel dafiir, was gelegentlich als bedingt irre-
versibler Prozess bezeichnet ist, worunter man einen Prozess versteht, der durch
Abinderung der Umstiinde ausserhalb des betrachteten Systems zu einem um-
kehrbaren gemacht werden kann. Im Gegensatz dazu bezeichnet man als
wesentlich irreversibel einen Prozess, bei welchem nichtumkehrbare Verinde-
rungen ¢nnerhalb des betrachteten Systems stattfinden.
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eine Gasmasse), der einen Carnotf'schen Prozess durchliuft; fiir diesen
Prozess sei das System M das eine Wirmereservoir und diene als
zweites Reservoir irgend ein hinreichend grosser Koérper M, von
der konstanten Temperatur 7. Letzterer ist fiir alle die unendlich
vielen Hilfsprozesse derselbe; er ist gleichsam die Quelle, aus der alle
fir den Prozess K erforderlichen Wirmemengen geschdpft werden.
Um nun dem System M die Wérmemenge d @ zuzufiihren, hat man
der Quelle M, die Menge d@), zu entnehmen, wobei nach Gl (11)
dQy— 1,2
Im ganzen ist also aus M, die Wérmemenge

)%
T, T
verschwunden.

Wiire dieselbe positiv, so miisste ein entsprechender Arbeits-
betrag aus dieser Wirme gewonnen sein, was (da alle Korper in den
Anfangszustand zurtickgekehrt sind) dem Clausius’schen Grundsatze
widerspricht. Also wird fiir jeden Kreisprozess im allgemeinen:

(f)5g<o

Denken wir uns aber den als reversibel vorausgesetzten Kreisprozess K
in der umgekehrten Folge durchlaufen, so wiirde die vorstehende

Gleichung nunmehr ergeben
aqQ
(f) T 20

Fiir einen umkehrbaren Prozess gilt daher motwendig:

(15) (f)iTQ=o.

Auf diesem Satz, der damit ganz allgemein (z. B. auch fiir elas-
tische Korper, chemische Systeme etc.) bewiesen ist, beruht die all-
gemeine Definition der Entropie:

Sind 4 und B zwei Zustinde des Systems, welche durch eine
umkehrbare Folge von Zustandsinderungen verbunden werden konnen,
so wird die Entropiedifferenz in den Zustinden A uwnd B definiert
durch den Wert des bestimmien Integrals

B
(1) s—8= [,
A

berechnet fiir einen wmkehrbaren Ubergang von A mach B. Dagegen ist
die Entropie fir den einzelnen Zustand A wur bis auf eine Integrations-
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konstamte C festgelegt®) wund durch das unbestimmte Integral ge-
geben:

A
amn SA=de—Q+O.

Fiir einen isothermischen Kreisprozess nimmt Gl. (15) die Form
an (/)d@Q=0.

Offenbar muss, wenn eine bestimmte Zustandséinderung in einem
homogenen Stoffe von gleichmissiger Temperatur hervorgebracht werden
soll, die hierzu erforderliche Wirmemenge verdoppelt werden, wenn
die Masse die doppelte ist. Die Entropie eines Korpers in einem be-
stimmten Zustande ist also (ebenso wie die Energie) seiner Masse
proportional.

Die Gesamtentropie S eines Systems von gleichtemperierten Massen
my, My, ... setzt sich daher aus den Entropien s,, s, ,.. der Massen-
einheiten der fraglichen Stoffe derart zusammen, dass

S = mys, + mys, + -+ oder S = Zms.

13. Die Entropie eines thermisch inhomogenen Systems. Die
Clausius’sche Ungleichung bei irreversibeln Vorgéingen. Wenn sich
die verschiedenen Teile eines Systems auf verschiedenen Temperaturen
befinden, wird man die Gesamtentropie dadurch bestimmen, dass man
das System in Bestandteile zerlegt, die klein genug sind, um als
gleichformig temperiert angesehen werden zu konnen und dass man
die Entropie jedes Bestandteiles mittels eines Hiilfsk6rpers wie in der
vorigen Nr. definiert. Die Differenz der Gesamtentropie in zwei ver-
schiedenen Zustinden A4 und B ist alsdann gegeben durch

B

(18) s—5, =2 [ 4%,

wo sich die Summation auf die verschiedenen Bestandteile des Systems
erstreckt und wo zunichst jeder Bestandteil fiir sich auf umkehrbarem
Wege aus dem Zustande A4 in den Zustand B iiberzufithren ist. Ein
gegenseitiger Wirmeaustausch zwischen den Teilen des Systems
braucht bei dieser gedachten Uberfiilhrung nicht zugelassen zu werden.

Will man dagegen bei der Uberfiihrung von 4 nach B thermische
Wechselwirkungen zwischen den Teilen des Systems nicht ausschliessen,
so miissen bei der Berechnung der Gesamtentropie die durch solche

34) Sind die Integrationskonstanten fiir irgend welche » Stoffe bestimmt,
so sind sie auch fiir jedwede aus jenen Stoffen gebildete Mischung oder Ver-
bindung vollig bekannt, wie unmittelbar aus den Gleichgewichtsbedingungen der
Nr. 26 folgt. Vgl. hierzu C. Neumann, Anm. 16.
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Wiirmeaustausche hervorgebrachten Entropieinderungen in Rechnung
gesetzt werden. Es bestehe z. B. das System aus den beiden Teilen
M,, My von den Temperaturen T, 7, und es seien d @, , dQ,, die-
jenigen Wirmemengen, welche sie von ausserhalb aufnehmen. Um
auch dié Warmestrahlung zu beriicksichtigen, denke man sich in
iiblicher Weise die Wirmemenge d¢,, von M, nach M, und gleich-
zeitig die Wirmemenge d @, von M, nach M, transportiert. Dann
ist dQy + d@y — dQ,, die gesamte Wirmezufuhr nach M, und
dQw + dQys — d@y, die nach M,. Der Zuwachs der Entropie be-
trigt daher im ganzen

a8 = 49, +d%21 —d@, + d Qo5 +d¥:z —d@y

Wollte man dagegen nur die Wirmezufuhr von ausserhalb beriick-
sichtigen, so erhielte man

dS dQOl + dQ02
Der Unterschied betriigt

dS — dSy = (dQy — d@y,) (';_’1 T 717,)

= (d@Q; — dQy) (% o 7}71) '

Hierin bedeutet d@,, — d@,; den Wirmereingewinn von M, bei der
Strahlung; derselbe ist positiv, falls 7} < 7T, da Warme niemals von
einem wirmeren zu einem kilteren Korper iibergeht. Deshalb sind auch
die Produkte in der vorstehenden (leichung positiv und dS > dS,.
Die gesamte Entropiefinderung ergiebt sich auch bei dieser Betrach-
tung gleich der Summe der Entropieinderungen der Teile®), wird
aber nicht mehr gemessen durch

d Qm + onz .

Wenn sich die beiden Zustande A und B des Systems, deren
Entropien miteinander verglichen werden sollen, nur dadurch von-
einander unterscheiden, dass eine Wirmemenge d @), im Zustande A
sich in einem Teile des Systems befand, dessen Temperatur 7| ist,
wihrend sie sich im Zustande B, sei es durch Leitung oder Strahlung

85) Im Gegensatz hierzu giebt C. Neumann an, dass nur bei Ausschluss
von Wirmestrahlungen die Gesamtentropie eines gleichférmig temperierten
Systems gleich der Summe der Entropien seiner Teile ist (Leipz. Ber. 43 (1891),
p- 112, 118). In Wirklichkeit aber behandelt C. Neumann nur die Frage unter

d Qoz

welchen Bedingungen der Zuwachs der Gesamtentropie gleich Q‘” -4 o2 T
2

ist, und zwar nur in dem besonderen Falle T, = T,.
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transportiert, in einem Teile vorfindet, dessen Temperatur 7, ist, wo-
bei Ty < T, so ergiebt sich nach (18)
1 1
SB*SA:dQ’(T;__T;)

Ein irreversibler Wiirmetransport durch Leitung oder Strahlung zwischen
den Teilen des Systems bewirkt also eine Zunahme der Entropie.

Wenn das System andererseits einen vollstéindigen Kreisprozess
beschreibt, so konnen wir die Wiarmemenge d¢), die ein Element des
Systems bei der Temperatur 7' aufnimmt, in zwei Teile teilen, einen
d@;, welcher ihm durch Leitung oder Strahlung von anderen Ele-
menten des Systems iibermittelt wird, den anderen d@,, welcher von
Korpern ausserhalb des betrachteten Systems herkommt.

Fiir den Kreisprozess gilt nun:

S-S+ 2%

Hier ist die linke Seite Null, weil die Entropie nach Durchlaufung
des Kreisprozesses dieselbe wie am Anfange ist; andererseits ist das
erste Glied der rechten Seite positiv; mithin wird das zweite Glied

(19) 2(])1%&«1

Diese Beziehung stellt einen besonderen Fall einer Formel dar, die
als Clausius’sche Ungleichung bekannt ist.

Wenn durch Reibung innerhalb des Systems oder durch andere
Umstinde eine Arbeitsmenge d @’ in Warme von der Temperatur T
verwandelt wird, so ist es am einfachsten, die Sache so aufzufassen,
als ob das System nach aussen hin die Arbeit dQ  leistet und dafiir
eine gleichgrosse Menge an Wirmeenergie von aussen her aufnimmt.
Die Entropie des Systems ist in diesem Falle um d@Q'|T angewachsen.

Wenn das System einen Kreisprozess durchléduft, bei dem Arbeits-
mengen d@’ in Wirme von der Temperatur 7' verwandelt, Wérmeaus-
tausche d¢; im Innern des Systems stattfinden und Warmemengen
d@Q, von aussen dem System zugefiihrt oder nach aussen von dem
System abgegeben werden, so kehrt die Entropie zu ihrem Ausgangs-
werte zurtick; es wird daher wie oben

S(f)s=0=3(/)t
+ 3+ (),

Encyklop. d. math. Wissensch. V 1. 7
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da auf der rechten Seite das erste und letzte Integral positiv ist, gilt
auch jetzt die Clausius’sche Ungleichung

() fe<o

In den meisten Fillen (z. B. wenn ein Gas plotzlich in ein Vacuum
stiirzt, wenn sich zwei Gase rasch mischen, wenn ein gespannter Draht
zerreisst, wenn eine Salzlosung plotzlich krystallisiert) ist der Uber-
gang von Arbeit in Wirme nur zum Teil nicht-umkehrbar, sodass ein
Teil der erzeugten Warme dadurch wieder in Arbeit zuriickverwandelt
werden kann, dass man den Vorgang durch einen umkehrbaren Prozess
schliesst und zu dem Anfangsstadium zuriickleitet. In solchen Fiéllen 3¢)
kann man wie in Nr. 12 annehmen, dass das betrachtete Element des
Systems die Wirme d @, bei der Temperatur 7' von einem Hiilfskorper
empfingt, welcher einen Carnot'schen Kreisprozess zwischen der je-
weiligen Temperatur 7' des Elementes und der konstanten Temperatur 77,
eines Wirmereservoirs M, ausfiihrt. Die gesamte Wirmemenge, welche
durch diesen Hiilfskorper auf das System von MM, iibertragen wird,
ist T, 3( f )dQ,/T. Wire dieses positiv, so miisste nach dem ersten
Hauptsatz eine entsprechende Arbeit geleistet sein, was nach dem
zweiten Hauptsatz unmoglich ist, da alle Korper in den Anfangs-
zustand zuriickgekehrt sind. Auch kann dieser Ausdruck nicht ver-
schwinden, weil sonst gegen die Voraussetzung der Prozess reversibel
wire. Mithin gilt wieder die Clausius’'sche Ungleichung.

Denkt man sich einen beliebigen Ubergang von dem Zustande A
nach dem Zustande B durch einen umkehrbaren Ubergang von B

nach A zu einem Kreisprozess geschlossen, so wird > f aQ/T, fir

den letateren Ubergang berechnet, gleich der Anderung der Entropie

des Systems. Man hat daher, wenn der Ubergang von A nach B

und daher auch der Kreisprozess im ganzen betrachtet irreversibel ist:
B

@  X(f)% <0 ma ZAf"ﬁ%sB—SA,

wo d @, nur die von aussen her bei der Temperatur 7' aufgenommenen
Wirmemengen bedeutet.

14. Anwendungen der Clausius’schen Ungleichung, insbeson-
dere auf das Universum. a) Nach aussen abgeschlossenes System. Wir
wenden die Ungleichung (20) auf ein System an, welches nach aussen

36) Einen interessanten Beweis giebt E. Carvallo, J. de Phys. 8 (1899), p. 161,
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hin abgeschlossen ist, also auch keine Wirmemengen d @, von aussen
empfangen kann. Sie besagt dann

(21) Sz > 8..

Das heisst: Welcher Art auch die Vorgdnge sein mogen, die im Innern
eines nach aussen abgeschlossenen Systems stattfinden mogen, jedenfalls
findet die Entwickelung in dem Sinne statt, das das System von Zu-
stamden kleinerer Eniropie (A) zu Zustinden grosserer Entropie (B)
wbergeht.

Die Welt, als Ganzes betrachtet, ist jedenfalls ein derartiges
System, welches von aussen her keine Wirme empfangen kann.
Diirften wir die Welt als ein endliches System auffassen (als ein
System von endlicher Gesamtmasse, endlicher Ausdehnung etc.), so
wird die Ubertragung unseres Satzes keine Schwierigkeit haben.
Neigen wir dagegen zu der Auffassung, dass die Welt unendlich sei,
so wire zunichst die Frage zu entscheiden, ob oder unter welchen
Annahmen sich die Sitze der Thermodynamik auf unendliche Systeme
ausdehnen lassen. Da wir uns nicht in philosophische Spekulationen
verlieren kénnen, miissen wir diese Frage unerortert lassen. Vielmehr
wollen wie die (an sich bedenkliche) Annahme ausdriicklich als solche
formulieren, dass es erlaubt sei, die Welt thermodynamisch wie ein
endliches System zu behandeln.

Alsdann konnen wir auf Grund unserer Entropie-Ungleichung,
wenn wir noch den Inhalt des ersten Hauptsatzes hinzunehmen, mit
Clausius die beiden stolzen Sitze®") aussprechen:

Die Energie der Welt ist konstant.

Die Entropie der Welt strebt einem Maximum zu.

b) System in einer gleichformig temperierten Umgebung. Ist T,
die Temperatur der Umgebung und geht d@, von der Temperatur 7',
zur Temperatur 7' iiber, so muss d@,/T,—d@Q,/T stets negativ sein
und kann Null nur in dem Grenzfalle 7, = T werden. Daraufhin

lagsen sich die Ungleichungen (20) ohne Summenzeichen in der Form
schreiben B

e ()% <o, @) [We<s,—s,
A

in der sich das Gleichheitszeichen auf umkehrbare Anderungen bezieht.

Ist diberdies T, unabhingig von der Zeit, so kann (22) geschrieben
werden

24) (S)ae, <o.

37) R. Clausius. Uber den zweiten Hauptsatz. Braunschweig 1867, Ab-
handlg. 1 p. 50.

7*
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Leistet das System keine Arbeit nach aussen, so wird d@Q, gleich
dem Zuwachs der inneren Energie dU; Gl (23) ergiebt dann
Us— Us < To(Sp — 84)

oder

(25) Us— T, < Us— T,S.4.

¢) Die Umgebung habe die gleichformige, konstante Temperatur T,
und dbe den gleichformigen, konstanten Druck p, senkrecht gegen die
Begrenzung des Systems aus; dann betrigt die Arbeitsleistung nach
aussen p,dV und es wird dQ,=dU—p,dV; Gl (23) ergiebt jetzt

(26) Ug — T.8s + po Ve S Us — T84 4 paVa.

d) Hat das System selbst konstamte gleichmdssige Temperatur und
konstanten gleichmdssigen Druck, so kann man in (25) und (26) T,
durch T und p, durch p ersetzen. Die dort vorkommenden Ausdriicke
werden dann mit den thermodynamischen Potentialen bei gegebenem
Volumen oder bei gegebenem Druck (vgl. Nr. 16) identisch und
unsere Ungleichungen besagen alsdann, dass unter den angegebenen
Umsténden das System wnur solche Uberginge von Zustinden A zu Zu-
stinden B ausfiihren kann, bei denen die genannien Potentiale wicht
wachsen.

15. Nutzbare Energio oder Wirkungsfihigkeit. Hin Kérper M
befinde sich auf der absoluten Temperatur 7' und es sei 7|, die niedrigste
Temperatur, die fiir den Kiihler einer mit dem Korper M als Quelle
konstruierten Wirmemaschine in Betracht kommt. Wenn dem Korper
die Wirmemenge d¢ entzogen und wenn gleichzeitig dem Kiihler die
Wirmemenge d @, mitgeteilt wird, so betriigt die mechanische Arbeit,
die in einem vollkommen umkehrbaren Prozess im Maximum geleistet

werden kann:
iQ d

/i

)

° .

dA=d@Q —dQ,, wobei

=

Hieraus folgt
T,
(28) d4—dQ(1— )

Bedeutet d7' den Temperaturabfall, der durch Entziehen der Wirme-
menge d@Q in dem Korper M bewirkt wird, und I' die Wirme-
kapazitit des Korpers, so wird die Gesamtarbeit, die aus dem Korper
gezogen werden kann, wenn man seine Temperatur bis 7 erniedrigt:

,
A='fl“<1—~%?)dT.
T,
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Diese Grosse heisst die nutzbare Energie des Korpers oder seine
Wirkungsfahighkeit %8).

Ist der Korper kilter als seine Umgebung, so kann man die
Sache so auffassen, als ob er ebenfalls ein Quantum nutzbarer Energie
besitzt, welches gegeben ist durch

Q-_—flr(-TTl —1)ar,

wo T, die fiir den Prozess in Betracht kommende héchste Temperatur
der Umgebung und 7' << 7, ist. Der Prozess wiirde jetzt darin be-
stehen, dass dem Korper von aussen her Wirme zugefithrt wird, bis
er die Temperatur 7, angenommen hat®?).

Wenn die Wirmemenge d @ durch Leitung von der Temperatur
T, zu der Temperatur 7, iibertragen wird, nimmt die mit Hiilfe eines
Kiihlers von der Temperatur 7, verfiighar werdende Nutzarbeit um

den Betrag
1

1
%40 (7, — 1)
ab; wenn ausserdem die Arbeit d W (etwa durch Reibung) bei der
Temperatur 7' in Wiarme verwandelt wird, nimmt die nutzbare
Energie ferner ab um

T, dW 3,

und nur der Rest von dW kann riickwirts in Arbeit verwandelt
werden.

In allen solchen Fillen sagt man, dass die genannten Energie-
betriige zerstreut worden sind. Da in Wirklichkeit Reibung und
Wirmeabgabe durch Leitung nie vollig zu vermeiden sind, tritt eine
Zerstreuung der nutzbaren Energie iiberall auf. Man spricht daher
von dem Prinzip der Energiezerstreuung oder Dissipation ).

Betrachten wir ein System von K&rpern, welches sich in einem
unendlichen gleichformig temperierten Medium befindet, so konnen
wir iiber die nutzbare Energie des Systems die folgenden Sitze aus-
sprechen:

38) Lord Kelvin, Phil. Mag. 7 (1879), p. 348; Math. Phys. Papers 1, p. 456.

39) Der umgekehrte Prozess, bei dem ein Korper unter die Temperatur
seiner Umgebung abgekiihlt werden soll, verbraucht Nutzarbeit; man denke an
die Erzeugung von kiinstlichem Eis in einer Eismaschine, die durch eine Dampf-
maschine bethiitigt wird.

40) Lord Kelvin, Edinb. Proc. 3 (1852); Phil. Mag. (4) 4 (1852) p. 304 und
4) 5 (1853), p. 102; Math. Phys. Papers 1, p. 511 u. 554.
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1) Sie hingt von der Temperatur T, des wmgebenden Mediums ab.

2) Sie ist, fiir jeden Korper einzeln berechnet, um so grisser, je
mehr seine Temperatur von T, verschieden ist.

3) Sie nimmt bei allen nicht wmkehrbaren Prozessen ab.

4) Ihre Abnakme betrigt bei jedem solchen Prozesse das T-fache
der Zunahme der Entropre.

Wenn man die Arbeit berechnet, die jeder Kérper beim Abkiihlen
auf die Temperatur T, der Umgebung zu leisten vermag, ergiebt sich
der folgende einfache Ausdruck?') der nutzbaren Energie:

Angenommen, es werde dem Korper die Wirmemenge d @ ent-
zogen, und es betrage dabei die Anderung des Volumens dV, die Ande-
rung der inneren Energie d U. Die Arbeit, welche die Wirmemenge d @
zwischen den Temperaturen I' und 7, leisten kann, ist dQ(1—7,/T)
und die Arbeit, welche der Korper vermdge seiner Voluménderung
leistet, ist — pdV. Daher betrigh die gesamte verfiighar werdende
mechanische Arbeit

dd=dQ(1—7) —pav;
da aber
aU=d@Q — paV
war, kann man schreiben

dd=dU—1,°% — aU — T,d8.

Die gesamte nutzbare Energie des Korpers ergiebt sich so zu
T
29) A=[@U—T,a8)=U— U,— T,(S — 5).
T,

Handelt es sich um ein nach aussen hin isoliertes System un-
gleich erwirmter Korper von endlicher Grosse, so ist die innerhalb
des Systems nutzbar zu machende Energie gleich derjenigen Arbeit,
die man erhdlt, wenn man durch vollkommen umkehrbare Prozesse
das ganze System auf eine gemeinsame Temperatur bringt4?).

Die gemeinsame Temperatur sei 7,. Das Endergebnis wird durch
die Annahme nicht geéindert, dass die Vorginge zwischen den Kérpern
des Systems einerseits und einem HiilfskGrper andererseits statt-
finden, der selbst die Temperatur T besitzt, vorausgesetzt, dass die
algebraische Summe der vom Hiilfsk6rper aufgenommenen Wérme-

41) Einen geometrischen Beweis desselben giebt Maxwell, Theory of heat,
chap. 12, 10. Aufl. (1891), p. 188.

42) Lord Kelvin, Edinb. Proc. 3 (1852), p. 139; Phil. Mag. (4) 4 (1852),
p. 304 und (4) 5 (1858), p. 102; Tast, Sketch of thermodynamics, p. 124; Edinb.
Proc. 1867—1868. ’
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mengen gleich Null ist. Bedeutet 7, die Anfangstemperatur, I, die
Wiirmekapazitit des r'* Korpers, so wird nach dem zweiten Haupt-
satz die von dem r*® Korper auf den Hiilfskorper iibertragene Wirme

Ty
ar
‘TO fFrT;
7

da aber der Hiilfskérper im ganzen keine Wirmezufuhr erhalten soll,
muss sein:

Tr
(30) Enfrr‘i’-} —o0.
T

Diese Gleichung dient zur Bestimmung der Endtemperatur 7,. Ist
letztere bekannt, so berechnet sich die nutzbare Energie als die wih-
rend des Temperaturausgleichs freigewordene Wirmemenge zu

TT
(31) A=W f rdr.
To

Ist die Warmekapazitit der Korper insbesondere unabhingig von der
Temperatur, so lauten die beiden letzten Gleichungen einfach:

2T, log T,
(32) log T, = Z;g—_
und
(33) A= Z=I.1T,— T,>T,.

Besteht das System nur aus zwei Korpern von gleicher Wgrme-
kapazitit (I7 = I, = I'/2, wo I' die Warmekapazitit des ganzen
Systems bedeutet), so ergiebt sich

—— I" — —_
Ty = VI T;; A= ) (VT1 *VT2)2~

Auch im allgemeinen Falle von beliebig vielen Kérpern und be-
liebigen Wirmekapazititen lasst sich ein #hnlich einfaches Resultat
erzielen, wenn man das System in eine Anzahl von Teilen zerlegt
denkt, deren Wiarmekapazititen unter sich gleich sind. Die Voraus-
setzung, dass die Wirmekapazititen nicht von der Temperatur ab-
héngen sollen, wird dabei aufrecht erhalten. Ist % die Anzahl der so
unterschiedenen Teile des Systems und heissen die Anfangstempera-
turen derselben T, T, ..., T,, so ergiebt sich wegen I = I, =
co=1I,=TI/n:

(34) Ty — (L, 1. Ly — G (I)
- und

35) A= (T, 4+ Ty+ -+ T)— I'Ty=T(4 D) — G D).
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Hier bedeutet G (7') das geometrische, A (7T) das arithmetische Mittel
der Anfangstemperaturen 1), ..., T,. Die nutzbare Energie eines nach
aussen hin isolierten Systems erweist sich so gleich dem Produkt aus
der Wiirmekapazitit des Systems in die Differenz aus dem arithmetischen
und geometrischen Mittel der Anfangstemperaturen.

I1. Allgemeine Begriffe und Methoden der Thermodynamik.

16. Thermodynamische Potentiale. Der erste und zweite Haupt-
satz kann in die Aussagen?®) zusammengefasst werden, dass

(36) AU=d@Q —dW
und

aq
(37) s = -

die vollstindigen Differentiale zweier Funktionen sind, deren Werte
durch den augenblicklichen Zustand des Systems bestimmt werden; diese
beiden Funktionen heissen Energie und Entropie des Systems.

Wir gehen jetzt dazu tiber, diese Gleichungen auf die Frage nach
dem Gleichgewicht eines thermisch-homogenen idealen thermodyna-
mischen Systems von % mechanischen Freiheitsgraden anzuwenden.
Der Zustand eines solchen Systems ist durch # allgemeine Koordinaten
Xy, Xy, - . ., @, und durch eine absolute Temperatur 7' vollig festgelegt.
Nennt man X, X,, ..., X, die allgemeinen Komponenten der Kraft
nach den Koordinaten z,, z,, ..., z,, so wird die bei irgend einer
,,Vei‘riickung“ oder Zustandsinderung dz,, dx,, ..., dz, des Systems
geleistete dussere Arbeit gleich

AW = X,dz, + X,dX, + - - + X, du, .

Aus der vorangestellten analytischen Formulierung des ersten und
zweiten Hauptsatzes schliessen wir, dass

(38) AU = TdS — X,da, — Xydwy — - — X,da, .

Nun hingen Energie und Entropie nur von dem augenblicklichen Zu-
stand des Systems ab; sie sind also bekannt, wenn T, x,, ..., z, ge-
geben sind. Andrerseits kann der Zustand des Systems auch durch
S, x,, ..., z, festgelegt werden; dann miissen sich Energie und Tem-

43) Die zweite dieser Aussagen ist mit der Behauptung gleichwertig, dass
T ein ,integrierender Nenner* des Differentials d @ ist. Vgl. Zeuner, Grundziige
der mechan. Wirmeth., 2. Aufl, p. 74, wo die fragliche Eigenschaft fiir den re-
ziproken Wert der Carmot’schen Funktion p ausgesprochen wird, der mit T
identisch ist.
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peratur durch eben diese Grissen ausdriicken lassen. Gl (38) ent-
spricht dieser Wahl der unabhiingigen Koordinaten und zeigt, dass

oU oU
=1, So=—X, , Zm=—X

(39) ox,
wo U als Funktion der Gréssen S, z,, ..., #, gedacht ist. Mithin
sind alle thermodynamischen Eigenschaften des Systems durch die
Differentialquotienten einer einzelnen Funktion U ausgedriickt. Diese
Funktion U kann als das thermodynamische Potential des Systems an-
gesehen werden, sofern als unabhdngige Variable die allgemeinen Koor-
dinaten x,, ..., z, und die Entropie S benutst werden.

Es ist unter Umsténden praktischer, statt der eben benutzten
andere unabhiingige Variable zu Grunde zu legen; dann iibernehmen
andere Funktionen diejenige Rolle, die soeben U spielte. Wir be-
zeichnen diese Funktionen allgemein mit § und unterscheiden sie
durch Indices, welche auf die Wahl der unabhingigen Koordinaten
hinweisen, sodass die Energiefunktion U hiernach mit s . zu be-
zeichnen wire.

1) Die unabhingigen Variabeln seien 7' und z;,..., z,. Wir
setzen

(40) &, = U—T5;
dann wird mit Riicksicht auf (38)
A, =dU— TdS — SdT

(41)
' =—8dT — X, do;, — - - - — X, dz,.
Ist also §§,, durch die Grossen T, x,, ..., x, ausgedriickt, so folgt:
a%Tx a%Tx a%Tz
(42) _5‘17:_’87 ‘g_x:“z_Xu T axn=_Xn'

2) Die unabhiingigen Variabeln seien die Kraftkomponenten
X, ..., X, und die Temperatur. Wir definieren eine neue Funktion
Srx, indem wir setzen:

(43) Srx =&p, + X2, + - + Xy,
nun wird
AFpy = 4T, + Xjdo, + 2d X, + - - + X, dv, + ¢,dX,
=—8dT + zdX, + -+ 2,dX,.
Ist also , , durch 7, X;, ..., X, allein ausgedriickt, so ergiebt sich
03rx

(44)

08 rx 08 rx

(45) W————S, _9“X:‘=+x“ Tty 71§=+x"'
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3) Schliesslich kann man auch X,, ..., X, und S als unab-
hingige Variable einfithren. Dann ist die geeignete Funktion § die
folgende:

(46) %sx=U+X1x1++Xx
Die partiellen Differentialquotienten der durch die Variabeln S, X, ..., X,
ausgedriickten Funktion f , lauten:
0 0 0
(47) %’qx ’ ‘g)%’x‘=x1: T 7%%=

Die Grossen U und § sind genau genommen sémtlich thermo-
dynamische Potentiale des Systems. Da indessen {, und §,, am
meisten vorkommen, werden diese insbesondere unter der Bezeichnung
»thermodynamische Potentiale“ verstanden. &, wird von Helmholtz*)
als freie Energie bezeichnet; sie ist gleichbedeutend mit dem inneren
thermodynamischen Potential von Duhem*®) und der mittleren Lagrange-
schen Funktion von J. J. Thomson®®). §, . ist das totale thermodyna-
mische Potential von Duhem.

Von besonderer Wichtigkeit ist der Fall eines einfachen Systems
(z. B. einer Fliissigkeit). Hier tritt neben S oder T' als einzige zur
Festlegung des Zustandes noch erforderliche Koordinate das Volumen
der Fliissigkeit V" auf; da die Arbeit einer Volumvermehrung dV gleich
pdV ist, so wird die zugehérige Kraftkomponente gleich dem Fliissig-
keitsdrucke p. Die thermodynamischen Potentiale lauten jetzt

c5‘5;7__— U, %ﬂ,:U—TS, %TP=U—TS'+'1’V7 %Sp= U+ pV.

Zur Abkiirzung der etwas schwerfilligen Bezeichnung soll fiir diese
vier Funktionen der Reihe nach geschrieben werden:

=T

(48'—51) U, %w %p: %s-
Sie liefern die Beziehungen:
U ou .
f %S——l—T Sy =—p ... (Variable S und V),
0% 0%
3—TV=—S) _a?y="‘p( » T , V),
(52—55) 2%, 8‘51,
"a—f='_S’ =+V...( , T , p),
3% 8%}
w=1T 5 =+V.(C ,» 8, p.

44) H. von Helmholtz, Zur Thermodynamik chemischer Vorgiinge, Berl.
Ber. 1882, p. 80; Wiss. Abhandlungen, Leipzig 1883, 2, p. 958.

45) P. Duhem, Traité élém. de méc. chim., Paris 1897, 1, p. 88.

46) J. J. Thomson, Applications of Dynamics, London 1888, cap. 10. Wegen
des Bildungsgesetzes dieser Funktionen vgl. Encykl. 4, Artikel Stdckel: Analy-
tische Mechanik.
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Dabei kann &y und Fp als thermodynamisches Potential bei gegebenem
Volumen bez. bei gegebenem Druck bezeichnet werden, indem man in
beiden Fillen im Gedichtnis behilt, dass in der Form von § auch
die Abhingigkeit von der Temperatur mit-gegeben ist. Duhem sagt
statt dessen thermodynamische Potentiale bei Fkonstantem Volumen
(konstantem Druck), weil alle Zustandsinderungen, die bei konstantem
Volumen (Druck) vor sich gehen, besonders einfach durch v (Fp)
beschrieben werden konnen.

Die grundlegende gemeinsame Eigenschaft aller dieser Grossen,
dass namlich die simtlichen physikalischen und mechanischen Koeffizienten
des Korpers (Ausdehnungskoeffizienten, Flastizititskoeffizienten etc.)
bekannt sind, wenn eine dieser Grissen als Funktion der zur Festlegung
des Zustandes gewdhlten unabhingigen Variabeln gegeben ist, wurde zuerst
von F. Massieu*") in den Jahren 1869—1876 ausgesprochen; dieser
nannte solche Funktionen charakteristische Funktionen. Seine Funk-
tionen H und H’ sind in unserer Bezeichnungsweise gegeben durch
H=—%y, H=—p. J. W. Gibbs*®) benutzt den Buchstaben v
fir v, ¢ fir Fp, g fir Fs; das Wort Potential gebraucht Gibbs
bei chemischen Systemen in einem etwas anderen Sinne (vgl. Nr. 26).
M. Planck*) u. a. fihren eine Funktion — /7T ein, der aber nicht
die Eigenschaft eines thermodynamischen Potentials im obigen Sinne
zukommt.

17. Stabilititsbedingungen. Die Gleichungen der vorigen Nummer
konnen als die Bedingungen des Gleichgewichts eines thermodyna-
mischen Systems angesehen werden; dabei kann das durch diese Be-
dingungen definierte Gleichgewicht, #hnlich wie in der Mechanik,
stabil, labil, (instabil) oder indifferent (neutral) sein.

Ein Zustand 4 soll stabil genannt werden, wenn das System nicht
imstande ist, von selbst aus diesem Zustande in irgend einen mog-
lichen benachbarten Zustand B iiberzugehen, wihrend es wohl von B
nach 4 iibergehen kann. Wenn der Ubergang von 4 nach B miog-
lich, der von B nach A unméglich, so ist der Zustand 4 notwendig
labil. Die Stabilitit ist also dann gesichert, wenn der Ubergang von
4 zu jedem benachbarten Zustande B die aus der Clausius’schen Un-

47) F. Massieu, Paris, C. R. 69 (1869), p. 858, 1057; Paris, Mém. sav. étr. 22
(1876); J. phys. 6 (1877), p. 216.

48) J. W. Gibbs, Equil. of heterog. subst., Connect. Ac. Trans. 3 (1876,
1878) p. 108—248 und p. 343—524.

49) Ann, Phys. Chem. 19 (1883), p. 3569. GHbbs fiihrt (s. vorige Anm.) den
Gebrauch von — §p/T und — &y/T auf Massiew (Paris C. R. 69 (1869), p. 858,
1057) zuriick.
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gleichung in Nr. 14 gezogenen Folgerungen verletzen wiirde. Die
Bedingung der Neutralitit eines Gleichgewichts ergiebt sich aus der
der Stabilitit durch Verwandlung des Zeichens der Ungleichheit in
das einer Gleichheit. Um Weitldufigkeiten zu vermeiden, wird dies
bei den folgenden Kriterien nicht jedesmal hervorgehoben werden.

a) Nach aussen abgeschlossenes System. Die Bedingung dafiir,
dass ein solches System im Zustande A stabil sei, ergiebt sich durch
Umkehrung des Sinnes von Ungleichung (21) und lautet:
(56) S < 84
Dies ist die erste Hilfte derjenigen Gleichgewichtsbedingungen, welche
Gibbs seinen Untersuchungen®’) zu Grunde legt und in der folgenden
Form ausspricht: Damit bei einem nach aussen hin abgeschlossenen
System ein (leichgewichtszustand stabil sei, ist es notwendig und
hinreichend, dass

I bei allen Zustandsinderungen, bei denen die Energie des Systems
ungedndert bleibt, die Ewntropie nicht zunehme; oder dass

IL. bei allen Zustandsinderungen, bei denen die Entropie ungedndert
bleibt, die Energie wicht abnehme.

In Zeichen heisst dies, dass

entweder (0S)y <0 oder (0U)s>0.

Die zweite Hilfte des Kriteriums ist dabei eine unmittelbare
*Folge der ersten.

b) Das System befindet sich in einer Umgebung von der konstanten
Temperatur T und leistet keine Arbeit nach aussen. Durch Umkehrung
des Sinnes von Ungleichung (25) findet man als Stabilititsbedingung:
(57) Up— TS > Us— TS,

Dieses Kriterium findet eine hiiufige Anwendung in den Untersuchungen
von Van der Waals (vgl. den folgenden Art.).

Es ist zu beachten, dass, wihrend die Temperatur des Systems
selbst - im Gleichgewichtszustande 4 mit der der Umgebung 7' iiber-
einstimmen muss, dies fiir den Nachbarzustand B nicht der Fall zu
gein braucht, da ebensowohl Ubergiinge zu Zustinden B in Betracht
gezogen werden miissen, bei denen ein Temperaturunterschied zwischen
der Umgebung und dem System oder Teilen des Systems auftritt, wie
isothermische Ubergiinge. Die rechte Seite von (57) bedeutet daher
die freie Energie des Systems im Zustande A; aber die linke Seite
stimmt im allgemeinen nicht mit der freien Energie im Zustande B
iiberein, weil die Temperatur in B nicht gleich 7' zu sein braucht.

50) J. W. Glibbs, Connect. Ac. Trans. 3 (1896), p. 109.
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¢) Das System befindet sich in einer Umgebung von der konstanten
Temperatur T und dem konstanten Drucke p. In diesem Falle liefert
die Umkehrung der Ungleichung (26) die Stabilititsbedingung:

(58) UB—-TSB "l"pVBZ UA—TSA+]7VA;

T und p sind zugleich Temperatur und Druck im Zustande 4, aber
nicht notwendigerweise im Zustande B. Die rechte Seite von (58)
ist daher das thermodynamische Potential des Systems bei gegebenem
Druck im Zustande 4, aber die linke Seite ist nicht ein thermo-
dynamisches Potential fiir den Zustand B, wenn dieser Zustand hin-
sichtlich Temperatur oder Druck von der Umgebung verschieden ist.

d) FEinfaches homogenes System. Soll ein solches homogen bleiben
und sich nicht in mehrere, ihren mechanischen oder thermischen Eigen-
schaften nach verschiedene Teile zerspalten, so muss jeder Teil des
Stoffes im stabilen Gleichgewicht sein, wenn Temperatur und Druck
der umgebenden Teile festgehalten werden.. Daher findet die Bedingung
des vorigen Falles z. B. Anwendung auf die Masseneinheit des Stoffes
und liefert mit Riicksicht auf die p. 73 eingefiihrte Bezeichnungsweise:

(59) up — Tsg 4 pva = us — Ts4 + pva
oder wenn up—Us==0u, Sp—S4==08, vg—v,=0v gesetzt wird:
(60) 0u— Tds 4 pdv > 0.

Diese Form der Stabilititshedingung ist ebenfalls von Giébbs®') benutzt
und geometrisch gedeutet worden (vgl. den folgenden Art.).

Entwickelt man 0« nach Potenzen von ds und dv, so muss die
Summe der linearen Glieder in (60) verschwinden, die der quadratischen
Glieder positiv definit sein. Erstere Forderung fiihrt auf die mit (52)
iibereinstimmenden Gleichungen:

0 0
(61) 9?=T7 b_:’t___T___p;
letztere liefert die folgenden Stabilititsbedingungen:
o*u 0%
(62) 57> 0, >0,
o%u 9%u 0%u \2
(63) 7ot a5 — (gazs) > O

Bedingung (63) wurde in einer Priifung zu Cambridge vorgelegt®?)
in der Form:

o o 85 @5 o>

51) J. W. Gibbs, Connect. Ac. Trans. 2 (1873), p. 388—392.
52) Mathematical Tripos 1880. H. H. Twrner, Examples in Heat and Elec-
tricity, London 1885, p. 26, exemple 71.
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Wird die linke Seite im besonderen Null, so befindet sich der Zu-
stand an der Grenze zwischen Stabilitdt und Labilitit.

Die Bedingungen (62) und (63) sind ferner iquivalent mit den
folgenden Bedingungen:

G (@,<0 @)<0 @),<0 (@<

Die ersten beiden driicken die Thatsache aus, dass die Elastizitits-
moduln bei konstanter Temperatur und Entropie positiv sind (vgl
Bezeichnungen p. 75); die letzten beiden fordern, dass die spezifischen
Wirmen fiir konstanten Druck und konstantes Volumen positiv seien.
Die letztere Forderung bildet eine Spezialisierung des sogenannten
Helmholtz'schen Postulates®®), welches fiir ein System von allgemeinem
Charakter wie folgt ausgesprochen werden kann:

Wenn ein System awf Normalkoordinaten bezogen ist, werden seine
spezifischen Wirmen positiv.

Eingehender behandelt .Duhem“) die thermodynamische Stabilitiit
eines allgemeinen Systems, indem er sich auf das Dirichlet’sche *°)
Stabilitétskriterium der Dynamik stiitzt. Ebenso wie in dem zuletzt
betrachteten Falle hiingt die Stabilitit von den unendlich kleinen Ande-
rungen zweiter Ordnung der thermodynamischen Potentiale ab, falls die
Variabeln, die den Zustand des Systems definieren, sich um unendlich
kleine Grossen erster Ordnung #ndern. Die analytische Formulierung
der Stabilititsbedingungen betrifft daher die zweiten partiellen Diffe-
rentialquotienten der Potentiale. Steht das System unter dem Ein-
fluss dusserer Kriifte, die ein Potential £ haben, so findet Duhem, dass
das System stabil ist gegeniiber allen adiabatischen Anderungen, wenn
U+ & ein Minimum ist, und dass es stabil ist gegeniiber allen iso-
thermischen Anderungen, wenn U— 7'S + & ein Minimum ist. Dabei
wird ein System, welches bei isothermischen Anderungen stabil ist,
auch stabil bei adiabatischen Anderungen, falls es dem Helmholtz'schen
Postulate geniigt.

18. Wechsel der unabhiingigen Variabeln. Da von den drei
Variabeln p, » und 7 irgend zwei gentigen, um den Zustand einer
homogenen (tropfbaren oder gasformigen) Fliissigkeit festzulegen, so
muss es fiir jede solche Substanz eine Gleichung von der Form

(65) f® o I)=0

53) H. von Helmholtz, Zur Thermodynamik chemischer Vorginge, Berl.
Ber. 1882, p. 30; Wiss. Abhandlgn. 2, p. 958.

54) P. Duhem, J. de Math. (4) 2 (1894), p. 262—285,

55) Lejewne Dirichlet, J. f. Math, 32 (1846), p. 85.
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geben, welche jene drei Variabeln mit einander verkniipft und die
aus Versuchen zu bestimmen ist. Es gilt daher

d + a4 M ar o,
hieraus folgt z. B. be1 festgehaltenem 7'
dp\ __ _ of jof
(475)1'_ - 55/513

und zwei entsprechende Gleichungen. Man schliesst aus ihnen, dass

() @2): (3, =1
und dass®) ip o T
1) @) @7), (@) =1

Die der Masseneinheit zugefiilhrte Wérme dg kann in einer der
folgenden Formen geschrieben werden:

(69) dqg=y,aT + 1,dp,
(70) dq = Mdv + Ndp,

wo y, und p, die Wirmekapazititen der Masseneinheit (spezifische
Wirmen) bei konstantem Volumen oder konstantem Druck, I, und [,
die latenten Wirmen der Masseneinheit bei konstanter Temperatur
fir eine Anderung des Volumens oder des Druckes bedeuten (vgl.
hierzu den vorausgeschickten Abschnitt ,Bezeichnungen?) und die
Zeichen M und N gewisse Funktionen der in Gleichung (70) zu un-
abhéingigen Variabeln gewihlten Grdssen v und p bedeuten. Wenn
man die unabhiéingigen Veréinderlichen in einer dieser Formeln #ndert,
muss sich eine der anderen Formeln ergeben. So erhilt man

74T + Lo = 2,d7 +1,{(77) a7 + (32), dv};

vergleicht man dieses mit (69), so ergiebt sich

dv dv
W =), i),
Ahnlich erh#lt man:

ap ap
(72) lv = lp(d—/l;)l.) Yo = 7p + lp(a_j’_)v'
Durch Elimination von d7 aus (68) und (69) folgt ferner

ldv—yl d
(13) dg =" TP
'yp_’yv

56) Clausius, Abhandl. 2, p. 15, Gleichung (27).
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und durch Vergleichung mit (70)

(74) M=l oy Vb
Yp — %o Yo Vp
Fir eine adiabatische Zustandsinderung (dgq = 0) konnen die
Quotienten der Differentiale von p, » und 7 hiernach bestimmt werden.
Fiihrt man die Elastizititsmoduln ¢, und e, bei konstanter Entropie

und konstanter Temperatur ein, ndmlich (vgl. den Abschnitt ,,Bezeichn.“)

— dp — dp
e (), e (),
so ergiebt sich aus (70), (74) und (72)
—o ¥ _ Tl _ Yp (dp\ _ "
es—”’ﬁ—””“zp - Ty, (d_v-)T-— Yo er
oder
€, Y,

In Worten heisst dieses: Die Elastizitdtsmoduln fir adiabatische und
isotherme Zustandsinderungen verhalten sich ebenso wie die spezifischen
Wiirmen ber konstantem Druck und konstanter Temperatur.
Fiir adiabatische Anderungen erhilt man ferner aus ((68), (71))
bez. ((69), (12)) die folgenden Formeln: )
dv Vs Yy dv
(1) @), = — 7 =— 5= @),

v

) (i), = =7 == .2 (.

Wenn neben Temperatur, Volumen und Druck auch Entropie
und Energie s und % der Masseneinheit in Betracht gezogen werden,
hat man im ganzen fiinf Variable. Irgend zwei von ihnen kdnnen
als unabhingige Variable oder als ,Koordinaten des Zustandes“ be-
trachtet werden; die tibrigen sind dann fiir die gleiche Substanz ab-
hingige Variable und Funktionen jener Koordinaten. Ferner wird
der partielle Differentialquotient einer Variabeln nach einer anderen
verschieden ausfallen, je nachdem man von den iibrigen Variabeln die
eine oder die andere oder die dritte beim Differenzieren festgehalten
hat. Bei 5 Variabeln ergeben sich auf solche Weise 5.4 .3 = 60
verschiedene partielle Differentialquotienten; jeder derselben ist, je

nach der Wahl der unabhingigen Koordinaten, in 52 10 ver-

-4
1.2
schiedenen Formen auszudriicken; im Ganzen sind 60 .10 = 600
Formeln erforderlich, um alle diese partiellen Differentialquotienten

durch jedes Koordinatenpaar auszudriicken.
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In manchen Lehrbiichern werden solche Formeln in tabellarischer
Anordnung gegeben. Um Weitldufigkeiten zu vermeiden, kann man
die Resultate unter die folgenden fiinf Rubriken bringen:

Es seien z, y die unabhingigen, o, f, y die abhiingigen Variabeln.
Dann hat man®")

®  (@),= s e

o, p) dwdf 0adp

(79) (fi%)ﬂr‘ (Cllﬁ) — a(gvﬂ?l) __ oz ﬁg;a_y%,
delp 0y 0y
9o
(80) (@)= (_115 -5
dx)a ox
O

G (@=am =

apg B o’
(). o
oy  xdy Ddady
dey 1 oz, v) — 0w 0y 0y o,
(82) (78), = @) s " owor _orn
de/y o(z, v) ox dy 0Oy ox

Indem man fiir 2, y, «, B, y die Werte v, p, T, s, u in irgend
einer passenden Reihenfolge einsetzt, kann jeder partielle Differential-
quotient durch jedes Paar von Zustandskoordinaten ausgedriickt und
kann jede thermodynamische Formel, welche die in Rede stehenden
Differentialquotienten enthilt, gewonnen werden.

Ahnlich liegen die Dinge bei einem System von beliebig vielen
Freiheitsgraden; die partiellen Differentialquotienten lassen sich dann
in der Form von Funktionaldeterminanten darstellen%®).

19. Folgerungen aus den Integrabilititsbedingungen. Die
Bedingung dafiir, dass Xdz + Ydy ein vollstindiges Differential ist,

57) Die Gleichungen (78) bis (82) kénnen leicht nach bekannten analytischen
Methoden gefunden werden; ausserdem ergeben sich die ersten vier Gleichungen
auch, wenn man in der (z, y)-Ebene ein krummliniges Viereck konstruiert, das
von den Kurven « = const., « 4 de = const., § = const., § 4 d§ = const. begrenzt
wird, und die verschiedenen Ausdriicke fiir dessen Inhalt nach Forthebung des
gemeinsamen Faktors do dp einander gleichsetzt. Die fiinfte Gleichung folgt
dann durch Division zweier vorhergehender durch einander. Dies geometrische
Verfahren wurde durch die Arbeiten von Rankine ausgebildet.

58) Vgl. z. B. B. Weinstein, Thermodynamik, p. 107,

Encyklop. d. math, Wissensch. V 1. 8
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lautet bekanntlich ¢ X/dy = 2Y/ox. Nach dem ersten Hauptsatz ist
du = dgq — pdv

ein vollstindiges Differential. Benutzt man hier die in der vorigen

Nummer angegebenen drei Formen von dg (Gleichung (68) bis (70)),

so ergeben sich die folgenden Identititen:

59) =

® =

(85) T =1

Nach dem zweiten Hauptsatz ist andererseits
ds = 5112‘

ein vollsténdiges Differential. Daher gelten auch die folgenden Be-
ziehungen:

(86) 5T T~ %o’

ol l ay

P Ty
(87) oT T 3p’

oN NoT oM MoT
(88) %0 " T 90 —p T

Durch Zusammenfassung des ersten und zweiten Gleichungstripels
erhilt man:
op\ _ b oy b oT 8T
©9) (37),=7» OO0 (57),=—+, O Ngy— Mg ——

sowie die weiteren Beziehungen

o (@)=7GR., @ (GF).=—7(m),

welche bei der Bestimmung von p, und p, von Nutzen sind.

Die Gleichungen (89) und (90) gehdren zu einem Satz von vier
Gleichungen, welche gewdhnlich als die ,vier Maxwell'schen thermo-
dynamischen Relationen” bezeichnet werden®). Wir leiten dieselben be-
quemer mit Hiilfe der thermodynamischen Potentiale ab (vgl. Nr. 16,
p- 106). Dieselben mogen, wenn sie sich auf die Masseneinheit der
Fliissigkeit beziehen,

“7 %v’ %p’ %a

(vgl. den Abschnitt ,Bezeichn.“ am Anfange des Art.) heissen.

T,

60) J. C. Mazwell, Theory of heat, 1. Aufl., London (1871), p. 167; 10. Aufl.
(1891), p. 169.
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Nun gelten die selbstverstindlichen Beziehungen:
Pu _ 0w DT, 0% e
9sov  ovods’ oTov ovol’ 7

aus ihnen ergiebt sich mit Riicksicht auf die Gleichungen (52)
bis (55):

(94) ()= — T ().
(95) (), =+ 7 (%)
(96) G, —— 7 (&),
97) (7).~ + 7 (G5

Die somit gewonnenen Mazwell'schen Relationen sind experimentell
gepriift und bestitigt. Gleichung (95) wurde zuerst von Clapeyron
gefunden (vgl. Nr. 10); sie ist mit Gleichung (10) und (89) identisch.

Die Maxwell'schen Relationen fithren zu den folgenden qualita-
tiven Folgerungen, sowie zu entsprechenden quantitativen Ergebnissen:

Wenn ein Stoff adiabatisch gedehnt wird, nimmt seine Temperatur
mit zunehmendem Volumen zu oder ab, je nachdem eine Wirme-
zufuhr bei konstantem Volumen den Druck verkleinert oder vergrossert.

Wenn ein Stoff isothermisch gedehnt wird, nimmt er mit zu-
nehmendem Volumen Wirme auf oder giebt Wirme ab, je nachdem
der Druck bei konstantem Volumen mit steigender Temperatur zu-
oder abnimmt.

Wenn ein Stoff isothermisch gedriickt wird, nimmt er mit wachsen-
dem Druck Warme auf oder giebt sie ab, je nachdem das Volumen
bei konstantem Druck mit steigender Temperatur ab- oder zunimmt.

Wenn ein Stoff adiabatisch gedriickt wird, nimmt seine Temperatur
mit wachsendem Druck zu oder ab, je nachdem eine Wirmezufuhr
bei konstantem Druck das Volumen vergréssert oder verkleinert.

Ein Beispiel liefert das Verhalten des Wassers unterhalb der
Temperatur der grdssesten Dichte; wir verweisen dieserhalb auf den
folgenden Artikel.

20. Die thermodynamischen Koeffizienten, ausgedriickt durch
die thermodynamischen Potentiale. Die Gesamtheit der thermo-
dynamischen Koeffizienten, die in den vorhergehenden Nummern vor-
kamen, lassen sich durch die thermodynamischen Potentiale {§, und
%p der Masseneinheit in einfacher Weise ausdriicken. Indem wir die
zusammengehorigen Ausdriicke einander gegeniiberstellen, sehen wir,
dass zwischen ihnen eine Art Dualititsprinzip besteht.

8*
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&,-Formeln.
Spezifische Wirme bei kon-

stantem Volumen: (98)
_ ¥,

—(22) —p(2
7. =(51),= 77),—— T 51
Spezifische Wirme bei konstantem
Druck:

y”=T(9a_;')p
=2{(z), + 7 7))
2 2
=T (G5 + 775 (67), )
Nun ist aber p=—= %" ; also giebt
p = const.:
2
0=oor + %0 (57),

indem man diesen Wert von ov/0T
oben einsetzt, folgt (99)

az%v 32%,, _(32%” )2
T oT* ov? ovoT
= 3, ’
ov?
mithin (100)
0, %%,
Yp Vo= =T (8'0 ? T) rrel
op op
——1(%) /&
Der Ausdehnungskoeffizient bei

konstantem Druck

1 (0v
«= (7))
Bei konstantem p ist

0*3,

55 aTdT 0;

0%, 2
a5 = v+

mlthm wird (101)
9’3,
T owoT

Andererseits ist (102)

'=’117 (z%),,= + aa:a&r

/o

08, .
v

Allgemeine Grundlegung der Thermodynamik.

- &p-Formeln.
Spezifische Wirme bei kon-
stantem Druck: (98")
T0 %P

__(99\ __ m(0s
P“(aT)p"T(aT) ort’
Spezifische Wirme bei konstantem
Volumen:

—7(52),
=7 {(@), + 5 Gh).)

"“T{aa% +88T%§O(ST) }

Nun ist aber v =+ = a%p ; also giebt
v = const.:
*Fp | 0 %‘p )
—opoT + ( ) ’
indem man diesen Wert von oép/oT

oben einsetzt, folgt (99)

*3p *Fp (3”%1: )2
oT* op® opoT
=T
Yo 'y ’

op?
mithin (100")
7="(s507) /3 5
=+7(7) /5

Der Temperaturkoeffizient des
Druckes bei konstantem Volumen

r__ 1 (opY
* =7 (8 T).,
Bei konstantem v ist

0Fp 8%10 0%
dap dp +op6§'dT 0

mithin erd (1017)

o — 0*Fp
T époT
Andererseits ist (102")
0v 0*Fp
«=73 (67),~

Vo

Vo

33‘3‘?

2
=0t/ op 5.
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Entsprechendes liesse sich fiir andere thermodynamische Koeffi-
cienten durchfithren; doch moge die vorstehende Liste gentigen.

21. Thermo-Elastizitit. Als Beispiel eines Systems, dessen
Zustand im Gegensatz zu dem der Fliissigkeiten von mehr als einer
mechanischen Koordinate abhingt, moge die Thermodynamik des
elastischen festen Korpers®®) in allgemeinen Umrissen skizziert werden;
ndhere Ausfiihrungen hierzu bringt der folgende Artikel.

In der Elastizititstheorie wird die Forminderung eines Korpers
durch sechs Komponenten beschrieben, welche &,, ¢, ¢,, 7,, 7, 7,
heissen mogen und welche mit den Verrtickungen £, 5, { des Punktes
z, y, # durch Gleichungen von der Form

1
8w=%,-~-, Vs =5 (33_2_1_%),
zusammenhiingen. Andererseits wird der Spannungszustand durch die
Angabe der sechs Komponenten ¢, 6,, 6,, 7,, 7,, 7, beschrieben,
welche so gewihlt sind, dass bei einer hinzukommenden Forménderung
(de, dy) die am Korper geleistete Arbeit, pro Volumeinheit des nicht
deformierten Korpers berechnet, betrigt:

Gxdex+"'+txd7m+”'
Bedeutet ¢ die Dichte im urspriinglichen, nicht-deformierten Zu-
stande, so folgt aus den thermodynamischen Grundgesetzen als zu-
gehorige Anderung du der inneren Energie pro Masseneinheit:

(108)  du—Tds+  (.de,+ - + 1,dp, + )

Fithrt man daneben das thermodynamische Potential {§. bei ge-
gebener Forminderung ein, nidmlich

so wird Ge=u—1Ts,

(104) o= — sdT +  (o,de, + -+ wdp, + ).

Hiernach bedeuten die Produkte ou und . die in iiblicher Weise
definierten, auf die urspriingliche Volumeinheit bezogenen elastischen
Potentiale, ausgedriickt als Funktionen der Forminderungen einerseits,
der Entropie oder der Temperatur andererseits.

Die Integrabilititsbedingungen liefern Beziehungen®®) von der
Form:

1 (do, T 1 (Do, 0s

(105) ? (%;)a, Y = (gf_z)s, ¢y’ [4 (ﬁ)e, % = (a_E;)T, ey etc"

61) Lord Kelvin, Quart. Math. Journ. 1 (1857), p. 57.
62) Erliuterungen hierzu giebt P. G. Tait, Sketch of thermodynamics.
Edinburgh 1868, p. 114.
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wo die den Differentialquotienten beigefiigten Indices wieder die beim
Differenzieren festgehaltenen Variabeln angeben und & im vorliegen-
den Falle die beiden Grossen ¢, und e, vertritt. Die Grosse ¢ wird
bei der Differentiation als konstant angesehen, da sie die urspriing-
liche Dichte bedeutet.

Wenn die Spannungskomponenten ¢,, 6,, 6,, 7,, 7,, 7, bei den
zu betrachtenden Zustandsinderungen gegeben sind, werden die als-
dann zu benutzenden Potentiale erhalten, indem man von w und .
den Ausdruck

1
< (081 6,8 + 6.6 + 7y, + 7,0, 1 7.7)

subtrahiert; die so erhaltenen Potentiale, welche den Bildungen sx
bez. rx in der allgemeinen Theorie der Nr. 16 entsprechen, sind als
Funktionen der Spannungen einerseits, der Entropie oder Temperatur
andererseits aufzufassen. Dieselben mogen der Kiirze halber §§, und
&r heissen. §, ist wieder bei adiabatischem Spannungsverlauf (z. B.
schnelle Schwingungen), §r bei isothermischem (z. B. stationére Be-
anspruchung) zu benutzen. Handelt es sich im besonderen um eine
stationdre einfache Zugbeanspruchung parallel zur z-Axe bei kon-
stanter Temperatur, so gilt

-+ (2)
&= " 9 \Ge, /r
und es bedeutet 6,/¢, den gewdhnlichen Elasticitdtsmodul.

Weiter fithrt der Umstand, dass d§, und d &7 vollstindige Diffe-
rentiale sind, zu den Folgerungen:

1 (0e, oT 1 (0¢, ov

106) ¢ G —— G v GF) =+ G

Diese Gleichungen konnen ebenso wie die Maxwell'schen Relationen in
Nr. 19 gedeutet und an Hand des Experimentes®) gepriift werden.
Z. B. besagt die vorletzte Gleichung, dass eine plétzliche (d. h. adiaba-
tische) Zunahme der Spannung die Temperatur eines Drahtes erhéhen
oder erniedrigen wird, je nachdem eine Warmezufuhr bei konstanter
Spannung Verkiirzung oder Verldngerung des Drahtes bewirkt. Ersteres
ist der Fall bei Kautschuk. Wir verweisen wegen néherer Ausfithrungen
auf den folgenden Art.

63) J. P. Joule, Lond. Trans. 149 (1859), p. 91; Scientific papers 1, p. 143;
Edlund, Ann, Phys. Chem. 114 (1861), p. 1; 126 (1865), p. 539.
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III. Anwendung der thermodynamischen Prinzipien auf
besondere Systeme.

22. Vollkommene Gase. Die Mehrzahl der Gase geniigt, wie
man gefunden hat, mit grosserer oder geringerer Niherung den folgen-
den Gesetzen, vorausgesetzt, dass ihr Zustand hinsichtlich Druck und
Temperatur gentigend weit von demjenigen Zustande entfernt ist, in
dem sie tropfbar-fliissig werden.

1) Das Boyle'sche Gesetz®) (auch Mariotte'sches Gesetz genannt).
Wenn die Temperatur konstant ist, @ndert sich das Volumen um-
gekehrt wie der Druck. Es ist also pv = const., wenn 7' = const.,
oder allgemeiner ausgedriickt:

pv = [(T) = Funktion von T allein.

2) Das Gay- Lussac-Joule'sche Gesetz®). Bei der isothermischen
Kompression eines Gases wird die ganze Kompressionsarbeit in Wirme
umgesetzt; umgekehrt ist bei der isothermischen Expansion eines
Gases die geleistete Arbeit der aufgenommenen Wirme #quivalent.

3) Die Clausius’sche Annahme®). Die spezifische Wirme bei
konstantem Volumen ist von der Temperatur unabhingig.

Ein wvollkommenes Gas ist eine ideale Substanz, welche auf zwei
Weisen definiert werden kann. Nach der einen Definition ist ein
vollkommenes Gas eine Substanz, welche den beiden ersten Gesetzen
genau geniigt; nach der anderen, von Clausius zu Grunde gelegten
Definition ist es eine Substanz, die allen drei Gesetzen genau geniigt.

Wir leiten zun#chst aus der ersten Definition die hauptsichlichen
Gasgesetze ab. Wenn ein Gas bei konstanter Temperatur langsam

64) R. Boyle, New experiments touching the Spring of Air. London 1660;
Mariotte, Second Essai de Physique 1679, Ges. Werke. Haag 1740, p. 151.

65) Dasselbe wurde durch den folgenden Versuch festgestellt. Man nimmt
zwei gleiche Kupfergefiisse A und B, welche durch einen Hahn verbunden und
in Wasser getaucht sind. Gefiss 4 enthilt komprimiertes Gas, Gefiss B ist
leer. Lisst man das Gas von 4 nach B iibergehen, so darf das Wasser nicht
erwirmt werden, wenn das Gesetz richtig ist. In dieser Weise wurde der Ver-
such von Joule bei seinen Untersuchungen zum ersten Hauptsatz angestellt.
Vgl. Phil. Mag. (3) 26 (1845), p. 376; Papers 1, p. 172. Indessen ist zu be-
merken, dass ein im wesentlichen gleiches Verfahren schon 1806 von Gay-Lussac
mit Erfolg angewandt wurde. Vgl. Mém. Soc. d’Arceuil 1 (1807), p. 202. Ge-
wohnlich verbindet man den Namen Gay-Lussac’s mit derjenigen Folgerung
dieses Gesetzes, die wir unten als Charles’sches Gesetz auffiilhren werden. Weitere
Versuche wurden von Hirn gemacht (Th. mécanique de la chaleur (3° Ausg.)
Paris (1875) 1, p. 298).

66) Dieselbe wird durch Versuche von Regnault gerechtfertigt.
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expandiert, so gilt wegen d7 = 0 (vgl. Gleichung (68)) dg =1I,dv.
Andrerseits ist nach dem Joule’schen Gesetze dg = pdv. Hieraus folgt
(107) l,=p.
Nach der Clapeyron’schen Gleichung (89) ist aber

(Lp) —Lk_2

or/, T T
Durch Integration folgt, dass p proportional mit T wird. Mit Hinzu-
nahme des Boyle'schen Gesetzes folgt hieraus, dass pv proportional mit
T ist, oder dass
(108) pv = BT.

Der Wert der Integrations-Konstanten B ist offenbar umgekehrt pro-
portional der Dichte des Gases bei dem betreffenden Druck und der
betreffenden Temperatur.

In der kinetischen Gastheorie wird gezeigt, dass bei gegebener
Temperatur der Gasdruck nur von der Anzahl % der Molekiile in der
Volumeinheit abhéingt (Avogadro’'sche Regel). Bedeutet M das sog.
Molekulargewicht, d. h. das Verhdltnis der Masse eines Molekiils des
betr. Gases zur Masse eines Wasserstoffatoms, so ist die Masse der
Volumeinheit proportional zu M#» und daher das Volumen der Massen-
einheit proportional zu 1/Mn; also wird # fiir alle Gase proportional
mit 1/Mv. Daraus folgt, dass B umgekehrt proportional mit M ist.
Setzt man also B= R/M, so wird B eine universelle Konstante,
d. h. R hat fiir alle Gase den gleichen Wert®). Setzt man o' = Mo,
so ist v das sog. Molekularvolumen. Gl. (108) kann nun auch so
geschrieben werden, dass sie nur die universelle Konstante B enthiilt,
némlich
(109) pv'= RT.

Die absolute Temperatur eines Gases ist sowohl nach Gl (108)
wie nach (109) bei festgehaltenem Druck dem Volumen und bei un-
veranderlichem Volumen dem Druck proportional. Das erste dieser
beiden Ergebnisse ist unter dem Namen Charles’sches oder Gay-Lussac-
sches Gesetz bekannt®®).

67) In den Bezeichnungen folgen wir dem Vorgange von Zeuner und unter-
scheiden demgemiss konsequent zwischen der fiir das einzelne Gas charakte-
ristischen Gaskonstanten B und der universellen Gaskonstanten R = B M.

68) Aus diesem Gesetz folgt, dass der kubische Ausdehnungskoeffizient
eines vollkommenen Gases bei konstantem Druck

_ Ly _ 1
= (El T)p_ T
bei gleicher Temperatur fiir alle vollkommenen Gase der gleiche ist. Gay-
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Mithin stellt ein vollkommenes Gas, von dem entweder der Druck
oder das Volumen konstant gehalten wird, ein Thermometer dar, in-
dem sein Volumen oder sein Druck der absoluten Temperatur pro-
portional ist. Ist das Gas gewdhnliche Luft, so erhidlt man das so-
genannte Luftthermometer von konstantem Druck oder konstantem
Volumen, welches leicht experimentell zu realisieren ist. Nach den
vorausgehenden Erorterungen giebt ein Luftthermometer eine an-
gendherte absolute Temperaturskala. Um eine genaue Skala zu er-
halten, miisste man die Abweichungen der Luft von dem Boyle'schen
und Joule'schen Gesetz durch den Versuch bestimmen; hieriiber wird
in der folgenden Nummer berichtet werden.

Aus (71), (107) und (108) ergiebt sich noch die zu (107) ana-
loge Gleichung:

’ d
(107) =1, (Eﬁ)r
Weiter ist
(110) du=dq—pdv=1yp,dT + (I, — p)dv=y,4T,
letzteres wegen Gleichung (107). Nun ist aber du ein vollstindiges
Differential. Daher wird y, eine Funktion von I’ allein. Das heisst:
die spesifische Wirme bei konstantem Volumen ist eine Funktion der

Temperatur allein. Das Gleiche gilt von der inneren Energie u.
Nach Nr. 18 Gleichung (71) ist fiir ein vollkommenes Gas:

2 B
(111) v—r=1(57),=r5 =B

das heisst: Die Differenz der spezifischen Wirmen ist fiir ein und das-
selbe Gas eine Konstante. Fiir verschiedene Gase verhalten sich die
Differenzen der spezifischen Wirmen umgekehrt wie die Molekular-
gewichte.

Gentigt das Gas auch noch der Clausius’schen Annahme, so
werden beide spezifischen Wirmen Konstante.

SNCEEE

Lussac (Ann. de chimie 43 (1802), p. 157) bespricht diese Thatsache und be-
merkt, dass sie schon frilher von Charles durch Zufall gefunden, aber nicht
publiziert sei. Die Gay-Lussac’schen Versuchsergebnisse geniigen bereits zu
zeigen, dass die durch verschiedene Gasthermometer gelieferten Temperatur-
skalen identisch sind, und den Nullpunkt der Gastemperaturen als denjenigen
Punkt zu definieren, bei dem das Volumen aller vollkommenen Gase bei kon-
stantem Druck verschwinden wiirde, wenn im Verlauf der Abkiihlung das Ver-
halten der Gase ungetindert bleiben wiirde. Die historisch vorangehende Kenntnis
dieser Temperaturskala erleichterte wesentlich die Einfilhrung der mit ibr zu-
sammenfallenden absoluten Temperaturskala und gab den Ausschlag fiir die
jetzt allgemein angenommene Definition derselben im Gegensatz zu der von
Lord Kelvin urspriinglich vorgeschlagenen (vgl. Nr. 10, Anm. 30).
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Die Gleichungen der Adiabaten ausgedriickt in den Koordinaten
p und v ergeben sich am leichtesten aus der Beziehung zwischen den
Elastizititsmoduln und den spezifischen Wirmen (Nr. 18, Gleichung
(75)). Hiernach ist

(@2), == ()=~ #BF =1

Durch Integration folgt das von Poisson®) aufgestellte und nach ihm
benannte Gesetz:

(112) pv* = const.

Man hat diese Formel angewandt™), um die Verhaltniszahl % fiir
irgend ein Gas innerhalb derjenigen Grenzen der Anndherung zu be-
stimmen, die durch den Begriff des vollkommenen Gases gesteckt sind.
Beziehen sich die Indices 1 und 2 auf zwei Zustinde, die derselben
Adiabate angehdren, so gilt némlich

__logp, —logp,

r= log v, — log v,

Noch mége auf den Zusammenhang dieser Zahl mit der Schall-
geschwindigkeit hingewiesen werden, der des Niheren in Enc. IV (Art.
Lamb: Akustik) erliutert ist. Allgemein gilt fiir die Schallgeschwindig-
keit @ in einem beliebigen (vollkommenen oder nicht-vollkommenen) Gase,
dass a’= (dp/dg),= — v® (dp/dv),= ve, ist. Fiir vollkommene Gase
berechnet man andererseits ver = — v? (dp/dv)y = BT und erhilt
mit Riicksicht auf Gl. (75) a?= xBT. Bei den wirklichen Gasen ist
der Wert von (dp/dv)r oder, was auf dasselbe herauskommt, der Wert
von er aus der direkten Beobachtung zu entnehmen und man erhilt
a® = xver. Wird ausserdem die Schallgeschwindigkeit (oder die
Wellenlinge des Schalls) in dem betr. Gase beobachtet, so ist % be-
kannt™). Es ergiebt sich (fir Luft oder Wasserstoff) » = 1,40.

Um Entropie, Energie und thermodynamische Potentiale eines

69) S. D. Poisson, Ann. chim. phys. (2) 83 (1823), p. 156; Traité de Mécanique
2¢ édit. 2 (1833), p. 646, 647.

70) Clément und Désormes, J. phys. 89 (1819), p. 428; Gay- Lussac und
Welter, Ann. chim. phys. (1) 19 (1821), p. 436, (2) 20 (1821), p. 206; Cazin, Ann.
chim. phys. (3) 66 (1862), p. 206; R. Kohlrausch, Ann. Phys. Chem. 136 (1869),
p. 618; Rontgen, Ann. Phys. Chem. 141 (1870), p. 552, 148 (1873), p. 580; Massau,
Ann. chim. phys. (8) 53 (1858), p. 268; Hirn, Th. Mécanique de la chaleur 1
(2te Aufl.), p. 69.

71) Wir verweisen insbesondere auf die Arbeiten von W. Kundt, Ann.
Phys. Chem. 128 (1866), p. 337, 185 (1868), p. 548 und J. J. Miller, Ann. Phys.
Chem. 154 (1875), p. 113. Wegen weiterer Litteratur s. den im Text genannten
Art. aus Bd. IV.
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vollkommenen Gases unter Zugrundelegung der Clausius’schen De-
finition zu bestimmen, schreiben wir der Reihe nach:

dq=y,dT + pdv,
Y aT d
ds="rdT+ % dv=y,%°% + B2,

(113) s=y,log T 4 Blogv + s,,
wo s, eine Konstante. Ferner ist nach Gleichung (110):
(114) du = yp,dT, also u = p, T + u,,

wo u, ebenfalls eine Konstante. Nach den Definitionen in Nr. 16
ergiebt sich aus (113) und (114):

&y=u—1Ts
(115) | =9, T4 uy— T(p,log T+ Blog v + 5,)
=uy — Tsy + 7,T7(1 —log T) — BT log v
und
&p =T + pv

— g — Tsy + 9,7 (1 —log T) — BT log (%T_) + BT

— wy— T'(s, + Blog B) + (7, + B) T(1 — log T) + BT log p.
=y — 16,4 p,T (1 —log T) 4 BT log p,
wo die Konstante 6, den Wert s, + Blog B hat. —

Wir gliedern hier die Behandlung der Gasgemische an und
driicken ihre thermodynamischen Eigenschaften durch die ihrer kon-
stituierenden Bestandteile aus.

Als Definition dessen, was wir unter einem Gasgemisch verstehen
wollen, schicken wir die folgende z. B. bei Luft durch die Erfahrung
bestitigte Annahme voran: Wenn wir zwei oder mehr Gase sich lang-
sam mischen lassen, nachdem wir sic auf gleichen Druck und gleiche
Temperatur gebracht haben, bleibt ihr Gesamivolumen bei der Mischung
ungedndert. Hin Corollar dieser Annahme ist unter dem Namen des
Daltow'schen Gesetzes bekannt und lautet: Der Druck eines Gasgemisches,
welches sich in einem gegebenen Volumen V bei gegebener Temperatur T
befindet, ist die Swmme der Partialdrucke, welche die einzelnen Bestand-
teile in dem Volumen V bei der Temperatur T hervorbringen wiirden.

Es seien m’ und m” die Massen der beiden Bestandteile des Ge-
misches und es mégen ebenso die iibrigen thermodynamischen Grossen
durch Accente unterschieden werden. Dann ist, wenn die Mischung
bei gleichem Druck und gleicher Temperatur vor sich geht:

pv,:——-B'T, pvﬂ:BHT

(116)

und
‘V= mlvl + m'/p/! J— (ml + mll)v,
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also o
pv = %—B— T;
mithin wird die Gaskonstante des Gemisches
m' B+ m” B”
(117) p=rZin?.

Wenn sich die Gase bei der Temperatur 7 und dem Drucke p
ohme Wiirmeentwickelung™) mischen, wird, da bei ungeéindert bleibendem
Gesamtvolumen keine Arbeit geleistet wird, die innere Energie die
Summe der Energie der Bestandteile sein, also
(118) (m' 4+ m") u=m'u + m"u".

Wir benutzen den Energieausdruck v = y,T + u, (Gl (114)) und er-
halten:

(' +m") (7, T + w)) = ' (v, T + wg) +m” (7" T + u"),
also o L

m m
(119) = Tl e
eine Beziehung, welche besagt, dass die gesamte Warmekapazitit der
beiden Bestandteile durch ihre Mischung nicht geéindert wird und
dass auch die spezifische Wirme eines Gasgemisches von Druck und
Temperatur unabhingig ist.

Tragen wir die Werte (117) und (119) in die Entropiegleichung
(113) ein, so ergiebt sich
(120) s= m~—-——~—~’;”’&i :nn,,y" log T + 71”———%1 %,,B logv + s,-

Schreibt man wieder ', s” fiir die Entropie der Masseneinheit der
beiden Bestandteile bei der Temperatur 7' und dem spezifischen Vo-
lumen v, so sagt die vorige Gleichung aus, dass bis auf eine Inte-
grationskonstante

(121) (m +m")s=m's’ + m"s";

d. h. die Gesamtentropie einer Mischung ist (bis auf eine Konstante)
gleich der Summe der Entropien ihrer Komponenten bei gleicher
Temperatur und gleichem spezifischen Volumen.

Nimmt man an, dass die genannte Konstante verschwindet, so
erhilt man die thermodynamischen Potentiale der Masseneinheit der
Mischung, ausgedriickt durch die ihrer Komponenten:

72) In diesem Falle sagt man, dass keine chemischen Wirkungen bei der
Mischung auftreten; nur an solche Gemische ist im Folgenden gedacht. C. Neu-
mann zitiert die aus der im Text gemachten Annahme folgende Gl. (118) als
Kirchhoff’sche Hypothese. Vgl. Theorie der Wirme, Leipzig 1875, p. 166 oder
Leipz. Ber. 48 (1891), p. 112.
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(122) o+ ") Fo= ', + m'),
(123) (o ) Gy w0,

d. h. die thermodynamischen Potentiale der Gesamtmasse der Mischung
gsind gleich der Summe derjenigen Potentiale, welche die beiden Kom-
ponenten fiir sich bei gleicher Temperatur und gleichem spezifischen
Volumen bezw. gleichem Druck haben wiirden.

Diese Ergebnisse decken sich sachlich mit denen von Gibbs™)
und Anderen.

23. Bestimmung der absoluten Temperatur. Nachdem in
Nr. 9 eine rein theoretische Definition der absoluten Temperatur ge-
geben war, mag nun gezeigt werden, wie man absolute Temperaturen
experimentell bestimmen kann. Die diesbeziiglichen Methoden kniipfen
an die Clapeyron’sche Gleichung (89) oder die analoge Gleichung (90)

dpy _ 1, LA L

=4 ()=
an, welche in integrierter Form lauten (die Integration bei festgehal-
tenem Volumen bez. bei festgehaltenem Druck ausgefiihrt):

(124) logT=f%£-|-C, 10gT=_j‘$’_|_a
° »

Bei der weiteren Verwertung dieser Formel muss die latente Wirme
l, bez. 1, als Funktion des Druckes bez. des Volumens auf Grund
experimenteller Daten bekannt sein. Die Integrationskonstante C, die
natiirlich von v bez. von p abhingt, bestimmt die Einheit der abso-

73) Connect. Ac. Trans. 3 (1876), p. 210—215. Da die Diffusion zweier Gase
bei gleicher Temperatur und gleichem Druck irreversibel ist, wird man erwarten,
dass sie von einer Zunahme der Entropie begleitet ist. Die obige Annahme nun
ist gleichbedeutend mit der Behauptung, dass diese Entropiezunahme dieselbe
ist, wie sie beobachtet werden wiirde, wenn sich die Gase von ihrem urspriing-
lichen Volumen m’v’, m”'v” jedes fiir sich im Vakuum auf das Volumen V= m"v
-+ m*v" ausdehnen wiirden, und kann nach Gibbs durch die folgenden Erfahrungs-
thatsachen gerechtfertigt werden: Wenn verschiedene Fliissigkeiten oder feste
Korper mit einer Mischung ihrer Dimpfe im Gleichgewicht sind, so ist der Druck
des Gemisches gleich der Summe der Dampfdrucke der Komponenten bei gleicher
Temperatur. Die Gase eines Gemisches kdnnen daher voneinander getrennt
werden, indem man eines von ihnen bei dem spezifischen Volumen v der Mischung
verfliissigt, von den dbrigen abscheidet und nachtriiglich bei der gleichen Tem-
peratur wieder verdampft. Dann ist das spezifische Volumen wieder v. Aus
dem Umstande, dass dieses Verfahren umkehrbar ist, darf man schliessen, dass
die Entropie des Gemisches gleich der Summe der Entropien seiner in solcher
Weise voneinander getrennten Bestandteile ist.
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luten Temperatur oder die Grosse von 1°. Statt (124) kann man
auch schreiben

23
c T, d T d
(125) log 7 =f715’ bez. 10gf=_—fl_”.
N

Wir haben nun an berithmte Versuche von Joule und Kelvin™) zu
erinnern, durch welche die Auswertung der rechten Seite unserer Glei-
chung ermdglicht wird. Die Anordnung dieser Versuche war, soweit
sie fiir uns in Betracht kommt, folgende:

Man lisst das Gas durch eine Réhre stromen, welche einen Ver-
schluss mit einer Anzahl Durchbohrungen oder einen pordsen Stopfen
. enthilt. Beim Passieren derselben erleidet das Gas durch die Reibung
im Stopfen eine Abnahme des Druckes. Es bieten sich nun zwei Be-
obachtungsmethoden dar, je nachdem man den Vorgang isothermisch
oder adiabatisch leitet:

a) Das Gas wird in einem Kalorimeter auf seiner urspriinglichen
Temperatur gehalten und es wird die Wirme gemessen, die das
Kalorimeter abgiebt, wihrend die Masseneinheit des Gtases durch
den Stopfen strémt. Schliesslich wird diese Wirmemenge durch
Multiplikation mit dem mechanischen Wirmeiiquivalent auf Arbeits-
einheiten reduziert.

b) Dem Gase wird weder Wirmeenergie von aussen zugefiihrt,
noch entzogen; man misst die Temperaturinderung, die durch den
Stopfen hervorgerufen wird, an einem gewo6hnlichen Thermometer.

a) Im ersten Falle sei p, v und p’, v Druck und Volumen der
Masseneinheit des Gases vor und nach dem Durchgang durch den
Stopfen, ¢ die Warmemenge, die dem Kalorimeter durch die Massen-
einheit des Gases entzogen wird. Um eine konstante Gasmenge in
Betracht zu ziehen, kann man annehmen, dass vorne und hinten in
der Rohre bewegliche Kolben angebracht sind, durch die der Druck
auf beiden Seiten konstant gehalten wird. Geht eine Gasmenge dm
durch den Stopfen, so riickt der hintere Kolben um vdm/F nach,
wihrend der vordere Kolben um o'dm/F vorwirts getrieben wird, wo
F den Querschnitt der R6hre bedeutet. Mithin bedeutet (pv—p'v") dm
die mechanische Arbeit, die an der Masse dm von den Kolben ge-
leistet wird, und pv — p'v’ die entsprechende Arbeit pro Massenein-
heit. Dieselbe Arbeit, die hier als Arbeit der fingierten Kolben be-

74) Lord Kelvin, Edinb. Trans. 20 (1851), p. 294; Joule und Thomson,
Phil. Mag. (4) 4 (1862), p. 481; Lond. Trans. 143 (1853), p. 357; 144 (1854), p. 321;
Lond Proc. 10 (1860), p. 502; Lond. Trans. 1522 (1862), p. 579; H. L. Callendar,
Phil. Mag. Januar 1903, p. 48.
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rechnet ist, wird in Wirklichkeit an der hinteren bez. vorderen Be-
grenzung der betrachteten Gasmenge von den an sie angrenzenden,
nachdriickenden bez. entgegenwirkenden Gasteilchen geleistet.

Im iibrigen wird im Innern der Gtasmenge selbst, da sie sich
beim Passieren des Stopfens isothermisch dehnt, die Expansionsarbeit

f pdv geleistet. Die Gesamtarbeit ist daher (pv — p'0") + f pdo.

Diese Arbeit wird in Wirmeenergie verwandelt; es kommt ausserdem
die dem Kalorimeter entzogene (in Arbeitseinheiten gemessene) Wirme-
menge ¢ zu ihr hinzu. Die so entstehende Gesamtwérme wird von
dem Gase bei der isothermischen Expansion von dem Volumen v auf

das Volumen o verbraucht und ist deshalb gleich f l,dv, also wird:

fl,dv =q+ (pv—pv)+ fpd'v.
Somit hat man schliesslich
(126) 1= —po) + [ @ —p) do

oder auch, indem man die Differenz v" — v = dv als hinreichend klein
voraussetzt und d(pv) fiir p'v" — pov schreibt,

(127) q=20(pv) + (I —p) dv.

Die vom Kalorimeter abgegebene Warmemenge ist hiernach
dargestellt durch zwei Terme, von denen der erste von der Abweichung
des Versuchsgases vom DBoyle'schen Gesetz herriihrt, wihrend der
zweite Term, welcher I, — p zum Faktor hat, seinen Ursprung in der
Abweichung des Gases vom Joule'schen Gesetze hat (s. Gleichung (107),
welche eine direkte Folge jenes Gesetzes war). Wire das Versuchs-
gas ein vollkommenes Gas, so wire die fragliche Wirmemenge null;
unterscheidet es sich von einem vollkommenen Gas nur wenig, so
sind beide Terme in Gleichung (127) klein.

Nun kann die genaue Gleichung der Isothermen und damit zu-
gleich die Differenz 0(pv) durch geeignete Versuche bestimmt und
als bekannt angesehen werden; misst man also die Wirmemenge ¢,
so ldsst sich nach Gleichung (127) die Differenz I, — p berechnen.
Jedenfalls ergiebt sich so ein Wert von [,, der wenig von p abwei-
chen wird. Wir schreiben etwa
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1 .

1
'lv‘=*1;+57

wo & klein ist und gehen nunmehr auf die Gleichung (125) zuriick.
Dieselbe schreibt sich jetzt

T,
log f= log% +fadp
oder auch o
(128) T = Apel*?,

wo A eine Konstante bedeutet.

Nun wird durch ein Luftthermometer von konstantem Volumen
die Temperatur dahin definiert, dass sie dem Drucke der Luft pro-
portional, also etwa gleich Ap sei. Mithin liefert Gleichung (128)
diejenige Korrektion, welche an den Ablesungen eines Luftthermometers
von konstantem Volumen anzubringen ist, wm sie auf absolute Tempe-
raturen gu reduzieren.

b) Im zweiten der oben unterschiedenen Fille sei 0¢ die Tempe-
raturzunahme des Gtases, die durch Reibung am Stopfen hervorgerufen
ist, gemessen an einem ganz beliebigen Thermometer. Die Arbeit,
die an der Oberfliche der betrachteten Gasmenge von den angrenzen-
den Gasteilchen bez. im Innern derselben bei der Expansion geleistet
wird, ist wieder

pv — p'v’ —|-—fpd'v.

Benutzen wir wie oben die Abkiirzungen dv=1v"—v, 0 (pv)=p'v'—pv,
so konnen wir hierfiir schreiben:

pdo — 0 (pv) = — vop.
Diese Arbeit tritt abermals als Wirmeenergie auf und wird teils in
die latente Wirme der Expansion verwandelt, teils bewirkt sie die

Temperaturiinderung des Gtases. Benutzt man zundchst Gl. (69) aus
Nr. 18, so erhilt man durch Gleichsetzen

—vdp =1,0p + ypd‘T.
Fiithrt man nun statt 8 7 die an einem Thermometer mit konventioneller
Skala gemessene Temperaturinderung d¢ ein, so hat man die vorige
Gleichung zu ersetzen durch

— vdp = 1,0p + ¢,0%;
hier bedeutet ¢, die spezifische Wirme des Gases bei konstantem
Druck, bezogen auf das gerade gewdhlte Thermometer, d. h. die in
Arbeitseinheiten gemessene Wirmemenge, die die Temperatur des
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Gtases bei konstantem Druck um einen Skalenteil jenes Thermometers
erh6ht. Man findet so

(129) L= —v— G52

Bei einem vollkommenen Gase ist nach Gl (107") I, gleich — v;
mithin wird bei einem wirklichen Gase, dessen Verhalten von dem
der vollkommenen Gase nicht zu sehr abweicht, das Zusatzglied

¢,0t/0p in Gl (129) klein sein. Man kann also, dhnlich wie oben,
setzen:

(130) — =1t

a“] -

Gl (125) giebt daraufhin:
log —;—: = log %:— + Jedv
oder auch &

(131) T = Avel*®,

wo A abermals eine Konstante.

Wie der Vergleich von (130) und (129) zeigt, ist die Bedeutung

von & diese:

Die Versuche von Joule und Thomson und anderen Beobachtern
zeigten, dass 0f ungeféhr proportional war mit dp, selbst dann, wenn
betrichtliche Druckdifferenzen dp bei der Beobachtung vorkamen.
Man kann daher das Verhiltnis 0¢/0p (den sogenannten ,Abkiihlungs-
effekt”) leicht und genau bestimmen, indem man die Anordnung so
wihlt, dass 0¢ und dp nicht zu klein werden. Somit ist auch die in
(131) vorkommende Grosse & einer genauen Messung zugiinglich und
kann als eine bekannte Funktion von v gelten. Die Exponential-
grosse in (131) kann daraufhin ausgewertet werden. Sie liefert die-
jenige Korrektion, welche an den Ablesungen eines Luftthermometers von
konstantem Druck anzubringen ist, um dieselben auf absolute Temperatur
2w redugieren.

Eine erschopfende Behandlung des Problems unter Beriicksichtigung
der experimentellen Verhiltnisse giebt H. L. Callendar ™).

24. Phaseniéinderungen, insbesondere Knderungen des Aggregat-
zustandes. Der feste, fliissige und gasformige Aggregatzustand liefert
ein Beispiel dafiir, dass ein und derselbe Stoff in verschiedenen Kr-
scheinungsformen oder Phasen vorkommen kann. Die allgemeinen

Glesetze, welche den Ubergang einer Phase in eine andere beherrschen,
Encyklop. d. math. Wissensch. V 1. 9



130 V3. G. H Bryan. Alligemeine Grundlegung der Thermodynamik.

sollen hier an dem Beispiel der Aggregatzustéinde entwickelt werden;
sie gelten aber allgemeiner fiir beliebige Phasenéinderungen. Im folgen-
den Artikel werden Beispiele von Phaseninderungen allgemeinerer
Art behandelt werden.

Ist die Temperatur gegeben und so beschaffen, dass bei dieser Tem-
peratur zwei verschiedene Phasen des Stoffes im Gleichgewicht neben
einander bestehen konnen, so muss gleichzeitig der Druck einen be-
stimmten Wert haben (,,Gleichgewichtsdruck®); entsprechend muss, wenn
der Druck gegeben ist, beim Gleichgewicht beider Phasen die Temperatur
eine geeignete sein (,,Gleichgewichtstemperatur®). Z. B. ist der Siede-
punkt des Wassers diejenige Temperatur, bei der Wasser in dem
fliissigen und gasformigen Zustande zusammen bestehen kann, wenn
der Druck der normale Atmosphérendruck ist. Druck und Temperatur,
bei denen Gleichgewicht zwischen beiden Phasen herrscht, sind also
durch eine Gleichung von der Form ¢(p, T) =0 verbunden. Ein
System, in dem beide Phasen vertreten und im Gleichgewicht mit ein-
ander sind, heisst ein gesdttigter Komplex beider Phasen ™), die Kurve,
welche die Gleichung ¢(p, T') = O graphisch veranschaulicht, heisst
die Sdttigungskurve.

Ist ein gesittigter Komplex z. B. in einem Cylinder mit beweg-
lichem Kolben enthalten, so kann man sein Volumen vergrdssern und
zugleich die Temperatur konstant halten; dann wird ein Teil des
Stoffes von der Phase grisserer zu der geringerer Dichte iibergehen,
bis der Druck der urspriingliche geworden ist; das Umgekehrte wird
eintreten, wenn man das Volumen verkleinert. Bei diesem Ubergange
wird eine gewisse Wirmemenge verbraucht oder abgegeben. Die
Wirmemenge 1, die erforderlich ist, um die Masseneinheit von der
einen in die andere Phase tiberzufithren, heisst die latente Wirme der
Uberfiihrung oder die spezifische Reaktionswiirme (von Zeuner der Weirme-
inhalt des Prozesses genannt). Man sagt, dass der Stoff von der niederen
zu der hoheren Phase oder von der hoheren zu der niederen iibergeht, jo
nachdem latente Wirme aufgenommen oder abgegeben wird. Wenn
einem gesittigten Komplex bei konstantem Druck Warme zugefiihrt
wird und gleichzeitig die Temperatur den durch Gleichung ¢ (p, 7') = 0
bestimmten Wert beibehilt, wird alle Wiérme dazu verbraucht, um
eine gewisse Menge des Stoffes von der niederen in die hohere Phase

75) Das Wort Mischung (Gemisch), welches ebenfalls vielfach zur Bezeich-
nung eines aus mehreren Phasen bestehenden, heterogenen Systems benutzt wird,
soll hier fiir die homogenen wirklichen Mischungen verschiedener Stoffe oder ver-
schiedener Phasen desselben Stoffes reserviert werden, in welchem Sinne es be-
reits in der Nr. 22 benutzt wurde.
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tiberzufithren; dies dauert so lange, bis der ganze Stoff in die hdhere
Phase iibergegangen ist. Entsprechend geht, wenn einem gesittigten
‘Komplex in derselben Weise Wirme entzogen wird, ein Teil des Stoffes
von der hoheren in die niedere Phase iiber. Andern sich Druck und
Temperatur in Ubereinstimmung mit der Gleichung ¢(p, T) = 0, so
werden die Werte von dg/dT, fir die Masseneinheit der beiden
Phasen berechnet, die spezifischen Wirmen der Phasen im Sittigungs-
zustande genannt und mit p" und »” bezeichnet.

Man betrachte die Masseneinheit des gesittigten Komplexes und
bezeichne die darin enthaltenen Massen der beiden Phasen bez. mit x
und 1 — 2. Volumen, Energie und Entropie v, u, s der Masseneinheit
des Komplexes sind dann mit den entsprechenden, fiir die Massen-
einheit der beiden Phasen berechneten Grossen o', o, s'; v, w”, s”
durch die Gleichungen verbunden:

(132) v=2av + (1 — )",
(133) u=zu + (1 —z)u",
(134) s=uzs 4+ (1 —ux)s"

Die Zufiihrung einer Wirmemenge dg wird im allgemeinen einen
Temperaturzuwachs d7T' bewirken und ausserdem eine gewisse Menge
dx von der niederen in die héhere Phase iiberfithren. Dabei hingen
dq, dT und dx durch die Gleichung zusammen:

(135) dg ={zy + (1 —2)y"}dT + Adux.

Andererseits wird eine Temperaturinderung d7 im allgemeinen
mit einer Volumiénderung dv verbunden sein; gleichzeitig wird eine
gewisse Menge dz aus der einen in die andere Phase iibergehen.
Nach (132) hiéngen dv, dT und dx folgendermassen zusammen:

a ] a ' 4 rr
(136) dv={x531,—+(1——w)%}dT+(v —v")dz.
Bei festgehaltener Temperatur ergiebt sich hieraus:
(dv)p = (v — v")dx;
Gleichung (135) besagt in diesem Falle
Durch Division folgt also

(137) (G, =t =72

r T v —o
Die latente Wirme der Voluménderung ist sonach mit der latenten

Wiirme der Phaseninderung in Zusammenhang gebracht.
9*
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Ziehen wir noch die Clapeyrow'sche Gleichung heran, so kénnen wir
weiter schliessen

d 1, i

(138) R R
hier wurde in der Schreibweise von dp/dT der Hinweis auf das fest-
zuhaltende Volumen als iiberfliissig fortgelassen; da némlich, solange
der Komplex gesittigt ist, p eine Funktion von 7' allein ist, ent-
sprechend der Gleichung ¢(p, T') = 0, hiingt der Wert des Differential-
quotienten nicht von der Annahme v = const. abh.

Es handle sich ferner um einen adiabatischen, durch plétzliche
Druckénderung hervorgerufenen Prozess. Setzt man in (135) dg =0,
so ergiebt sich:

dz\ __ zy+(1—a2)y"
), = ;

und nach (138)

ii.f) — (iﬁ) /dp _ A=y =",
(d , \aT/,/ aT — 1 T2 :

Somit bestimmt das Vorzeichen der rechten Seite, ob bei einem adia-
batischen Prozess Substanz in die hohere oder niedere Phase iiber-
gefiihrt wird.

Sind »" und »” beide positiv, so ist (dz/dp), positiv, wenn v' <v”,
negativ, wenn v >v”. Mithin bewirkt eine plétzliche Kompression,
dass Substanz aus derjenigen Phase, in der sie das grossere Volumen,
zu derjenigen Phase, in der sie das kleinere Volumen hat, transformiert
wird. Z. B. bewirkt Kompression beim Gleichgewicht zwischen Eis
und Wasser (v" <v”) Verfliissigung, bei dem zwischen festem und
fliissigem Schwefel (v" > v”) Verfestigung.

Ist 3" negativ, so bleibt die Unterscheidung dieselbe, falls nur
y'x 4+ 9" (1 — z) positiv ist, d. h. falls

x> ?1;7/' .
In dem Grenzfalle

5=t
Y —v
bewirkt eine hinreichend geringe Kompression dp keine Phasenéinderung
oder nur eine solche, welche mit dp verglichen von der zweiten Ord-
nung ist.
Ist dagegen

7"
< =7
so kehrt sich die Erscheinung um; eine Kompression bewirkt jetzt,
dass Substanz von der Phase kleineren zu der grdsseren Volumens
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iibergeht.  Allgemein gesprochen, hingt im Falle " <O die Wirkung
emer plotslichen Kompression von den Mengen z, 1 — x der beiden
Komponenten des Komplexes ab.

Nach dem ersten Hauptsatz gilt mit Riicksicht auf Gl. (135)

du=dq — pdv
= {2y + (1 —a)y"} aT 4 Adz—p L dz—p 22.aT.

Da du ein vollstindiges Differential und p im Zustande der Sattigung
eine Funktion von T allein ist, schreiben wir die Integrabilitits-
bedingung fiir die rechte Seite folgendermassen™):

0*v ok dp ov 0%v

V=V T Pu7 = 9T  dTox  Pozor

oder
al 7 n d a d 4 I’
=) == — )
Nach Gl (138) wird hieraus
0k A , r
(139) s — T =7 7"

Diese Formel ist von Clausius™) gegeben worden; noch einfacher wie
auf dem angegebenen Wege folgt sie daraus, dass

dg oy + (1 —a)y" ]

ein vollstindiges Differential ist. Im folgenden Artikel werden von
dieser Clausius’schen Formel eine Reihe wichtiger Anweundungen ge-
geben werden.

Ersetzen wir in der obigen Uberlegung, welche zu Gl (137)
fiilhrte, v durch s, so erhalten wir fiir eine isothermische Zustands-

inderung:
dq i
(%)1'—— §—s"

Es ist aber nach der Definition der Entropie dg/ds = T, so dass sich
das einfache Resultat ergiebt:
i

(140) §—8 =

Wir wollen nunmehr die Bedingung fiir das Gleichgewicht zweier
Phasen oder, was auf dasselbe herauskommen wird, die Gleichung der
Sittigungskurve @ (p, T) = 0 in einer iibersichtlichen Form aufstellen.
Wenn die Masseneinheit des Stoffes von der niederen in die hdhere
Phase bei konstantem Druck und konstanter Temperatur tibergefiihrt

76) Lord Kelvin, Edinb. Trans 20 (1851), p. 389; Phil. Mag. (4) 4 (1852),
p. 174; sowie Clausius (s. folg. Anm.).
77) R. Clausius, Ann, Phys. Chem. 79 (1850), p. 368, 500.
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wird, betrigt die dabei aufgenommene Wirmemenge 7'(s' — s”); die
geleistete Arbeit ist p(v" — ¢”). Nach dem ersten Hauptsatz wird
daher die Anderung der inneren Energie der Masseneinheit:

wW—u =TE —s)—ph —1),
woraus

w—Ts 4+ pv' =u" — Ts" 4 pv”.
Mit Riicksicht auf die Definition der thermodynamischen Potentiale
konnen wir hierfiir einfach schreiben:

(141) Fo = Tp-

Soll also Gleichgewicht zwischen beiden Phasen bestehen, so miissen die
thermodynamischen Potentiale bei gegebenem Druck fiir beide Phasen
esnander gleich sein. Da diese Potentiale als Funktionen von p und T
zu denken sind, so liefert (141) zugleich die gesuchte Darstellung der
Sdttigungskurve in den Koordinaten p und 7.

Es ist indessen zu der hier abgeleiteten Gleichheit noch folgendes
zu bemerken. Die Definitionen der Energie und der Entropie enthalten
je eine willkiirliche Integrationskonstante (s. Nr.4 und Nr. 11); infolge
dessen wire unsere obige Gleichung nur bis auf ein unbestimmtes
Zusatzglied von der Form A -4 BT richtig, wenn es lediglich mdglich
wire, Phasenéinderungen auf diskontinuierlichem Wege vorzunehmen.
Dem gegeniiber zeigt die Theorie des kritischen Punktes (s. den folgen-
den Art.), dass man bei vielen, wenn nicht bei allen Stoffen von der
einen zu der anderen Phase durch eine kontinuierliche Folge von Zu-
standsinderungen iibergehen kann (ndmlich auf einem Wege, welcher
in der p,v-Ebene den kritischen Punkt umfasst). Es ist klar, dass
auf diese Weise die Unbestimmtheit des Zusatzgliedes gehoben und
unsere Gleichung als genau giltig erwiesen werden kann. '

Die Sittigungskurve trennt solche Gebiete der (p, T')-Ebene, wo
¥ > &» von solchen Gebieten, wo F, < F, ist. Handelt es sich um
ein System, in dem beide Phasen vorhanden sind, ohne dass die
Gleichgewichtsbedingung erfiillt ist, so findet bei festgehaltenen Werten
von p und T eine Umsetzung in dem Sinne statt, dass der Stoff der-
jenigen Phase zustrebt, in der der Wert von § der kleinere ist (vgl.
Nr. 14¢). Man kann hiernach im Sinne von Nr. 17c auch sagen: der
Stoff ist in demjenigen Gebiet der (p, T')-Ebene, wo §, > &y ist, in
der niederen Phase stabil, dagegen in demjenigen Gebiet, wo ), < &,
in der hiheren Phase.

25. Der Tripelpunkt. Es sind viele Stoffe bekannt, welche in
allen drei Aggregatzustinden, in der gasformigen, fliissigen und festen
Phase bestehen konnen. Man denke z. B. an Wasser. Fille von
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Koexistenz desselben Stoffes in drei verschiedenen Phasen, von denen
z. B. zwei fest sind, bringt der nichste Artikel. Auch die folgenden
Sitze gelten nicht nur fiir die drei Aggregatzustinde, sondern fiir drei
beliebige koexistierende Phasen.

o) Bp, T mogen die Potentiale bei gegebenem Druck fiir die
Masseneinheit in den drei Phasen bedeuten. Aus der vorigen Nr.
folgt, dass der Stoff gleichzeitig in der zweiten und dritten Phase im
Gleichgewicht sein kann, wenn Druck und Temperatur so beschaffen
sind, dass sie der Gleichung &, = &, geniigen, dass der Stoff gleich-
zeitig in der dritten und ersten Phase im Gleichgewichtszustande vor-
kommen kann, wenn die Gleichung §," = ¥, erfiillt ist, und endlich
in der ersten und zweiten Phase, wenn §, = ¥, gilt. Infolgedessen
kann er in allen drei Phasen zugleich bestehen, wenn

(142) TH=3 =%
Diese Doppelgleichung bestimmt die beiden Variabeln p und T voll-
stindig. Es giebt daher nur ein oder eine endliche Anzahl von
Wertepaaren p, T, bei denen alle drei Phasen zugleich Bestand haben.
In der pT-Ebene bestimmen diese Wertepaare ein oder mehrere
Punkte. Dieselben heissen Tripelpunkie’).

Bei Wasser giebt es einen Tripelpunkt fiir die Phasen der drei
Aggregatzustinde und dieser kann leicht experimentell untersucht
werden™). Hier werden die drei Kurven ¥, =,, T =%, T = S»
als Dampf-, Fis- und p
Rauhfrost- Kurve be-
zeichnet. Alle drei Kur-
ven schneiden sich not-
wendig in einem ge-
meinsamen Punkte, dem
Tripelpunkte.

Konstruiert man
die drei Kurven (Fig. 5)
und bedenkt, dass die-
jenige Phase stabil ist,
welcher der kleinste
Wert von ¥ zukommt,

0 T
Fig. 5.
78) Die Moglichkeit des Tripelpunktes wurde von Regnault ausgesprochen
(Paris, Mém. 16 (1847), p. 751) und seine Existenz von James Thomson nachge-
wiesen (Phil. Mag. (4) 47 (1874), p. 447).

79) Bei Wasser entspricht der Tripelpunkt einer Temperatur von 0,0074°C.
und einem Druck von 0,00614 atm.
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so erkennt man, dass die punktierten Linien der Figur labilen und nur
die ausgezogenen stabilen Zustéinden entsprechen.

Die Verteilung dieser Kurven in der Nihe des Tripelpunktes®®)
kann dadurch untersucht werden, dass man ihre Schnittpunkte mit
einer zur Axe OP parallelen Geraden bestimmt, die zu einer von der
Temperatur des Tripelpunktes um den kleinen Betrag A T’ abweichenden
Temperatur gehort. Bedeutet Ap,s den Betrag, um welchen der Druck
im Schnittpunkte jener Geraden mit der Trennungslinie §, = §, von
dem Druck im Tripelpunkte abweicht und haben Ap,, Ap,, die ent-
sprechende Bedeutung fiir die anderen Trennungslinien, so gilt

(o — %) deat (57 — Fp) AT =0
und zwei entsprechende Gleichungen fiir dle Schnittpunkte unserer
zu OP parallelen Geraden mit den beiden anderen Trennungslinien.
Nun ist aber 9%/ép =1+ das Volumen der Masseneinheit in der
hochsten Phase ete.; substituiert man diesen Wert und addiert die
drei genannten Gleichungen, so ergiebt sich

(143) (v — ") Apyy + (v — ) Apy + (" — 0") Ap, = 0.
Diese Gleichung ist der Gleichung von Moutier

(143)  (Apyy — Bpy) (v — o) = (Bpyy — Bpy) (V" — )
dquivalent, der sich durch cyklische Vertauschung der Indices zwei
gleichwertige Ausdriicke, z. B.

(1437)  (Apiz — Apsy) (V' — ") = (Bpas — Bpyy) (v — v7)
an die Seite stellen lassen. Ist o' >¢”>9", so folgt aus der letzten
Gleichung wegen der entgegengesetzten Vorzeichen von v" — v” und
v — 0", dass auch Ap;, — Ap, und Ap,, — Ap,, entgegengesetate
Vorzeichen haben. Es liegt also Ap;, zwischen Ap,, und Ap,, und
man hat die Regel: Wenn man in der (p, T')-Ebene in der Nihe des
Tripelpunktes eine Parallele zur p-Axe zieht und sie zum Schwiti mit
den drei Trennungskurven bringt, so entspricht der mittelste Schuittpunkt
derjenigen Phasendnderung, die mit der grossten Volumdnderung ver-
bunden st ®).

Nehmen wir schliesslich einen Stoff, der in mehr als drei Phasen
vorkommt, sagen wir z. B. in vier Phasen, so verlangt die Bedingung

dafiir, dass alle vier Phasen bei gleichem Druck und gleicher Tem-

80) Die folgenden Auseinandersetzungen griinden sich auf die Arbeiten von
J. Moutier, Paris, Bull. soc. phil. (6) 13 (1876), p. 60; (7) 1 (1877), p. 7; 2 (1878),
p. 247; 3 (1879), p. 233; 5 (1880), p. 31.

81) Im iibrigen sei verwiesen auf G. Kirchhoff, Ann. Phys. Chem. 108 (1858),
p. 206; J. Moutier, Ann chim. phys. (5) 1 (1874), p. 343.
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peratur nebeneinander moglich sind, dass die vier Potentiale ¥, &y,
%y, Fp durch die Gleichung verkniipft sind:

H=F =% =%
Da aber diese dreifache Gleichung nur zwei Variable p und T ent-
hilt, so ist es im allgemeinen unméglich, ihr zu geniigen und wir
schliessen, dass im allgemeinen nicht mehr wie drei Phasen desselben
Stoffes bei gleichem Druck und gleicher Temperatur koexistieren kinnen.

Allgemein erkennen wir, solange wir es mit einem einzelnen Stoff
zu thun haben: 1) Es konnen drei Phasen in einem oder mehreren
Punkten der (p,T)-Ebene zusammen bestehen. 2) Zwei Phasen
konnen lings einer oder mehrerer Linien der (p, T')-Ebene nebenein-
ander bestehen. 3) In allen iibrigen Punkten der (p, T')-Ebene ist
nur eine Phase im Gleichgewicht und zwar im stabilen Gleichgewicht
nur in den Punkten gewisser Flichenrdume, welche durch die unter
2) genannten Kurven begrenzt werden.

Im ersten Falle heisst das System invariant, da weder sein Druck
noch seine Temperatur variiert werden konnen, ohne dass sich die
Phasenzahl verringert. Im zweiten Falle nennt man das System wuni-
variant, da entweder p oder 7' geéindert werden kénnen, wenn nur die
andere dieser beiden Variabeln entsprechend so geiindert wird, dass
der Punkt (p, T') auf der vorgenannten Kurve verbleibt. Im dritten
Falle spricht man von einem bivarianten System, da sowohl p wie T'
unabhéingig von einander variiert werden diirfen, vorausgesetzt, dass
der Punkt p, T nicht die Grenzen desjenigen Gebietes verlésst, in dem
sich die betrachtete Phase im stabilen Gleichgewicht befindet.

Die Verallgemeinerung dieser Ergebnisse auf den Fall, wo
eine Reibhe von Stoffen an die Stelle des bisher betrachteten einzelnen
Stoffes tritt, bildet die Phasentheorie von Gibbs, zu der wir nun tiber-
gehen.

26. Gleichgewicht chemischer Systeme®?). Unser System sei
aus den Massen m, m,, . .., m, von k verschiedenen Stoffen zusammen-
gesetzt, die wir 4, B, ..., K nennen mdgen, und stehe unter dem
gleichméssigen Drucke p; die gemeinsame Temperatur des Systems
sei 7. Wir setzen das System zuniichst als homogene Mischung der
k Stoffe voraus. Die gesamte Energie U hingt jetzt nicht nur von
dem Gesamtvolumen ¥V und der Entropie S ab, sondern auch von den
Massen m,, m,, ..., m,. Man fiige die Menge dm, des Stoffes K
hinzu und nenne den Zuwachs der gesamten Energie bei gleich blei-

82) J. W. Gibbs, Connect. Ac. Trans. 3 (1876—1878), p. 108, 343.
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bender Grosse des Gesamtvolumens und der Entropie w,dm,; dann
wird u, von Gibbs als das Potential des Stoffes K innerhalb des
betrachteten chemischen Systems bezeichnet. Das Differential des
Energieausdrucks wird nach dieser Einfiihrung:

(144) AU = TdS — pdV + Sudm
U _p 20U _ oU
WL =0 g T

Betrachtet man verschiedene Systeme derselben Zusammensetzung,
bei gleicher Temperatur, gleichem Druck und gleichen Verhéltnissen der
verschiedenen Bestandteile, so werden die Gréssen U, S, V,m,, ..., m,
samtlich der Gesamtmasse des betr. Systems proportional sein; es wird
daher U eine homogene Funktion ersten Grades von S, V,m,, ..., m,
sein und nach dem Fuler'schen Theorem iiber homogene Funktionen
erhilt man®3):

U U oU
(145) U=820 4 vV 4 kam=ST—pV+ S

Nach der Definition des thermodynamischen Potentials bei ge-
gebenem Druck folgt fiir letzteres unmittelbar der einfache Ausdruck:

(146) Fo=U—T8+ pV = Zmp.
Spezialisieren wir dies fiir den Fall eines einfachen Systems (k = 1),
so ergiebt sich einfach Fp=mu, F, =u. Die Gibbs'schen Po-
tentiale u erweisen sich also als Verallgemeinerungen des fiir die
Masseneinheit eines chemisch einheitlichen Systems berechneten Poten-
tials bei gegebenem Druck. Im allgemeinen Falle sind die Potentiale
p Funktionen der Temperatur, des Druckes und der prozentualen Zu-
sammensetzung des Systems, d. h. sie hiingen nicht von den absoluten
sondern nur von den verhiltnismissigen Massen der Bestandteile ab.
Berechnet man dU aus Gleichung (145) und vergleicht diesen
Wert mit (144), so ergiebt sich:

(147) SAT — Vdp + Smdu = 0.

83) Dies kann auch wie folgt bewiesen werden. Man nehme an, dass das
Volumen, die Entropie sowie die Masse eines jeden Bestandteiles des Systems
um den kleinen Bruchteil de ihrer urspriinglichen Betrige vergrossert wurden:

aV = Vde, dS= Sde, dmy = m.de.
Durch Einsetzen in (144) folgt alsdann

AU = ST — pV+ Sum)de.
Das so entstehende System ist dem urspriinglichen in allen Stiicken gleich, nur
dass seine Gesamtmasse im Verhiltnis 1 4 de: 1 grosser ist. Deshalb hat man
U+ dU= (1 -+ de) U oder AU = Uds. Aus den beiden angegebenen Werten
von dU folgt durch Gleichsetzen der obige Ausdruck von U.



26, Gleichgewicht chemischer Systeme. 139

Die physikalische Bedeutung dieser Gleichung ist von L. Natanson®)
und J. E. Trevor®®) untersucht worden. Nach der Auffassung von
Trevor stellt Gleichung (144) die Energieinderung eines chemischen
Systems dar, soweit sie direkt von Husseren Einwirkungen herriihrt,
und entsprechend bedeuten die einzelnen Terme in Gleichung (147)
diejenigen Energieinderungen, die innerhalb des Systems bei dusseren
Einwirkungen Platz greifen und sich wechselseitig kompensieren. Die
einzelnen Terme der linken Seite von (147) konnen dann passend als
diejenigen Energiemengen angesprochen werden, die wihrend einer
Temperatur- oder Druckénderung von dem einen Potential des Systems
auf ein anderes transformiert werden.

Die Gleichungen dieser Nr. enthalten 2% 4 5 Variable, nimlich:

U7 S’ V’ma’mb7"‘) mk?

T,ps tas gy - -5 Wi

andrerseits erkennt man aus physikalischen Uberlegungen, dass der
Zustand des Systems durch % - 2 Variable festgelegt ist. Wir werden
jetzt zeigen, dass die Kenntnis eines geeigneten Funktionalausdruckes
geniigt, um die zugehdrigen Werte der iibrigen Variabeln zu be-
stimmen.

In der That: sind z. B. die Massen m,, ..., m,, das Volumen V
und die Entropie S gegeben und ist der Ausdruck der inneren Energie
in der Form

(148) U=f(S, V,m,,.... m)

bekannt, so bestimmen sich die iibrigen Variabeln durch die partiellen
Differentialquotienten von U aus den Gleichungen (144).

Sind andrerseits die Massen m,, ..., m,, Volumen und Tem-
peratur gegeben, so bildet man nach der Regel von Nr. 16 den
Ausdruck
(149) Fr=U—TS=fT,V,m,,...,m)
und erhilt die Variabeln S,p und g durch die Ableitungen:

0F 0% 0%
(150) S=——37V, P=—3—VK; U= amf‘

Sind wiederum die Massen m,, . .., m, und ausserdem Temperatur
und Druck als unabhingige Variable anzusehen, so bildet man das
bereits genannte thermodynamische Potential bei gegebenem Druck,
nimlich:

(151) Fp=U— TS—I—pV=2mu=f(T,p, My - ooy M)

84) L. Natanson, Ann. Phys. Chem. 42 (1891), p. 178.
85) J. E. Teror, J. physical Chem. (1897), p. 206—220.
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die Variabeln S, 7 und g ergeben sich dann aus den Gleichungen
a%p 3%1, a%I’
(152) S=—gp V="t =+ 5
Sind endlich ¥, T’ und die Potentiale p,, ..., u, gegeben, so ist
es notwendig und hinreichend, eine funktionale Beziehung zwischen
T, w,y .-+, 1 und p zu kennen, sagen wir

(153) p=¢(T, L CEERES I‘k);
alsdann bestimmen sich ndmlich die iibrigen Variabeln nach Gleichung

(147) durch die Formeln:

S _op m; __ 0p .
(154) v=im v o,
Die gleichen Beziehungen sind auch in dem Falle zu gebrauchen, wo

an Stelle des Gesamtvolumens die Gesamtmasse m, gegeben ist.
Denn in diesem Falle erhilt man das Volumen aus der Gleichung:

(154) . v 2k = Sm,.

Wiihrend wir bisher eine einzelne Phase eines chemischen Systems
betrachteten, wollen wir jetzt die Bedingungen fiir das Gleichgewicht
eines Komplexes verschiedener koexistierender Phasen ¢, 9", ..., ¢®
aufsuchen, deren jede aus allen oder aus einem Teil der %k Stoffe
A, B, ..., K besteht. Wie in dem Beispiel der Aggregatzustinde
aus Nr. 24 besteht ein solcher Komplex aus verschiedenen diskreten
Teilen, die sich ihrem physikalischen Zustande nach unterscheiden und
im Gleichgewichtsfalle neben einander koexistieren konnen, ohne sich
zu einer einzigen Phase zu vereinigen. Als Beispiel fiir koexistierende
Phasen kann uns der Fall dienen, wo kohlensaurer Kalk, Kalk und
freie Kohlensiure (CaCO,, CaO, CO,) im Gleichgewicht stehen; wir
haben hier drei Phasen, die aus den zwei Bestandteilen CaO und CO,
gebildet sind. Bei der Behandlung solcher Komplexe werden wir mit
Gibbs von dem Einflusse der Gravitation, von capillaren Spannungen,
elektrischen Kriften etc. absehen, werden das System als ein nach
aussen abgeschlossenes betrachten und iiberdies voraussetzen, was
keine Beeintriichtigung der Allgemeinheit ist, dass das System in eine
unnachgiebige Hiille eingeschlossen ist.

In Nr. 24 fanden wir bei einem einzigen Stoff als Bedingung der
Koexistenz zweier Phasen, dass ausser Temperatur und Druck die
thermodynamischen Potentiale {§, fiir beide Phasen gleich sein mussten.
Bei mehreren Stoffen verallgemeinert sich diese Bedingung in der
Weise, dass an die Stelle von , die Gibbs’schen Potentiale u treten,
die ja fiir den Fall eines einzelnen Stoffes in jenes Potential {§, tiber-
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gehen. Genauer gesagt: Wenn derselbe Stoff (z. B. K) in irgend zwei
Phasen (z. B. ¢" und ¢”) vorkommt und wenn g,” und y,” seine Poten-
tiale in diesen Phasen bedeuten, dann ist fiir das Gleichgewicht der
beiden Phasen erforderlich, dass

(155) wo=w;
ausserdem muss auch jetzt Druck und Temperatur in allen Phasen
gleich sein.

Zum Beweise bildet Gibbs die Variation U der Energie fiir die
Summe der verschiedenen Phasen ¢’, ¢”, ..., nimlich

OU="T088 —p oV 4 Su' 0w’

+ Tnas/r__p//an+ 2{1«"67"”
Diese Variation muss (vgl. Nr. 17a) positiv sein oder verschwinden
fiir alle Anderungen der Variabeln, welche die gesamte Entropie des

Systems, das Gesamtvolumen und die Gtesamtmasse jedes einzelnen
Bestandteiles ungefindert lassen; also unter den Bedingungen

08" 408" 4 .- =0,

oV 4+ oV 4 ... =0,

om, + dm, 4 --- =0.

Alsdann ergiebt sich aber mit Notwendigkeit:
T’:T":...’ p’:p”z...’ y,k'-_—_y,k"...

Es entsteht nun die Frage nach der grossten Zahl der Phasen,
die aus einer bestimmten Anzahl von Bestandteilen gebildet werden
konnen und deren jede mit jeder anderen im Gleichgewicht stehen
kann.

Wir haben gezeigt

1) dass die Existenz irgend einer Phase eine Beziehung zwischen
Druck, Temperatur und den Potentialen der chemischen Komponenten
des Systems mit sich bringt (Gl (153));

2) dass wenn verschiedene Phasen dieselbe Komponente enthalten
und im Gleichgewicht stehen, die Potentiale der Komponenten in allen
Phasen dieselben sein miissen (Gl 155). Endlich

3) dass Druck und Temperatur in allen Phasen beim Gleich-
gewichtszustande gleich sein miissen.

Hat man nun % Komponenten, so wird die Zahl der verschiedenen
Phasen, die im Gleichgewicht neben einander bestehen kinnen, durch
die Anzahl der Gleichungen von der Form

P=9 T,y -0y )
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gegeben, die durch dieselben Werte der Variabeln p, T, u,, ..., u;
befriedigt werden konnen. Durch blosse Abzihlung der Variabeln
folgt nun:

1) Es konnen nicht mehr als & 4 2 Phasen im Gleichgewicht
neben einander bestehen, weil sonst die Zahl der Gleichungen die Zahl
der willkiirlichen Variabeln iibertreffen wiirde.

2) Wenn % -4 2 Phasen thatséichlich koexistieren, so bestimmen
die Gleichgewichtsbedingungen die Werte der Variabeln vollstéindig;
daher kann dieser Fall nur eintreten, wenn Druck, Temperatur sowie
die Potentialwerte p je einen oder mehrere bestimmte diskrete Werte
haben. Solch ein System heisst ein ¢nvariantes, weil keine Zustands-
inderung vorgenommen werden kann, ohne dass das Gleichgewicht
einer oder mehrerer Phasen unmoglich wird. Der fragliche Zustand
wird als (k + 2)-facher Punkt oder auch als Multipelpunkt bezeichnet.
Der Tripelpunkt der vorhergehenden Nr. bildet die Spezialisierung
fir k= 1.

3) Bestehen nur k£ -4 1 Phasen neben einander, so besitzt das
System noch einen Grad der Freiheit und heisst univariant. Giebt
man entweder Druck oder Temperatur, so sind die Gleichgewichts-
werte der iibrigen Variabeln dadurch vollstindig bestimmt.

4) Wenn £ Phasen koexistieren, hat das System zwei Grade der
Freiheit und heisst bivariant. Jetzt konnen sowohl Druck als Tem-
peratur willkiirlich vorgeschrieben werden.

5) Wenn weniger als ¥ Phasen im Gleichgewicht sind, nidmlich
etwa ¢, so heisst das System multivariant und die Anzahl der Frei-
heitsgrade betrigt & 4 2 — <.

Diese Sitze bilden die Phasenregel von Gibbs®). Dass die Regel
auf wirkliche chemische Prozesse anwendbar ist, ist durch experimen-
telle Untersuchungen sicher gestellt.

Wenn eine Komponente in einer besonderen Phase giinzlich fehlt,
so verlangt der Schluss, der oben zu Gl.(155) fiihrte, dass das Potential
dieser Komponente in denjenigen Phasen, an denen sie beteiligt ist,
kleiner sein muss, als das Potential sein wiirde, wenn die Kompo-
nente in derjenigen Phase, wo sie fehlt, in einer unendlich kleinen
Menge anwesend wire. Man kann beweisen, dass die Regel iiber
die Anzahl der mdglichen Phasen durch die Abwesenheit einer Kom-
ponente in einer oder mehreren Phasen nicht hinfillig wird. Hin-
sichtlich der Unbestimmtheit, die vermodge der unbestimmten Integra-

86) Einen moglichst allgemein gehaltenen Beweis giebt C. H. Wind, Ztschr.
phys. Chem. 31 (1899), Jubelband fiir Van °t Hoff p. 390.
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tionskonstanten in den Ausdriicken fiir Energie und Entropie ver-
ursacht wird, gilt dasselbe wie in Nr. 24. Wenn zwei verschiedene
Phasen durch eine kontinuierliche Folge von Zustandsinderungen mit
einander verbunden werden konnen, fillt die Unbestimmtheit fort.
Es kommt indessen ofters vor, dass Stoffe neben einander auch
dann Bestand haben konnen, wenn die Gleichgewichtsbedingungen
der ,klassischen“ oder konventionellen Thermodynamik umkehrbarer
Vorgiinge iiberhaupt nicht genau erfiillt sind. So kann Wasser-
stoff und Sauerstoff bei gewdhnlicher Temperatur gemischt werden,
ohne dass sie sich vereinigen, wihrend sich unter der Wirkung
eines elektrischen Funkens die beiden Bestandteile explosiv vereinigen.
Solche Fille eines ,falschen Gleichgewichtes“ sind von Duhem5") durch
die Annahme eines Widerstandes erklirt, #hnlich dem Reibungswider-
stande der Statik, welcher dem Ubergange der Komponenten von
einer Phase in die andere entgegenwirkt. Ist der Potentialunterschied
des Stoffes in den beiden Phasen kleiner als der Grenzwert der
Reibung, so tritt kein Ubergang ein; ist der Potentialunterschied
grosser, so bricht das falsche Gleichgewicht zusammen. Wird der
Potentialunterschied dem Vorzeichen nach umgekehrt, so wirkt die
»Reibung® im entgegengesetzten Sinne. Eine Trennungskurve fiir ein
wahres Gleichgewicht, wie sie bei nicht vorhandener Reibung gelten
wiirde, wird beiderseits von einem Gebiete falschen Gleichgewichtes
begleitet. Uberschreitet der den Zustand des Systems repriisentierende
Punkt gerade dieses Gebiet, so kann es vorkommen, dass eine Ex-
plosion stattfindet. Wie Duhem gezeigt hat, lassen die Bedingungen,
unter denen dies zu erwarten ist, eine einfache geometrische Deutung zu.
Ein weiteres interessantes Feld der Untersuchung bilden die Re-
ziprozititssitze, die man erhilt, wenn man die verschiedenen Ausdriicke
fiir die zweiten Differentialquotienten der Funktion , einander gleich-
setzt, d. h. die Bedingung daftir hinschreibt, dass d, ein vollstindiges
Differential ist. Man erhilt so aus (152)
s v

o8 _  op
ov o opy __ Opy
(158) a‘-;”‘ = 9—5, (159) a—% == m ete.

G1. (158) wurde von G4bbs benutzt; Gl (159) ist von W. Lash Miller %8)
studiert, im Zusammenhang mit dem Dampfdruck, dem Siedepunkt
und Schmelzpunkt von ternidren Mischungen.

87) P. Duhem, Théorie thermodynamique de la viscosité etc. Paris 1896;
Traité élémentaire de méc. chim. Paris 1897, tome 1, livre 2, p. 201—293.
88) W. Lash Miller, J. physical Chem. 1 (1897), p. 633—642.
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297. Thermodynamik des galvanischen Elementes®). Die An-
wendung der Thermodynamik auf das galvanische Element wurde
zuerst von Lord Kelvin®) vorgeschlagen, indessen verdankt man die
strenge Durchfiihrung der Theorie Helmholtz°') und seinen Nachfolgern.
Um den Gegenstand unter den Gesichtspunkt der Thermodynamik
umkehrbarer Vorginge®®) zu bringen, muss man langsame Vorginge
mit schwachem Strom betrachten, bei denen die nicht umkehrbare
Verwandlung von Arbeit in Wérme, die beim Durchgange des Stromes
durch einen unvollkommenen Leiter stattfindet, zu vernachléssigen ist;
man definiert daher ein wmkehrbares Element dahin, dass sein physi-
kalischer und chemischer Zustand der urspriingliche wird, wenn man
eine Elektrizititsmenge m das eine Mal in der einen Richtung durch
das Element hindurchgehen lisst, und dann die gleiche Menge in der
entgegengesetzten Richtung hindurchschickt.

Der Zustand des Elements hingt daher von denselben Variabeln
(Temperatur, Druck etc.) ab, welche die sonstigen Systeme der Ther-
modynamik kennzeichnen, zu denen hier noch die Variable m hinzu-
kommt; m bedeutet dabei die gesamte, mit geeignetem Vorzeichen
versehene Elektrizititsmenge, die durch das Element in der positiven
Richtung von einer gegebenen Anfangszeit an hindurchgeflossen ist.
E sei die elektromotorische Kraft und es werde der Zuwachs dm
positiv gerechnet, wenn die Elektrizitit im Elemente von der nega-
tiven zur positiven Elektrode stromt. Sind die Elektroden beispiels-
weise mit einem Motor verbunden, so wird die Elektrizitdtsmenge dm,
indem sie von der positiven zu der negativen Elektrode iibergeht, die
dussere Arbeit Edm verrichten. Es entspricht daher der allgemeinen
Koordinate m als zugehorige allgemeine Kraftkomponente E; m und E
spielen hier dieselbe Rolle wie Volumen und Druck in den gewdhn-
lichen thermodynamischen Gleichungen.

Wenn der Zustand des Elementes nur von zwei Variabeln, z. B.
den Werten von 7 und m abhingt, haben wir

(160) AU=TdS — Edm;
bilden wir das thermodynamische Potential §,,, welches hier durch
¥ = U— T8 zu definieren ist, so wird

A, —— SdT — Edm.

89) E. F. J. Love, Thermodynamics of the voltaic cell, Austral. Assoc.
Rep. Sydney 1898.

90) Lord Kelvin, Phil. Mag. (4), 2 (1851), p. 429; Papers 1, p. 472.

91) H.v. Helmholtz, Berl. Ber. 1882, pp. 22, 825; 1883, p. 647; 1887, p. 749;
Abhdlg. 2, 8.

92) F. Braun, Ann, Phys. Chem. 5 (1878), p. 182.
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Hieraus folgt, da d,, ein vollstindiges Differential ist, mit Riicksicht
auf (160):

(161) (1), = Go)i= 7 (G 2) -

Mit Benutzung eines neuen Zeichens 4 erhiilt man:
(162) —— ()= 2= 1(7),.

Das Interesse dieser Gleichung, welche als Helmholtz’sche Gleichung
bekannt ist, liegt in der physikalischen Bedeutung von 4. 1 bedeutet
nimlich den Verlust an innerer Energie infolge von chemischen Um-
setzungen, die in dem Stromkreise bei festgehaltener Temperatur von
der Einheit der hindurchgehenden Elektrizititsmenge bewirkt werden.
Diese Energieéinderung ist genau ebenso gross, als ob dieselben Mengen
der verschiedenen im Element vorhandenen Stoffe dieselben Reaktionen
unter irgend welchen anderen Umstéinden eingingen, wobei sich die
Energie als Warme entwickeln wiirde. Da nun die Mengen der ver-
schiedenen Stoffe, welche sich verbinden, wenn der Strom Eins wihrend
der Zeit Eins durch das Element fliesst, die elektrochemischen Aqui-
valente dieser Stoffe genannt werden, so konnen wir sagen: 4 dst
gleich der algebraischen Summe der Bildungswarmen fir je ein elektro-
chemisches Aquivalent der in der Zelle wirksamen Stoffe (die Bildungs-
wirmen natiirlich in Arbeitseinheiten gerechnet). °

In dem (durch eine Gasbatterie realisierten) Falle, wo die Zelle
eine Ausdehnung eines Stoffes unter #usserem Druck bewirkt, ist
Gl. (160) zu ersetzen durch:

dU=TdS — Edm — pdV;
das thermodynamische Potential bei gegebenem Druck lautet jetzt

Smp=U—T8 + pV
und liefert

AFmp=—SdT — Edm + Vdp.
Wegen der Integrabilititsbedingung haben wir jetzt
(163) _OE oV oE o8 oV __ 08

Pp " om’ 9T om’ oT = 2p
Die erste dieser Gleichungen zeigt, dass die elektromotorische Kraft
einer Zelle mit dem Druck wichst oder abnimmt, je nachdem das
Volumen der Zelle durch die Erzeugung des elektrischen Stromes
verkleinert oder vergrossert wird.
Da nach dem Faraday’schen Gesetz der Elektrolyse o¥/om kon-
stant ist, hat man
ov_V,—V
mT T m .
Encyklop. d. math. Wissensch. V 1. 10
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wo m diejenige Elektrizititsmenge bedeutet, bei deren Durchgang
das Volumen von ¥, auf ¥, zunimmt. Man erhilt dann

(164) E, — E—fV“V

einen Ausdruck, der sich leicht integrieren lisst a) fiir feste Korper
und Fliissigkeiten, wo ¥ nahezu unabhiingig von p ist, b) fiir Gase,
die dem Boyle'schen Gesetze geniigen. Die Ergebnisse sind von
Gilbault ). mit der Erfahrung verglichen.

Einen etwas anderen Weg hat (fibbs®) eingeschlagen. Dieser
leitet, indem er den Carnot’schen Kreisprozess auf das Galvani’sche
Element anwendet, die Formel

(165) E=30—T

T,

ab, in der 7, die ,Ubergangstemperatur® bedeutet, d. h. diejenige
Temperatur, bei der die chemischen Reaktionen, die den Strom er-
zeugen, in beiderlei Richtung vor sich gehen konnen. Die letztere
Gleichung ist experimentell durch Cohen ), van ’t Hoff und Bredig®®)
bestitigt worden.

IV. Ableitung des zweiten Hauptsatzes aus den Prinzipien der
Mechanik °7).

%8. Ubersicht iiber die verschiedemen Methoden. Die Mole-
kularphysik ist innig mit der Vorstellung verkniipft, dass das, was
wir Wirmeenergie nennen, nichts anderes als Bewegungsenergie der
Kérpermolekiile ist. Diese Vorstellung erkléirt leicht den ersten Haupt-
satz, der dann nichts anderes als das Energieprinzip der rationellen
Mechanik wird; aber die Stellung des zweiten Hauptsatzes innerhalb
der Molekularphysik ist nicht so einfach. Viele Schriftsteller haben
durch dynamische Uberlegungen Gleichungen abgeleitet, welche der
thermodynamischen Gleichung d@ = T'dS #hneln; indessen wihrend
man auf solche Weise verstehen kann, wie Wirmeerscheinungen in
einem System von Molekiilen auftreten kénnen, deren Einzelbewegungen
den Gleichungen der rationellen Mechanik gentigen, kann man doch

98) H. Giilbault, Toulouse, Ann. 5 (1891), p. 5; Paris, C. R. 113 (1891), p. 465.

94) J. W. Gibbs, Brit. Assoc. Rep. 1886, p. 388; 1888, p. 343; Lodge, Brit.
Assoc. Rep. 1887, p. 340.

95) Cohen, Ztschr. physikal. Chem. 14 (1894), p. 53, 535.

96) Cohen, van ’t Hoff und Bredig, Ztschr. physikal. Chem. 16 (1895), p. 453.

97) Ausfiihrlicher berichten iiber diesen Gegenstand G. H. Bryan und
J. Larmor, Brit. Assoc. Rep. Part 1 1891, p. 85, Part 2 1894, p. 64. Vgl. auch
Enc. IV Art.Voss: Die Prinzipien der rationellen Mechanik, insbes. Nr. 48.
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nicht sagen, dass irgend eine jemer Uberlegungen es uns ermdglicht
hitte, den zweiten Hauptsatz zu entdecken, wenn wir nicht auf Grund
der Erfahrung von seiner Giiltigkeit gewusst hitten.

Die frithesten dynamischen Erklirungen des zweiten Hauptsatzes
scheinen zu sein: die Untersuchungen von Ramkine®®), die auf der
sog. Hypothese der Molekularwirbel beruhen, die statistischen Be-
trachtungen von L. Boltzmann®), die auf der kinetischen Gastheorie
fussen, die Beweise von R. Clausius ') und C. Szily '), die sich auf
das D’Alembert’sche oder Hamiltow'sche Prinzip griinden, verbunden
mit einer, gewGhnlich nicht klar ausgesprochenen Annshme, die wir
die ,Hypothese der stationiren oder quasi-periodischen Bewegungen®
nennen werden. Kine andere Methode, die auf der Betrachtung mono-
cyklischer und verwandter Systeme beruht, rithrt von H.v. Helmholtz 1°%)
her, wihrend der Grundgedanke dieser Methode wenn auch in weniger
bestimmter Form wohl schon friiher, z. B. in den vorher genannten
Arbeiten von Rawkine auftritt.

Was insbesondere das historische Verhiltnis der Arbeiten von
Clausius und Szily angeht, sei die folgende Bemerkung vorangeschickt:
Im Jahre 1872 wies C. Szily'®') darauf hin, dass der zweite Hauptsatz
der mechanischen Wirmetheorie nichts anderes sei als das Hamslton-
sche Prinzip der variierenden Wirkung. Demgegeniiber machte Clausius
geltend, dass die iiblichen Formen des Hamilfon'schen Prinzipes sich
nur auf Systeme mit konservativen Kriften beziehen, wihrend der
zweite Hauptsatz seinem Wesen nach auf die Umwandlung von
Wirme in Arbeit und umgekehrt angewandt werden soll, wobei die
dusseren, auf den Arbeitsstoff wirkenden Krifte nicht aus einem ein-
wertigen Potential abgeleitet werden konnen. Szily’'s Untersuchung
enthielt manche Fehler; namentlich unterschied er nicht deutlich
zwischen dem Wirmezuwachs d@ und dem Energiezuwachs dU.
Andrerseits scheint Clausius, der die Hamilton’'schen Arbeiten wohl
nur aus zweiter Hand kannte, den Begriff des Hamilfon’schen Prinzipes
zu eng gefasst und bei seinen Arbeiten das Hamalfow'sche Prinzip

98) W.J. M. Rankine Phil. Mag. (4) 10 1855), p. 354, 411; 1875, p. 241;
Papers London 1881 p. 16.

99) L. Boltzmann, Analytischer Beweis des zweiten Hauptsatzes, Wiener
Ber. 63 (2).

100) R. Clausius, Bonn. Sitz. Ber. (1869—70) p. 167; Phil. Mag. (4) 42 (1871)
p. 161, o
101) C. Szily, Ann. Phys. Chem. 145 (1872), p. 33?9; 149 (1873), p. 74; Phil.
Mag. (4) 43 (1872), p. 339; (5) 1 (1876), p. 21.

102) H. von Helmholtz, J. f. Math. 97 (1884), p. 111, 317.

10%*
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implicite neu abgeleitet zu haben. Die Darstellung in den friiheren
Arbeiten von Clausius war #usserst mithsam und undurchsichtig; es
bedurfte einer langen Reihe von Schriften zum Teil polemischen
Inhalts, die wihrend der Jahre 1871—76 von Clausius und Szily
publiziert wurden, bis der Gegenstand einigermassen klargestellt war.

Die einschligigen Untersuchungen zerfallen in zwei Klassen, nim-
lich in solche, welche hinsichtlich der Molekularbewegungen ein be-
stimmtes Verteilungsgesetz, z. B. das Boltzmann-Mazwell'sche Gesetz
der kinetischen Gastheorie zu Grunde legen, und in solche, welche
von einem derartigen Gesetz unabhiingig sind, dafiir aber andere An-
nahmen einfiihren. Die Untersuchungen der ersten Klasse beziehen
sich spezieller auf Gase und werden in dem Art. V 9 besprochen
werden; wir werden uns hier auf die Arbeiten der zweiten Klasse
beschriinken.

Die Unterscheidung zwischen Wérme- und Arbeits-Energie bringt
die Einfithrung von zwei verschiedenen Sorten von Koordinaten mit
sich, ndmlich der kowtrollierbaren Koordinaten, deren Abinderung sicht-
bare Anderungen im System hervorbringt, und der wnkontrollierbaren
Koordinaten, welche die Stellung des einzelnen Molekiils definieren.
Die letzteren Koordinaten befinden sich in fortgesetzter Verinderung,
aber die einzigen wahrnehmbaren Verinderungen finden statt, wenn
dem Korper als Ganzem Energie durch diese Koordinaten mitgeteilt
wird, eine Energie, die wir Wérme nennen und mit 4@ bezeichnen.
Die Energie, die dem Korper durch Abénderung der kontrollierbaren
Koordinaten mitgeteilt wird, ist in unserer Bezeichnung — dW.

29. Stationdire oder quasi-periodische Bewegungen'%®). Das zu
betrachtende System bestehe aus den Molekiilen me,, m,, ..., die sich
in den Punkten (x,, 4, 2,), (%3, ¥, %), - .. befinden. Die kontrollierbaren
Koordinaten seien p,, p;, ... L sei die lebendige Kraft speziell der
Molekularbewegung und V die gesamte potentielle Energie fiir beide
Arten von Koordinaten, so dass

1 . . .
L= m@ + ¢+ ¢,
ov v oV v
GV———Z(—%(M + 500y + 5, 02) —}—Z%(?p.
Man beweist leicht, dass'®*)

(166)

103) R. Clausius, ,,Abhandl* 2, p. 209ff.; Ann. Phys. Chem. 142 (1871),
p. 433; Suppl. 7 (1876), p. 215; 146 (1872), p. 585 und Phil. Mag. (4) 44 (1872),
p. 865; (4) 46 (1873), p. 236 etc.

104) Vgl. z. B. Thomson und Tait, Natural Philosophy, 2. Aufl., Cambridge
1883 1 § 327. .
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afndt — [Zm(ﬁvd‘x 1oy + z'&z):lz

(167) | & f\
+f{aL — ' m(aos + joy + zaz)} dt
4
Nach dem IPAlembert’schen Prinzip ist aber
2m(w6x—|—yéy—{—zdz)+2( dx —l—é—gd + 62) =0;

da nun ¥V sowohl von den kontrollierbaren wie von den molekularen
Koordinaten abhéingt, kann man mit Riicksicht auf (166) statt (167)
schreiben:

6j;Ldt = [ZM@M + 9oy + 262)]?
(167" l

fy
+ (1 +ov =3 op)ar

In der Thermodynamik vernachlissigt man allgemein die kinetische
Energie der sichtbaren Bewegung eines Korpers, d. h. die kinetische
Energie, die der Anderung der kontrollierbaren Koordinaten entspricht.
Schliessen wir uns dem an, so wird

ov

wo 0 W die gesamte dussere Arbeit bedeutet, die bei einer Veréinderung
der kontrollierbaren Koordinaten geleistet wird. Nach dem ersten
Hauptsatz gilt aber

0Q=0U+ W=0L+0V+oW.
Mithin ergiebt sich aus (167"

6f2Ldt—[2m(x5w+y6y+zdz) f&@dt

Setzt man noch das Zeitintervall £, — ¢, gleich n¢, unter » eine ganze
Zahl verstanden, und deutet man die Bildung von Mittelwerten durch
einen iiber dem fraglichen Buchstaben angebrachten Strich an, so folgt

8 (2niL) — [Zm (50w 4 ¢y + z‘dz)]i’—p- nidQ

[Sm@dx 4 9oy + 2822 .
nil

oder

(168)

S

=0 log (+.L)? —
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Wir wollen nun als Definition einer quasiperiodischen Molekular-
bewegung festsetzen: ¢ soll so gewdhlt werden konnen, dass

[Sm@dz + §oy + 292)]p

(169) nil.

entweder gleich Null wird oder unbegrenzt abnimmi, wenn man % un-
begrenzt wachsen ldsst; ¢ definieren wir in diesem Falle als Quasi-
Periode des Systems. Trifft unsere Bedingung zu, so gilt einfach

(170) ‘%‘? — 9 log GL)*

Folgen die Quasi-Perioden rasch aufeinander, wihrend die Ande-
rungen der kontrollierbaren Koordinaten und der Wirmefluss hin-
reichend langsam vor sich gehen, so kann man 8@ an Stelle von 6
schreiben. Die vorige Gleichung sagt nun aus, dass L ein integrie-
render Nemner von 0 ¢ ist und ist mithin dem thermodynamischen
Satze analog, dass T ein integrierender Nenner von 0 ist. Manche
physikalische Uberlegungen lassen es glaubhaft erscheinen, dass die
absolute Temperatur eines und desselben Korpers dauernd der kine-
tischen Energie seiner Molekiile proportional sei; wenn dies allgemein
richtig wire, so wiirde Gl (170) sich mit dem zweiten Hauptsatz der
Thermodynamik decken.

Man beachte, dass die Endgleichung (170) unabhingig von » ist
und daher durch Vergrisserung von n nicht gefindert wird, dass man
ferner statt ¢ irgend ein Vielfaches von ¢ setzen kann, ohne den Wert
von 0 log (¢L)® zu beeinflussen, so dass eine genaue Kenntnis von i
nicht erforderlich ist. Unzweifelhaft liegt in der Definition von ¢ eine
begriffliche Schwierigkeit'®). Im Falle der monocyklischen Systeme
(s. w.) oder rein periodischer Bewegungen ist die Bedeutung von ¢
leicht zu verstehen; nicht so in allgemeineren Fillen.

Die Annahme der Quasi-Periodizitit in der obigen Form lisst sich
allgemein rechtfertigen, wenn man es mit einem System zu thun hat,
welches nach der Ausdrucksweise von Bolizmann ,molekular unge-
ordnet” ist. Bei der stationiren Bewegung eines solchen Systems
sind entgegengesetzte Geschwindigkeitsrichtungen gleich wahrschein-
lich; iiberdies fiihrt der Umstand, dass die Bewegungen der einzelnen
Molekiile unkontrollierbar sind, zu dem Schlusse, dass bei allen in
erkhchkelt vorkommenden Lagenanderungen die Verschiebungen

105) Am deutlichsten spricht sich Clausius hieriiber in der Arbeit: Uber
einen neuen mechanischen Satz, Bonn. Ber. (1873), p. 137; Ann. Phys. Chem. 160
(1878), p. 106; Phil. Mag. (4) 46 (1873), p. 236, aus.
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0z, dy, 0z unabhingig sind von den Geschwindigkeitskomponenten
i, 9, %), Alsdann ist Sm (idx 4 yoy 4 202) eine Grosse, die mit
der Zeit fluktuiert und im Mittel Null ist; die Fluktuationen, die den
Bewegungsénderungen der einzelnen Molekiile entsprechen, werden klein
sein und werden in der Zeit nicht systematisch anwachsen. Nimmt
man also die Zeit ni hinreichend gross im Verhdltnis zu derjenigen
Zeit i, in der sich diese Fluktuationen abspielen, so kann man in der
That behaupten, dass der Ausdruck (169) beliebig klein gemacht
werden kann. Man bemerke noch, dass der Begriff der Unkontrollier-
barkeit die Annahme einschliesst, dass die Molekularbewegungen sehr
rasche sind und dass die Zeitintervalle, die wir bei den Zustandséinde-
rungen des Korpers als Ganzes zu betrachten haben, gross sind
gegeniiber der Zeit der Fluktuation der Molekularbewegungen.

30. Monocyklische Systeme. Ganz #hnliche Folgerungen hat
Helmholtz 1°%) aus der Betrachtung der monocyklischen Systeme ab-
geleitet.

Ein System heisst monocyklisch oder polycyklisch, wenn es eine
oder mehrere in sich zuriicklaufende Bewegungen enthilt, entsprechend
einer oder mehreren ,cyklischen” Koordinaten. Die besonderen Eigen-
schaften, die einer cyklischen Koordinate zukommen, sind folgende:

1) Die kinetische und potentielle Energie hiingt nicht von den
cyklischen Koordinaten g, selbst ab; in die kinetische Energie gehen
nur die Geschwindigkeitskoordinaten ¢, ein.

2) Bei Zustandsinderungen des Systems sind die Geschwindig-
keiten der nichtcyklischen kontrollierbaren Koordinaten (g,), sowie die
Beschleunigungen der cyklischen und nichteyklischen Koordinaten klein.

Bedeutet H die Lagrange’'sche Funktion H = L — ¥, so geben
die allgemeinen Lagrange’schen Gleichungen:

d (0H 0H
P=3(7) — %
fir die allgemeinen Kraftkoordinaten P, auf Grund der Festsetzungen
1) und 2):

d (0H ap,

wo p, die zu g, gehorige allgemeine Impulskoordinate ist.

106) Hitte man es andererseits in der Hand die Bewegungen der einzelnen
Molekiile in dem Sinne zu beeinflussen, dass ihre Verschiebungen in Beziehung
treten zu ihren Geschwindigkeiten, so wiirde ersichtlich die gesamte Energie
der Molekularbewegung in mechanische Energie verwandelt werden kdnnen und
der’ zweite Hauptsatz wiirde hinfillig werden.
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Infolgedessen wird die an den Koordinaten g, geleistete Arbeit
(172) dQ =2XP,q,dt =2Xq, db dt = X q,dp,

und der cyklische Teil der kinetischen Energie lautet als homogene
Funktion der Geschwindigkeitskoordinaten:

2L,=Zq,p,.
Fiir ein monocyklisches System gilt insbesondere:

aQ=qdp,, 2L,=q,p,,
woraus man schliesst

d
(173) ? dp, sowie TQ = 2d (log p,).

Es sind also sowohl ¢, wie L, integrierende Nenner von d @.
Dies entspricht der bekannten Thatsache, dass ein Differentialaus-
druck stets unendlich viele integrierende Faktoren zuldsst, wenn er
einen solchen Faktor besitzt. So ist auch in der Thermodynamik
die Temperatur nicht der einzige integrierende Nenner von d¢.
Helmholtz betont daher, dass der zweite Hauptsatz nicht durch die
Angabe erschopft wird, dass d @ iiberhaupt einen integrierenden Nenner
besitzt; vielmehr ist in die Aussage des zweiten Hauptsatzes aufzu-
nehmen, dass der integrierende Nenner die Eigenschaft der Temperatur
besitze, die in dem Satze enthalten ist, dass ,,Wirme von dem wir-
meren nach dem kilteren Korper iiberzugehen strebt®.

In dem allgemeinen Fall eines polycyklischen Systems wird d¢
im allgemeinen keinen integrierenden Nenner besitzen, es sei denn,
dass besondere Bedingungen erfiilllt sind. Eine solche Bedingung
wire die folgende: Man nehme hinsichtlich der Zustandséinderungen
des Systems an, dass die cyklischen Geschwindigkeitskoordinaten be-
stindig ihren Anfangswerten proportional sind. Bezeichnet man den
Proportionalititsfaktor mit » und deutet Anfangswerte durch den
Index ° an, so wird

9%=ng" p=np, L=nL",
wobei jetzt % die einzige Variable ist, und

adQ = Zngld(np.) = ndn2qp =2ndnlL®,
mithin
(174) 42 _ 2dlogn.

Diese Gleichung steht wieder in Ubereinstimmung mit dem zweiten
Hauptsatz und den Uberlegungen von Clausius und Seily.
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Eine andere Ableitung desselben Resultats giebt J. J. Thomson 7).
Bei dieser scheinen die notwendigen Voraussetzungen die folgenden
zu sein:

1) Die kinetische Energie enthélt keine Produkte ¢,g, von kon-
trollierbaren in unkontrollierbare Geschwindigkeitskoordinaten, sie ist
vielmehr von der Form L—I,+1,

2) Wenn die kinetische Energie der Molekularbewegung L, eine
der kontrollierbaren Koordinaten g, enthalten sollte, so muss dieses in
einem dem ganzen Ausdruck L, gemeinsamen Faktor geschehen, oder
mit anderen Worten, L, muss die Form haben f(g,) - ¢ (¢,). Trife
dieses nimlich nicht zu, so wiirden die wahrnehmbaren Erscheinungen
von einzelnen Molekiilgruppen mehr wie von anderen beeinflusst
werden.

31. Mechanische und statistische Bilder. Eine Anzahl von
Beispielen fiir monocyklische Systeme sind von Boltzmann %) u. a. an-
gegeben. Ein Watt'scher Regulator an der Dampfmaschine ist ein
einfaches Beispiel dieser Art, aber eine noch einfachere Verwirklichung
eines monocyklischen Systems liefert eine Welle mit einem radial
von ihr auslaufenden Arm, beide massenlos gedacht. Auf diesem
Arm kann ein Knopf von der Masse m entlanggleiten und die Lage
des Knopfes lésst sich durch einen in geeigneter Weise iiber eine
Rolle gefiihrten Faden regulieren oder ,kontrollieren® (vgl. den mitt-
leren Teil der Fig. 6). Den Abstand » des Knopfes von der Wellen-
mittellinie hat man als die kontrollierbare Koordinate anzusehen, der
Umdrehungswinkel 6 der Welle bildet die cyklische Koordinate. Man
zeigh leicht, dass fiir langsame Bewegungen des Knopfes, bei denen
die kinetische Energie der radialen Bewegung vernachlissigt werden
kann:

d .
22 — 2d10g (*0),

wo d@ die an der Koordinate 6 geleistete Arbeit bezeichnet. Be-
deutet p den zu 6 gehorigen Drehimpuls, ¢ die Dauer einer vollen
Umdrehung, so ist die rechte Seite gleich dlog (p?); dafiir kann man
auch, da 720 = 2L/m6@ — Li/m= ist, schreiben dlog(:L). Die
erstere Schreibweise entspricht den Entwickelungen von Nr. 30, die
letztere denen von Nr. 29.

107) J. J. Thomson, Applications of Dynamics chap. VI, p. 94 der engl.
Ausgabe.

108) L. Boltzmann, J.f. Math. 98 (1885), p.85; Vorlesungen iiber Maxwell's
Theorie, 1, Leipzig 1891, p. 8—23.
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Eine Abénderung!%®) dieses Mechanismus entsteht, wenn man die
Welle mit zwei Scheiben C und ) versieht, welche nacheinander in
Berithrung mit zwei Scheiben 4 und B gebracht werden konnen
(vgl. Fig. 6). Die Scheiben 4 und B mégen sich mit den unver-

N o anderlichen Winkelgeschwindig-
keiten @, und w, umdrehen und
tibertragen, wenn sie nach einander
mit den Scheiben C oder D in Be-
rithrung sind, diese Geschwindig-
keiten auf die Welle. Dieses
System kann man ein genaues
Gegenstiick eines Carnot’'schen
Kreisprozesses ausfiihren lassen,
wobei die Scheiben A und B die
%//////////%} Rolle von Quelle und Kiihler, die
7 Winkelgeschwindigkeit die Rolle
| Kiihler der Temperatur, und der zuge-
hérige Drehimpuls die Rolle der
Entropie spielt. Den Isothermen
des Kreisprozesses, lings denen der
Arbeitsstoff in Berithrung mit
Quelle oder Kiihler ist, entsprechen hier diejenigen Vorgénge, bei denen die
Welle gleichférmig rotiert und sich bezw. mit ihrer oberen oder unteren
Scheibe gegen A oder B gegenlegt, wihrend gleichzeitig der Dreh-
impuls mit der Stellung des Knopfes sich verindert. Den adiabati-
schen Linien des Kreisprozesses entspricht die freie Umdrehung der
Welle, welche bei konstantem Drehimpuls verlduft, wihrend gleich-
zeitig die Winkelgeschwindigkeit von w, nach @, abnimmt oder um-
gekehrt von o, bis o, zunimmt, in dem Maasse wie der Knopf an
seiner Fiihrung entlang gleitet. Sind ¢, und @, die Energiemengen,
die das System von der schneller laufenden Scheibe aufnimmt oder
die es an die langsamer laufende abgiebt, so ldsst sich zeigen,
dass @,/0, = @,/w,, entsprechend der thermodynamischen Gleichung
/T, =@/ T,.

Boltzmann *'°) hat ferner gezeigt, dass man von einem einzelnen
Teilchen ausgehend, dessen Bewegung monocyklische Eigenschaften
nicht zu haben braucht, allemal ein monocyklisches System konstruieren
kann, indem man eine grosse Anzahl solcher Teilchen oder Korper
hintereinander anordnet.

109) G. H. Bryan, Rep. Brit. Assoc. 1891 p. 108.
110) L. Boltzmann, J. f. Math. 98, (1885) p. 68.

A
‘Al

Fig. 6.
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Z. B. ist ein einzelnes Teilchen, welches eine Ellipse unter einer
vom Brennpunkte ausgehenden Kraft a/r? beschreibt, fiir sich nicht
monocyklisch; wohl aber bildet ein Strom von solchen Teilchen, dessen
Dichtigkeit an jeder Stelle unabhiingig von der Zeit ist — also eine
Art Saturnsring — ein monocyklisches System. Hier findet Boltzmann

d@Q = Ldlog %,;

als cyklische Koordinate kann dabei diejenige Massensumme gewihlt
werden, die durch irgend einen Querschnitt bis zur Zeit ¢ hindurchgeht.
Ein anderes Beispiel liefert ein Strom von Teilchen von der Ge-
samtmasse m, welche geradlinige Schwingungen unter dem Einfluss eines
konservativen Kraftfeldes ausfiihren. Hierbei wird d Q =2 Ldlog (i L),
wo ¢ die Schwingungsdauer. Die allgemeinen Geschwindigkeits- und
Impulskoordinaten kionnen dabei wie folgt gewdhlt werden
. 2¢L
D=7 D=
In dem besonderen Fall, wo ein Strom von Teilchen zwischen
zwei parallelen elastischen Winden im Abstand @ voneinander, hin
und her reflektiert wird, sei v die Geschwindigkeit des Stromes, {m
die ganze Masse, die sich in der einen oder anderen Richtung bewegt;
dann sind die allgemeinen Geschwindigkeits- und Impulskoordinaten
sowie die kinetische Energie in Ubereinstimmung mit den vorher-
gehenden Festsetzungen gegeben durch
mo _ 2a%q,* oL

Qb"-:'g*a'7 m pb=”a_q;=2a’v'

Dieses System ist strenge monocyklisch. Betrachtet man aber einen
Strom von Teilchen, der von den vier Seiten eines rechtwinkligen
Kastens unter den Winkeln D und 90°— D zuriickgeworfen wird, so
erhilt man ein System, welches nicht monocyklisch ist, sofern Ande-
rungen in der Grosse des Winkels D in Betracht gezogen werden.

Boltzmann hat schliesslich gezeigt, dass ein Gas, dessen Molekeln
nach dem Boltzmann- Maxwell'schen Gesetz verteilt sind, #hnliche
Eigenschaften besitzt, wie die monocyklischen Systeme von Helmholtz,
und dass die mittlere kinetische Energie der Translationsbewegung
seiner Teilchen ein integrierender Nenner von d@ wird. Néheres
hieriiber vgl. Art. V 9.

32. Analogien zum Wirmegleichgewicht. Der Satz, dass die
absolute Temperatur ein integrierender Nenner von d @ ist, setzt uns
nur in den Stand, verschiedene Temperaturen an dem gleichen Korper
zu vergleichen. Will man den zweiten Hauptsatz auf dynamischem
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Wege vollstindig beweisen, so hat man (a) zu definieren, wann zwei
verschiedene Korper im Wirmegleichgewicht sind, um so zu einer
Definition des Begriffes ,.gleiche Temperaturen in verschiedenen Korpern®
zu gelangen und (b) die nichtumkehrbaren Prozesse in die Mechanik
einzuordnen. In beiden Richtungen ldsst der augenblickliche Stand
der Wissenschaft noch viel zu wiinschen iibrig.

Helmholtz 1'*) hat ein dynamisches Bild des Wirmegleichgewichts
zwischen zwei Korpern ausgearbeitet, indem er die Bedingung dafiir
aufstellte, dass zwei monocyklische Systeme miteinander gekoppelt
werden koénnen, ohne dass Energie von dem einen zu dem andern
System iibergeht; als Beispiel denke man an zwei rotierende Wellen,
die bei gleicher Umdrehungsgeschwindigkeit miteinander gekoppelt
werden. Lautet die genannte Bedingung dahin, dass die integrierenden
Divisoren von d¢@ fiir beide Systeme gleich sein miissen, so heisst die
Koppelung isomor. Helmholtz findet nun, dass die allgemeinsten Formen
My, Mg des integrierenden Nenners bei isomorer Koppelung fiir beide
Systeme diese sind:

=1 (g;)%c, ny= L, (}%)20

(¢, B und ¢ Konstante, p,, p, die cyklischen Impulskoordinaten, L,, L,
die lebendigen Krifte der cyklischen Koordinaten in beiden Systemen).
Um weiterhin der Bedingung zu geniigen, dass, wenn zwei Korper
im Wiarmegleichgewicht mit einem dritten sind, sie auch im Warme-
gleichgewicht miteinander stehen, muss man verlangen, dass die
Koppelungsbedingungen die Form haben
¢ =Y=13,
wo ¢, nur von den Koordinaten und Zustandsgrossen des ersten, v,
von denen des zweiten, y, von demen des dritten Korpers abhingt.
Die allgemeinste Form der Grosse S, welche der Entropie des Systems
entspricht, nachdem das erste und zweite System miteinander gekop-
pelt sind, wird mittels der allgemeinen Impulskoordinaten p; und p,
durch eine Gleichung der folgenden Form bestimmt:

X)) =)+ ¥@) + 0,
wo @, ¥, X willkiirliche Funktionen bedeuten.

Nimmt man an, dass Energie von der Form d@ nur dadurch
einem monocyklischen System mitgeteilt oder entzogen werden kann,
dass es mit einem andern monocyklischen System gekoppelt wird
(man -vergleiche das oben beschriebene Modell eines Carnof’schen

111) H. von Helmholtz, J. f. Math. 97 (1884), p. 134,
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Kreisprozesses), so ergiebt sich das dynamische Gegenbild fiir die be-
grenzte Arbeitsfahigkeit der Wiarme in umkehrbaren Prozessen un-
mittelbar.

Analogieen fiir das Wirmegleichgewicht, die auf der kinetischen
Gastheorie beruhen, sind von J. J. Thomson *'?), sowie gemeinsam von
Boltzmann und dem Ref.'?) untersucht.

33. Nichtumkehrbare Erscheinungen. Diese aus der reinen
Dynamik zu erkliren ist unméglich, denn die dynamischen Gleichungen
stellen stets nur umkehrbare Bewegungen dar''*). Widerstinde nach
Art der Reibung oder Viskositit in diese Gleichungen einzufiihren,
verbietet sich hier von selbst. Denn das Vorhandensein von solchen
Widerstinden setzt die Umwandlung von mechanischer Energie in
Wirme voraus, wihrend es doch umgekehrt die eigentliche Aufgabe
der mechanischen Warmetheorie ist, die Wirmeenergie auf Mechanik
zurlickzuftihren. Andrerseits wiirde es dem ersten Hauptsatz wider-
sprechen, die von den Widerstiinden verzehrte Arbeit als verlorene
Arbeit anzusehen. ‘

Es giebt zwei Wege, um diese Schwierigkeit zu iiberwinden:

1) Bekanntlich wird Wérme in ausgiebigem Maasse durch Strah-
lung fortgepflanzt; eine vollstindige Warmetheorie miisste also nicht
nur die Dynamik der Molekiile, sondern auch die des umgebenden
Athers in Rechnung ziehen. Die Nichtumkehrbarkeit wird alsdann
durch die Annahme eingefiihrt, dass Wellenbewegungen von dem
Sitze der Gleichgewichtstorung ausstrahlen und nur teilweise dahin
zuriick konvergieren.

Wir verfolgen diesen Weg mnicht, weil er in die Physik des
Athers gehort und in Art. 23 besprochen werden wird.

2) Die Einfithrung von Wakrscheinlichkeitsbetrachtungen, die
iibrigens auch auf dem ersten Wege zu Hiilfe genommen werden,
erdffnet einen zweiten Ausweg aus diesen Schwierigkeiten. Wenn wir
sagen, dass ein wirmerer Korper 4 mit einem kélteren B in Beriihrung
gebracht wird, so meinen wir, dass durch kiinstliche Mittel zwei
Gruppen von Molekiilen 4 und B derart gekoppelt werden, dass die
Verteilung der Energie zwischen ihnen merklich von der durchschnitt-
lichen Verteilung abweicht. Die Wahrscheinlichkeit dafiir, dass eine
solche Abweichung bestehen bleibt, ist eine Grosse von solch ungeheurer
Kleinheit, dass wir ruhig behaupten kdnnen: sie bleibt nicht bestehen,

112) J. J. Thomson, Applications of Dynamics, London 1888, p. 91.
118) L. Boltzmann und G. H. Bryan, Wien. Ber. 103, Abt. 2a (1894), p. 1125.
114) Diesen Punkt bespricht H. Poincaré, Paris, C. R. 108 (1889), p. 550.
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oder: Temperaturdifferenzen miissen sich ausgleichen, die Energie-
verteilung strebt nach einem statistischen Gleichgewicht hin.
Die Clausius-Szily'sche Gleichung (168) fiihrt sofort zu der Formel

()5 <o,

wenn aus Wahrscheinlichkeitsbetrachtungen gefolgert werden diirfte,
dass bei den wirklichen Zustandstinderungen

[Zm (20z + yoy + 20217 > 0;

in der That kann diese Annahme bis zu einem gewissen Grade durch
die Betrachtung einfacher Beispiele gerechtfertigt werden, so durch
das obige Bild eines Stromes von Partikeln, die zwischen zwei paral-
lelen Winden hin und her fliegen, falls eine der Winde mit end-
licher Geschwindigkeit verriickt wird.

Allgemein wird man durch das Heranziehen der Wahrscheinlich-
keit auf die Methoden der kinetischen Gastheorie gefiihrt, wegen
deren wir auf Art.V 9 verweisen. Wir wollen hier nur die Boltzmann-
schen ') Untersuchungen nennen, welche die Entropie eines Systems
mit dem Wahrscheinlichkeitsindex der fraglichen Verteilung in Zu-
sammenhang bringen und ein jiingst erschienenes Werk von Gibbs''®),
in dem nachgewiesen wird, dass eine ,Mannigfaltigkeit von dynami-
schen Systemen statistische Eigenschaften von der Art der Temperatur
und Entropie besitzt und dass eine Koppelung von solchen Mannig-
faltigkeiten zu nichtumkehrbaren Erscheinungen Anlass giebt.

Ref. hat im Jahre 1900 ein davon wesentlich verschiedenes Ver-
fahren vorgeschlagen!”), indem er den Begriff von Energiebeschleuni-
gungen einfiihrte. Bedenkt man, dass nach der dynamischen Theorie
die Temperatur der kinetischen Energie der Molekiile proportional
und mithin eine quadratische Funktion der Geschwindigkeitskoordi-
naten ist, so wird man zu der Vermutung gefiihrt, dass beim Wirme-
gleichgewicht zwischen verschiedenen Korpern stets eine Bedingung
fiir die Energie der Korper erfiillt sein miisse, die sich als Gleichheit
zweier quadratischer Ausdriicke zwischen den Geschwindigkeitskoordi-
naten darstellt. Weiter wird, wenn die Gleichheit durch eine Ungleich-
heit ersetzt wird, die letztere den Sinn des Energieflusses bestimmen.

115) L. Boltzmann, Wien, Ber. 76% (1877), p. 373, 78% (1878), p. 7.

116) J. W. Gibbs, Elementary principles in statistical mechanics, New
York 1902.

117) G. H. Bryan, Haarlem Arch. néerl. (2) 5 (Livre Jubilaire, dédié a
H. A. Lorentz), Haag 1900, p. 279.
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Wir Dbetrachten ein System von Massen m in den Punkten
(x, y, 2) von den Geschwindigkeiten (u, v, w) mit der potentiellen
Energie V. Die Bewegungsgleichung fiir die z-Richtung

ey Pa 0V
dt dt? ox
liefert
d (1 oV
dt( mu) ———u—a—E

Bei nochmaligem Differentiieren wird speciell fiir den Massenpunkt 1

1 ov\2 0 0 o\ aov

(15) g (5 mow) = 5 () — 0 S g o 3+ 0 5) T
wobei sich die Summation iiber alle Massenpunkte 1, 2, ... % erstreckt.

Es moge nun die Wahrscheinlichkeit dafiir eingefiihrt werden,
dass die Koordinaten zwischen gegebenen Grenzen liegen; dieselbe sei
dargestellt durch die Funktion f(z,,...2,)dz,,...dz, und es sei
o ,... w,) du,...dw, die entsprechende Wahrscheinlichkeit fiir
die Geschwindigkeiten. Multipliziert man die vorige Gleichung mit

fo und integriert sie, so ergiebt sich, wenn eckige Klammern Mittel-
“werte bedeuten:

o ()] = 5 [(G2)

(176)3 ""[“12][am ] Ly 1][396 By] [y 0 J[@x 6zx]

_;;{[ulur][gw 3x]+[ 1 r][ajggyj+[ 1 W r 32:;;;‘}

Befindet sich die Energieverteilung im statistischen Gleichgewicht,
so miissen die durchschnittlichen ,Energiebeschleunigungen d. h. die
Glieder linkerhand Null sein. Weil aber die so entstehenden Glei-
chungen die Mittelwerte auch der Produkte der Geschwindigkeiten
enthalten, so muss man ebenfalls die Ausdriicke fiir die zweiten
Differentialquotienten oder die Beschleunigungen all dieser Geschwin-
digkeitsprodukte hinschreiben!®). Bei der Untersuchung des Energie-
gleichgewichtes bringen wir also die Beschleunigungen der Quadrate
und Produkte der Geschwindigkeiten zum Verschwinden, gerade so wie
wir bei den Fragen des gewthnlichen Gleichgewichtes die Beschleu-
nigungen der Koordinaten zum Verschwinden bringen.

118) Bei der Untersuchung von Flissigkeiten und isotropen Kérpern kénnen
die Gleichungen aus Symmetrieriicksichten erheblich vereinfacht werden, bei
einem Krystall dagegen lisst sich a priori nicht behaupten, dass irgend eines
von den Gliedern verschwinden miisste.
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Bisher ist dies Verfahren nur auf wenige Beispiele angewandt
und es bleibt spiteren Untersuchungen vorbehalten zu priifen, ob
oder unter welchen Umstéinden die Gleichungen des Energiegleich-
gewichtes der Systeme oder der Paare von gekoppelten Systemen auf
diejenigen einfachen Formen gebracht werden konnen, die in der
Wirmelehre die Bedingung der gleichmdssigen und der gleichen Tem-
peraturen darstellen.

(Abgeschlossen im Januar 1903.)

Berichtigung.

Die in dem vorstehenden Artikel Bryan enthaltenen Hinweise auf den
»folgenden Artikel* (p. 115, 118, 130, 133) beziehen sich nicht auf den hier -
niichst abgedruckten Artikel Hobson-DieBelhorst, sondern auf den Artikel

Kamerlingh-Onnes, welcher erst spiter erscheinen kann.
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y spezifische Wiirme.
0 Dichte.

E= Temperaturleitfahigkeit.

H sussere Wirmeleitfithigkeit (Konstante des Newton'schen Abkiihlungs-

gesetzes). ’
dussere Temperaturleitfihigkeit.
) #ussere Temperaturleitfiihigkeit eines linearen Leiters (im Teil II
mit & bezeichnet; vgl. Nr. b und 15).

%i1y #19,-.. Konstanten der Wiirmeleitung in einem Krystall.
%, %y, g die Hauptwiirmeleitfihigkeiten.
ky, ky, k, die Haupttemperaturleitfahigkeiten.
w,, ©,, o, die Konstanten des rotatorischen Wirmeflusses.

I. Mathematischer Teil (Rechnungsmethoden).

1. Aligemeines iiber Dissipation der Energie. Alle physikalischen
Prozesse, welche ein System durchmachen kann, sind entweder 1) um-
kehrbare oder reversible Prozesse, oder 2) nicht umkehrbare oder
irreversible Prozesse. Unter 1) versteht man solche Prozesse, die
sich vollstindig riickgingig machen lassen, derart, dass nicht nur der
Endzustand des betreffenden Systems genau gleich ist dem Anfangs-
zustand, sondern dass auch ausserhalb des Systems keine bleibende
Anderung eingetreten ist. Unter 2) versteht man solche Vorginge,
welche keine derartige Umkehrung zulassen; bei diesen kann das
System nicht in seinen fritheren Zustand zuriickgebracht werden, ohne
dass ausserhalb des Systems eine dauernde Anderung verursacht wor-
den ist. Die Erfahrung lehrt, dass alle Prozesse, welche in der Natur
stattfinden, unter 2) fallen, néimlich, dass alle wirklichen Vorginge
nach einer bestimmten Richtung hin verlaufen, und dass die Mittel,
welche uns zur Verfiigung stehen, nicht hinreichen, irgend ein mate-
rielles System so zu leiten, dass es einen streng reversibeln Prozess
durchmacht; ein reversibler Prozess ist also ein idealer Begriff, der
nur als Grenzfall eines natiirlichen Vorgangs zu betrachten ist.

Bei Zugrundelegung der beiden Prinzipien der Erhaltung der Energie
und der Erhaltung der Masse, hat eine mechanische Beschreibung der
Natur zum Ziel, die verschiedenen Formen, welche die Energie an-
nimmt, zu klassifizieren und die Gesetze, welchen die Umwandlung
der Energie von einer Form in eine andere unterworfen sind, zu er-
griinden. Die Erfahrung lehrt, dass unser thatsichliches Vermégen
Energie. zu leiten und fiir unsere Zwecke nutzbar zu machen, ein sehr
verschiedenes ist, je nach der Form, in welcher die Energie auftritt;

11*
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namentlich iiber die Energie solcher verborgener Bewegungen, welche
in den Molekiilen der Materie stattfinden, ist unsere Macht viel ge-
ringer als iiber die Energie der Molarbewegungen. Prozesse, bei
welchen die Quantitit Energie, woriiber wir verfiigen konnen, be-
stindig abnimmt, heissen dissipative Prozesse; die Verwandlung der
Enelgle von einer Form in eine andere weniger nutzbare, oder auch
eine Anderung in der Verteilung der Energie unter Beibehaltung
ihrer Form, derart, dass ihre Nutzbarkeit abnimmt, heisst Dissi-
pation der Energie?). Die Dissipation wird durch die quantitative Ab-
nahme der nutzbaren Energie gemessen; bei jedem natiirlichen Vor-
gang findet, wenn man die ganze KErscheinung in Betracht zieht,
Dissipation in grdsserem oder kleinerem Mass statt; eben deswegen
kommt kein vollkommen reversibler Prozess in der Natur vor.

Der Begriff der Dissipation ist ein rein relativer; er bezieht sich
ndmlich auf unsere thatsichliche Macht iiber die Dinge?). Dissipirte
Energie ist solche, die wir nicht beherrschen; nutzbare Energie ist
hingegen solche, die wir in irgend eine erwiinschte Bahn leiten
konnen. In der mechanischen Wirmetheorie, aus welcher der Begriff
der Dissipation entstanden ist, tritt das Prinzip der Dissipation im
zweiten Hauptsatz der Thermodynamik auf, und nimmt in der Lehre
von der Entropie (vgl. den vorangehenden Art. Bryan, Nr. 11—13)
eine bestimmte Form an.

Einer der wichtigsten dissipativen Prozesse ist die Wirmeleitung,

1) Die Erfahrungsthatsache der Dissipation hat Lord Kelvin (W. Thomson)
in den folgenden Siitzen formuliert — siehe den Aufsatz ,,On a Universal Ten-
dency in Nature to the Dissipation of Energy“, Edinb. Proc. 3 (1852), p. 139
und Phil. Mag. 4 (1852), p. 258, 304, auch ,Mathematical and Physical papers¢ 1
p. 511,

(1) There is at present in the material world a universal tendency to the
dissipation of mechanical energy.

(2) Any restoration of mechanical energy, w1thout more than an equivalent of
dissipation, is impossible in inanimate material processes, and is probably
never effected by means of organized matter, either endowed with vege-
table life or subjected to the will of an animated creature.

(3) Within a finite period of time past, the earth must have been, and within
a finite period of time to come the earth must again be unfit for habi-
tation of man as at present constituted, unless operations have been or
are to be performed, which are impossible under the laws to which the
known operations going on at present in the material world are subject.
2) Uber die Relativitit des Begriffs der Dissipation vgl. eine Bemerkung

von Helmholtz, J. f. Math. 100 (1887), p. 142, auch Maxwell, Encyclopaedia
Britannica, 9. Aufl., Diffusion, p. 220. Siehe auch Mazwell's ,/Theory of Heat*,
p. 192
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bei welcher eine nicht umkehrbare Anderung in der Verteilung einer
gewissen Art molekularer kinetischer Energie unter dem Bild einer
Wirmestromung aufgefasst wird. Die Erzeugung der Wirme durch
Reibung und die Absorption von Wirme- oder Lichtstrahlen sind
ebenfalls dissipative Vorginge; die Dissipation tritt auch hei der
Diffusion der Gase auf, einer Erscheinung, die sich nach den Prin-
zipien der kinetischen Gastheorie erkliren lasst. Der Hauptgegen-
stand, der in diesem Artikel behandelt wird, ist die Wirmeleitung;
die Verfolgung der anderen zahlreichen dissipativen Prozesse gehort
in die verschiedenen Einzelgebiete der Physik und Chemie, welche
sich mit diesen Prozessen befassen.

Ihrer mathematischen Behandlung nach weisen die verschiedenen
dissipativen Vorginge eine gewisse ,Familiendhnlichkeit” auf, so dass
ihre Theorie mehr oder minder enge an die Theorie der Wirme-
leitung als den am lédngsten und besten bekannten Typus der dissi-
pativen Prozesse angeschlossen werden kann. Dies gilt namentlich
von der Elektrizititsleitung und der Diffusion, welche letztere hier
anhangweise zur Sprache kommen wird.

2. Die Grundlagen der Theorie der Wirmebewegung. Die der
Hauptsache nach von Fourier begriindete®) Theorie der Wérme-
bewegung befasst sich mit der aus der Erfahrung bekannten That-
sache, dass zwei Teile desselben Korpers, oder zwei mit einander in
Berithrung stehende Korper von verschiedener Temperatur, den be-
stehenden Temperaturunterschied allméhlich ausgleichen, indem der
wirmere Korper oder Korperteil kiihler und der kiihlere wiirmer
wird. Diese Erscheinung stellt man sich als eine Bewegung der
Wirme vom wirmeren zum kiihleren Korper vor. Man unterscheidet
drei wesentlich verschiedene Vorginge, durch welche der Ubergang
der Wirme von einer wirmeren an eine kiihlere Stelle geschehen
kann: 1) Strahlung, wenn die Korper von einander getrennt sind und
das dazwischen liegende Medium von der Art ist, die man diatherman
nennt; 2) Leitung, wenn die Korper sich beriihren oder wenn die Wirme-
bewegung in einem athermanen Korper stattfindet; 3) Konvektion, wo
in einem fliissigen Korper Strémungen der Materie durch die Tem-
peraturunterschiede verursacht werden.

3) Als Vorginger Fourier's ist namentlich J. B. Biot zu nennen, der fiir
den Fall des stationiiven Wirmeflusses den heutzutage meist nach Fourier be-
nannten Ansatz bereits vollstindig entwickelt hatte. Vgl. Mémoire sur la pro-
pagation de la chaleur, lu & la classe des sciences math. et phys. de 1'Institut
national (Bibl. britann. Sept. 1804, 27, p. 810), sowie Traité de phys. 4, p. 669,
Paris 1816.
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Der mechanischen Wirmelehre gemiss werden die Wirmeerschei-
nungen in einem athermanen Koérper auf Bewegungen der Molekiile
oder der Atome zuriickgefiihrt; die Wirmeleitungstheoric wire also
innerhalb der mechanischen Naturauffassung als Theorie der Fort-
planzung der betreffenden molekularen Bewegungen zu klassifizieren;
mit etwaiger Ausnahme der gasférmigen Korper reichen aber unsere
gegenwirtigen Kenntnisse iiber die molekulare Beschaffenheit der
Korper nicht aus, um einen solchen Weg gangbar erscheinen zu
lassen. Als Fourier*), Poisson®) und andere die Wirmeleitungstheorie
begriindeten, existierte die mechanische Wirmetheorie im modernen
Sinn noch nicht, und trotzdem diese seither eine in vielen Hinsichten
recht erfolgreiche Entwickelung durchgemacht hat, sind wir doch
nicht im Stande, eine rein mechanische Theorie der Wirmeleitung
in festen oder in flilssigen Korpern aufzustellen. (Hochstens konnte
man in diesem Zusammenhange darauf hinweisen, dass die ,Haupt-
16sung® der Wiarmleitungsgleichung (s. Nr. 6 und 7 dieses Art.) aufs
Lebhafteste an die Verteilungsgesetze der Wahrscheinlichkeitsrech-
nung erinnert, auf welche ja fraglos die Fortpflanzung der Molekular-
bewegungen zu basieren sein wiirde.) Dementsprechend hat man
in dieser Theorie verschiedene Hilfsbegriffe nétig, wenn man die
betreffenden Erscheinungen {iberhaupt einer mathematischen Be-
handlung zuginglich machen will, d. h. wenn man viele Fille ein-
heitlich zusammenfassen und allgemeine Sitze aufstellen will. Ausser-
dem werden in der mathematischen Behandlung der Krscheinungen
verschiedene Voraussetzungen gemacht®), welche sogar bei missigen

4) Fourier’s Schriften tiber die Wirmetheorie nebhmen ihren Anfang in
einem im Jahre 1808 im Bull. des Sci. verdffentlichten Auszug aus einer im voran-
gehenden Jahre eingereichten Denkschrift (vgl. Oeuvres 2, p. VII). Im Jahre 1811
fasste Fourier eine Abhandlung mit dem Titel ,,Théorie du mouvement de la chaleur
dans les corps solides* ab; dieselbe wurde aber erst in den Jahren 1824, 1826 in
Par. Mém. 4, 5 verdffentlicht; weitere Schriften erschienen in Par. Mém. 7 (1827);
8 (1829); 12 (1833). Eine Reihe Schriften iiber die Wirmetheorie befinden sich
auch in Ann. Chim. Phys. 3 (1816); 4 (1817); 6 (1817); 13 (1820); 27 (1824);
28 (1825); 37 (1828). In seinem im Jahre 1822 erschienenen Werke ,,Théorie
analytique de la chaleur* hat Fourier den mathematischen Teil seiner Unter-
suchungen iiber Wirmeleitung zusammengefasst; seinen Plan, eine ergiinzende
,théorie physique® zu schreiben, hat er nicht ausgefiihrt.

5) Poisson’s Untersuchungen sind in seinem Werke ,,Théorie mathématique
de 1a chaleur®, Paris 1835, enthalten. Siehe auch J. éc. polyt. 12, cah. 19 (1828).

6) Eine Kritik der der Fourier- Poisson’schen Wirmeleitungstheorie zu
Grunde liegenden Voraussetzungen giebt W. Hergesell, Ann. Phys. Chem. 15
(1882), p. 19; daselbst wird die Dehnung eines leitenden Korpers unter gewissen
Voraussetzungen in Betracht gezogen. Ansitze zu einer solchen Kritik schon
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Temperaturiinderungen nur anndhernd der wirklichen Erfahrung
entsprechen; der Grad, in welchem die theoretischen Resultate
den wirklichen Vorgingen entsprechen, kann nur durch Beobach-
tungen bestimmt werden; dass wir thatséchlich in vielen Fillen die
erforderlichen Mittel besitzen, solche Vergleiche auszufiihren, und
den physikalischen Wert der hochstens nur annéhernd richtigen
mathematischen Theorie zu schitzen, wird im zweiten Teile dieses
Artikels dargethan werden.

Der erste Begriff mit dem wir es zu thun haben, ist der der
Temperatur, als Grosse betrachtet. Begrifflich wird die Temperatur
in einem jeden Punkt eines Korpers durch ein unendlich kleines
Thermometer ohne Wirmekapazitit gemessen, welches an den be-
treffenden Punkt gebracht wird; die Temperatur in einem Punkt
wird als Funktion sowohl der Lage des Punktes als auch der Zeit
betrachtet.

Andere Begriffe, welche eine Hauptrolle in der Theorie spielen,
sind die der Warmemenge und die der spezifischen Wiirme.

In der mechanischen Wirmelehre wird eine Wirmemenge durch
eine Energiegrosse gemessen; wenn sie einem Korper oder Korperteilchen
zugefiihrt wird, so wird ein Teil davon auf TemperaturerhGhung ver-
wandt, der andere Teil wird aber in irgend eine andere Energieform
verwandelt, oder auf Arbeitsleistung verbraucht, indem das Volumen
des Korpers geindert wird. In der Wirmeleitungslehre hingegen
wird vorldufig angenommen, dass, wenn eine Wirmemenge einem
Kérperteilchen zugefiihrt wird, ihre einzige Wirkung in einer Tempe-
raturerhGhung des betreffenden Korperteilchens besteht, dass also keine
Anderung des Volumens stattfindet und kein Umsatz in andere Energie-
formen Platz greift. Das Mass fiir die Warmemenge ist in der
Theorie der Wirmeleitung das kalorimetrische.

Wenn ein Korperteilchen von der Masse m eine unendlich kleine
Wirmemenge 0 ¢) gewinnt, so bezeichnen wir die dadurch verursachte
Temperaturerhhung durch du, wo u die urspriingliche Temperatur
des Teilchens darstellt; dann besteht die Gleichung 0 ¢ = mydu, wo

bei Duhamel, J. éc. polyt. cah. 25 (1837), p. 1; J. Liouville, J. de math. 2 (1837),
p. 439; Duhamel, Par. sav. [étr.] 5 (1838), p. 440; J. éc. polyt. cah. 36 (1856),
p. 1; J. Amsler, Schweiz. N. Denkschr. 12 (1852) (abgedr. J. f. Math. 42 (1851),
p. 327).

Wirmeleitung unter Zugrundelegung des Dulong- Petit’schen (vgl. Anm. 12)
statt des Newton’schen Erkaltungsgesetzes (s. Gl. (4)) fiir den Wiirmeaustausch
zwischen benachbarten Molekeln bei G. Libre, J. f. Math. 7 (1831), p. 116; J. Liou-
ville, J. de math. 3 (1838), p. 350.
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der Wert von p im allgemeinen von # und von der Beschaffenheit des
Stoffs abhiingt. Die Grosse p heisst die spezifische Warme des Kérper-
teilchens; es wurde von I'ourier und seinen Nachfolgern angenommen,
dass sie unabhiingig von der Temperatur u sei; obgleich wir nun
wissen, dass dies in Wirklichkeit nicht der Fall ist, nicht einmal unter
der obigen Voraussetzung, dass das Volumen des Teilchens keine Ande-
rung erleidet, wird Fourier's Annahme doch meistens in der mathe-
matischen Theorie beibehalten?).

Wenn eine Platte®) von isofropem homogenen Stoff durch zwei
Ebenen von grosser Ausdehnung begrenzt ist, und die Temperaturen
4y, #; in diesen Ebenen konstant erhalten werden, so fliesst Warme
von der wirmeren (u,) nach der kilteren Seite (u,) durch die Platte;
die Wirmemenge ¢), die in der Zeit ¢ durch die Platte hindurchgeht,
ist proportional mit der Oberfliche I der Platte, proportional mit der
Zeit t, und umgekehrt proportional mit der Dicke der Platte; da sie
iiberdies verschwindet, wenn wu, = u,, so setzt man
M Q=n"gl By,
worin % ein Faktor ist, der im allgemeinen eine Funktion der beiden
Grenztemperaturen u,, u, ist. Es wird nun als annéhernd richtig an-
genommen, dass % unabhiéngig ist von den Grenztemperaturen, und
nur vom Material der Platte abhingt; » heisst die (innere) Leitungs-
fihigkeit der Substanz der Platte.

Im Falle eines athermanen Stoffes macht man weiter die Annahme,
dass ein Wérmeaustausch nur zwischen unmittelbar an einander grenzen-
den Teilen des Korpers stattfindet, man schliesst also die Wirme-
strahlung auf endliche Entfernungen ginzlich aus. Wenn 0 F eine
kleine ebene Fliche ist, welche einen Punkt P eines solchen Kérpers
enthilt, und 0 @ die Warmemenge bezeichnet, welche in der Zeit d¢
durch 0 F hindurchfliesst, so heisst der Grenzwert von

30

oF ot’
wenn 0 @, 0¢, 0 F unendlichklein werden, der Wiéirmestrom im Punkt P
senkrecht zur Oberfliche 0 F. Durch Betrachtung der Wirmemengen,
welche durch die Oberflichen eines unendlich kleinen Tetraeders
fliessen, in Verbindung mit der Annahme, dass Wirme weder zerstort
noch in andere Energieformen umgewandelt wird, kann man sodann
zeigen, dass der Wirmestrom ein Vektor ist, dass also der Wirme-

7) Ein Ansatz zur Behandlung des allgemeinen Falles bei Fourier, Par.
mém. 8 (1829), Oeuvres 2, p. 180.
8) Vgl. Fourier, ,,Théorie", chap. I, sect. IV, sowie Biot (1. c. Anm. 3).
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strom in der Richtung (I, m, n) gleich 1D, 4 m¥ 4 »n8, ist, worin
,, 8, 0, die Wirmestréme in den Richtungen der Koordinaten und
l, m, 1 die Richtungskoeffizienten bezeichnen. Man nennt die Resul-
tante von £, 0, 0, den Wirmestrom 2. im Punkte (z, y, z); die
absolute Grosse dieses Vektors misst die Intensitit des Wirme-
stromes; 0, 0, £ heissen die Komponenten des Wiirmestroms.

Es wird vorausgesetzt, dass die Temperatur » im Punkte (z, y, 2)
zur Zeit ¢ im allgemeinen eine stetige Funktion der Koordinaten z,
¥y, z, t ist, welche stetige differentiierbare Derivierte nach diesen Ko-
ordinaten besitzt?); daraus folgt, dass zu einer jeden bestimmten Zeit ¢
stetige Fliachen existieren, auf welchen die Temperatur konstante
Werte hat; diese Flichen heissen isotherme Flichen. Weiter folgt
aus der Annahme, dass der Wirmestrom in einem Punkte nur von
der Verteilung der Temperatur in der Umgebung des Punktes ab-
hingt, dass in einem isotropen Korper der Wirmestrom immer senk-
recht zu derjenigen isothermen Fliche gerichtet ist, auf welcher der
betreffende Punkt liegt, und ferner, dass die Grosse des Wirmestroms
durch — %9u/én ausgedriickt wird, wo dn ein Element der Normalen
zur isothermen Fliche hezeichnet. Der Ausdruck — ou/on misst das
Temperaturgefille; der Wirmestrom kommt also dem Produkt aus Tempe-
raturgefille und Leitungsfahigkeit gleich. Da auch das Temperaturgefille
ein Vektor ist, so sind die Komponenten des Wirmestroms £:

w w (12
(2) (gm gy? D‘:) = (-—%g:'z,’ - x%) '_”g;)

Wenn zwei verschiedene Korper sich an einer Grenzfliche he-
rithren, erleiden im allgemeinen die Komponenten des Warmestromes
einen Sprung an der Grenzfliche, aber die Komponenten in der Rich-
tung der Normale haben in beiden Koérpern denselben Wert. Von
Fourier wird ausserdem angenommen, dass die Temperatur an der
Grenzfliche keinen Sprung macht; die beiden Grenzbedingungen sind
unter dieser Voraussetzung
3) u=u lx%—}—mxgz + nu-g-gi = lx'aa?;— + mx 21;/ + nx’%%,
worin %, x” die Leitungsfihigkeit der beiden Korper, u, w" ihre Tempe-

9) Selbstverstindlich ist diese Voraussetzung mit der Vorstellung vom
molekularen Aufbau der Materie strenge genommen unvereinbar, wie {iberhaupt
die Behandlung der physikalischen Erscheinungen in ponderabeln Kérpern
mittels partieller Differentialgleichungen gewisse prinzipielle Schwierigkeiten
aufweist. Vgl. hierzu G. Prasad, Constitution of Matter and Analytical Theories
of Heat. Gottinger Abhdlgen. (Neue Folge) 2 (1903) Nr. 4; insbesondere
Part. II und III.
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raturen, I, m, n die Richtungskoeffizienten der Normale im Punkte
(%, 9, 2) der Grenzfliiche bedeuten. Von Poisson ) wird die erste der
obigen Bedingungen allgemeiner gefasst; er nimmt an, dass an der
Grenzfliche zweier fester Korper, dhnlich wie man fiir die Grenzfliche
eines festen Korpers und einer Fliissigkeit (vgl. Gl. (4)) anzusetzen
pﬂegt'

+ mu —}—mc =5 -+ mx’da“ +nx = = q(u —u),

Wo ¢ eine von der Beschaffenheit der beiden Korper in der Nihe der
Grenzfliche abhiingige Grosse ist. Mit ¢ = oo folgen hieraus im be-
sonderen die GL (3).

Wenn ein fester Kérper von Luft oder von einer anderen Fliissig-
keit umgeben ist, so wird die Wirmemenge, welche vom Korper an
die Fliissigkeit oder umgekehrt abgegeben wird, zum Teil durch
Leitung, zum Teil durch Strahlung an der Grenzfliche bedingt; es
werden aber auch Bewegungen in der Fliissigkeit entstehen, und
daher die Temperaturdnderungen in der Nihe der Fliche zum Teil
durch Konvektion hervorgerufen werden. Diese komplizierten Vorginge
der Berechnung zu unterwerfen wire unmoglich ohne eine Hypothese,
die die Wirkung aller drei Prozesse einigermassen richtig zusammen-
fasst. Man macht die Hypothese, dass die Warmemenge, welche durch
ein Flichenelement 0F in der Zeit 0¢ stromt, proportional mit
(u — 1) 0 Fd¢t ist, wo u die Temperatur des festen Korpers, u, die-
jenige der Fliissigkeit in der Nahe des Elements d F bedeutet; dieser
Hypothese gemiss lautet die Bedingung an der Grenzfliche'')

,9u

) — x5 = H(u — up),

worin dn ein Element der nach der Fliissigkeit gerichteten Normale
bedeutet, und H eine von der Beschaffenheit der beiden Substanzen
abhiingige Grosse ist, welche die dussere Leitungsfihigkeit des Korpers
genannt wird. Diese Gleichung soll die Gesamtwirkung von Leitung,
Strahlung und Konvektion darstellen, und driickt das sogenannte
Newton'sche Gesetz der Abkiihlung aus; dasselbe kann jedoch nur als
eine erste Niherung bei hinreichend kleinem Temperaturunterschiede
# — uy gelten. Dulong und Pefit haben zuerst versucht, dasselbe
unter Ausschluss von Wirmestrahlung durch eine auf Beobachtung
basierte Formel zu ersetzen!?). Die Wiarmeabgabe durch Strahlung

10) Poisson, ,,Théorie*, p. 127; J. ée. polyt. cah. 19, p. 107.
11) Fourier, ,Théorie*, chap. II, sect. VIL
12) Dulong und Petit, Annal. chim. phys. 7 (1817), p. 225, 337; Hinfiihrung
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andrerseits wird nach dem heutigen Stande der Wissenschaft durch
das Stefan’sche Gesetz'®) gegeben, wobei man der Wirmeabgabe nach
Dulong und Petit diejenige nach Stefan zu iiberlagern hat. (Vgl
hierzu Nr. 21 dieses Art.)

3. Die partielle Differentialgleichung der Wirmebewegung in
einem isotropen festen Korper. Allgemeine Sitze. Bel Beriicksich-
tigung der in Nr. 2 angegebenen Voraussetzungen und Definitionen
ist es nun moglich, die partielle Differentialgleichung aufzustellen,
welcher die Temperatur u(z, ¥, 2, {) im Inneren eines isotropen festen
Korpers Geniige leistet. Es sei 6 eine innerhalb des leitenden Korpers
liegende geschlossene Fliche, p die spezifische Warme, ¢ die Dichtigkeit
der Materie in einem Punkt auf oder innerhalb der Fliche ¢. Da
keine Wirme innerhalb ¢ erzeugt wird, so besteht die Gleichung

e

worin I, m, n die Richtungskoeffizienten der auf de nach innen ge-
richteten Normale bedeuten, das dreifache Integral sich auf den Raum
innerhalb ¢ bezieht, und das doppelte Integral auf die Oberfliche
von ¢. Indem man das Flichenintegral durch ein Volumenintegral
ersetzt, erhidlt man

ff.f Qat a gZ) a%("gg)—aa;(”gg)}dxdydz=

Da die Fliche ¢ eine willkiirliche ist, so muss in jedem Punkt inner-
halb des leitenden Korpers die Gleichung

ou- 0 ow 0 ( 0u 0 ( Ou
®) 70 5~z (*0) ~ g (May) 7z (#32) = O
erfiillt werden. Falls der Korper homogen ist, nimmt (5) die Form an
au
6) S+ Tt )
Die Konstante
®

bezeichnet man als Temperaturleitvermégen, weil bei gegebenen Ober-
flichentemperaturen die réumliche und zeitliche Temperaturverteilung
im Innern nur von ihr abhingt.

dieses Gesetzes in die Theorie der Wirmeleitung schon bei Kelland, Theory of
heat, Nr. 73, p. 69.
18) J. Stefan, Wien. Ber., Math. phys. K1 79 (1879), p. 391.
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Die Gleichung () resp. (6) ist die zuerst von Fourier aufgestellte
Bewegungsgleichung der Wdrme in einem leitenden Korper.

In der mathematischen Wirmeleitungstheorie handelt es sich
hauptsichlich darum, ein Integral dieser partiellen Differentialgleichung
zu finden, welches gegebenen Oherflichenbedingungen an der Grenze
des Korpers geniigt, wobei die Form des betreffenden Korpers und
der thermische Anfangszustand desselben vorgeschrieben wird.

Wenn bei der Wirmebewegung die Temperatur in jedem Punkt
(x, y, 2) unabhiingig von der Zeit ist, so heisst die Bewegung stationiir;
in diesem Falle lautet die Differentialgleichung

: 0 ([ Ou 0 ( ou 0 ( 0w\
®) o () oy () + 55 (0 55) = 0
oder, wenn der Korper homogen ist,

0? 0*
9 . a;;{—8y+a’,‘_Az¢—o

Die Differentialgleichung (8) resp. (9) ist dieselbe, wie sie auch in
der Elektrostatik vorkowmmt, und die spezielle Form (9) ist die Grund-
gleichung in der Theorie des Gravitationspotentials. Die Bestimmung
der stationéren Temperatur in einem Korper bei gegebener Oberflichen-
temperatur fillt also mit der Greew'schen Aufgabe der gewohnlichen
Potentialtheorie zusammen.

Fiir die allgemeinere Gleichung (6) der verinderlichen Wirme-
bewegung lassen sich allgemeine Sitze aufstellen, welche bekannten
Sitzen der gewdhnlichen Potentialtheorie entsprechen. Es seien u, '
beliebige Fuuktionen, welche der Beschrinkung unterliegen, inner-
halb eines gegebenen Raumes S nebst ihren ersten Derivierten nach
z, 9, 2 von t=0 bis ¢t =1¢ (mit ev. Ausschluss  dieser Grenzen
selbst) stetig zu sein; es ldsst sich leicht beweisen, dass™)

1.1
y ’ Bu ow ,
.Jdt./‘ds u ﬁ-——kAu)—Fu(a—t——f—kAu)]
_J {(ww)), — (uu),} A4S —I—(fdtﬁv zo a—z — u') do;

die Integration nach S ist durch den Raum S zu erstrecken, dm ist

14) Diese Formel und die nachfolgenden Anwendungen bei B. Minnigerode
,,Uber Wiirmeleitung in Krystallen®, Diss. Gottingen 1862. Vgl auch J. Amsler,
J. f. Math. 42 (1851), p. 316, 327; [E. Beltrams, Mem. Acc. Bologna (4) 8 (1887),
p. 291; E. Betti, Mem. Soc. Ital. 40 (3), 1%; A. Sommerfeld, Math. Ann. 45 (1899),
p. 263. Uber den stationiren Temperaturzustand siehe K. von der Muihll, Math.
Ann. 2 (1870), p. 643.
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ein nach dem Inneren von S gezogenes Element der Normale zum
Oberflichenelement do.

Wenn nun u der Differentialgleichung (G) geniigt, und wenn «’
die ,adjungierte” Gleichuno”)

()t —|—kAu = ()

erfiillt und sich fiir lim £ = ¢, dem Wert

g Pt — e
1 Lk (t,—1)

R e ———— ()/

@Vakt, —b)°
nithert, so Lisst sich beweisen, indem man den Punkt (&', 9/, 2") durch
eine kleine Oberfliche umhiillt und den von ihr eingeschlossenen
Raum von der Integration S ausschliesst, dass der Wert u(a’, o, 7, ¢)
von « im Punkt (2, 9/, #) durch

u(@, o, &, t) —f(un), 0dS —{—J{hﬁjl u\w '(2%)(16

dargestellt wird. Anstatt «" fiilhre man die Funktion vo(f) = «'(f, — )
ein; v geniigt der (leichung (6) und nihert sich fir lim¢=0
dem Wert

(=2 —yP+ ()
4kt

(21/,,;. )

Um nun die Temperatur « (z, o/, #, t,) im Punkte (2 %" 2") zu be-
stimmen, wenn die Temperatur U der Oberfliche 6 von S gegeben ist,
muss man den Bedingungen, welchen v geniigt, noch diejenige hin-
zufiigen, dass v an der Oberfliche ¢ verschwinden soll. In diesem
Fall erhalten wir

4
P4 ’ ’ - : T a
(10)  w(z, o, &, t,) = uv(t,)dS +J (Itfb T v(t, — t)da;
0

diesem Resultat gemiss reduziert sich die Bestimmung von « auf die
Bestimmung einer Funktion v, welche den obigen einfacheren Be-
dingungen zu geniigen hat. Ist an der Oberfliche von S nicht die
Temperatur des Korpers selbst, sondern die Temperatur U der Um-
gebung gegeben, so dass u der Gleichung

0 H
a—z—:h(u-—U), h=7

15) In Bezug auf Randwertaufgaben im allgemeinen, sowie wegen des Be-
griffs der adjungierten Differentialgleichung vgl. Art. Sommerfeld (II A 7ec,
Nr. 4, 9, 10, 14).
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zu geniigen hat, so bestimme man v derart, dass an der Oberfliche

ov
a—n=7w;

in diesem Fall wird « durch die Gleichung

¢,
A0) (e, o, 7, t,) = J ugo (4,) A8 + f dtf hUs(t, — ) de
0

ausgedriickt.

Die Funktion v spielt hier eine dhnliche Rolle, wie die Green’sche
Funktion in der gewdhnlichen Potentialtheorie; sie stellt die Temperatur
dar, die zur Zeit ¢, an der Stelle (2, ¥, #') vorhanden ist, wenn zur
Zeit ¢ = 0 die Temperatur von S iiberall Null war und nur an der
Stelle (x, y, #) einen unendlich grossen Wert hatte, vorausgesetzt,
dass im ersten der obigen Fille die Temperatur der Oberfliche, im
zweiten die der Umgebung stets gleich Null ist.

Aus diesen Resultaten folgt leicht, dass es nicht zwei verschiedene
Funktionen u geben kann, welche den ihnen auferlegten gleichen Be-
dingungen geniigen, dass also die Losung des Problems durch jene
Bedingungen eindeutig festgelegt ist. Ubrigens ligst sich der Ein-
deutigkeitsbeweis auch fiihren, ohne dass dabei, wie es im Vor-
stehenden geschah, die Existenz der ,Green’schen Funktion“ v voraus-
gesetzt wird6).

Aus der partiellen Differentialgleichung (6) schliesst man, wenn
die Oberflichentemperatur von S stets Null ist:

Firfwas == [R{ G+ G+ () s

ist nicht die Oberflichentemperatur selbst, sondern die Temperatur
der Umgebung Null, so gilt dieselbe Gleichung bei Hinzufiigung von

— IJ u®*dS auf der rechten Seite. Daraus folgt, dass f u*dS in

beiden Fillen bestindig abnimmt, wenn ¢ ins Unendliche wichst; die
Grenze, der sich diese positive Grosse dabei nihert, kann keine andere
als Null sein.

Die lineare Form der Wirmebewegungsgleichung zeigt unmittel-
bar, dass eine Summe von Losungen abermals eine Lomng der
Gleichung ist; wenn man also Losungen so zusammensetzen kann, dass
ihre Summe den Grenzbedingungen Geniige leistet, so ist letztere
die (eindeutig bestimmte) Losung der betreffenden Aufgabe. Man darf

16) Vgl. z. B. Riemann- Weber, Part. Differentialgl. II, p. 86; Heine, Kugel-
funktionen 2, p. 307—312.
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dabei den einzelnen Gliedern der Summe irgend welche Grenz-
bedingungen auferlegen, welche mit den Bedingungen vertriglich sind,
denen die Summe geniigen soll. Ein wichtiges Beispiel dieser Methode
der Zusammensetzung von Liosungen besteht darin, dass die Tempe-
ratur w in der Form einer Reihe D', f.(f) dargestellt wird, worin
die Funktionen u, unabhingig von ¢ sind; aus der Differentialgleichung
folgt dann, dass die Funktionen f(¢) die Form haben miissen Ae~“,
wo A und o Konstante, und dass die Funktionen u, der Differential-
gleichung
kAw 4+ au =0

geniigen miissen. Diese Darstellung eignet sich besonders fiir den
Fall, in welchem der Korper seine Wirme an ein umgebendes Medium
abgiebt, dessen Temperatur konstant und, was keine weitere Be-
schrinkung der Allgemeinheit bedeutet, gleich Null angenommen
werden moge; schreibt man in diesem Kalle

= > Ae “rtu ")

so miissen die Konstanten «, ay,..., «,,... aus der Oberflichen-
bedingung

ou,

_?f""l: — kur =0

bestimmt werden. Es ldsst sich durch Anwendung der Differential-
gleichung leicht beweisen, dass '

? * ] a
(11) (ar~—as)‘/;/'/yguru,dxdy(lz =ij (“s g%r — 88_1:;) do;

da nun die rechte Seite durch Wahl der « zum Verschwinden ge-
bracht ist, so wird

‘/:[]'yguru, drdydz = 0;

auch den Wert von
'[/:fygu,?dwdydz

kann man in speziellen Fillen aus Gl.(11) entnehmen, indem man
zur Grenze «, = «, iibergeht. Wenn die Anfangstemperatur @(z, y, 2)
gegeben ist, so ldsst sie sich unter gewissen zu ermittelnden Be-
schrinkungen in die Form entwickeln

17) Losungen von der Form e—etu nennt Kelvin (W. Thomson) ,harmonic
solutions*, Mathematical and physical Papers 2, p. 50. Die Funktionen u,
heissen Normalfunktionen, vgl. das Buch von F. Pockels, ,Uber die partielle
Differentialgleichung Aw -} k*u = 0%, Leipzig 1891, p. 93. Siehe.auch H. Poin-
caré, Par. C. R. 107 (1888), p. 967 und Par. C. R. 104, p. 1754,
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@(«757 Y, 3) == Alul + A2U2 —I-— N + Ar”r _+_ o
wo A, den Wert
‘/J:/“{'_Ou,ﬁ(w, Y, 2)dedydz

’ youidxdyds
SSre

hat?8). Unter der angegebenen Grenzbedingung kann man mit Hilfe

des Lehrsatzes
.[]:/479%“., drdydz =0

beweisen, dass alle « reell sind'¥), da ja, wenn komplexe und daber
auch konjugiert komplexe « moglich wiren, die linke Seite der
vorigen (leichung positiv ausfallen miisste, wenn man fiir w,, v, die
zu konjugierten « gehirigen Funktionen w wihlt. Ist dagegen die
Temperatur des umgebenden Mediums variabel, so werden bei einem
analogen Ansatz der Losung die o im allgemeinen komplex.

Es habe ein leitender Korper die Anfangstemperatur Null und
die Oberflichentemperatur @(¢); wenn @(t) =1, so sei die Losung
der Wirmeleitungsgleichung

w= ¥z, y, 2, ).

Dann lisst sich die Temperatur fiir allgemeine Werte von ®(#) durch
Zusammensetzung finden. Es gilt ndmlich*)

t
w=00) Wz, y, 2 ) +[ @) B, 4, 2 t — t)at
0 -

oder anders geschrieben
¢
(12) "= J @) % Wz, y, 2t —t)dt.
0

Man kann auf dhnliche Weise verfahren, wenn der Korper sich durch
Strahlung in ein umgebendes Medium mit der Temperatur @ (¢) abkiihlt.

Bei vielen Aufgaben ist es zweckmissig, drei geeignet gewihlte
orthogonale Koordinaten hy, hy, hy als Raumkoordinaten anstatt der
cartesischen anzuwenden; k,, kg, hy sind Parameter von drei Flichen,

18) Derartig allgemeine Koeffizientenbestimmungen scheinen zuerst von
J. R. Merian bei einem hydrodynamischen Problem ausgefiihrt zu sein, Basel 1828,
umgearbeitet von K. Vondermihll, Math. Ann. 27 (1886), p. 575.

19) Poisson, ,Théorie*, p. 178, 179; auch Duhamel, J. éc. polyt. 14, cah. 22
(1833).

20) Diese Methode hat im Anschluss an Fourier, Par. mém. 8 (1829)
(Oeuvres 2, p.161)im wesentlichen Duhamel gegeben J. éc. polyt. 14, cah. 22 (1833),
.p. 34; vgl. auch Heine, ,Kugelfunktionen'* 2, p. 811314,
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die sich im Punkt (z, 9, #) orthogonal schneiden und welche je einer
Fliichenschar angehdren. Die umgestaltete partielle Differentialgleichung

der Wiirmebewegung lautet®'), wenn &, hy, h,, ¢ als unabhingige Varla-
bele gewihlt werden,

ve i = HEH {5 (e o7

worin H, den Wert von

1
[ (k)2 | (ah, YL
(@) +G)+ @)
bedeutet, und H,, Hy entsprechende Werte in Bezug auf h,, hy haben;
die Liénge des Linienelementes

ds = {(da)? + (dy)* + (@2}

ldasst sich in der Form 1
dh)\2 dh,\? dh\2) 2
—_ + it + iy

ausdriicken. {(H‘) (H=) (Hs) }

Bei Aufgaben der Wirmeleitungslehre mag in Bezug auf die
Grenzbedingungen bemerkt werden, dass man es an einer Grenzfliche
im allgemeinen nicht mit dem Funktionswert selbst, sondern mit dem
Grenzwert der Funktion zu thun hat. Wenn z. B. die Temperatur an
der Oberfliche eines leitenden Korpers gegeben ist, so ist zu bewirken,
dass lim u (2, y, 2, t), wenn z, y, # gegen ihre Werte in einem Punkt
der Oberfliche konvergieren, dem gegebenen Oberflichenwert gleich
wird. Ebenso ist bei gegebener Anfangstemperatur u, (z, y, 7) lediglich
zu verlangen, dass lim u(z, y, 2, t) fiir £ =0 gleich der Anfangs-
temperatur u, werde, withrend w (z, y, 2, 0) gegebenenfalls von u, ver-
schieden ausfallen kann. Die Funktion w,(#, y, #) kann an einzelnen
Flichen oder in einzelnen Punkten Unstetigkeiten erleiden, wihrend

die Funktion u(z, y, 2, ?) fiir alle positive Werte von ¢ doch stetig ist®2).
4 Wenn der Temperaturzustand eines leitenden Korpers zu einer
bestimmten Zeit gegeben ist, so kann man die Frage aufwerfen, ob

21) Diese Transformation rihrt von Lamé her, J. éc. polyt. 14, cah. 23
p. 191, auch ,,Lecons sur les coordonnées curvilignes et leurs applications*, Paris
1857. Sie wurde auch von Kelvin (W. Thomson) gefunden Cambr. Math. J. 4
(1843), p. 88, und ,,Mathematical and physical Papers® 1, p. 25. Vgl. auch Heine,
»Kugelfunktionen®, p. 303—308.

22) K. Weierstrass, Berl. Sitzungs-Ber. (1885) p. 803; speziell mit Riicksicht
auf die Wirmeleitung: A. Sommerfeld, Die willkiirlichen Funktionen in der
mathem. Physik. Diss. Konigsberg 1891, G. Prasad, Gottinger Abhdign. (Neue
Folge) 2 (1903) Nr. 4.

Encyklop. d. math, Wisgensch. V 1. 12
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diese Temperaturverteilung aus einer fricheren Verteidlung durch Wirme-
leitung entstanden sein kann. Die Antwort auf diese Frage ist, dass
eine solche friihere Wirmeverteilung nicht immer existiert, aber dass
sie sich in sehr allgemeinen Fillen eindeutig bestimmen ldsst. Im
Fall der linearen Leitung hat P. Appell **) eine hinreichende aber nicht
notwendige Bedingung fiir die Existenz einer solchen vorhergehenden
Wirmeverteilung aufgestellt. Jedenfalls lisst sich die Temperatur-
funktion, wenn sie nicht konstant ist, niemals unendlich weit in die
Vergangenheit zuriickfiihren, ohne dass sie aufhdrt zu existieren oder
endlich zu sein.

4. Die Wirmeleitung in krystallinischen Kérpern. Wenn die
Wiirmeleitung in einem Krystall ) stattfindet, ‘darf man im allgemeinen
nicht annehmen, dass die Richtung des Wirmestromes senkrecht zu
der isothermen Fliche liegt. Mit Riicksicht auf die Erfahrungsthat-
sache, dass der Wirmestrom durch jedes Flichenelement nur von der
Temperaturverteilung in der nichsten Umgebung desselben abhiingt,
ist die einfachste Annahme die, dass die Komponenten des Wirme-
stroms sich als lineare Funktionen der Komponenten des Temperatur-
gefilles ausdriicken lassen, dass also

ou ou ou
nz='—"113_x—“125§_‘“133_z;
Q — ou ou ou
y T T Mer gy T gy T ¥ gy
ou ou ou
‘D.‘_—_““mg;_““sz@""‘ssg;'

Hierin bedeuten (2, £, £,) die Komponenten des Wiirmestromes,
und die x» Konstanten, welche von der Beschaffenheit des Mediums
abhingen; es wird gewdhnlich angenommen, dass diese Konstanten
unabhiingig sind von der Temperatur u; diese neun Konstanten heissen
Konstanten der Wirmeleitungsfihigkeit. Die obigen Gleichungen haben -

28) J. de math. (4) 8 (1892), p. 187. Siehe auch Kelvin, Cambr. Math.
J. 4 (1848), p. 617, oder ,Mathematical and physical Papers® 1, p. 39.

24) Die Wirmeleitung in Krystallen hat Duhamel zuerst behandelt, J. éc.
polyt. 18, cah. 21 (1832), p. 356; 19 (1848), p. 155; Par. C. R. 25 (1842), p. 842;
ebenda 27 (1848), p. 27. Siehe auch P. O. Bonnet, Par. C. R. 27 (1848), p. 49;
B. Minnigerode, N. Jahrb. f. Mineralogie 1 (1886), p. 1; P. Morin, Par. C. R.
66 (1868), p. 1332; M. J. Moutier, Bull. soc. phil. (7) 8 (1884), p. 134; Kelvin,
Math. and phys. Papers 1, p. 282. Eine gute Darstellung des Gegenstandes ist
im Lehrbuch von Liebisch, ,Physikalische Krystallographie®, Leipzig 1891, zu
finden.
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Duhamel und Lamé*) durch Betrachtung des Austausches der Wirme
unter benachbarten Molekiilen begriindet. Schreiben wir

=1 (“23 T+ #g), =1 (g1 + %15), A =1% (19 + %3y),
Wy =% (Rog — %yp), Wy = 3 (ogy — ni3)y Mo =% (g — %y),
__ 0u ; ou ou
X=—ba Y=70p 2=

so erhalten ) wir

(Da:) D’y’ D’z) = (S’Bxa %y? S’Ez) + (?er my? ER:)?

Pp=uy X+ 4,Y + 4,7, R, =us Y —p, 7,
s'By="13X + Y + 4,7, my——ﬂhZ—MsX,
P.=24X + 4V + 37, R=uX—pnl
Der Vektor 5 hat die Richtung der Normale im Punkt (X, ¥, Z) an
das Ellipsoid

%, X - wgey? + w32 + 24,y2 + 24,22 + 22,0y = const.;
die Grosse des Vektors ist gleich dem reziproken Werte des Abstands
der Tangentialebene im Punkte X, Y, Z vom Mittelpunkte des Ellip-
soids. Dieses Ellipsoid heisst das Ellipsoid der linearen Leitungsfihig-
keit®"); seine Hauptaxen liefern ein System ausgezeichneter Koordi-
natenaxen, welche als Hauptaxen der Leitungsfihigkeit bezeichnet
werden konnen®). Der ,rotatorische Vektor“ % ist gleich dem
vektoriellen Produkt aus dem Radiusvektor (X, Y, Z) und dem durch

worin

25) ,Legons sur la théorie anal. de la chal.* In seiner Behandlung meint
Lamé nicht angenommen zu haben, dass das Medium nach zwei entgegen-
gesetzten Richtungen gleiche Witrmeleitungsfithigkeit besitzt; dass die Meinung
irrig sei, hat Minnigerode in seiner Dissertation ,Uber Wiirmeleitung in Kry-
stallen®, Gottingen 1862, bewiesen. Die Theorien von Duwhamel und Lamé
basieren auf einer Betrachtung des Wiirmeaustausches unter benachbarten Mole-
kiilen. Dieselben Gleichungen kommen in den Theorien der Elektrizitits-
strémungen, der dielektrischen und magnetischen Polarisation vor. Vgl. Mazx-
well's ,,Theory of electricity* 1, p. 418; 2, p. 63, 3. Aufl.

26) G. G. Stokes, Cambr. and Dubl. Math. J. (2) 6 (1851), p. 215, oder ,,Math.
and phys. Papers® 3, p. 208, hat die Wirkung der Koeffizienten u,, u,, u, bez.
®,, @y, o, (s. folgende 8.) auf die Form der Stromungskurven in einem Korper
untersucht, welcher einen Quellenpunkt enthiilt; er zeigt, dass eine gewisse spiral-
formige Bewegung bei Krystallen auftritt, welche keine oder nur eine einzige
Symmetrieaxe besitzen. Uber die spiralfsrmige Bewegung siehe auch Boussinesq,
Par. C. R. 66 (1868), p. 1194.

27) Siehe Boussinesq, Par. C. R. 65 (1867), p. 104; 66 (1868), p. 1194; J. de
math. (2) 14 (1869), p. 265. Auch Lamé, ,Legons sur la théorie de la chal.,
p. 85 u. ff.

28) Duhamel, J. éc. polyt. 13, cah. 21 (1832), p. 377,

12*
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die Werte der u gegebenen Vektor (u,, gy, ;). Er hat demmach die
Richtung senkrecht zur Ebene durch den Radiusvektor (X, ¥, Z) und
die Gerade, deren Richtungskoeffizienten mit (u,, w,, u,) proportional
sind; die absolute Grosse dieses Vektors ist

(X2 4 Y2 20 (2 4 gt 4 ) sing,
worin ¢ den zwischen (X, Y, Z) und (u,, us, us) enthaltenen Winkel
bedeutet. Wihlt man die Hauptaxen der Leitungsfihigkeit als Ko-
ordinatenaxen, so verschwinden die 4; fiir »,,, %y, %, schreiben wir
kiivzer »x,, %,, #,. Bezeichnen wir noch die Komponenten des Vektors
(u,, uy, @3) im neuen Koordinatensystem mit o,, @,, @z, so haben
wir den Vektor { nunmehr durch die folgenden Formeln zu bestimmen:

Q. =u,X+ 0,V — 0,7,
y=%6%Y+ 0,7 —a X,
R, =2+ 0, X — 0, Y;
es hat sich also herausgestellt, dass nur sechs unabhéngige Konstanten
der Leitungsfihigkeit existieren, zu denen die drei Richtungsgrossen
hinzukommen, welche die Lage der Hauptaxen definieren. Die Kon-
stanten x,, x%,, », heissen die Hauptlestungsfihigkeiten des Krystalls;
mit Riicksicht auf die Symmetrie der einzelnen Krystallgruppen ldsst
sich zeigen, dass in gewissen Fillen die Konstanten o, oy, wg Null
sein miissen.
Geradeso wie bei einem isotropen Korper ergiebt sich jetzt, dass
die Temperaturfunktion in einem leitenden Krystall der Gleichung
du 0D, 09, 0D, -
79§+W+*3@'+‘37=”
Geniige leistet; nimmt man die Hauptaxen der Leitungsfihigkeit als
Koordinatenaxen, so lisst sich die partielle Differentialgleichung der
Wirmebewegung in der einfachen Form schreiben

ou . 0%u . 0%u . 0%u
ot = Migge Tl e+ ks 5,
worin
=M =" =1
T2 2T ye? B e

als Haupttemperaturleitfihigkeiten bezeichnet werden konnen. Diese
Form gilt, gleichviel ob die Konstanten @ verschwinden oder nicht,
indem sich die mit diesen Konstanten behafteten Glieder in der Diffe-
rentialgleichung der Wiarmebewegung gegenseitig zerstéren. Schreibt
man schliesslich noch, indem man unter % eine ganz beliebige Grosse
von der Dimension der Temperaturleitfihigkeit versteht:
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—V—Ix 1'—]/E1 z'—VEz
- k1 ’ Yy = k,‘/’ - ks ’

so reduziert sich die Gleichung auf dieselbe Form wie bei einem iso-
tropen Korper, ndmlich

die in Nr. 3 enthaltenen Sitze iiber Losungen dieser Gleichung lassen
sich daher unmittelbar auf den vorliegenden Fall iibertragen.

5. Die lineare Wirmeleitung. Wenn die Wirmebewegung solcher
Art ist, dass die isothermischen Flichen parallele Ebenen sind, so
hingt die Temperatur ausser von der Zeit nur von einer Raumkoordi-
nate ab. In diesem Fall, wo die Bewegung linear genannt wird, redu-
ziert sich die Gleichung der Wiarmeleitung auf die Form

ow 0 ou
(13) 70 55 = 5z (* 35)5

wenn x als konstant angemommen und wieder k — —— gesetzt wird,
hat die Gleichung die Form?®) re

ou
(14) I k ozt xz :
Diese Annahme einer konstanten Leitungsfihigkeit wird den Unter-
suchungen von Fourier, Poisson und anderen zu Grunde gelegt. Um
die Differentialgleichungen (13) oder (14) anwenden zu konnen, wird
vorausgesetzt, entweder dass der Leiter in der Richtung der yz-Ebene
unendlich ausgedehnt ist, oder dass der leitende K6rper aus einem
Stab besteht, der vor seitlicher Ausstrahlung geschiitzt ist.

Hat man es andrerseits mit einem Stabe zu thun, der in ein Medium
von konstanter Temperatur (die wir gleich Null annehmen konnen)
seitlich ausstrahlt, so ldsst sich, unter den Voraussetzungen, dass der
Querschnitt und die dussere Leitungsfihigkeit konstant sind, die Diffe-
rentialgleichung fiir die Wirmebewegung auf die Form (2) redu-
zieren. Die Gleichung lautet ndmlich in diesem Fall zundchst:

(15) kW,

29) Mit der Integration dieser Gleichung haben sich viele Mathematiker
beschiftigt; u. a. Laplace, J. éc. polyt. cah. 15 (1809), p. 2556; Iourier, ,,Théorie*;
Poisson, ,Théorie*; Ampere, J. éc. polyt. 10, p. 587; L. Schlaﬂz, J. f. Math. 72
(1870), p. 263; A. Harnack, Zeitschr. Math. Phys. 32 (1887), p. 91; S. v. Kowalewsks,
J. f. Math. $0 (1875), p. 22; G- Darbouz, Par. C. R. 106, p. 661 P. Appell, J. de
math. (4) 8 (1892), p. 187. Siehe auch Jordan, ,,Cours d’Analyse“3; Boussinesq,
,,Cours d’Analyse infinitésimale*; Riemann-Hattendorff und Riemann - Weber, ,Part.
Differentialgl.*
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wo I’ eine von dem Umfang des Querschnitts und der dusseren Leitungs-
fahigkeit abhingige Konstante ist; (genauere Definition derselben in
Nr. 15, wo indessen wieder einfacher % statt A geschrieben ist); setat
man
(16) w=¢ "y,
so geniigt v einer Gleichung, die mit (14) der Form nach iiberein-
stimmt*).

Eine -einfache Losung der Differentialgleichung (14) ist

Py Aeaz+ka’t’

wo A, e willkiirliche reelle oder komplexe Zahlen darstellen; schreibt
man « = p -+ ig, so ergibt sich als Losung

w= dor=+He=0 58 gz + 2hpgt),

oder als besonderer Fall derselben

cos
£ —km2t ",
u=Ae sin M-

Durch Zusammensetzung solcher Losungen, in denen den Konstanten
P, q, resp. m, eine unendliche Anzahl verschiedener Werte zugeschrieben
wird, haben Fourier, Poisson und Duhamel Ausdriicke in der Form
von unendlichen Reihen und bestimmten Integralen erhalten, welche
die Temperatur in speziellen Fillen der linearen Wirmeleitung aus-
driicken. Indem sich Fourier die Aufgabe stellte, die einem willkiir-
lich gegebenen Anfangstemperaturzustand entsprechende Losung in
der angegebenen Form zu erhalten, wurde er auf seine bahnbrechen-
den Untersuchungen der sogenannten Fourier'schen Reihen und Inte-
grale gefiihrt, welche in ihrer spiteren Entwicklung einen so grossen
Einfluss auf die reine Mathematik ausgeiibt und so viele Anwendungen
in der mathematischen Physik gefunden haben. Die wichtigsten auf
diese Weise erhaltenen Resultate fiithren wir hier an.

a) Es sei ein unendlich ausgedehnter Leiter durch die beiden
Ebenen z =0, 2 = a begrenzt; wenn die Ebenen die konstanten
Temperaturen w,, u, haben, und dieser Zustand so lange gedauert hat,
dass der Anfangszustand keinen Einfluss mehr hat, so ist die Bewe-
gung eine stationdre, und die Temperatur wird ausgedriickt durch®)

“=“o+<“1“‘“o)%‘
b) Ein Stab von der Linge a gebe Wirme durch Strahlung an

80) Poisson, ,,Théorie*, p. 265.
31) Fourter, ,Théorie*, chap. VIL
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ein Medium ab, welches die konstante Temperatur Null hat, und es
gelten sonst die gleichen Bedingungen wie unter a), so ergiebt sich
fiir die Temperatur im Zustand des Gleichgewichts?®)

w={uwin | Y% @— o)} +u ()Y E)]/ein(a)/L).

Wenn a unendlich gross gesetzt wird, so erhidlt man die Losung
[y
-Vz=
U = uye
fiir den Fall eines unendlich langen Stabes, dessen Ende z = 0 die
konstante Temperatur «, hat, und welcher die an diesem Ende ein-
tretende Wirme durch laterale Strahlung verliert.

¢) Es sei die Anfangstemperatur eines Leiters durch
' 4 L nmw
f(x) = 2 .A.” sin “a
n=1

ausgedriickt und die Temperatur der beiden Grenzflichen =0, x=a
Null. Die Losung?®) ist in diesem Fall gegeben durch die Fourier-
sche Reihe:

. n
= Ae * sln —=
oder

Wenn @ unendlich gross wird, so erhalten wir das Fourier'sche
Integral:

L
(-] @
2 . .
= ;ffe“"“"f(z') sin o2 sin ez’ dadx’.
0 o

d) Fiir den in c) beschriebenen Leiter ist, wenn die Grenzebenen
verschiedene konstante Temperaturen u,, u, haben®),

kn2n?
2 1 nwx

o
—_ ,
W=ty 4 (=) & — 2 D Ly (—1y)e F ain T
1

a
k n?*m2

2 ———t . nwx N i PEE
—{—;26 @ sin—= [ f(z') sin — = da’.
0

32) Fourier, ,Théorie*, chap.I, sect. V. Wegen der experimentellen Be-
statigung dieser Formel vgl. Nr.20 dieses Art.

83) Fourier, ,,Théorie*, chap. IX.

34) Duhamel, J. éc. polyt. 14, cah. 22 (1833).
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Hier ergiebt sich die Bedeutung der beiden ersten Terme der rechten
Seite aus a), die des letzten aus ¢). Der dritte Term bedeutet die-
jenige Temperatur, die unser Leiter haben wiirde, wenn seine Anfangs-

. £ . .
temperatur gleich — u,— (u, — w,) — ist und seine Grenzebenen auf
a

der Temperatur Null gehalten werden.

e) Die Losung fiir denselben Leiter wie in d), wobei aber jetzt
die Temperaturen der Grenzebenen vorgeschriebene Funktionen der
Zeit @,y(t), o, (t) sein mogen, lisst sich nach Gl (12) aus der Losung
in d) durch Zusammensetzung ableiten; sie lautet®)

¢

kn n?
2k U ——(t=1)
w=237 2 msin —/ {%(t)—(— 1y, () dt

+ = 2 e /f(x g sin 2

Dieser Ausdruck stellt die Temperatur an den Grenzflichen selbst
ergichtlich nicht dar, ergiebt aber die richtigen Oberflichenwerte
@o(?), ¢,(t), wenn man, von >0 oder z < @ kommend, den Limes
von u fir x = 0 oder # = a bildet.

Setzen wir @,(¢) = @,(f) = ¢(t), so wird der erste Teil des
obigen Ausdrucks

k@nt1)27m2

t
4k”2(2n+1) aip @7+ 1)nf/e——7—(:—t')q)(t,)dt,.

-

0

Diese Formel ldsst sich auf den Fall eines diinnen, ringférmigen 3%)
Leiters von der Linge a mit konstantem Querschnitt anwenden, unter
der Voraussetzung, dass der Querschnitt x = O die vorgeschriebene
Temperatur ¢(f) hat, und dass keine laterale Strahlung stattfindet.
f) Die Temperatur eines Ringes, dessen Anfangstemperatur Null
ist, von dem ein Querschnitt (# = 0) auf der konstanten Temperatur
u, gehalten wird und der in ein umgebendes Medium von der kon-
stanten Temperatur Null ausstrahlt, ist mit Riicksicht auf den letzten "
Ausdruck und die Transformation (16) durch die Formel gegeben:

35) Poisson, J. éc. polyt. cah. 19, p. 69; Fourier, Par. mém. 8 (1829), p. 581
(Oeuvres 2, p. 145); Dirichlet, J. f. Math. 5 (1830), p. 287 (Werke 1, p. 161).

36) Die Wirmeleitung in einem diinnen Ring hat Fowrier behandelt,
siehe ,,Théorie*, chap. IV,
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. [»+k<2n+1)w] l

2 1
u,_uo;;Z(‘)n—I-l)sm( ”+ Ay +(2n+1)'n’

g) Betrachten wir nun den Fall eines durch die Ebenen z = 0,
xz = a begrenzten Leiters, bei welchem Strahlung iiber die beiden
Grenzebenen stattfindet (vgl. auch Nr.23). Wenn die Temperatur
der Umgebung in beiden Fillen Null ist, so lassen sich Lé&sungen
von der Form

u = e+t (A, cos Ax 4 B, sin Ax)
anwenden, wo A eine der unendlich vielen reellen Wurzeln der beiden

Gleichungen
la 3

=+, Yy =—g
bezeichnet. Fourier hat die Entwicklung einer willkiirlich gegebenen
Funktion in der Form einer Reihe (4, cos iz + B, sin Az) unter-
sucht?). Wenn f(x) die Anfangstemperatur ist, so lautet das Re-
sultat )

O _i1ahe 008 L2 + hsinh,
u=22 PR l%ﬁ:’) xf(/l cos 4,2+ hsin 2,2 f(z')dz'.

Im Fall @ = oo wird die entsprechende Formel

___%fff(m,)e_“,t(l cos Az 4 h sinAx) (A cos Az’ - h sin lx)dldx

2t

Im letzteren Falle braucht man, wenn die Temperatur der Umgebung
o(t) anstatt Null ist, nur den Ausdruck

4 ™ ®
2h , , e (Acosd hsin Ax) (A cos 4 hsin i ,
‘;.fdtf @) A2 ekt ¢y (Acos 2z h sin ’.:')E*—l: x'+4 hsin w)dldx

hinzuzufiigen, um die nunmehrige Temperaturverteilung im Innern
des Leiters zu erhalten.

h) Es sei ein unendlich ausgedehnter Leiter durch die Ebene
=0 begrenzt und die Temperatur der Grenzebene sei A cos(if- f),
so lisst sich leicht verifizieren oder auch aus der Formel in e) ab-
leiten, dass die Temperatur im leitenden Korper

T _
—Via 7
Ae " % cos (Atﬁx 2—k+ﬂ>

37) Fourter, ,, Théorie", chap. VIL
38) Poisson, ,, Théorie", p. 267, 823. Poisson behandelt auch den allgemeinen
Fall der Ausstrahlung in einen Raum von beliebiger Temperatur, ebenda p. 264:
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ist3?), vorausgesetzt, dass der Zustand schon so lange gedauert hat,
dass alle Spuren der Anfangstemperatur verschwunden sind. Diese
Formel findet Anwendung auf die Temperatur der Erde, wobei das
in Betracht kommende Stiick der Erdoberfliche als eben angesehen
wird®). Es geht aus der Formel hervor, dass die Amplitude einer
Temperaturschwankung nach der Tiefe hin schnell abnimmt und in
einer gewissen Tiefe unmerklich wird. Die Maxima pflanzen sich mit
der Geschwindigkeit }/2k4 in die Tiefe fort; diese Geschwindigkeit
nimmt ab, wenn die Periode wiichst; insbesondere pflanzen sich die
Tagesmaxima schneller fort als die Jahresmaxima.

Wenn Strahlung an der Grenzfliche # = 0 in ein Medium statt-
findet, dessen Temperatur A4 cos (A¢ 4 B) ist, so ergibt sich*') fiir
die Temperatur in einem Punkt des Leiters

1 _
57 T _V4i, 7
Ah{h’—i—hV%’—'-Jr%} e ' % cos (lt—x 2—"k+ﬁ—-—el),
wo
yi

tg e

N R
Wenn die Temperatur der Umgebung ¢(f) ist und die Anfangs-
temperatur des Leiters f(«), kann die Temperatur des Kérpers durch*®)

/ /;(t)e a5 cos{l(t——t)—‘l/—z——kx——sl} i
w2+ 4]

+%fff(x’)e_k9,,(p cos g -+ h sin o) (o cos px’ -+ h sin ga:)d da’
o 0

°(o §|;~

h* 4 ¢*

dargestellt werden; dieses Resultat ist mit dem am Ende von g)
angegebenen #quivalent.

i) Aus dem Fourier'schen Integrale folgt, dass die Temperatur
in einem Punkt eines unendlich ausgedehnten Korpers, dessen An-
fangstemperatur f(z) ist, durch die Formel?®)

89) Poisson, ,,Théorie", p. 346.

40) Den entsprechenden Fall der Kugeloberfliche behandelt Fourier in der
Preisschrift von 1811, Par. mém. 5 (1821/22), p. 158, Oeuvres 2, p. 1.

41) Poisson, ,,Théorie*, p 830 und supplément; siehe auch Kelvin, Cambr.
Math. J. 8 (1842), p. 206 oder ,Math. and phys. Papers* 1, p. 10—21.

42) Poisson, ,,Théorie*, p. 334.

48) Fourier, , Théorie*, chap. IX, wo die anderen Formen auch angegeben
werden,
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% fdaff(x')e"‘“" cos e(x—uz')dx’
—o» 0

dargestellt ist. Dieses Resultat ldsst sich auf die folgenden beiden
Formen bringen, von denen die zweite schon vor Fourier von Laplace *)
behandelt worden ist:
1 v ey
Wg/f(w’)e Lk dg,
—= [erfle+ 2qVRD) dg.
V=
Im besonderen sei f(x) = u, fiir £ >0, f(x) = u, fiir x <O0; dann
erhdlt man aus der zweiten Form fiir die Temperatur zur Zeit ¢
an der Stelle z:
z
2Vkt
% -|2- Yy “11;;?“, fe-qz dg 15)49)
0
Nimmt man z. B. u, =0, u, =2, so wird an der Stelle x =0 dauernd
die Temperatur u==(u, + u,)/2 = 1 herrschen. Die vorige Formel
geht in diesem Falle iiber in

®

2 b
— ¢
V;,/" dq.

2kt
6. Die Boehandlung der linearen Wirmebewegung nach der
Methode der Quellpunkte. Wenn in einem unendlich ausgedehnten
leitenden Kérper die Anfangstemperatur ¢(z) iiberall verschwindet,
mit Ausnahme der Umgebung einer einzelneu Ebene z’, so ist die
Temperatur zur Zeit ¢ im Punkte x

(z—2)

mQ: e 4kt
2V nkt ’

44) Laplace, J. éc. polyt. cah. 15 (1809), p. 265 (Oeuvres 13).

45) Kelvin hat diese Formel benutzt, um die Zeit abzuschitzen, die ver-
strichen ist, seit die Erdoberfliche fest wurde, siehe Edinb. Trans. 23 (1862)
oder ,,Math. and phys. Papers* 8, p. 295; ,,On the secular cooling of the earth*;
auch Thomson und Tait, Natural philosophy, appendix D.

46) Tafeln zur Berechnung dieses in der Wirmeleitung ebenso wie in der
Gastheorie und der Wahrscheinlichkeitsrechnung wichtigen Integrales finden sich
in jedem grosseren Handbuch tiber Wahrscheinlichkeitsrechnung. Niitheres hier-
tiber in Encykl. ID 1, Art. Czuber, Anm, 123, und 1D 2, Art. Bauschinger, Nr.4,
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vorausgesetzt, dass f @(2")dz’ eine endliche Grenze @ besitzt. Indem

wir die Aufmerksamkeit auf eine der z-Achse parallele Gerade be-
schrinken, nennen wir den Punkt 2’ einen momentanen Quellpunkt ")
von der Stirke @. Mit @ = 1 ergiebt sich die sogenannte Haupt-
l6sung

(z—2')*

1 —————

— 1%
2V nkt

der Differentialgleichung der linearen Wirmebewegung; dieselbe spielt
hier eine #hnliche Rolle, wie die Losung 1/r in der gewohnlichen
Potentialtheorie.

Wenn Wirme im Punkt 2 kontinuierlich erzeugt wird und die
in der Zeit dt’ erzeugte Warmemenge ¢(t')dt’ betrigt, so ist die
Temperatur zur Zeit ¢

(z-—z)‘

¢
? FyIers)
/ ZVnk(t (P( )e at;

in diesem Fall heisst der Punkt 2" ein kontinuierlicher Quellpunkt.

Wenn zwei momentane Quellpunkte von der Stirke @ resp. — @
in den Punkten z'+ dz’, 2’ existieren, so zwar, dass ,ihr Moment“
Q- dxz’ = P einen endlichen Wert hat, so entsteht im Punkt z’ ein
Doppelquellpunkt, welcher die Temperatur

(z—z)p
P — (x—a)e
LY (kt)
im Punkte z verursacht; die Grosse P heisst die Stirke des Doppel-

quellpunktes.
Die von einem kontinuierlichen Doppelquellpunkt verursachte

Temperatur ist
4

, (z—2)
! 3/”&“ L& HN (@) dt,
s e—v
0

47) Der Gebrauch von Quellpunkten in dieser Theorie riihrt in der Haupt-
sache von Kelvin her; siehe ,Encycl. Britann., 9. Aufl.,, 11, p. 587, oder ,Math.
and phys. Papers* 2, p. 41, wo viele Anwendungen gemacht werden. Die so-
gleich zu nennende ,,Hauptlosung* war indessen schon Poisson bekannt; Par.
mém. 2 (1818), p. 161; Bull. soc. philom. 1822, p. 83. Ihre Deutung als Wirkung
eines Quellpunktes findet sich gelegentlich bei Fourier, , Théorie*, Nr. 374
und 378,
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wo ¢(t") die Stirke zur Zeit ¢ bezeichnet; wenn z sich dem Wert
x’ nihert, so hat dieser Ausdruck den Grenzwert 5176 @ (t), falls

x> z’, oder — 5170 (), falls z <=z’

Besonders fruchtbar erweist sich die Methode der Quellpunkte
im Zusammenhang mit dem Symmetrieprinzip (Spiegelungsprinzip).
Nach diesem Prinzip verfihrt man, um die Temperaturfunktion in
einem begrenzten Raum zu bestimmen, allgemein gesprochen so, dass
man den betr. Raum und zugleich die Temperaturfunktion ins Un-
endliche fortsetzt. Der Gesamtverlauf der Temperaturfunktion wird
durch ihre singuliren Punkte bestimmt, welche, wenn in dem ur-
spriinglich gegebenen Raum Quellpunkte vorgeschrieben waren, teil-
weise aus diesen, teilweise aus Quellpunkten in der Fortsetzung des
Raumes bestehen. Die letzteren sucht man in solcher Weise zu be-
stimmen, dass den Grenzbedingungen an der Oberfliche des Raumes
Geniige geleistet wird. In einfachen Fillen, z. B. wenn der Leiter
durch eine oder mehrere Xbenen begrenzt wird, lassen sich die er-
forderlichen neuen Quellpunkte als Spiegelbilder der urspriinglich ge-
gebenen, ohne Anwendung von Rechenoperationen, unmittelbar kon-
struieren. Insbesondere kann man in solchen Fillen, indem man in
dem urspriinglichen Gebiet einen Quellpunkt von beliebiger Lage an-
nimmt, die ,Green’sche Funktion® v (vgl. Nr. 3) fiir das betr. Gebiet
herstellen. Awuch Doppelquellpunkte konnen an den Grenzebenen auf
dhnliche Weise gespiegelt werden wie einfache Quellpunkte.

Ubrigens ist das Symmetrieprinzip nicht notwendig an die Vor-
stellung der Quellpunkte gebunden, in welchem Falle seine Verwen-
dung nur besonders anschaulich wird. Ks ergiebt sich dieses schon
daraus, dass man jede beliebige Temperaturverteilung als Verteilung
von Quellpunkten ansehen kann. In der That handelt Lamé, der als
Erster das Spiegelungsverfahren in der Warmeleitungstheorie syste-
matisch anwendete (vgl. Nr. 7g) stets von kontinuierlichen Tempe-
raturverteilungen, die er in den Aussenraum des fraglichen Gebietes
symmetrisch fortsetzt.

a) Der nach der positiven Richtung unendlich ausgedehnte Korper
sei durch die Ebene « = 0 begrenzt, und diese Grenzebene habe die
Nulltemperatur; die anféngliche Temperaturverteilung betrachte man
als eine Verteilung von Quellpunkten von der Stirke f(z")dz’ an
der Stelle . Ihr Spiegelbild besteht aus einer Verteilung von Quell-
punkten in der Fortsetzung des Ko6rpers nach der negativen Richtung
der z-Achse, so dass im Punkte — ' die Stirke — f(z')da’ be-
trigt. Die Temperaturverteilung zur Zeit ¢ ist durch
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1 hd _(@—a') _ (et
—— 4 4ki ""‘e 4ks x, dCL"
2Vwkt.f{ }f( )4
0

oder die dquivalente Formel

= J @BV +2)edp — S f /(26Vit —a)erdp

2Vt Yk
ausgedriickt.

Wenn die Temperatur an der Grenzebene gleich ¢(f) vor-
geschrieben ist, so denken wir uns einen kontinuierlichen Doppel-
quellpunkt von der Stirke 2kg(t)dt’ an der Grenzebene; die durch
denselben verursachte Temperaturverteilung®®) wird durch

¢

x ‘1 ——x—’, ’
- e =gt dt
2]/7176\/(1} — t')% ( ) ’
0

oder den #quivalenten Ausdruck

2 m_ . x?
Vet “ (¢ — grgs) 4
2Vki
dargestellt.
b) Der Ausdruck

n= +oo _(@—2'—3%nap? _(ﬁﬂ—-?na)*l
4kt — e 4kt dx’
2V7cktﬁ( ”__“ |

stellt die Temperaturverteilung in einem durch =0, z=a be-
grenzten Korper dar, wenn die Grenzebenen die Temperatur Null
haben und f(2) die Anfangstemperatur ist. Hier werden Quellpunkte
von der Stirke f(z")dz’ an den Stellen 2’4 2na, und von der
Stirke — f(z")dz” an den Stellen — 2"+ 2na in Betracht gezogen.

Wenn die Grenzebene # = 0 die Temperatur ¢(f) hat, und die
andere Grenzebene die Temperatur Null, so erhalten wir den hinzu-
kommenden Ausdruck durch eine Verteilung von Doppelquellpunkten
von abwechselnden Zeichen in den Punkten 2na, wo % alle positiven
und negativen ganzen Zahlwerte hat. Der hinzuzufiigende Ausdruck
lautet:

48) Siehe Kelvin, Lond. Proc. R. S. 7 (1855), p. 382, oder ,Math. and phys.
Papers® 2, p. 61: ,,On the theory of the electric telegraph“.
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t

n=+4® (x4 2na)? ar
e t — 1) (x 4 2na)e ‘“‘(‘—"} .
= kf @) 3 (= e+ 2n0 T
Ein entsprechender Ausdruck ist hinzuzufiigen, wenn die Grenzebene
x = a nicht die Temperatur O, sondern eine beliebig wechselnde
Temperatur hat. Durch Addition der drei vorangehenden Ausdriicke
erhalten wir eine andere Form der in Nr. 5 e) angegebenen Losung.

¢) Wenn einem Ringe von der Liinge ¢ und der gleichmissigen
Anfangstemperatur Null eine Wirmemenge @ zur Zeit =0 im
Punkte z = 0 zugefiithrt wird und sich im Ringe ausbreitet, so ist

die Temperaturverteilung durch

®  (z+map
__Q'_ 8 4kt
Ykt &

ausgedriickt. Diese Formel erhilt man, wenn man sich den Ring in
fortgesetzter Wiederholung auf eine unendliche Gerade abgebildet
denkt und auf dieser eine Verteilung von momentanen Quellpunkten
in den Punkten x = na, alle von der gleichen Stirke ¢, anbringt. Der
vorstehende Ausdruck ist, bis auf einen konstanten Faktor, identisch
mit einer der in der Theorie der elliptischen Funktionen vorkommen-
den 6-Funktionen. Lost man dieselbe Aufgabe nach der Fourier’schen
Methode der Reihenentwickelung und vergleicht die entstehenden Resul-
tate, so erhiilt man eine wichtige IFormel aus der Transformationstheorie
der 6-Funktionen?).

d) Wenn der von der Ebene z = 0 begrenzte Korper von einem
Medium umgeben ist, dessen Temperatur durch ¢ (f) ausgedriickt wird,
so ist der von der Anfangstemperatur unabhiingige Teil der Temperatur-
verteilung im Korper®?)

~—~Jcizje kg —(%}q—?—z dq;

vzt

2Vkt
hier sind Doppelquellpunkte von der Stirke he=**dz- @(f) in jedem
Punkt — 2 auf der negativen Seite der z-Axe verteilt. Der vom

Anfangszustand abhiingige Teil der Temperaturverteilung®!) ist

49) Vgl. z. B. H. Poincaré, ,,Th. de la propagation de la chalem*, p. 91
ihnlich schon bei Poisson, ,,Théorie*, suppl. p. 51.

50) E. W. Hobson, Cambr. Proc. 6 (1888), p. 184; eine andere iiquivalente
Formel hat Boussinesq durch eine allgemeine Methode der Integration erhalten;
siehe das Buch , Applications des potentiels®, Paris 1885, p. 404.

51) G. H. Bryan, Cambr. Phil. Soc. Proc. 7 (1889), p. 246.
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(-2

. (x—a')
1 " 4kt ke ’ ’
2%_/ {e +e }f(x)dx
)

e @y
4kt 4 4
- Vm/ / f()d

Dabei wird der Quellpunkt f(2")dz’ dmch eine gleich starke Quelle
im Punkte — 2" und eine Verteilung von Quellpunkten von der Stirke
— 2he~**dsf(2")da’ in den Punkten — (2’ + 2) abgebildet.

Im Fall ¢(f)=0, f(z)=C ist die Temperatur in einem
Punkte des sich abkiihlenden Korpers

o V@ ke Gty
— {e IS AT dx —2h fdz [ et e AR datl
2VYnkt
0

Die semikonvergente Reihe 5%)

1.3 1-3.

C
hV?k?{l - 2h’kt + Rkt (zh"lt)? +- }’

welche aus der obigen Formel fiir 2 = O hervorgeht, eignet sich zur
Berechnung der Temperatur an der Grenzfliche, wenn ¢ einen nicht

zu kleinen Wert hat; fiir grosse Werte von ¢ ist € er approxi-
mative Ausdruck flir die Oberﬂachentemperatur hy=ki

e) Es sei der unendliche Raum von zwei Substanzen erfiillt, die
an der Ebene z — 0 zusammenstossen; bei einem gegebenen An-
fangszustand lésst sich die Temperaturverteilung zur Zeit ¢ in den
beiden Korpern durch die Methode der Spiegelbilder ermitteln. Es
geniigt als Anfangszustand im besonderen zu Grunde zu legen: eine
Quelle im Punkte = 2" (z. B. 2" > 0), sonst iiberall die Anfangs-
temperatur Null.

Wenn k,, &, die Werte der Temperaturleitfihigkeit k¥ und «,, %,
diejenigen der Wirmeleitfihigkeit » in den beiden Substanzen sind,
s0 kann man leicht verifizieren, dass die Losung??)

— = (x4
.l_{e (zu: t’) + "1V’—‘7;""1V"_1 e w“lxt } >0
V_{ ”1]/7?2 + %y ka ’ ’
(-=Vis)
” 1 2“1Vk e Akt , <0
2T V? ”1Vk + % Vi

62) Vgl. wegen ahnlicher asymptotischer Formeln: Fourier, ,Théorie*,
Nr. 380; Poisson, ,suppl., Note B.
63) A.Sommerfeld, Math. Ann, 45 (1894), p. 266; ohne Beniitzung von Quell-

u1=
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den beiden Bedingungen

an der Girenzebene geniigt; die Stérke der erforderlichen Spiegelbilder
ist also hier nach Massgabe des Verhiltnisses der Temperaturleitfihig-
keiten %, k, und der Wirmeleitfihigkeiten x,, %, zu wihlen. Die
Aufgabe lisst sich auch 16sen, wenn die allgemeineren Bedingungen
"1%%0l + H,(u; —u;) =0, "s%%: + Hy(uy — uy) =0
an der Grenzebene angenommen werden, oder wenn der Leiter nicht
aus zwei, sondern aus drei oder mehr thermisch heterogenen Teilen
besteht.

Die Untersuchung der Wirmeleitung in einem Medium von kon-
tinuierlich variabler Leitfihigkeit haben Sturm und Liouville zu ihren
allgemeinen, mathematisch wertvollen Untersuchungen angeregt®™).
Die Differentialgleichung (14) ist dabei durch die allgemeinere (13)
zu ersetzen. Der Methode nach schliessen sich diese Untersuchungen
an die der vorigen Nummer an, wobei an die Stelle der Fourier'schen
Entwickelungen nach trigonometrischen Funktionen solche nach Sturm-
Liowville’schen Funktionen treten.

Y. Die Wirmeleitung in zwei oder drei Dimensionen. Elemen-
tare Losungen der Gleichungen der Wirmebewegung filr drei oder
zwei Dimensionen sind

sin sin sin

e kB P
cos P% cos 1Y cos 7 ¢
sin sin

X e~ k()i
resp. cos PT cos 1Y€ .

Solche Losungen lassen sich unmittelbar in denjenigen Fillen ver-
wenden, wo der Korper durch Ebenen begrenzt ist, die den Koordi-
natenebenen parallel laufen.

a) Der Korper sei durch die drei Ebenen 2z =0, y =1, y=—1
begrenzt, und es sei ¥ = O an den Grenzen y = -1, w = U an der
Grenze = 0. Der stationire Wirmezustand lésst sich in diesem
Fall durch den Ausdruck®) darstellen

punkten behandelt von H. Weber, Gott. Nachr. 1893, p. 722, und Vierteljahrschr.
der naturf, Ges. in Ziirich, Mai 1871.

54) J. Liouville, Gergonne ann. 21 (1830/31), p. 133; Sturm und Liouville,
J. de math. 1, 2, 3 (1836—38). Vgl. auch M. W. Stekloff, Ann. de Toulouse (2) 2
(1901), p. 281. Nitheres hieriiber s. Encykl. II, Art. Bocher, II A 7a und Art. Burk-
hardt, II A 11.

65) Fourier, ,,Théorie, chap. III, sect. 4, 5.

Encyklop. d. math. Wissensch. V 1, 13
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aU [ =22 xy 1 LY T 3 ?/ bnzx by l
__ %y 21 rY__ 1t T e i YR °rY .
u - {e cos 57 7€ cos o~ + 5 5 e cos f
oder

U= E_U: arc tang (cos / Sin 7 )

b) Ein unendlich langer Stab von rechteckigem Querschnitt sei
durch die vier Ebenen 2 = 0, z = a, y = 3, y = — f begrenzt; die
Temperatur an den Ebenen z =0, x = a werde durch f(y), F(y)
gegeben, und an den Ebenen y — 4 8 sei vorausgesetzt, dass der
Korper an ein Medium grenze, dessen Temperatur Null ist und in

welches er Wirme durch Strahlung abgiebt. Die stationire Tempe-
raturverteilung erfiillt die Bedingungen
0 .
o T oy =0 a%—hu=0 fir y — — B,
g—g +hu=0 firy=-4p, u=f(y) fire=0, u=F(y) firr=a.

Die Losung®) dieser Aufgabe lautet

F
u=42 A(248 + sin 2/1‘6)“(5,01,19:{@in l(at—xlffl(y) cosdydy

+ Gindx | F,(y) cos).ydy}cos Ay
+ 42 uw(2pp—sin2up)-? @Diyﬂ:{@iﬁ p(atﬁar)'/;"g (y)sindy dy

+Gingaf F, ()sinaydy |sin wy;
0

in diesem Ausdruck ist zur Abkiirzung gesetzt

2,(y) = () + (=), 2f,(9) =1 ) —f(—w),

2F,(y) =F@y) + F(—y), 2F@y) =F@ —F(—y);
4 bezeichnet eine positive Wurzel der Gleichung

1B tg 1 = hp,
und g eine positive Wurzel der Gleichung
up cotg pf — — hp.
c). Die stationire Wirmebewegung in einem rechtwinkligen

Parallelepipedon unter den Bedingungen

56) Stokes, ,,Math. and phys Papers® 1, p. 292, wo mehrere #hnliche Auf-
gaben geldst werden.
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w=f, =0, u=F, z=a,
“=f§n ?/=07 u=F2) y=b}
w=f,, 2=0, u=2F,, z2=c¢

lisst sich in #@hnlicher Form aus den vorangestellten elementaren
Losungen aufbauen.

d) Die in einem unbegrenzten homogenen (zwei- oder dreidimen-
sionalen) Korper durch einen Quellpunkt von der Stirke @ ver-
ursachte Temperatur wird durch®")

_ =2+ y—y)
4kt

=P+ -yt —2)
e 4kt

Q ¢
ausgedriickt. Wenn Wirme im Punkte 2'¢y" resp. 2’y #" kontinuierlich
erzeugt wird, sodass die in der Zeit dt' erzeugte Wirmemenge
@(t)dt betrigt, so ist die Temperatur zur Zeit ¢

t

] 1 _(x_z,),‘—.w
/me(t)e =0 gy
[

t
1 _@—aP+y—yP+(c—2P
S
0

Wenn der Anfangszustand w = f(x, y) resp. v = f(z, 9, #) in einem
unbegrenzten Korper gegeben ist, so lautet der Ausdruck, welcher
die Temperatur zur Zeit ¢ darstellt,

Tesp.

1 : g 2 2 1.4 1.4
L fewsn it Vit v+ 20VR)apdg

S —-
Tesp.

PO

LS ek VR, vt 20V o 2rVR)apagar.
Diese Ausdriicke erhilt man dadurch, dass man z B. im dreidimen-
sionalen Falle den Punkt 2/, ¥, 2’ als Quellpunkt von der Stiirke
(&, v, #)da’dy d2' betrachtet. Wenn die Anfangstemperatur nur
in einem endlichen, den Punkt (0, 0, 0) umgebenden Teil des Korpers
von Null verschieden ist, so wird die Temperatur nach lingerer Zeit
durch den Ausdruck

57) Fourier, ,,Théorie*, chap. IX, sect. 2. Den Temperaturzustand, welcher
von einem beweglichen Quellpunkt verursacht wird, hat Boussinesq, Par. C. R.
110, p. 1242 untersucht.
‘ 13*
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4 TR
gntitet
bestimmt, wo A die zu Anfang vorhandene totale Wirmemenge be-
zeichnet.

e) Im zweidimensionalen Fall sei ein sonst unendlich ausgedehnter
Wiirmeleiter durch die Axe y = O begrenzt; die von einer Doppel-
quelle im Punkt («/, 0) verursachte Temperatur ist

py e

8wk*t?
wo P die Stirke des Doppelquellpunktes bezeichnet, dessen Axe zur
z-Axe senkrecht liegt. Wenn der Doppelquellpunkt ein kontinuier-

licher von der Stirke 2kf(z")da’ dt’ ist, so haben wir als Ausdruck

fiir die Temperatur zur Zeit ¢
t

1 ’ d ’ K _—(_:L'.;;Z,)_’_TT)l’ dt,‘
rey R ACOLL Btk ;

0
indem wir dieses Integral auswerten, erhalten wir®)
=27+

1 T TTTARE At

- @—:})z:} pf@e 4% dd,
welcher Ausdruck iiberall in der z-Axe mit Ausnahme des Elements
d«’ verschwindet, und in diesem Element den Grenzwert f(z") an-
nimmt. Daraus ersieht man, dass der Ausdruck

@®

Ly _@—arty
- 4kt 4 4
n/(m—m’)’-}—y*e /'(x)da:

—_

die Temperatur darstellt, wenn die Anfangstemperatur in der Ebene
iberall Null ist und die Temperatur der Grenzlinie stets den ge-
gebenen von der Zeit unabhingigen Wert f(z) hat.

Wenn die Anfangstemperatur nicht Null sondern ¢(z, y) ist, so
muss man dem obigen den Ausdruck hinzufiigen

® @
1 _ =2+ —y) _ =24y +y»
’ ’ 4 7
4xkt ¢ 4kt — e Akt (P(x: y)dx dy)

—_w 0

den man erhdlt, indem man die Quellpunkte ¢(z, y')da’dy’ gegen
die Grenzlinie y = O spiegelt.
f) Wenn ein unendlich ausgedehnter dreidimensionaler Kérper

58) E. W. Hobson, Lond. Math. Soc. Proc. 19 (1887), p. 279.



8, Wirmeleitung in einer Kugel. 197

durch die Ebene 2= 0 begrenzt ist und von einem Punkte dieser Ebene
aus erwarmt wird, so betrachte man einen in der Begrenzungsebene
gelegenen und senkrecht gegen diese gerichteten kontinuierlichen
Doppelquellpunkt; die von ihm herrithrende Temperatur betrigt

¢

@
, (x—a' P+ (y—y)+2* Pz
Pz . dt ¥ ) oder 3, ate=?de,
162318 [ ¢ — o)t karte]

0 Vire

wo r*= (z— ') + (y—y')?+ 2*. Dieser Ausdruck wird fiir x = &/,
y =y im Limes 2 = 0 unendlich gross und verschwindet sonst iiberall
in der Grenzebene z = 0.

g) Durch die Methode der Spiegelbilder in ihrer Anwendung auf
Quellpunkte oder kontinuierliche Temperaturverteilungen lassen sich
Aufgaben auch fiir solche Gebiete 15sen, die durch wiederholte Ab-
spiegelung den ganzen Raum einfach und liickenlos erfiillen ). G. Lameé %)
bat auf diese Weise Wirmeleitungsaufgaben ausser fiir das rechteckige
Parallelepipedon, das Prisma mit regulir dreieckiger Basis etc., welche
ersichtlich bei symmetrischer Wiederholung zu einer reguléiren Raum-
einteilung Anlass geben, aqch fiir einige Tetraeder behandelt (,,Te-
traeder 1/6“ und ,Tetraeder 1/24%), welche den 6. oder den 24. Teil
des Wiirfels bilden. Diesen Tetraedern ist von .A. Schinflies®) ein
weiteres hinzugefiigt, welches ebenfalls den Fundamentalbereich einer
regulidr-symmetrischen Raumeinteilung bildet und fiir welches daher
Wirmeleitungsaufgaben ebenfalls nach dem Spiegelungsverfahren un-
mittelbar gelost werden kénnen. Auch wenn Strahlung an den Grenz-
ebenen stattfindet, ldsst sich das Spiegelungsverfahren bei solchen
Gebieten anwenden ®%).

8. Wirmeleitung in einer Kugel. Wenn die Differentialgleichung
der Wirmebewegung auf Polarkoordinaten r8¢ transformiert wird, so
nimmt sie die Form an

59) Solche Gebiete kénnte man mit Benutzung eines funktionentheoretischen
Terminus als ebenflichig begrenzte symmetrische ,,automorphe Fundamental-
bereiche* bezeichnen.

60) Siehe seine beiden Biicher ,Lec¢ons sur les fonctions inverses des trans-
cendentes et les surfaces isothermes*, Paris 1857, ,,Lecons sur la théorie analy-
tique de la chaleur, Paris 1861, Uber die Wirmebewegung in einem Tetraeder
siehe Cotton, Ann. de Toul. (2) 2 (1900). Eine Arbeit, die noch nicht erwihnt
wurde, ist die von Betti, ,,Sopra la determinazione delle temperatura variabili
di una lastra terminata‘, Ann. di mat. (2) 1 (1867), p. 371

61) A. Schonflies, Math. Ann. 34 (1889), p. 172.

62) G. H. Bryan, Lond. Math. Soc. Proc. 22 (1891), p. 424.
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0 0* 1 9 /. 0 1 0*

ot (r“) =k [2—37; (ru) + r¥sin 6 00 (sm 0 20 ru) + risin® 6 dop? ru]
Betrachten wir zunichst den Fall®), dass « unabhingig von 6 und ®
ist, dann wird unsere Glelchung

ﬂ (ru)=1F% g; (ru),

hat also dieselbe Form, wie im Fall der linearen Bewegung, nur dass
ru anstatt « die abhiéngige Variable ist.

Wenn eine Kugel vom Radius ¢, deren Anfangstemperatur glelch
F(r) ist, von einem Medium umgeben ist, dessen Temperatur Null
ist, und sich durch Strahlung abkiihlt, so muss » die Nebenbedingungen
erfiillen:

w=F() fir t=0, 2% 4 hu=0 fiir r=c.

Insbesondere geniigt der zweiten dieser Nebenbedingungen der Ausdruck

_gazg SN AP
7

w=ce
falls 4 eine Wurzel der Gleichung
Accos Ac = (1 — hc) sin dc.

ist. Setzen wir Ac = ¢, hc¢ — 1 = p, so wird 4 durch die Gleichung
pecosyp + psin g = 0 bestimmt; diese Gleichung hat keine kom-
plexen Wurzeln, und wenn p > — 1 ist, auch keine rein imaginiren.
Ist —1<p<O0, so liegt eine Wurzel in jedem der Intervalle

©3) @) = 3)

ist p > 0, so liegt eine Wurzel in jedem der Intervalle

(), (5 20, (5, 30)

Die Wurzeln 4,, 45, ..., 4, ... lassen sich bequem mit Hiilfe der
trigonometrischen Tafeln berechnen.
Entwickelt man nun die Funktion F(r) in der Form

63) Den symmetrischen Fall hat Fourier behandelt, siehe ,,Théorie*, chap. V
sowie Poisson, J. éc. polyt. cah. 19, p. 112. Die Konvergenz der Reihen ist
von Cauchy u. A. sowie neuerdings von Fugisawa untersucht, Diss. Strass-
burg 1886 ,Uber eine in der Wirmeleitungstheorie auftretende, nach den
Wurzeln einer transcendenten Funktion fortschreitende wunendliche Reihe*;
auch J. of College of Scienc. of Japan 2 (1889). Im iibrigen verweisen wir wegen
der Konvergenzfragen auf Encykl. II A 9, Art. Burkhardt iiber Reihenentwicke-
lungen.
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e )
e 24 (h—21) ,
F(r) =2 Sm:'”". _f_ . ( ;) /rF(r) sin 4,7 dr,

=t Bw—

so ergiebt sich fiir die Temperatur selbst die Formel

_— NI
) =2 L A TR ifl /rF(r) sin A, 7 dr.
am1 " A2h— 2
v
Nach lingerer Zeit wird die Temperatur durch das erste Glied dieser
Reihe mit geniigender Annéherung dargestellt.
Eine allgemeinere Losung der Differentialgleichung ist®)

Iy @r) i
__k;.uV (0 ) +7 oder e"“"r"V(O CP) smﬂ-’

dary T

worin V, (0, @) eine Kugelfunktion vom Grade % bedeutet, und
g 1}(M) die Bessel'sche Funktion mit der Ordnungszahl n - 1 ist.
Diese Losung findet Anwendung, wenn die Temperatur an der Ober-
fliche vorgeschrieben ist, oder wenn der Korper sich durch Ausstrah-
lung abkiihlt. Die gegebene Oberflichen- oder Aussentemperatur ist
dabei in eine Reihe nach Kugelfunktionen in der Form 'V, (6, ¢)
zu entwickeln.

9. Wirmeleitung in einem Xreiscylinder. Hat der leitende
Korper die Form eines Kreiscylinders, so verwendet man die partielle
Differentialgleichung der Wirmebewegung in der Form

ou 0%u 1 0u 1 0*u 0%
5=k (G T o 55+ ov o5 T 50)
hierin bedeutet ¢ die Entfernung von der Axe des Cylinders, ¢ das
Azimuth und 2z die der Axe parallele Koordinate. Dieser Gleichung

geniigt die Losung

w=ett S mp - etre - J, (o V' + A,

wo oJ, (x) die Bessel'sche Funktion m*" Ordnung bezeichnet, welche
der gewthnlichen Differentialgleichung zweiter Ordnung geniigt:

s nt (=)o

64) Poisson, ,,Théorie*, p. 863; Laplace, Connaissance des temps 1823,
p. 245; Mécanique céleste, livre 11, chap. 4, 1828; Duhamel, J. éc. polyt. 14,
chap. 22, p. 36. Siehe auch Langer, Habilit.-Schr. Jena (1875) ,,Uber die Wirme-
leitung in einer homogenen Kugel“; K. Baer, Diss. Halle 1878 ,,Uber die Be-
wegung der Wirme in einer homogenen Kugel*.
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Zunichst werde ein Cylinder von unendlicher Liénge und vom
Radius @ betrachtet; die Anfangstemperatur sei unabhiéngig von 2
und ¢ und der Cylinder von einem Medium umgeben, welches die
Temperatur Null hat®); in diesem Fall gebrauchen wir die Losung

u == e~ "t J (19).
Die Grenzbedingung laute hw - g—“ = 0; die Konstante A lasst sich
. . e
durch die Gleichung
hdy(Aa) + Ay (Aa) =0

bestimmen. Fourier hat nun gezeigt, dass diese Gleichung unendlich
viele reelle positive Wurzeln A, 4,,... besitzt, und dass eine will-
kiirlich gegebene Funktion F (g) sich in eine Reihe

?ArJO (4.0)
=1

entwickeln lidsst; man findet

{F(o) J,(L,.0) edo
A =

r

)
3 @ ) (1455

Identifiziert man die hier vorkommende willkiirliche Funktion F(o)
mit der Anfangstemperatur des Cylinders, so ist die Temperatur zur
Zeit t

r=uw

U= 2 A e+ J (2 0).
r==1
Im Falle die Anfangstemperatur sowohl von ¢ als von ¢ abhingt,
sowie im Falle eines Cylinders von endlicher Linge, kann die Losung
aus den obigen allgemeineren Losungen zusammengesetzt werden.
Die Hauptlésung (vgl. Nr.6) im Fall von zwei Dimensionen

., _m
. 4kt
Oz

ist mit dem Ausdruck
I S : ,
i o #1d1 317, (40)T,(4¢') cosm (9 — )
dquivalent; hierin bedeutet R die Entfernung

65) Fourier, ,,Théorie, chap. VI, wo die Funktion J, auftritt. Die Funk-
tionen J,, zuerst bei Poisson, J. éc. polyt. cah. 19 (1823), p. 239, 335. Siehe
auch Melchior, Programm Realgymn. Fulda 1884—85. J
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(0 + 0" — 200 cos(p — 9}
der beiden Punkte (¢, 9), (o, ¢").
Fiir eine ebene (Riemanw'sche) Fliche mit einem r-fachen Win-
dungspunkt®) lautet die entsprechende Losung der partiellen Diffe-
rentialgleichung

@ ]

1 2 ’ Il
w= gy [erraan 20,60 Ju(4e) cos T (9—9)

— 0

Im Falle » = 2 findet man hieraus durch Summation der Reihe

e’ 9—d
k‘ COo8 9

U = 711 __,iﬁ, ,e— 4}:"/‘6— 7?2 d‘t.
Vr (2 xkt)?

—

Diese Losung lisst sich auf den Fall anwenden, dass die Ebene (z, y)
lings eines vom Nullpunkte auslaufenden Halbstrahles aufgeschnitten

ist und die Wirmebewegung in dieser aufgeschnittenen Ebene unter-
sucht werden soll.

10. Wirmeleitung in Korpern von versehiedenen speziellen
Formen. Die Aufgabe, den stationiren Wirmezustand eines Ellip-
soides zu ermitteln, dessen Oberfliche auf gegebener Temperatur er-
halten wird, hat . Lamé¢ ¢7) unter Zugrundelegung der elliptischen Koordi-
naten zuerst gelost. Wenn

2 2 z’

ot ta
die Oberfliche darstellt, sind diese Koordinaten im Punkte (z, ¥, 2)
die drei positiven Wurzeln der Gleichung

f,—l-pyTez-i-zai_fs:l,

=1

worin
e =t — b, f2=a®— %

66) A. Sommerfeld, Math. Ann 45 (1894), p. 276.

87) G. Lamé, J. de math. 4 (1839), p. 126. Andere Arbeiten von Lamé, die
sich auf diesen Gegenstand beziehen, befinden sich in den sechs ersten Bénden
und im Band 8 desselben Journals. Eine Ubersicht iiber die ersten Resultate
Ann. Chim. Phys. 53 (18383), p. 190. Die erste Einfilhrung der isothermen Ko-
ordinaten geschah in einem Mémoire in den Savans étrangers 5, 1838, abgedruckt
J. de math. 2 (1837), p. 147; siehe auch J. éc. polyt. cah. 238 sowie die beiden
Werke ,Legons sur les fonctions inverses, Paris 1857, und ,Legons sur les
coordonnées curvilignes et leurs applications*, Paris 1859,
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bezeichnet man diese Koordinaten durch o, g, v, so geniigen sie im
Inneren des Ellipsoids den Bedingungen

a>e>f, f2u>e, e>v>0.

Wenn man die drei elliptischen Integrale
_JW—PW [w v

‘ f VA= e

einfiihrt, so nimmt die Differentialgleichung der Warmebewegung die
Form an
8

((" _’”z)ag’s'{"(@ ""1’2)_*"'_(9_!" o =0.
Es wird nun gezeigt, dass diese Gleichung durch das Produkt

E(e) E(w) E(v)
erfiillt wird, wo E(g) eine ganze Funktion vom Grade » in g, Jo® — ¢ )
V! —f? ist, und E(u), E(v) dieselben Funktionen von u, Ju?— ¢,
VIP—u?, resp. v, Vf*—v?, Ve?—? sind. Die Funktion E heisst
eine Lamé’sche Funktion, und E(g) erfiillt die Gleichung

(0 — ' — 1) G + e — 2 — G,
+E + M —n@+ D) E=0,

worin p einen Parameter bezeichnet, der so zu bestimmen ist, dass
die vorstehende Gleichung eine Losung der erwdhnten Art besitat,
namlich eine ganze Funktion des n'™ Grades in o, Vo' — ¢, Vo' —f*
Es wird weiter gezeigt, dass es 2n - 1 reelle verschledene Werte
von p giebt, welche der obigen Bedingung geniigen, und dass daher
2n + 1 verschiedene Funktionen E(g) des Grades » existieren. Dem-
entsprechend hat man 2% 4 1 verschiedene Produkte £(o) E(x) E(v)
zur Verfiigung, die der Gleichung der Wérmeleitung Geniige leisten,
und welche eindeutig und endlich im ganzen Ellipsoid sind. '(Niheres
iiber Lamé’sche Funktionen in Bd. II der Encykl)

Die Aufgabe des stationdren Wirmeflusses wird nun dadurch
gelost, dass die gegebene Oberflichentemperatur in eine (im allge-
meinen unendliche) Summe

n=0w m=2n+1

2 ny n, m (ll’) nym ('V)

m=1
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entwickelt wird; der Temperaturzustand in einem jeden Punkte im
Innern des Ellipsoids wird alsdann durch den Ausdruck

n=w m=2n+1 -

E
An,m E n m (“) n,m (1,)

n=0 m=1

dargestellt.

Die Losung des Problems der nicht stationiren Warmebewegung
in einem Ellipsoid hat Mathieu®®) auf die Integration einer gewdhn-
lichen Differentialgleichung reduziert. Im Fall des Rotationsellipsoids )
reduziert sich das Lamé’sche Produkt auf das Produkt einer trigono-
metrischen Funktion und zweier Kugelfunktionen. Die nicht statio-
nire Wirmebewegung in einem Rotationsellipsoid hat C. Niven™)
behandelt.

Die Bestimmung der Wirmebewegung in einem elliptischen
Cylinder kommt auf die Losung der Gleichung

0%u 0*u
ggz +a—y=“—12“=0

hinaus; setzt man x = Cof  cos ¢, y = Cin w sin @, so wird diese
Gleichung
o*
8m’ LT aq)“ + 4% (cos? ¢ — Coj? @) u = 0.
Eine Losung derselben ist uw—=E(o)E(p), wo E(w), E(p) den ge-
wohnlichen Differentialgleichungen

gj_(li’@n o —pE=0, g§,+(lzcosgq)—1))E=O

Geniige leisten; der Parameter p muss dabei so bestimmt werden,
dass E(p) in @ mit der Periode 2z periodisch wird. Diese Funk-
tionen heissen Funktionen des elliptischen Cylinders™); durch Zu-
sammensetzung der Produkte ¢~ */cos mz - E(w) E(¢) mit ¢« =Fk(m?+} 4%)
kann der Temperaturzustand unter gegebenen Bedingungen theoretisch

68) E. Mathieu, Cours de physique, p. 269.

69) G. Lamé, J. de math. 4 (1839), p. 351; Heine, J. f. Math. 26 (1843),
p. 18b6; J. Liouwille, J. de math. 11 (1846), p. 217 261.

70) C. Niven, Lond. Phil. Trans. 171 (1879), p. 117. Fiir den Fall des Rota-
tionsparaboloids siehe K. Baer, Diss. Halle 1881.

71) E. Mathiew hat den ersten Versuch gemacht, diese Glelchung zu 16sen,
J. de math. (2) 13 (1868), p. 1837—2038; auch ,Cours de physique mathémati-
que*, 1873, p. 122—164. In Heine's ,,Kugelfunktionen“ 1, p. 401 und 2, p. 202
findet man eine Behandlung dieser Funktionen. Siehe auch Besser, Zeitschr.
Math. Phys. 30 (1885), p. 267, 806; Maclawrin, Cambr. Phil. Trans. 17 (1899),
p. 41; Lindemann, Math. Ann. 22 (1883), p. 117.
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ermittelt werden. Die entsprechenden Funktionen fiir den parabo-
lischen Cylinder hat H. Weber™) entwickelt.

Der stationdre Temperaturzustand in einem von zwel nicht kon-
zentrischen Kugeln begrenzten Raum wurde von C. Neumann™) unter-
sucht. Derselbe Forscher™) hat auch die nicht-stationire Wirme-
bewegung in demselben Falle behandelt; es kommen dabei die so-
genannten peripolaren Koordinaten und gewisse Kugelfunktionen zur
Anwendung, deren Grad die Hilfte einer ganzen Zahl ist. Mathieu™)
hat sich mit dem Wirmeproblem in einem von zwei nicht-konzentri-
schen Kreiscylindern begrenzten Gebiet und in Cylindern mit lemnis-
katischem Querschnitt beschiftigt.

11. Theorie des Schmelzens und des Gefrierens bei Wirme-
leitung. Man kann die Wirmeleitungstheorie auf eine Art von Pro-
blemen anwenden, bei denen die Wirmebewegung eine Anderung im
Aggregatzustand des Leiters verursacht ).

Wenn ein Eisprisma durch die beiden Ebenen z = 0, x = ¢ be-
grenzt ist, und die Temperatur der unteren Ebene z = 0 konstant
gleich U(> 0) erhalten wird, so wird bei der Warmebewegung das
Eis allmihlich in Wasser verwandelt, und es handelt sich darum, die
Hohe b des geschmolzenen Teils des Prismas zu irgend einer Zeit ¢
zu bestimmen, nachdem das Schmelzen angefangen hat. Es bezeichne
4 die Schmelzwirme der Volumeneinheit des Eises, so wird in der

Zeit dt die Wirmemenge — xg—gdt darauf verwendet, das Eis auf

einer Linge dh des Prismas in Wasser zu verwandeln, wobei die
Temperatur zunidchst den Nullwert beibehilt; wir erhalten also

—xl%at=Adh, fir z=h.
a’ .
Nun geniigt der Ausdruck

72) H. Weber, Math. Ann. 1 (1869), p. 31, siehe auch K. Baer, Progr.
Realgymn. Kiistrin, 1883.

78) C. Neumann, Allgemeine Losung des Problems iiber den stationdren
Temperaturzustand eines homogenen Korpers, welcher von irgend zwei nicht kon-
zentrischen Kugelflichen begrenzt wird, Halle 1862. Vgl. Heine, ,Kugel-
funktionen® 2, p. 261. Siehe auch Frosch, Zeitschr Math. Phys. 17 (1872), p. 498.

74) C. Newmann, Theorie der Elekrizitits- und Wirmeverteilung in einem
Ringe, Halle 1864. Siehe auch Hicks, ,, Toroidal functions*, Lond. Phil. Trans. 172
(1882), p. 609.

76) E. Matthieu, Par. C. R. 68 (1869), p. 590; J. de math. (2) 14 (1869), p. 65.

76) L. Saalschiitz, Astr. Nachr. Nr, 1321 (1861), § 12ff.; J. Stefan, Wien.
Ber. 98% (1889), p. 473,616, 9656 und Monatshefte f. Math. u. Phys., 1. Jahrg.
1890, p. 1.
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u=Afe“’dz

2Vt
einerseits der partiellen, Differentialgleichung der Wirmebewegung,
andererseits lidsst er sich bei geeigneter Bestimmung von 4 und « den
Nebenbedingungen unseres Problems anpassen, wobei das vom Wasser

xX

erfiillte Gebiet durch die Bedingung 0 < i < « zu umgrenzen ist.
Da u="U fir £ =0 und u = 0 fiir x = h, so ist zu setzen:
h=2aVkt, U=A[e*de,
[\]

und die obige Bedingung fiir die Stelle z = h giebt
Axe* = 2kal.

Die Hohe h = 2«)/kt lisst sich daher aus der Gleichung
ue"’"/.e“ *de = ;}%
0
bestimmen; es ist dies eine transcendente Gleichung fiir «, deren
Wurzeln mit Hiilfe von numerischen Tafeln™) berechnet werden
kénnen.

Wenn die Ebene z = 0 eine gegebene unter dem Gefrierpunkt
liegende Temperatur U, hat, und in unendlicher Tiefe die iiber dem
Gefrierpunkt liegende Temperatur U, gleichfalls gegeben ist™), so
dringt der Frost in das Wasser allméhlich vor; die Geschwindigkeit,
mit welcher dieses geschieht, ldsst sich alsdann durch eine #hnliche
Methode bestimmen, wie die soeben angedeutete.

12. Wirmeleitung und innere Reibung in einer bewegten
Fliissigkeit. Sind die Teilchen einer Fliissigkeit in relativer Bewegung,
8o wird Wirme durch die innere Reibung erzeugt und in der Fliissig-
keit fortgeleitet. In diesem Fall™) muss noch besonders festgesetat
werden, was man unter der Temperatur in einem Punkt der Fliissig-
keit zu verstehen hat, da die Temperatur hier nicht auf die gleiche
Weise gemessen werden kann, wie bei einem Korper, dessen Teilchen

77) Vgl. Anm. 46.

78) Die Losung dieser Aufgabe befindet sich im Riemann- Weber'schen
Buch 2, p. 118—122,

79) Diese Theorie hat Kirchhoff aufgestellt, siehe seine , Vorlesungen iiber
die Theorie der Wirme", Leipzig 1894, p. 113.
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sich in relativer Ruhe befinden. Die Temperatur wird nun durch
den Satz definiert, dass die Energie einer bewegten unendlich kleinen
Fliissigkeitsmasse gleich ist ihrer lebendigen Kraft plus der Energie,
die sie in der Ruhe bei gleicher Dichtigkeit und gleicher Temperatur
haben wiirde. Es sei ¢ die Dichtigkeit, u, v, w die Komponenten der
Geschwindigkeit des Fliissigkeitsteilchens an der Stelle (2, y, 2), T' die
Temperatur daselbst, y, die spezifische Wirme bei konstantem Vo-
lumen, M eine Konstante der Fliissigkeit, die wir ,Dilatationswirme“
nennen kénnen und die das Verhiltnis d@/dg¢ bei konstant gehal-
tener Temperatur bedeutet; dann besteht die Gleichung

de oT 1o [ oT\ , @[ 8T\ , (. 0T
— MG v — 9_{5;2(9‘ B.T) + 95(” By’) + 2‘2(” _52)}
1 ou\* 0v\*? ow\* ov ow\?
+o e (2 +26) +2@) + @ +5)
ow | ow\* ou | oOv\? ,(0u , 0v ow\*
+Gat o) + Gy o) | =2 (G ta +5) )
worin u, u' zwei von der Beschaffenheit der Fliissigkeit (Viskositit
und Kompressibilitit) abhingende Konstanten bedeuten; ist die Fliissig-
keit inkompressibel, so verschwindet u’ aus der Gleichung; x bezeichnet
wie sonst die Warmeleitungsfihigkeit.

An der Grenzfliche, wo zwei Fliissigkeiten, oder eine Fliissigkeit
und ein fester Korper sich beriihren, miissen Grenzbedingungen durch
besondere Voraussetzungen aufgestellt werden; diese bestehen zum
Teil aus Annahmen {iiber die Druckkomponenten in den beiden Sub-
stanzen und die Art und Weise, wie sie von der relativen Bewegung
der beiden Substanzen an der Grenzfliche abhéingen. Die Temperatur-
bedingungen, die an der Grenzfliche zu erfiillen sind, lauten

T=1",
a T ’ a T, r 4 ’

%gm % gy =AMl —u)+ @ —0)P 4 w—w)}
worin A eine Konstante, welche die sogenannte dussere Reibung misst,
und dn ein zur Grenzfliche senkrechtes Linienelement bezeichnet.

Die Theorie der Wirmeleitung in Gasen hat ihre Stelle in der kine-
tischen Gastheorie.

13. Diffusion. Wenn sich zwei verschiedene Fliissigkeiten oder
Gase in demselben Gefiisse befinden, und die beiden Substanzen an-
fangs getrennt waren, so durchdringen sie sich allméhlich, so dass
nach theoretisch unendlicher Zeit eine homogene Mischung der beiden
Substanzen entstanden ist; dieser Vorgang heisst Diffusion.

Die Theorie der Diffussion zweier Fliissigkeiten, von welchen die
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eine etwa eine Salzlosung und die andere das Losungsmittel ist, hat
zuerst Fick®) durch die Annahme zu begriinden gesucht, dass die
freie Diffusion (d. h. eine solche, die ohne Scheidewand vor sich geht)
nach demselben Gesetz stattfindet, wie die Verbreitung der Wiirme
in Leitern. Wenn das Gefiiss ein eylindrisches ist, mit vertikaler
Axe, und die Fliissigkeiten iibereinander geschichtet sind, so befinden
sie sich in allen Punkten einer Horizontalebene im gleichen Zustand
prozentualer Mischung. Es wird angenommen, dass die Salzmenge
dS, die in der Zeit dt einen Horizontalschnitt F' durchsetzt, propor-
tional mit F'd¢t und mit dem Konzentrationsgefille du/ox an der be-
treffenden Stelle sei; unter der Konzentration « versteht man dabei
die Gewichtsmenge Salz in der Volumeinheit der Losung; die Koor-
dinate z ist in einem cylindrischen Gtefiiss parallel der Axe desselben
zu messen. Man erhilt unter dieser Annahme

ou
dS = kF 5Edt’

worin die ,Diffusionskonstante“ & von der Natur des Salzes und des
Losungsmittels abhiingt. Der Salzzuwachs in einer Schicht von der
Dicke dz wihrend der Zeit d¢ wird entsprechend

0*u
kF el dtdzx.
Da dieser Zuwachs andererseits gleich der zeitlichen Konzentrations-
dnderung (;?dt multipliziert in das Volumen Fdx der Schicht ist,

so erhalten wir dieselbe Gleichung wie in der Theorie der linearen
Wirmeleitung, nimlich
‘ ou__ 0%
ot ox?

Die mathematische Behandlung des beschriebenen Diffusionsvor-
ganges ist daher im wesentlichen &hnlich dem der Wirmeleitung;
nur sind die Oberflichenbedingungen andere, da sie vom osmotischen
Druck abhiéngen.

Dass der Fick'sche Ansatz annihernd richtig ist, hat H. F. Weber®')
nachgewiesen. KEine Molekulartheorie der Diffusion, auf dem Begriff
des osmotischen Drucks basiert, hat Nernst®®) aufgestellt. Maxwell®)
leitete aus der kinetischen Gastheorie ab, dass die freie Diffusion der
Gase sich durch dieselbe Differentialgleichung wie bei den Fliissig-

=F

80) Ann. Phys. Chem. 49 (18565), p. 59. Uber Diffusion siehe auch Maa-
well’s ,,Theory of heat®, p. 278.

81) -Ann. Phys. Chem. 7 (1879), p. 469, 536.

82) Zeitschr. f. phys. Chemie 2 (1888), p. 611.

83) Phil. Mag. (4) 35 (1868), p. 129, 185.
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keiten darstellen lisst; dasselbe hat Stefanst) auf Grund der Prinzipien
der Hydrodynamik gezeigt. Auch hat Stepfion die Diffusion eines
Gases durch eine Fliissigkeit behandelt. ?%"

Eine der Wichtigkeit des Gegenstandes angemessene, ausfiihrliche
Behandlung der Diffusion muss an dieser Stelle unterbleiben; vgl.
dazu den Art. Van't Hoff iiber physikalische Chemie.

II. Physikalischer Teil (Messmethoden).

14. Zweck der Messungen. Mit den ersten Messungen, welche
Biot, Fourier und deren Nachfolger iiber den Vorgang der Wirme-
leitung anstellten, bezweckten ihre Urheber eine Priifung der formalen
Theorie der Wirmeleitung und zugleich eine Orientierung iiber das
Verhalten der verschiedenen Substanzen bei dem Durchgang von
Wiirme. Dieser doppelte Zweck ist heute nicht mehr in gleicher
Weise massgebend.

Die formale Theorie, d. h. die ihr zu Grunde liegende Biot-Fou-
rier'sche Voraussetzung tiber die Proportionalitit zwischen Wirmefluss
und Temperaturgefille, ist durch zahlreiche und nach sehr verschie-
denen Methoden durchgefiihrte Versuche in weiten Grenzen sicher
gestellt. Auch die mathematische Durchfiihrung ist so weit fort-
geschritten, dass die formale Wirmeleitungstheorie als eine in der
Hauptsache abgeschlossene Disziplin angesehen werden kann.

Ein erhohtes Interesse hat dafiir der andere Zweck erhalten, in
den gemessenen Wirmeleitungskonstanten charakteristische Kigen-
schaften bestimmter Substanzen zu gewinnen. Wihrend némlich die
formale Wirmeleitungstheorie fiir den Fortschritt der allgemeinen
Physik, d. h. fiir die Erkenntnis des Zusammenhanges der Erschei-
nungen nicht direkt, sondern nur als ein allerdings sehr vorziigliches
Hiilfsmittel Bedeutung hat, sind heute nicht nur fiir Gase in der kine-
tischen Theorie, sondern auch fiir Metalle in der Elektronentheorie An-
finge zu tiefer begriindeten Vorstellungen iiber die Natur der Wirme-
stromung enthalten, die ein ausgedehntes und sicheres Zahlenmaterial
wiinschenswert machen. Fiir diesen Zweck sind nun die meisten
ilteren Beobachtungen nicht zu verwenden, weil nur selten die Defi-
nition der Substanz ausreichend gegeben ist. Krst in neuester Zeit
hat sich herausgestellt, dass die Wirmeleitung der Metalle gegen ge-
ringe Beimengungen eine ebensolche Empfindlichkeit zeigt, wie sie
fiir das elektrische Leitvermdgen seit den Versuchen Matthiessen’s

84) Wien. Ber. 77 (1878), p. 871.
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bekannt ist, sodass selbst eine sorgfiltige chemische Analyse zur
Definition hiufig nicht ausreicht (vgl. Nr. 31). Im allgemeinen sind
daher solche Methoden vorzuziehen, welche es gestatten, alle fiir die
Theorie in Betracht kommenden, insbesondere also die elektrischen
Eigenschaften, an demselben Stiick und in mdoglichst weiten Tempe-
raturgrenzen zu bestimmen.

Im Zusammenhang mit den physikalischen Untersuchungen iiber
Wirmeleitung stehen manche aus Anforderungen der Technik ent-
standene Fragen, wie die nach dem Wirmedurchgang durch Heiz-
flichen (s. Nr. 18), nach dem Wiarmeschutz von Dampfrohren, auch
wohl das Problem der Wirmeverluste im Cylinder der Dampfmaschine,
die vor allem auf einer nicht gewiinschten periodischen Condensation
und Wiederverdampfung an der Cylinderwand beruhen?®).

15. Grundlagen und Voraussetzungen. Wie in Nr. 2 dargelegt
ist, kann der Ubergang der Wirme in dem zu untersuchenden Medium
durch Strahlung, Leitung und Konvektion erfolgen. Die innere Aus-
strahlung erreicht nun bei den gewdhnlichen Wirmeleitungsproblemen
keinen bemerkenswerten Betrag; daher lisst sich die durchgehende
Strahlung, sofern nicht bei manchen Gasen Absorption in Frage
kommt, als einfach superponierter Vorgang behandeln®). Die Wérme-
tibertragung durch Konvektion wird, wo dies notig ist, durch die
Versuchsanordnung auf einen nicht mehr storenden Betrag herabge-
mindert. So kann man im allgemeinen und insbesondere stets bei
festen Korpern den Methoden zur Bestimmung der Warmeleitfihigkeit
einen reinen Leitungsvorgang zu Grunde legen.

Der bequemeren Bezugnahme wegen stellen wir die Grundlagen
der Wirmeleitungstheorie, die in Nr. 2 und 3 entwickelt wurden, hier
nach den Gesichtspunkten zusammen, die fiir das Folgende maass-
gebend sind.

Nach dem grundlegenden Biot-Fourier'schen Ansatze fliesst in
einem homogenen isotropen Medium in der Zeit d¢ durch das auf
. der Richtung » senkrechte Flichenelement dF, wenn u die Tempe-

ratur angiebt, eine Wirmemenge '

0
@ dQ = — ny- dF di;

(s. GL (1) und ) in Nr. ). Durch diesen Ansatz ist die Wirme-
leitungskonstante » (Wirmeleitfihigkeit, Wirmeleitvermdgen) definiert.

85) H. L. Callendar und J. T. Nicolson, Engineering 64 (1897), p. 678.
86) Ein Versuch zur Aufstellung einer gemeinsamen Theorie der Leitung
und Strahlung ist von R. 4. Sampson und ausfiihrlicher von 4. Schuster unternommen
(Phil. Mag. 5 (1908), .p. 243).
Encyklop. d. math, Wissensch. V 1. 14
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Durch Hinzunahme des Begriffs der spezifischen Wirme p erhilt
man aus (I) mit Fourier die Differentialgleichung der Wirmeleitung
(Gl ®) in Nr. 3)

ou 0 ( 0Ou 0 ( 0u 0 ( ou
{n 705t =52 (% 5a) Ty (*53) T35 (4 52)>
wo ¢ die Dichte bedeutet. Zur Vereinfachung der Rechnung werden
meist, aber keineswegs immer, die Konstanten %, y und ¢ als unab-
hiingig von der Temperatur angenommen, wodurch die Differential-
gleichung unter Einfilhrung des Temperaturleitvermégens (Gl (7) in

Nr. 3)

11 k= y—’%
die Form erhilt (Gl (6) in Nr. 3)

ou (O%u 0*u 0%u
(v 3 = tow + oy T e

Die Annahme der Konstanz von x und p ist fiir genauere Unter-
suchungen nicht ohne weiteres zulissig. Wihrend sie bei reinen
Metallen meist ziemlich nahe zutrifft, kann bei Legierungen die An-
derung von x leicht 2 bis 3 Tausendstel pro 1° betragen (vgl. Nr. 31).
Hiufig fiihrt man fiir beide Grossen eine lineare Abhingigkeit von
der Temperatur in die Rechnung ein. Dagegen kann die Beriick-
sichtigung der Warmeausdehnung wohl stets ohne merklichen Fehler
unterbleiben.

Bei der praktischen Durchfiihrung kann man im allgemeinen
nicht verhindern, dass Wirmestromung aus der Umgebung den zu
messenden Vorgang stort. Man ist deswegen gendtigt, iiber den
Wiirmeaustausch zwischen dem Versuchskorper und seiner Umgebung
eine neue Voraussetzung zu machen, was gewdhnlich durch die An-
nahme des Newfon’schen Abkiihlungsgesetzes geschieht. Darnach wird
die von dem Korper an das umgebende Medium (etwa eine lebhaft
bewegte Fliissigkeit) abgegebene Wérme proportional der Temperatur-
differenz zwischen der Oberfliche des Korpers und dem Medium ge-
setzt. Die Proportionalititskonstante und eventuell eine genauere Be-
ziehung muss durch besondere Hiilfsmessungen ermittelt werden.
Durch Verbindung mit dem Biot- Fourier'schen Ausdruck fiir den
Wirmefluss liefert das Newton’sche Abkiihlungsgesetz die Oberflichen-
bedingung (GL (4) in Nr. 2)

V) —n gy = Hu—w),

wo n die Richtung der Normale von der Oberfliche nach aussen,
%, die Aussentemperatur und H die #ussere Wirmeleitfihigkeit ist.
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In einem wichtigen Fall, nimlich wenn der Leiter die zur Mes-
sung der Wirmeleitfdhigkeit und zugleich des elektrischen Leitver-
mogens besonders giinstige Stabform besitzt, ist zumeist mit grosser
Niherung eine Voraussetzung erfiillt, welche es ermdglicht, das Newton-
sche Abkiihlungsgesetz direkt in die Differentialgleichung der Wirme-
leitung aufzunehmen, sodass keine besondere Oberflichenbedingung
fiir die Seiten des Stabes zu erfiillen bleibt. Diese Voraussetzung ist,
dass innerhalb des Stabquerschnittes nur geringe Temperaturunter-
schiede vorkommen. Man erhilt dann aus der urspriinglichen die
neue Differentialgleichung auf folgende Weise®).

Die Axe des Stabes sei die 2-Axe des Koordinatensystems. Man
multipliziere die Gleichung (IV) mit dydz und integriere iiber den
Stabquerschnitt g, dessen Randelement ds ist. Dabei wird

f( +azg d?/dz—-fwd.s*——f, [(u—uo)ds

und, wenn »’ die Mitteltemperatur im Querschnitt, «” die Mittel-

temperatur auf dem Umfang p des Querschnitts, & = 7—’1%% eine Kon-
stante bedeutet,
ow I 0% u
ot~ " ot

— W — ).

Wenn angenéhert «’=w’ ist, kann fiir die Mitteltemperatur des Quer-
schnitts die Differentialgleichung der linearen Wirmeleitung (s. Nr. 5,
Gl (15)) angenommen werden:

(VI) Z)aa: k 8 — h(u— uy),
wobei sich die Konstante
(VID) W=

req

als ,dussere Temperaturleitféhigkeit eines linearen Leiters“ definieren
lisst®). Der relative Einfluss der #usseren Wiarmeleitung (und damit
zugleich der erforderliche Grad der Anniherung «” = u') wird um
so geringer, je grosser das erste Glied auf der rechten Seite von (VI)
gegen das zweite ist, und dies ist unter sonst gleichen Bedingungen

um 8o mehr der Fall, je grosser %—:‘ ist, je mehr also der augenblick-

87) Kirchhoff, Vorlesungen iiber die Theorie der Wirme, Leipzig 1894, p. 33.
88) In Teil I ist dafiir »’ gesetzt zur Unterscheidung von der Husseren

Temperaturleitfihigkeit eines korperlichen Leiters h = —? .
14*
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liche Zustand vom stationdren Endzustand abweicht. Bei den Mes-
sungen ist dieser Umstand wohl zu beachten.

Zu diesen Grundlagen der nachfolgenden Methoden treten da, wo
die Grenzfliche zweier Leiter (1) nnd (2) in Betracht kommt, die
Fourier'schen Stetigkeitsbedingungen (Gl. (3) in Nr. 2), dass léngs
der Grenzfliche (mit der Normalen #) gilt: "
(VIII) U=y wnd o O =, O

Fiir nicht isotrope Medien endlich bilden den Ausgangspunkt die
allgemeineren Gesetze der Wirmebewegung, welche Duhamel auf-
gestellt hat (vgl. Nr. 4).

16. Allgemeine Ubersicht iiber die Methoden. Die Definition
der Wirmeleitungskonstante vermittelst der Biot-Fourier'schen Grund-
annahme enthilt vier verschiedene Grdssen: Wirmemenge, Temperatur,
Liénge und Zeit. Zur absoluten Bestimmung des Wirmeleitvermogens
sind diese vier Grissen absolut zu messen. Will man nur das
Verhiltnis der Leitfihigkeiten zweier Medien haben, so brauchen die
genannten vier Grossen bei beiden Substanzen ebenfalls nur relativ
zueinander bekannt zu sein.

Die Methoden schliessen sich an spezielle Losungen der Gleichung
(II) bezw. (IV) oder (VI) an. Eine Gruppe entspricht den Lisungen
fir ou/ct =0, d. h. dem stationiren Zustand. Da hier die Wirme-
leitungskonstante aus der Gleichung (IV) fortfillt, miissen diese Me-
thoden zugleich auf die Definition von x (Gl I) zuriickgehen (Péclet),
oder von x abhingige Grenzbedingungen, wie (V), bezw. die dadurch
entstandene Gleichung (VI) benutzen (Despretz). Bei den hierher ge-
horenden absoluten Methoden werden die vier Definitionsgrissen direkt
gemessen.

Eine zweite Gruppe von Methoden (Forbes, Angstrom, Neumann
u. a.) benutzt von der Zeit abhingende Losungen, welche den Vorteil
geringer Abhéingigkeit von der #usseren Warmeleitung selbst bei Stab-
form besitzen (vgl. Nr. 15). Die absolute Bestimmung liefert dabei aus
Temperatur-, Zeit- und Lingenmessung das Temperaturleitvermdgen
k= x/pg. Die direkte Messung der Wirmemenge fillt fort und an
ibre Stelle tritt eine gesonderte Bestimmung der spezifischen Wirme,
wenn man aus dem Temperaturleitvermogen das Wirmeleitvermdgen
erhalten will. Auch die Temperaturmessung ist bei diesen Methoden
vereinfacht, da man zur Berechnung von % nur das Verhiltnis zweier
Temperaturen zu kennen braucht, also irgend eine der Temperatur
proportionale Grosse, wie die elektromotorische Kraft eines Thermo-
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elementes, zur Messung ausreicht. Die absolufe Temperaturbestimmung
ist gleichfalls in der Bestimmung der spezifischen Wirme enthalten.

Als Nullpunkt der Temperaturskala wird bei diesen Methoden
zweckmissig die Umgebungstemperatur genommen, d. h. die Tempe-
raturdifferenz gegen diese in Rechnung gesetzt. Die Differential-
gleichung (VI) reduziert sich dann auf

ou o*u
(IX) 57 =k 5 — hu.

In neuerer Zeit hat F. Kohlrausch eine Beziehung zwischen Tem-
peratur und Potential bei elektrischer Heizung angegeben und gezeigt,
wie sie zur Messung der Wirmeleitung benutzt werden kann. Die
Methoden, welche hierauf beruhen, liefern das Verhiltnis des Wirme-
leitvermogens zum elektrischen Leitvermdgen und erfordern keine
Ausmessung der Dimensionen.

Als Grundlage relativer Warmeleitungsmethoden sind von Voigt
die Stetigkeitsbedingungen (VIII) an der Grenzfliche zweier Medien
benutzt.

Naturgemiss sind die Methoden sehr verschieden, je nachdem sie
sich auf feste, fliissige oder gasformige Korper beziehen. Nur bei den
Methoden fiir feste Korper, besonders fiir die gutleitenden Metalle,
tritt die mathematische Seite in den Vordergrund, wihrend bei den
iibrigen das Interesse sich vorwiegend an experimentelle Fragen heftet.
Daher sollen hier nur die ersteren Methoden besprochen werden und
auch von diesen nur solche aus dem Gebiete der reinen Warmeleitung.
Die oben erwihnten elektrischen Methoden werden im Zusammenhang
mit den zugehorigen theoretischen Betrachtungen in dem Art. ,Be-

ziehungen der elektrischen Stromung zu Wérme und Magnetismus“
behandelt.

17. Methode von Péclet (1841). Die erste Methode, welche
geeignet erschien, absolute Werte des Wiarmeleitvermégens zu liefern,
ist von Péclet angegeben®). Dieser untersuchte den Wérmedurchgang
durch Platten, welche durch Wasserspiilung auf beiden Seiten auf
verschiedener Temperatur gehalten wurden. Die dussere Wirmeleitung
durch den Rand der diinnen Platte ist dabei so gering, dass sie
ausser Betracht bleiben kann. Dem Vorgang entspricht das einfache
Integral von (IV) u = Az + B, wo die z-Axe normal zur Platte ist.
Bedeuten #, und w, die Temperaturen der Endflichen und d die Dicke

89) E. Péclet, Ann. chim. phys. (8) 2 (1841), p. 107; Ann. Phys. Chem. 55
(1842), p. 167.
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der Platte, so folgt darnach aus (I) fiir die in der Zeit ¢ durch den
Querschnitt F' tretende Wirmemenge

Q= — = Fy.

Diese Menge fand Péclet aus der Temperaturinderung und Menge des
Spiilwassers. Das Temperaturgefille berechnete er aus der Temperatur-
differenz des Wassers auf beiden Seiten und der Dicke der Platte,
indem er annahm, dass jede Plattenoberfliche die Temperatur des
Spiilwassers besitze. Diese Annahme trifft jedoch, selbst wenn man
die wirksamste Rithrvorrichtung benutzt, nicht einmal angenihert zu
(vgl. Nr. 18).

Um von dem unbekannten Grenzvorgang unabhingig zu werden,
hat E. H Hall bei der Anordnung Péclet’'s die Temperaturdifferenz
der Oberflichen thermoelektrisch bestimmt, indem er die Platte selbst
als Glied der Thermokette benutzte ).

Insbesondere fiir schlechte Wirmeleiter hat die im Prinzip so
einfache Methode mannigfaltige experimentelle Ausgestaltung erfahren.

18. Wirmedurchgang durch Heizflichen. Der stérende Grenz-
vorgang bei den Péclet’schen Versuchen kommt dadurch zustande,
dass die an eine feste Wand grenzenden Wasserschichten infolge der
Reibung nur langsam und parallel der Wand fliessen und daher nur
wenig Warme durch Konvektion fortfiilhren konnen. Der Hauptteil
der Wirme muss durch Leitung hindurchdringen, was wegen der
schlechten Leitfahigkeit des Wassers nur geschehen kann, wenn ein
starkes Temperaturgefélle und daher eine erhebliche Temperatur-
differenz zwischen der festen Oberfliche und der Hauptmasse des
Wassers vorhanden ist. Dieser komplizierte Vorgang an der Grenze
von Metall und Fliissigkeit ist lange Zeit iibersehen oder an Einfluss
unterschitzt worden; er hat nicht nur die Resultate Péclet’s vollig
entstellt, sondern auch sehr viele spitere und nach anderen Methoden
angestellte Beobachtungen fehlerhaft gemacht. Zum eigentlichen Gegen-
stand der Untersuchung wurde er bei der Frage nach dem Wirme-
durchgang durch Heizflichen. Dabei hat sich ergeben, dass bei
starkem Riihren der Temperatursprung zwischen Metalloberfliche und
Hauptfliissigkeitsmasse proportional ist der hindurchtretenden Wirme-
menge, dass man also von einem durch die letzten Wasserschichten
gebildeten Ubergangswiderstand reden kann. ~Nach den Versuchen
von Austin®) ist dieser Ubergangswiderstand bei nicht geriihrtem

90) E. H. Hall, Proc. of the Americ. Acad. of Arts a. Sciences 81 (1896), p. 271,
91) L. Austin, Zeitschr. des Ver. Deutsch. Ing. 46 (1902), p. 1890.
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siedenden Wasser #quivalent einer Kisenschicht von 12 bis 2 em
Dicke. Durch starkes Riihren wurde er auf 0,75 ¢m Eisen vermindert.
Nicht geriihrtes und nicht siedendes Wasser gab einen Widerstand
bis zu 10 cm Eisen.

19. Methode von Berget (1887). A. Berget®®) ging von derselben
Formel aus wie Péclef, benutzte aber als Versuchsk6rper einen léngeren
Cylinder und umgab ihn zur Vermeidung der Wirmeabgabe durch
die Mantelflichen mit einem konzentrischen Hohlecylinder, der ebenso
wie der zur Messung benutzte innere Cylinder von Wirme durch-
strémt wurde.

20. Methode von Despretz (1822) und Forbes (1852). Lange
ehe Péclet die erste Methode zur absoluten Bestimmung der Wirme-
leitfihigkeit angab, hatte Desprefz®) die erste exakte Methode fiir
relative Messungen gebracht, die spiter von Forbes™) zu einer abso-
luten ergiinzt wurde. Das Wirmeleitungsproblem, welches Desprets
benutzte, ist zugleich das erste, welches eine mathematische Behand-
lung und zwar schon vor Fourier von Biot erfahren hat.

Ein Stab wird an beiden Enden auf konstanter Temperatur ge-
halten und eine konstante Aussentemperatur hergestellt. Dem ent-
spricht die Losung der Differentialgleichung (IX) fiir stationdren Zu-
stand (vgl. Nr. §b)

n N
u = Clex kL Cge—xV"‘.
Man misst in drei #quidistanten Querschnitten die Temperatur-

uy + U,
2u,

2
hilt, wenn ! den Abstand zwischen den Querschnitten 1,2 oder 2,3
bezeichnet,

——\12
(X) 12— [log nat(n 4+ V' — 1)1,
oder®) nach der Definition von % und A (III und VII),
—_—\12
? -Zl—f = [log nat (n + Vn? — 1)].

differenzen wu,, u,, u; gegen die Umgebung, setzt » — und er-

Fiir einen Stab aus anderem Material, aber von denselben Dimensionen

und derselben Oberflichenbeschaffenheit (z. B. Vemi,ckelung), erhilt

man eine analoge Gleichung, in welcher der Faktor ITP unverindert

92) A. Berget, Par. C. R. 105 (1887), p. 224.

93) C. M. Despretz, Ann, chim. phys. 19 (1822), p. 97; 36 (1828), p. 422;
Ann. Phys. Chem. 12 (1828), p. 281.

94) J. D. Forbes, Rep. of Brit. Assoc. (1852); Edinburg Trans. 23 (1862), p.133;
24 (1865), p. 75.
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ist. Die Elimination desselben liefert das Verhiltnis der Warmeleit-
fahigkeiten x fiir die beiden Stébe.

Der Wert n, welcher beobachtet wird und die Abweichung der
Temperatur der Mitte von der Mitteltemperatur der Enden darstellt,
ist nach (X) unabhéngig davon, ob die beiden Enden auf gleicher
oder verschiedener Temperatur gehalten werden. Am giinstigsten ist
es, gleiche Temperatur zu wihlen, weil dann nur kleine Temperatur-
unterschiede im Stabe vorkommen und daher sowohl fiir die innere
als fiir die #ussere Wirmeleitfahigkeit die Abhiingigkeit von der Tem-
peratur nicht in Frage kommt ).

Die Methode von Forbes liasst sich so darstellen, dass man zu
der von Despretz benutzten Losung der Differentialgleichung (IX) eine
zweite hinzunimmt. Diese betrifft den Fall, dass die Temperatur stets
in allen Querschnitten gleich ist, d. h. die einfache Erwirmung oder

2

Abkiihlung des ganzen Stabes. Dann fillt das Glied mit 27“ aus (IX)

fort und man erhilt das Integral

u = Ce ",

Die Beobachtung der Temperatur als Funktion der Zeit liefert den
Wert h, den man in die Despretz’sche Formel (X) einsetzen muss, um
das Temperaturleitvermdgen % absolut zu erhalten®").

Die dussere Wirmeleitung, die bei den meisten Methoden nur
als stérender Faktor auftritt und in einer Korrektion beriicksichtigt

95) Mit grosser Anniherung kann auch geschrieben werden

l’£= Uy Uy — 2, .
k ty 1 (g - g — 2,)

96) Biot und Despretz erwirmben bei ihren Versuchen nur ein Ende des
Stabes; dadurch sind auch die nachfolgenden Experimentatoren zu derselben
nicht zweckmiissigsten Anordnung gekommen.

97) Nach den Methoden von Despreiz und Forbes sind mehrfach wichtige
Bestimmungen ausgefiihrt, die zugleich ein Bild der fortschreitenden experimen-
tellen Verbesserung geben. Zunichst bilden Despretz’s eigene Versuche (L. c.) die
erste quantitative Vergleichung der Wirmeleitung verschiedener Substanzen. Zur
Temperaturmessung wurden dabei Quecksilberthermometer in entsprechend grosse
Ausbohrungen der Stibe gesetzt. Eine weit prizisere Definition des Ortes er-
laubt die von Chr. Langberg (Ann. Phys. Chem. 66 (1845), p. 1) bei der Messung
der Warmeleitung eingefiihrte Benutzung von Thermoelementen, zu denen man
heute Drihte von {; bis ji; mm Durchmesser verwendet.

G. Wiedemann und R. Franz fanden mit einer verbesserten Anordnung der
Despretz’schen Methode das nach ihnen benannte Ni#herungsgesetz von der
Proportionalitit der metallischen Leitvermégen fiir Wirme und Elektrizitit
(vgl. Nr. 81).
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wird, ist bei der Despretz- Forbes'schen Methode zur Grundlage der
Messung gemacht und muss daher bei der experimentellen Ausfithrung

sehr sorgfiltig definiert sein, wenn die Methode brauchbare Resultate
liefern soll (vgl. Nr. 21).

21. Aussere Wiarmeleitung. Die Erscheinungen, an welchen
Péclet’s Versuche scheiterten und die in Nr. 18 als ,,Warmedurchgang
durch Heizflichen® besprochen sind, lassen sich als #ussere Wirme-
leitung zwischen einem Metall und einer lebhaft bewegten Fliissigkeit
auffassen und treten als solche in den Methoden Nr. 24 und 26a
auf, jedoch ohne dort in der entsprechenden Weise Beriicksichtigung
zu finden. Die bei den Methoden vorhandenen Mingel mégen hierauf
zuriickzufiihren sein.

Die Hussere Wirmeleitung zwischen einem festen Leiter und
einem Gas, auf welcher Despretz’s Versuche beruhen, und die bei den
meisten Methoden von Wichtigkeit ist, setzt sich aus Leitung, Strah-
lung und Konvektion zusammen. Versuche, den Einfluss der Kon-
vektion rechnerisch zu bestimmen, sind von Oberbeck®®) und Lorens*)
gemacht. Der letztere kommt zu dem einfachen Resultat, dass fiir
eine vertikale Platte vom Temperaturiiberschuss « tiber die Umgebung
der von Leitung und Konvektion herriihrende Betrag der Husseren
Wiirmeleitung proportional wf gesetat werden kanni®). Bei Beriick-
sichtigung der Strahlung nach dem Stefan-Boltzmann’schen Gesetz er-
giebt sich fiir den Gesamtbetrag der &usseren Wirmeleitung, wenn
T und T, die absoluten Temperaturen der Oberfliche und der Um-
gebung sind,

6 (T — T, + 7 (T — T,

Experimentell ldsst sich die Konvektion durch hinreichendes
Evakuieren der Umgebung beseitigen. Der Betrag der iibrig bleibenden
Leitung und Strahlung kann dann fiir gegebene Raume berechnet
werden.

Aus einer Kugel vom Radius B und der absoluten Temperatur 7'
gelangt zu einer umgebenden konzentrischen Hohlkugel vom Radius R,
und der Temperatur 7|, in der Zeiteinheit durch Leitung die Wirme-
menge

RRE,
(T — Ty)

QL=475%R°_R

98) A. Oberbeck, Ann. Phys. Chem. 7 (1879), p. 271.

99) L. Lorenz, Ann. Phys. Chem. 13 (1881), p. 582.

100) Dulong und Petit (Ann. chim. phys. 7 (1817), p. 225 u. 337) hatten
experimentell eine #hnliche Formel mit dem Exponenten 1,23 gefunden.
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und durch Strahlung
Qs =4neR*(T* — Tp).

Fiir die Léangeneinheit eines Cylinders in einem umgebenden Hohl-
cylinder betragen die entsprechenden Mengen

Q=

2mx (T — T,)

und Qs==2m6 R(T* — T".
log -E“

Bei abnehmendem Radius R verschwindet g schneller als @,. Sehr
kleine Korper in luftverdinnter Umgebung verlieren also ihre Wirme
vornehmlich durch Leitung!'), sehr grosse durch Strahlung. Als
Zahlenwerte kann man annehmen: fiir ¢ nach den absoluten Mes-
sungen von Kurlbaum®?) bei einer Oberfliche, deren Reflexionsver-

mdgen r betrigt, 6 = (1 —r)1,28.10-" —j:l'zzzlc und fiir » bei Luft
von der Temperatur «® Cels. x = 50.10-%(1 4 0,002 u) gr. cal

om sec >< Grad

22. Methode von Angstrom (1861)1%). Die erste Methode,
welche keinen stationiiren Zustand, sondern die zeitliche Anderung
der Temperaturverteilung benutzt, riithrt von Angstrom her. Ein langer
Stab in einer Umgebung von der Temperatur O wird an einem Ende
(x = 0) periodisch erwiirmt und abgekiihlt (Periodendauer 7I'). Der
Vorgang wird dargestellt durch das Integral der Gleichung (IX)

(XT) = EA” e " cos (w’”t — B.x + y,,)

n=0

wo die e, und B, aus den Gleichungen

(XII) o ﬂ k T'I anz - ﬂnz = k

zu berechnen und die 4, und p, von dem zeitlichen Ablauf der dem
einen Ende zugefiihrten Erwirmung abhéngen.
Fiir zwei Stellen (z und z 4 I) wird der Temperaturverlauf als

Funktion der Zeit beobachtet und als Kosinusreihe mit der Periode
T dargestellt:

101) Hiernach lisst sich erwarten, dass die von Schleiermacher u. a. benutzte
Methode, die Wirmeleitung eines Gases aus der Temperatur und dem Energie-
verbrauch eines elektrisch erwirmten Drahtes zu finden, bei Anwendung sehr
diinner Driihte bis zu relativ hohen Temperaturen brauchbar bleibt.

102) F. Kurlbaum, Ann. Phys. Chem. 65 (1898), p. 753.

103) A.J. Angstrom, Ann. Phys. Chem. 114 (1861), p. 618; 123 (1864), p. 628.



22. Methode von Angstrém (1861). 23. Methoden von Fr. Neumann (1862). 219

L

u(r) = Za” cos (2”;,” + bn),

n=0

u(x +1)= Zan' oS (Eﬁjff—t + bn’) .
n=0
Fiir die so gefundenen Koeffizienten a, b, o/, b" gelten, da die Reihen
in der Form (XI) enthalten sein miissen, die Gleichungen
%=ﬂ2@—yzm.

Sind hieraus fiir irgend ein » die Werte «, und B, gefunden,
so erhilt man aus (XII) die Grissen h und F.

Eine Abéinderung der Angstrim’schen Methode in der Weise, dass
beide Stabenden abwechselnd erwirmt und abgekiihlt werden, hat
Fr. Newmann in seinen Vorlesungen gegeben und H. Weber'®*) durch-
gefilhrt. Hier ist jedoch die nicht zutreffende Annahme gemacht,
dass die Endflichen durch Wasserspiilung plotzlich auf eine andere
Temperatur gebracht werden (vgl. Nr. 18), die bei Angstrom nicht
zu Grunde gelegt ist.

Die Unabhiingigkeit von unsicheren Voraussetzungen bildet einen
wesentlichen Vorzug der Amngstrom’schen Methode. Den Temperatur-
verlauf als Funktion der Zeit zu bestimmen ist mit Thermoelement,
Spiegelgalvanometer und Chronograph, ev. photographisch, leicht und
genau ausfilhrbar. Bei der Berechnung konnen die harmonischen
Analysatoren (s. II A 2, Nr. 60) gute Dienste leisten.

23. Methoden von Fr. Neumann (1862)'%). Gute Leiter unter-
sucht Newmann in Stabform. Der Stab wird an Fiden aufgehingt,
an einem Ende erwirmt und dann sich selbst iiberlassen. Durch die
Endflichen findet ebenso wie durch die Seitenflichen Ausstrahlung
statt. Darnach treten zu Differentialgleichung (IX) die Grenzbe-
dingungen:

fir 2 =0 ist %% — Hu,

” r=1 2 x%=—Hu.

Ein Integral, welches diesen Bedingungen geniigt und sich einem be-
liebigen Anfangszustande anpassen lisst, ist (s. Nr. bg)

U = SAne—ﬁn‘(cos x4 ;—:— sin lnx),
n==1

104) H. Weber, Ann. Phys. Chem. 146 (1872), p. 257.
106) F. Neumann, Ann, chim. phys. 66 (1862), p. 183; Kirchhoff, Vorl., p. 36.
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wo

(XIII) b=, g —kai4h

ist und die 1, aus der Gleichung

(x1V) g4l = s

berechnet werden. Dabei ist
O<hii<n<Al<22m....

Sind %, und w, die Temperaturen in den beiden Endquerschnitten,
so folgt

u, U,
_.0__;;..1 fr— Alg—ﬂnt + A_3e—(53‘ + ceey,

@i"—;—ﬁ‘=A2c‘ﬂn‘+A4e-ﬂ«‘—|—
Die Reihen konvergieren so schnell, dass fiir nicht zu kleine Zeiten
das erste Glied ausreicht. Nun werden u, und %, als Funktion der
Zeit beobachtet, B, und B, berechnet, woraus nach den Gleichungen
(XIID), (XIV) und (VII) A und % durch eine Niherungsmethode ge-
funden werden kénnen. Dabei lidsst sich (XIV) ersetzen durch

21 b Wy
tg—‘z————fl— und tg—?—-—*l‘)—

Die Rechnung gestaltet sich wesentlich einfacher, wenn die Temperatur
ausser an den Enden auch in der Mitte des Stabes beobachtet wird.

Die Ausdehnung der vorstehenden Methode auf einen ringfor-
migen Korper ist gleichfalls von Newmann gegeben'®®) und von H. F.
Weber®") unter Annahme linearer Abhingigkeit der Koeffizienten von
der Temperatur durchgefiihrt.

Fiir schlechte Leiter benutzt Neumann Kugel- oder Wiirfelform 18).
Der Leiter wird mit konstanter oder nahe konstanter Anfangstempe-
ratur in eine Umgebung von anderer Temperatur gebracht, mit
welcher er gemiss der Grenzbedingung (V) Wirme austauscht. Ist
der Leiter eine Kugel vom Radius ¢, so wird die Temperatur als
Funktion der Zeit durch eine Reihe dargestellt (vgl. Nr. 8)

. Lad .
U = E, An6~kl"zt _”_smrl_,l_r ’
n=1
wo die 1, Wurzeln der Gleichung

106) G. Kirchhoff, Vorl., p. 38.
107) H. F. Weber, Berl. Ber. 1880, p. 457.
108) Vgl. H. Hecht, Diss. Konigsberg 1903.
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He
re— (1 —"")tg e
sind. Fiir nicht zu kleine Zeiten geniigt das erste Glied
—k22¢8ind r
w=A4,e ~—;—‘—
Bei einem Wiirfel von der Kantenlinge ! hat man (vgl. Nr. 7c)

2 2
u={3A4,e " cos 1,z {ZAne_“’z‘t cos iy} (S A,e " cos A z),
wo die 4, aus der (leichung
Al H
Ag =<
zu berechnen sind. Wiederum ist fiir nicht zu kleine Zeiten das
erste Glied ausreichend

. 8 —3k1%¢
w=A.% cos 4, % cos A,y cos A, 2.

Beobachtet man die Temperatur an zwei Stellen und zu zwei
Zeiten, so lidsst sich 4, und A, eliminieren und % berechnen.

Die letzte Neumann’sche Methode erfordert ebenso wie die von
Despretz eine sorgfiltige experimentelle Definition der dusseren Wérme-
leitung.

24, Methode von Kirchhoff und Hansemann (1879)'%). Aus-
gangspunkt der Methode ist das folgende in Nr. 6a behandelte ideale
Problem der Wirmeleitung: Ein unendlich ausgedehnter durch die
Ebene 2 = 0 begrenzter Leiter von der Temperatur O erfahrt eine
Storung des Temperaturgleichgewichtes, indem in der Grenzebene
plotzlich die Temperatur 1 erzeugt und erhalten wird. Diesem Pro-
blem entspricht die Losung der Differentialgleichung (IV) (vgl. Nr. 5 1)

@
2 N
u=— fe<dgq.
T
x

2Vkt
Lisst sich das Problem experimentell verwirklichen, so kann man
die an irgend einer Stelle # zu den Zeiten ¢ beobachteten Tempera-

turen u durch die obige Funktion darstellen, den Parameter g-sz

entnehmen und daraus das Temperaturleitvermégen %k berechnen !1°).

109) G. Kirchhoff und G. Hansemann, Berl. Ber. 20. Nov. 1879 und 12. Mai
1881; Ann. Phys. Chem. 9 (1880), p. 1; 13 (1881), p. 406; Kirchhoff, Ges. Abh.,,
p. 495 und Nachtrag, p. 1.

@

110) Wegen der Tabellen des Integrals ‘/.e_qqu s. Anm, 46, Uber die
Art der Berechnung vgl. Nr. 26c. ¢
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Kirchhoff und Hansemann benutzten, um den Einfluss der dusseren
Wiirmeleitung herabzudriicken, als Versuchskorper einen Wiirfel von
14 cm Kantenlinge, der zu Anfang die gleich Null gesetzte Tempe-
ratur der Umgebung besass. Die eine Seite wurde der plétzlichen
Temperaturinderung unterworfen, fiir die anderen Seiten gilt die
Oberflichenbedingung (V). Die zugehtrige Losung der Differential-
gleichung (IV) kann man sich als Reihe nach Potenzen von % ent-
wickelt denken. Kirchhoff und Hansemann beschrinkten sich auf
die beiden ersten Glieder, setzten also

w="U,+hU,.

U, ist die Losung ohne Riicksicht auf #ussere Warmeleitung und
héingt nur von der einen Koordinate z ab. Man erhilt U, durch
eine Superposition von Ldsungen des idealen Problems nach der

Spiegelungsmethode (vgl. Nr. 6)
= i) + O Ci) ~ ) o)+

wobei
2 -2
U = V;[e di

gesetzt ist. U, wird in Naherung durch ein System von Reihen
dargestellt. ~ Mittels der Ausdriicke fir U, und U, wird ein
beobachteter Temperaturverlauf « = f(¢f) auf den Fall des idealen

Problems reduziert und aus der Darstellung f(t)rea = U (~"f:) der
Koeffizient % berechnet. 2Vt

Die vorausgesetzte Grenzbedingung einer plétzlichen Temperatur-
inderung der Grenzfliche suchten Kirchhoff und Hansemann durch
Anspritzen mit Wasser zu verwirklichen, iiberzeugten sich aber, dass
dies nicht gelang, und fiihrten dann als Temperatur der Grenzfliche
C+ @(¢) in die Rechnung ein, indem sie ¢(f) als klein gegen die
Konstante C annahmen. Durch Hinzufiigen einer Beobachtungsreihe
in einem der Grenzfliche nahe gelegenen Punkte wurde ¢(?) eliminiert.

Im allgemeinen geniigt freilich die Annahme, dass @(f) klein
sei, dem wirklichen Vorgang an der Grenzfliche nicht (vgl. Nr. 18
und 21).

25. Methode von L. Lorenz (1881)'!!). Lorens griindete seine
Methode nicht auf ein explicites Integral der Wirmeleitungsgleichung,
sondern fiihrte an dem untersuchten Stabe experimentell eine mecha-

111) L. Lorenz, Ann. Phys. Chem. 13 (1881), p. 422 u. 582.
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nische Quadratur derselben aus, indem er eine grosse Anzahl von

Thermoelementen verwandte. Das untersuchte Stiick des Stabes werde

in n Teile von der Linge ! zerlegt gedacht; ferner werde die Glei-

chung (IX) mit dz multipliziert und an ihr die doppelte Integration
(n—1)1 z-41

dz | dx ausgefihrt. Benutzt man dabei, dass fiir eine beliebige

oFunktion f(x)
(n—1)l z+41
[ az [f@ ae=(rQ) +F@) + - + (0 — D)

+ SP{F0) — D) — f(e— D) + f(nl)} 4 ---,11?)
oder auch
=C{fGH+CO+ - +F(—2) +f(e—PD)} + -+

ist, und setzt
Z=u, + U+ -+ Up_gy + U111
12 12

A=uy—u — Un—1)1 + s
wo u, die Temperatur im Querschnitt x = a, so erhdlt man

2 ‘—’% — kA — WX,

Z und A sind durch geeignete Kombination von Thermoelementen
direkt messbar. Nun fithrt man zwei verschiedene Vorginge herbei,
indem man zunéchst die Stange von einem Ende aus erwirmt und
dann mit der Erwirmung aufhort, sodass im ersten Teil X wiichst
und im zweiten die fritheren Werte rtickwirts durchliuft, wihrend A
nach Aufhioren der Erwirmung bald in einen sehr kleinen Wert A’
iibergeht. Fiir den ersten Vorgang gilt die letzte Gleichung; fiir den
zweiten folgt ebenso

dz, ’ 9 ’
2 Ty = kA — hi2X
und durch Subtraktion fiir je zwei Werte X = %’
l2(d2 dZ) — ko — A,

dt — dt
woraus k& berechnet wird.
Lorenz bildete die Methode noch weiter aus, indem er die Ab-
hiéngigkeit der Koeffizienten von der Temperatur beriicksichtigte. Die
Erwirmung des Stabes leitete er so, dass A wihrend der Beobach-
tung konstant blieb.
112) Die Formel ergiebt sich, wenn f(x) in jedem der Intervalle
©, 2l .- (m—2)1, (n— 1)l) mittels Differenzenreihen durch die in I D 3

(Art. Bauschinger, Interpolation) Gl. (6) gegebene Interpolationsformel dar-
gestellt und die Integration ausgefiihrt wird.
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26. Methoden aus dem Berliner physikalischen Institut (1898
—1903). In dem von Warburg geleiteten physikalischen Institut der
Berliner Universitit sind in einer Reihe von Arbeiten'®) zwei Metho-
den entwickelt, .welche beide darauf beruhen, dass das urspriingliche
Temperaturgleichgewicht eines stabférmigen Leiters von einer End-
fliche aus plotzlich gestort wird. Die erste Methode, welche von
Schulze in Angriff genommen und von Griineisen fortgefiihrt wurde,
schliesst sich direkt an die von Kirchhoff und Hansemann an einem
Wiirfel vorgenommenen Versuche an, indem die Temperaturiinderung
der Endfliche ebenso wie dort durch Wasserspiilung bewirkt wurde.
Bei der zweiten, von Giebe bei der Temperatur der fliissigen Luft
durchgefiihrten Methode geschah diese Temperaturinderung nach dem
Vorgange von Griineisen durch Bestrahlung mit einem gliihenden
Platinblech.

Um von einer mangelhaften Definition der Temperaturstérung
unabhingig zu werden, wurde bei diesen Methoden folgendes Ver-
fahren eingeschlagen. Man beobachtete den Temperaturverlauf nicht
nur, wie sonst geniigen wiirde, in einem, sondern in zwei Querschnitten.
Kennt man nun irgend ein Integral der Differentialgleichung (IX),
welches beide Beobachtungen darstellt, so ist dies jedenfalls die
richtige Losung, aus der das Wirmeleitvermogen berechnet werden
kann. Die eigentlichen Grenzbedingungen an der Endfliche # =0
wurden nur dazu benutzt, eine geeignete mathematische Form fiir
das Integral zu erhalten. Durch geeignete Wahl der verfiigbaren
Konstanten wurde dann diese schon angendhert richtige Losung den
Beobachtungen angepasst. Die Form des Integrals ist bei beiden
Methoden entsprechend den Grenzbedingungen verschieden.

a. Bespiilung der Endfliche mit einem Wasserstrahl

Die in Wirklichkeit nicht ganz zutreffende Grenzbedingung, dass
fir 2 =0 u=C ist'*), liefert zu (IX) das Integral

o= ol o v+ eV in( s - vin),

wo, wie friiher,

118) F. A. Schulze, Ann. Phys. Chem. 66 (1898), p. 207; F. Griineisen, Ann.
Phys. 3 (1900), p. 43; E. Giebe, Diss. Berlin 1903, Verh. d. Deutsch. Phys. Ges.
1903, p. 60. .

114) Uber die Ersetzung dieser Grenzbedingung durch eine andere vgl.
Nr. 21,
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U@ =%f:—izd1

gesetzt ist. Dies Integral lisst sich nach Potenzen von h entwickeln,
was bei Beschrinkung auf die erste Potenz ergiebt

(XV) = 257?5)[ —q’(z‘;/kt) “]’

mit
——~—f a1
2fe“pdl
i

Die Losung bleibt ein Integral der Differentialgleichung (IX), wenn
zwei willkiirliche Konstanten £ und v eingefiihrt werden, indem man
% durch 4+ & und ¢ durch ¢+ 7z ersetzt. Diese beiden Konstanten
hat man zur Verfiigung, um die Formel den Beobachtungen an-
zupassen.

p() =

b. Bestrahlung der Endfliche mit einem gliihenden
Platinblech.

Sehr viel exakter, als sich die Grenzbedingung der vorigen Me-
thode verwirklichen ldsst, kann man bei Bestrahlung der Endfliche
mit einem glithenden Platinblech den wirklichen Grenzvorgang mit
der mathematischen Form in Ubereinstimmung bringen, indem man
annimmt, dass der Endfliche des Stabes durch die Bestrahlung eine
zeitlich konstante Warmemenge zugefiihrt wird. Darnach erhilt man
zu (leichung (IX) die Grenzbedingungen

fir t=0 ist u=0,

fiir x =0 ist g’—‘=———0
X

und dazu das Integral

u#—i_{e—zﬂ (Wk‘ th) 1f(

2kt + Vht)l

oder nach Potenzen von % entwickelt

(XVI) "= ch(;_ljk_) [1 <21F) 2 h]

WO
Enoyklop. d. math. Wissensch. V 1. 15
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2 (e * s
J(@) = ——[—— — e“’dl}
23
Ll —f

1 e
v = (21.51/7;,1(1)) —1
Wenn es erforderlich ist, kann ebenso wie bei der vorigen Methode

durch Einfithrung zweier Konstanten § und z die Losung dem wirk-
lichen Vorgange besser angepasst werden.

und

c. Berechnung der nach diesen Methoden angestellten
Versuche.

Wenn der Temperaturverlauf in zwei Querschnitten 2, und z,
beobachtet und durch eine Hiilfsmessung, etwa nach der Desprefe’schen

Methode, der Wert von —Z— gefunden ist, werden zuniichst die beobach-

teten Temperaturen % nach den Formeln (XV) bezw. (XVI) durch
Division mit dem in [ ] stehenden Faktor auf den idealen Fall ohne
dussere Warmeleitung reduziert, wozu Néherungswerte von % und ev.
¢ und = ausreichen. Die so erhaltenen verbesserten Temperaturen,
die mit & bezeichnet seien, miissen als Funktion der Zeit durch die
Formel

XVII () = CU (£
(VD 0= ()
bezw.
— z+§

(XVIII) () =C(z + g)J(2 VF(ZT%S>
dargestellt werden, indem man v und der Grosse

otk

VE

einen passenden Zahlenwert giebt. Aus zwei Wertepaaren (2, ;)
und (z,, ,) erhilt man das Resultat

= (2= &),
b= (72 - 71)
Das Auffinden des Parameters y geschieht zweckméssig auf folgende

Weise. Man zeichnet zunichst auf Koordinatenpapier die Kurve aus
der bekannten mathematischen Funktion log U(2) bezw. log J(¢) als

Ordinate zu loggf,« als Abscisse, welche zur Berechnung aller nach

der Methode angestellten Versuche benutzt wird. Sodann trigt man
aus den (wegen der dusseren Wirmeleitung reduzierten) Beobachtungen
die Werte log & als Ordinate zu log ({-}7) als Abscisse auf Paus-

¢
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papier in dasselbe Koordinatensystem ein, ev. fiir mehrere Werte 7,
von denen der passendste ausgewihlt wird. Durch Parallelverschieben
des Pauspapiers miissen die beiden Kurven zur Deckung gebracht
werden konnen, und die Verschiebung in Richtung der Abscissenaxe

2
liefert den Wert log %;—- Nach den Formeln (XVII) und (XVIII) ist
némlich
2VEGt +v 2Vife

1 y?
log .5 =log (t + 7) — log -

27, Isothermen-Methode von Voigt (1897)!%). Eine Wirme-
stromung durchsetze die Grenzfliche zweier Korper mit dem Wiarme-
leitvermégen x, und %,. Die #ussere Oberfliche sei normal zur Grenz-
fliche. Bedeuten dann ¢, und ¢, die Winkel zwischen den Isothermen
auf der Oberfliche und der Grenzlinie, so folgt aus den Stetigkeits-
bedingungen (VIII) fiir jede Art der Stromung, also unabhingig von
der dusseren Wirmeleitung,

(XIX) % tuy =tg @, 1tg .
Kann man die Isothermen sichtbar machen'f), so liefert die Messung

der Winkel ¢ das Verhiltnis x,/x,. Bei logarithmischem Variieren
folgt aus (XIX)

also

6\(“i/”a)= 209, 209, .
%, [4g sin 2@, 8in 2 ¢,

Darnach iiben Messfehler den geringsten Einfluss, wenn die Winkel ¢
nahe an 45° gebracht sind.

28. Wirmeleitung in Krystallen, Allgemeines. Anstatt einer
einzigen Konstanten, wie bei isotropen Korpern, ist in krystallinischen
Medien die ‘Grosse und Richtung der drei aufeinander senkrechten
Hauptleitfahigkeiten zu bestimmen. Doch sind hiermit die Aufgaben
der Messung noch nicht erschopft. Die drei Hauptleitfihigkeiten ge-
ntigen zwar zur Losung aller die Temperaturverteilung betreffenden
Probleme, aber die Richtung des Wirmeflusses bleibt unbekannt. In
(Nr. 4) ist gezeigt, dass der den Wiirmefluss darstellende Vektor im
allgemeinen ausser einem von den Hauptleitfihigkeiten abhingenden

116) W. Voigt, Gott. Nachr. (1897), p. 184; Ann. Phys. Chem. 64 (1898), p. 95.
116) Mittel dazu sind die Schmelzkurven an Uberziigen mit geeigneten Sub-
stanzen (Wachs-Terpentingemische, oder die bei 45° erstarrende Elaidinsiiure),
ferner thermoskopische Substanzen, die bei bestimmten Temperaturen einen
Farbenwechsel zeigen (die Doppelsalze Jodsilber-Jodquecksilber bei 45°, Jodkupfer-
Jodquecksilber bei 70°), endlich Behauchen und Bestreuen mit Lykopodium.
. 15*
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noch einen rotatorischen Bestandteil enthilt, welcher beim Aufstellen
der fiir die Temperaturverteilung geltenden Differentialgleichung
fortfillt. Daher ldsst sich die Frage nach der Existenz rotatorischer
Wirmestrémungen durch Temperaturbeobachtung allein nicht ent-
scheiden. Man muss ausserdem auf irgend einem anderen Wege iiber
die Richtung der Wirmestromung Kenntnis erlangen.

29. Methode von H. de Sénarmont (1847)''7). Nachdem von
Duhamel die Theorie der Warmeleitung in Krystallen begriindet war,
wurde zum ersten Mal von H. de Sénarmont die Verschiedenheit der
Leitfahigkeit in verschiedenen Richtungen experimentell gezeigt. Er
erwirmte diinne Krystallplatten von der Mitte aus (z. B. mittels eines
hindurchgesteckten Drahtes) und beobachtete an einer auf die Ober-
fliche gebrachten Wachsschicht die Schmelzkurve, welche eine Iso-
therme darstellt. Er bekam ellipsenférmige Kurven. Von Duhamel
(1847) und Stokes (1851) wurde die Theorie der Sénarmontschen
Versuche entwickelt. Darnach sind bei sehr diinnen und grossen
Krystallplatten die Isothermen in der That Ellipsen, deren Axen sich
wie die Wurzeln aus den Leitfahigkeiten verhalten. KEs ldsst sich
also nach der Sénarmont’schen Methode sowohl das Verhiltnis als
die Lage der drei Hauptleitfihigkeiten zwar nur mit geringer Ge-
nauigkeit, aber in einfacher und anschaulicher Weise bestimmen.

30. Methode von Voigt (1896)1'8). Die Messung des Verhiltnisses
der Hauptleitfihigkeiten und auch eine Untersuchung der rotatorischen
Eigenschaften gestattet die von W. Voigt angegebene Methode, welche
freilich eine thermische Symmetriebene am Krystall als bekannt
voraussetzt. Voigt benutzt eine Wiarmestrémung von bekannter Richtung.
Um eine solche zu erhalten, stellt man nach ihm einen kiinstlichen
Zwillingskrystall her, indem man eine rechteckige Platte durch einen
parallel zu einer Kante gefiihrten Schnitt halbiert, die eine Hilfte
um 180° um die Normale zu jenem Schnitt dreht und die beiden
Teile wieder zusammenkittet. Dann wird der Schnitt eine Symmetrie-
ebene der Platte, sodass bei symmetrischer Anordnung die Wirme-
stromung in der Nihe des Schnittes diesem parallel verlaufen muss.
Auf der Platte werden Isothermen nach dem Schmelzkurvenverfahren
hergestellt.

Es sei zundchst ein Krystall ohne rotatorische Eigenschaften
vorausgesetzt. Das Koordinatensystem z, y, z falle mit den Haupt-

117) H. de Sénarmont, Par. C.R. 25 (1847), p. 459 u. 707; Ann. chim. phys.
21 (1847), p. 457 u. 32 (1848), p. 179; Ann. Phys. Chem. 73—175 (1848).
118) W.Voigt, Goit. Nachr. (1896), p. 236; Ann. Phys. Chem. 60 (1897), p. 850.
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leitfahigkeitsaxen zusammen, die z-Axe sei normal zu der bekannten
Symmetrieebene. Das Koordinatensystem £, 7, { sei um den Winkel
@ um die gemeinsame z-Axe gegen das vorige gedreht. Die Wirme-
stromungskomponenten in der Symmetrieebene sind im ersten Koor-
dinatensystem

ou » ow
und im zweiten
ow ou ou ou
DE == — xn —55 —_— %12 %; QVI _ — 3{22 éi" —_ X12 "a‘g 9

wo
%y, = %; co8® @ | %, sin® g
(XX) g9 = %, SIn® @ - %, cos? @
%9 = (% — %,) Sin @ cos @.
Wird nun eine Wirmestrdmung erzeugt, die keine Komponente
nach der &-Axe besitzt, so gilt
0— —x, 0% _ , 0%
15E 12 7y
Dieser Stromung entspricht eine Isotherme, deren durch Messung zu
findender Neigungswinkel o gegen die §{-Axe die Tangente
ou jou__  my
0kl on %11
hat. Fiir eine Stromung ohne Komponente nach der 7-Axe findet
man an einer zweiten Platte ebenso

x,
te f = — 11
g B -

und aus beiden Gleichungen mittels (XX) das Verhiltnis »x,/x, und
den Winkel ¢.

Fir die Giiltigkeit der obigen Formeln ist es einerlei, ob an dem
Zustandekommen der benutzten Warmestromung #ussere Wirmelei-
tung oder das Schmelzen des Uberzuges beteiligt ist oder nicht.

Was das Erkennen etwaiger rotatorischer Qualititen betrifft, so
sei hier nur folgendes bemerkt. Sind keine solchen vorhanden, so
wird, falls man @ = O macht, auch « = 0, wihrend bei Existenz
rotatorischer Eigenschaften an der Schnittlinie ein Knick im Verlauf
der Isotherme vorhanden sein muss. Die Versuche zur Auffindung
(Soret und Voigt''%)) haben bisher stets ein negatives Resultat gehabt.

31. Messungsergebnisse. Um mit Hilfe der hier entwickelten
formalen Theorie ein anschauliches Bild von den in der Natur vor-
kommenden Wirmeleitungsvorgéingen zu gewinnen, ist es erforderlich,

119) W. Voigt, Gott. Nachr. (1903), p. 87.
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die absolute Grosse der in den Gleichungen auftretenden, jedem Stoff
eigentiimlichen Konstanten » und % zu kennen. Kinige Werte sollen
hier zusammengestellt werden'®).

Die Einheit des Wirmeleitvermogens » ldsst sich nicht in das
C.G.S.-System einordnen, weil ihre Definition (vgl I) die ausserhalb
des Systems stehende Temperatur enthilt. Gebriuchlich ist es, die
Temperatur nach Graden der Celsiusskala zu rechnen und ausserdem
als Einheit der Wirmemenge die Wasser-Grammkalorie (vgl. Art. 3,
Nr. 2) zu benutzen. Dann erhilt die Hinheit von % die Form

[—ﬂ'—’}———} Wird die Wirmemenge in absoluten Arbeitsein-
cm sec >< Grad

heiten (Erg.) gemessen, so lautet die Einheit [ i ] Der Zahlen-

ec® Grad

wert von x wird dabei 4,18 - 10" mal grosser. Die Einheit des Tempe-
raturleitvermdgens ist im C. G.S.-System enthalten und lautet [%J.

Wirmeleitvermdgen und Temperaturleitvermdgen einiger Substanzen
bei Zimmertemperatur.

Wirme- Temperatur-
Substanz Bemerkungen leitvermégen leitvermogen
% k
gr cal cm?
[cm sec Grad [_s—&;-:l
Silber rein 1,00 1,74
Kupfer ” 0,92 1,14
Gold . 0,70 1,17
" mit0,2 Proc.Feu.Cu 0,43 0,71
Zink rein 0,26 0,40
Cadmium " 0,22 0,47
Platin " 0,166 0,24
Eisen technische Sorten 0,14 bis 0,17 0,16 bis 0,20
Stahl " 0,06 bis 0,12 0,06 bis 0,13
Zinn rein 0,145 0,38
Blei " 0,083 0,24
Wismut ” 0,018 0,07
Marmor - weiss 0,005 0,009
Glas verschiedene Sorten | 0,0015 bis 0,0025 0,008 bis 0,005
Schwefel 0,0006 0,0017
Wasser 0,0013 0,0013
01 verschiedeneSorten | 0,0003 bis 0,0004 | 0,0007 bis 0,0010
‘Wasserstoff 0,00032
Luft 0,00005

120) Ausfiihrliche Angaben finden sich in den Handbiichern der Experimental-
physik und in den ,,Physikalisch-Chemischen Tabellen* von Landolt und Bornstein,
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Uber die Beziehung der Wiarmeleitfihigkeit von Metallen zur
elektrischen Leitfahigkeit sind einige N&herungsgesetze bekannt.
Wiedemann und Franz'®') fanden das erste derartige Gresetz, welches
besagt, dass beide Leitvermdgen bei verschiedenen Metallen pro-
portional sind. Das zweite Gesetz wurde von L. Lorenz'®*) gefunden
und erginzt jenes dahin, dass die Proportionalititskonstante der
absoluten Temperatur proportional ist (vgl. in diesem Bande Art.
Diesselhorst, Beziehungen der elektrischen Stromung zu Wirme und
Magnetismus). Fiir reine Metalle (mit Ausnahme von Wismut) gelten
beide Gesetze ziemlich nahe. Bei allen Ausnahmen, insbesondere
Legierungen ist stets das Verhdltnis des Wirmeleitvermdgens zum
elektrischen Leitvermogen grosser, als bei den reinen Metallen.

Ferner scheinen die Sitze, welche Matthiessen'®) fiir die elek-
trische Leitfihigkeit von Legierungen aufgestellt hat, auch fiir die
Wiirmeleitfahigkeit zu gelten®). Hiernach wiirden Legierungen,
welche nur die Metalle ,Zink, Zinn, Blei, Cadmium® enthalten, die
Wirme im Verhiltnis der Volumina leiten, alle anderen Legierungen
schlechter als diesem Verhiltnis entspricht. Wie stark der Einfluss
selbst sehr geringer Beimengungen sein kann, zeigen die Zahlen fiir
das reine und unreine Gold in der Tabelle.

Eine Abhéngigkeit des Warmeleitvermogens von der Temperatur
(zwischen 0° und 100°) ist bei den reinen Metallen mit Ausnahme
des Wismuts, das bei steigender Temperatur schlechter leitend wird,
kaum merklich. Die Leitfahigkeit der Legierungen nimmt mit der
Temperatur zu. Das unreine Gold der Tabelle &#ndert sein Leit- .
vermdgen pro Grad um 0,0012, das reine um 0,0000 des Betrages.
Bei anderen Legierungen sind Temperaturkoeffizienten bis etwa 0,003
gefunden.

121) G. Wiedemann und R. Franz, Ann. Phys. Chem. 89 (1853), p. 530.
122) L. Lorentz, Ann. Phys. Chem. 13 (1881), p. 599.

123) A. Maitthiessen, Ann. Phys. Chem. 110 (1860), p. 190.

124) F. A. Schulze, Ann. Phys. 9 (1902), p. 555.

(Abgeschlossen im Mirz 1904.)
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V 5. TECHNISCHE THERMODYNAMIK.

Vox
M. SCHROTER UND L. PRANDTL
IN MUNCHEN. IN GOTTINGEN.
Inbaltstibersicht.

a) Technische Thermodynamik im engeren Sinne. Von M. Schriter.

I. Die Grundlagen der technischen Thermodynamik.
1. Historische Ubersicht.
2. Die allgemeinen Gleichungen der Thermodynamik.
8. Graphische Darstellungen.
4. Vollkommene Gase.
b. Zustandsinderungen der Gase.
6. Gesittigte Dampfe.
7. Uberhitzte Dimpfe.

IL. Kreisprozesse der thermodynamischen Maschinen.

8. Allgemeines iiber die technischen Kreisprozesse.

9. Die Wirmekraftmaschinen und ihr Wirkungsgrad.

10. Die Dampfmaschine im besonderen.

11. Verbundmaschine, Anwendung von iberhitztem Dampf.
12. Der Wirkungsgrad der Dampfmaschine.

13. Die Verbrennungsmotoren (Gasmaschine, Dieselmotor).
14, Kiltemaschinen.

b) Strémende Bewegung der Gase und Dimpfe. Von L. Prandfl.
15. Abgrenzung des Stoffes.
16. Allgemeine Theorie der stationiren Stromungen.
17, Bewegung ohne Widerstinde und Wirmemitteilung.
18. Ausstromung aus Offnungen und Mundstiicken.
19. Stréomungswiderstinde in Réhren.
20. Stromung durch Rohren und Diisen.
21. Stationiire Wellen in einem freien Gasstrahl.
22, Uberstromen.
28. Dampfturbinen.
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a) Technische Thermodynamik im engeren Sinne. Von M. Schréter.

Vorbemerkung. Die technische Thermodynamik, wie sie hier
verstanden wird, umfasst die Anwendung der Sitze und Methoden
der allgemeinen Thermodynamik auf technische Prozesse mit aus-
driicklicher Ausschliessung des Gebietes der Thermochemie, aber ein-
schliesslich der Verbrennungsmotoren. Die stetige Entwicklung der
Technik bringt es mit sich, dass von einer festen Abgrenzung der
technischen Thermodynamik nicht die Rede sein kann; es war des-
halb geboten, im folgenden eine Auswahl zu treffen unter besonderer
Beriicksichtigung der fiir die Encyklopidie in ihren angewandten
Teilen geltenden Grundsitze sowie des verfiigharen Raumes. Die
dem Techniker unentbehrliche graphische Darstellung ist als fiir den
Mathematiker besonders instruktiv ausfithrlich behandelt, da sie ausser
der damit erreichten Anschaulichkeit und Durchsichtigkeit des Ver-
fahrens in den meisten Fillen dem Genauigkeitsbediirfniss der Praxis
vollstéindig gentigt. .

Die Bezeichnungsweise der technischen Thermodynamik ist leider
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so wenig wie die der allgemeinen Wirmetheorie bis heute eine ein-
heitliche, so dringend dies auch zu wiinschen wire; im Interesse der
Leser der Encyklopidie ist im folgenden méglichst enger Anschluss an
die im Artikel V 3 (Bryan) benutzte Bezeichnungsweise gesucht, wie aus
der folgenden Ubersicht hervorgeht. Beziiglich der Masseinheiten sei im
allgemeinen bemerkt, dass in der ganzen Technik (wie auch in den
folgenden Ausfiihrungen) das Kilogramm als Kraft- (oder Gewichts-)
Einheit, nicht als Masseneinheit angesechen wird. Unter ,spezifischem
Volumen®, ,spezifischer Wirme* sind hier das Volumen der Gewichts-
einheit, bezw. die der Gewichtseinhejt zuzufithrende Wirme ver-
standen. Da man aber denselben Kérper (1 Liter Wasser) zur Defini-
tion der Krafteinheit im technischen und der Masseneinheit im physi-
kalischen System benutzt, so hat dieser Unterschied der Masseinheiten
keinen Einfluss auf die Zahlenwerte (wenn man von der kleinen Ver-
anderlichkeit von g mit der Breite absieht und beim Ubergang von
kg zum gr den Faktor /., hinzufiigt). Ferner sei bemerkt, dass
Wirmemengen hier nicht wie in Artikel 3 in Arbeitseinheiten, son-
dern in der Wirmeeinheit (W. E.) der grossen Kalorie gemessen werden,
so dass in vielen Formeln jenes Artikels jetzt der Faktor A (reziproker
Wert des Wirmeiiquivalentes) beizuftigen ist.

Die Gleichungen jenes Artikels werden im folgenden in [ ] zitiert
werden, wihrend wir auf die Gleichungen des vorliegenden Artikels
durch () hinweisen.

Bezeichnungen.
a) Allgemeine.

Zeichen
Benennung im v;:c,ﬁl ‘Mas‘s- Formeln Gleichwertige
folgenden go- einheiten Benennungen
verwendet |briuch-
lich
Volumen . . . . . V 14 cbm —
Gewicht des Arbeits-
stoffes . ... ... G G kg - Vol dor G
. olumen der Ge-
SpezifischesVolumen v v cbm/kg V=0 wichtseinheit
Spezifischer Druck . P P kg/qem Spannung, Kraft pro
neue (techn.) Flacheneinheit
Atmosphire
Temperatur . . . . t t ¢ Celsius
AbsoluteTemperatur T T © Celsiug | T'=273+41¢
Von aussen zuge-
fiihrte Warmemenge Q Q kg-Kalorie
= W.E.
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Zeichen
Benennung im vgi:c:::k .Mas.s- Formeln Gleichwertige
folgenden ge- einheiten Benennungen
verwendet |brauch-
lich ]
Da§selbe. pro Ge- | kg-Kalorio
wichtseinheit . . . q Q —W.E.
Gesamte innere Ar- Innere Energie,
beit . . . . . .. U — " Energie
Innere Arbeit fiir die
_Gewichtseinheit. . ) U W.E/kg %" == g
Aussere Arbeit w L m kg Arbeit der fusseren
Kussere Arbeit fiir Krifte
die Gewichtseinheit w m
Mechanisches Wiar- 1
medquivalent. . .| 1/4 | /4 | W.E/mkg | 4= 138
Entropie . . . . . S P Entropie- "
P einheil‘)oen S= j (—112 Wirmegewicht
»  fiir die Ge- s
wichtseinheit . . . s — |Ent.-Einh /kg S=q
Erzeugungswirme Gesamtwirme;
bei konst. Druck . J —_ W.E Thermodyna-
Spezifische Erzeu- misches Potential
gungswirme  bei bei gegeb. Entro-
konst. Druck . . . b - W.E./kg i J pie und Dl:uck
-G (&, in Artikel 3,
Spezifische Wirme fnachJ. W. Gibbs)
beieinerbeliebigen d
Zustandsinderung. y c ” y = ﬁ,
Spezifische Warme
. dq
bei konst. Volumen Yo c, " Vo= (ﬁ)
Spezifische Warme d v
bei konst. Druck . ¥p Cp " Yp= ( 3 g,)
Verhiltnis der spezi- ot
fischen Wirmen % k | unbenannt n="1P
Gaskonstante fiir die Yo
Gewichtseinheit. . B B, R pv=BT
Absolute  Gaskon-
stante (fiir das Kilo-
gramm-Molekiil p) R — pvp=RI
b) Fiir gesittigte Dimpfe.
Spezifisches  Volu-
men der Fliissig-
keit beim Druck p v’ a cbm/kg
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Zeichen
Bzenennung im Tl"’nc‘?:;k .Mas.s- Formeln Gleichwertige
folgenden ge- einheiten Benennungen
verwendet | briuch
lich
Spezifisches  Volu-
men des trocken
gesiittigten Damp-
fes beim Druck p. v’ s cbm/kg
Volumzunahme von
1 kg bei der Ver-
dampfung cee v — " ° 5 cbm/kg Wirmemenge zur
Flissigkeitswiirme Erhohun der
pro 1 kg bei kon- | Te &
: ¢ mperatur von
stantem Druck . . dp Loq W.E./kg o= f)’p at || 1 kg Flissigkeit
0 unter dem konst.
Druck p v. 0° auf
die Sattigungs-
Aussere Verdamp- g temperatur ¢°
fungswiirme  pro
1kg, . ... .. Apw'—2v")| Apu | W.E./kg
Innere  Verdamp-
fungswirme pro t
1kg., . .. ... i; 0 W.E./kg
Latente Warme der
Verdampfung pro Verdampfungs-
1 kg bei konst. wirme beim
Druck . . . . . . i r | W.E/kg Druck p zur
! A=1; Verwandlung
+A4p(' =)\ von 1 kg Flis-
sigkeit von ¢°
in gesittigten |
Dampf von ¢°
Spezifische Wirme
der Flissigkeit . . 7’ ¢ W.E./kg
Spezifische Wirme
des Dampfes . . . 4 h W.E./kg
Entropie der Fliis- ¢
sigkeit pro 1 kg . s T Entropie- | dq
Entropie des gesiit- einheiten | * = J T
tigten Dampfes pro i r . ¢ Verhiltnis des in
kg, . .. ... § T+5 Entrople~ § =g * || 1kgMischungvon
Spezifische Dampf- einheiten T Dampf und Fliis-
menge . . . . . z unbenannt | . .. ... T sigkeit  enthal-
tenen Dampfge-
wichts zum Total-
gewicht




238 V 6. M. Schriter u. L. Prandtl. Technische Thermodynamik.

I. Die Grundlagen der technischen Thermodynamik.

1. Historische Ubersicht. Die technische Thermodynamik um-
fasst die Anwendung der Sitze der allgemeinen Thermodynamik auf
technische Probleme; wihrend es fiir die Darstellung ganz gerecht-
fertigt ist, die allgemeine Warmelehre vorauszuschicken und die tech-
nische Wiérmelehre nachfolgen zu lassen, ist die geschichtliche Ent-
wicklung nicht etwa in der Weise vor sich gegangen, dass der ab-
geschlossenen Arbeit der theoretischen Forscher die Anwendung auf
technische Probleme seitens der praktischen Ingenieure nachgefolgt
wire. Vielfach hat das Umgekehrte stattgefunden, indem die Praxis
in der Ausfithrung thermodynamischer Arbeitsprozesse durch Maschinen
um ein betrdchtliches der wissenschaftlichen Forschung vorausgeeilt
ist, und es kann an vielen Stellen nachgewiesen werden, dass minde-
stens ebensoviele wissenschaftliche Ergebnisse der Anregung von
seiten der Praxis zu verdanken sind als umgekehrt.

Jedenfalls ist die Geschichte der technischen Thermodynamik
streng genommen ganz unzertrennlich von der Geschichte der thermo-
dynamischen Technik und es kann daher die Aufgabe der folgenden
Skizze nur die sein, einige Hauptpunkte und Richtungslinien der Ent-
wicklung der technischen Thermodynamik an Hand der Arbeiten
ihrer hervorragendsten Forderer herauszuheben.

Als erster derselben hat James Watt zu gelten, dessen haupt-
sachlicher Beitrag zur technischen Thermodynamik — die Erforschung
des Verdampfungsprozesses durch Bestimmung der Verdampfungswérme
bei verschiedenen Pressungen — ein typisches Beispiel dafiir ist, wie
durch praktisch-technische Probleme der Anstoss zur Beantwortung
- wissenschaftlicher Fragen gegeben wird. Im Anfang reichte die
geistige Kraft eines einzelnen zur Losung aus, spéter trat natur-
gemiiss eine Differenzierung ein und schon die beiden néchsten Mark-
steine auf dem Weg der technischen Thermodynamik riihren von
Ménnern her, welche nicht in erster Linie ausiibende Ingenieure
waren; es sind dies Carnot’s ,Réflexions sur la puissance motrice du
feu“ (1824) und Clapeyron’s Abhandlung ,Sur la puissance motrice
de la chaleur” (1834) — beides grundlegende Werke, das erstere
durch die der Zeit vorauseilende Darlegung des inneren Wesens der
Wiirmekraftmaschinen (freilich noch ohne den ersten Hauptsatz) und
durch die Klarstellung der Bedingungen fiir beste okonomische Wir-
kung; das letztere durch seine mathematisch-graphische Formulierung
der Grundbegriffe, die fiir alle spiteren Behandlungsweisen des Gegen-
standes massgebend geblieben ist.
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Beide Werke wurden vollstindig ignoriert und vergessen; sie
waren dem Bediirfnis und Verstéindnis ihrer Zeit weit vorangeeilt
und mussten Jahrzehnte spiter wieder neu entdeckt werden. Zunichst
war die von Watt mit unzulinglichen Hilfsmitteln begonnene Arbeit
fortzusetzen, die Natur musste befragt werden, um eine sichere Grund-
lage fiir die Theorie zu gewinnen — diese klaffende Liicke ausgefiillt
und damit die Befruchtung der thermodynamischen Technik durch
die Wissenschaft ermdglicht zu haben, ist das Verdienst Regnault’s,
der im Jahr 1847 den ersten Band seiner ,Relations des expériences ete.”
erscheinen liess, dem 1862 der zweite und 1870 der dritte folgte;
dass diese unschitzbaren Experimentaluntersuchungen auf Veranlassung
und auf Kosten der franzosischen Regierung unternommen wurden,
bildet fiir alle Zeiten einen Ruhmestitel derselben.

Fast gleichzeitig traten nach der Verdffentlichung des ersten
Bandes der ,Relations“ in England, Deutschland und Frankreich die
Méanner auf, welche man als Begriinder der technischen Thermo-
dynamik von heute mit Recht feiert: der Schotte J. W. Macquorn
Ranlkine (1820—72), Professor fiir Mechanik und Ingenieurwissenschaft
an der Universitit Glasgow; Gustav Zeuner (geb. 1828 zu Débeln
in Sachsen), damals Professor fiir theoretische Maschinenlehre am
Eidgenossischen Polytechnikum in Ziirich und der Elsisser Gustave
Adolphe Hirn (1815—89), Fabrikbesitzer in Logelbach im Elsass,
welchen trotz seines deutschen Namens die Franzosen als den ihrigen
betrachten diirfen.

1859 erschien nach vielen vorausgegangenen technisch-thermo-
dynamischen Abhandlungen die erste Auflage von Rankine's ,Manual
of the Steam Engine and other Prime Movers?, in dessen Vorrede
der Verfasser mit berechtigtem Selbstgefiihl sagen durfte:

»The principles of thermodynamics or the Science of the mecha-
nical action of heat are explained in the third chapter of the third
part more fully than would have been necessary but for the fact, that
this is the first systematic treatise on that science, which has ever
appeared, the only previous sources of information regarding it being
detached memoirs in the transactions of learned Societies and in
scientific journals.“ 1860 trat Zeuner mit den ,Grundziigen der mecha-
nischen Wirmetheorie an die Offentlichkeit und 1862 erschien die
erste Auflage von Hirn’s ,Exposition analytique et expérimentale de
la théorie mécanique de la chaleur®.

Ohne an dieser Stelle in Einzelheiten eintreten zu konnen, mag
nur zu kurzer Charakteristik angefithrt werden, dass Rankine’s Arbeiten
auf thermodynamischem Gebiet sich durch eine iiberquellende Fiille
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originaler Gledanken auszeichnen, die in der knappsten und manchmal
schwer verstindlicher Sprache zusammengedringt sind; er geht ohne
grossen mathematischen Apparat, aber vielfach eigenartige graphische
Darstellungen beniitzend, auf sein Ziel los, eine auf den ersten und
zweiten Hauptsatz aufgebaute rationelle Theorie der Warmekraft-
maschinen zu geben, zu deren praktischer Anwendung er die Regnault-
schen Versuchswerte zu Tabellen verarbeitet. Zeuner entwickelt in
eleganter, mathematisch ausgefeilter Form die beiden Hauptsitze und
geht dann besonders auf die Eigenschaften des Wasserdampfes ein;
seine auf Regnault’s Versuchen beruhenden, praktisch angeordneten
Dampftabellen sind heute jedem Maschineningenieur geliufig. In der
ersten Auflage verfolgt Zeumer vor allem den Zweck, den Tech-
nikern eine neue Wissenschaft zu vermitteln, wobei gleichfalls eine
Menge originaler Darstellungsweisen in Formeln und Diagrammen das
Verstindnis wesentlich erleichtern. Im Gegensatz zu beiden und
gleichzeitig beide erginzend beruht Hirn’s Werk hauptsichlich auf
experimenteller Grundlage; Hirn ist ein Meister des technisch-wissen-
schaftlichen Versuches nicht nur in Bezug auf Durchfiihrung, sondern
auch in der Diskussion und Kritik. Dass heute die technische Thermo-
dynamik wesentlich experimenteller Natur geworden ist, ist vornehm-
lich auf die Anregung zuriickzufiihren, welche Hirn durch seine von
der sogenannten ,elsissischen Schule“!) weiter gefiihrten Studien auf
dem Gebiet der von ihm sogenannten ,praktischen Theorie“ der
Dampfmaschine gegeben hat.

Neben jene grundlegenden Werke, von welchen in erster Linie
das Zeuner'sche Buch in seinen spiteren Auflagen durch fortwéhrende
Erweiterung den so ausserordentlich vervielfiltigten Fortschritten der
Technik gerecht wird, stellt sich die Bearbeitung der Warmetheorie
im ersten Band (1875) des Grashof’schen gross angelegten Werkes
»Lheoretische Maschinenlehre® als eine Zusammenfassung des damaligen
gesicherten Bestandes der Thermodynamik in ihrer Anwendung auf
das Verhalten von Gasen und Didmpfen, wihrend erst im dritten
Band desselben Werkes (1890) die Wiarmekraftmaschinen behandelt
werden. Grashof geb. 1826 in Diisseldorf, gest. 1893 in Karlsruhe.
Abgesehen von originalen Beitrigen liegt die Besonderheit des
Grashof’schen Werkes in der durchdringenden Schirfe der Kritik,
mit welcher die Geenauigkeitsgrenzen und die Zuléssigkeit der Annahmen
diskutiert werden und der Kern eines Problems blosgelegt wird; weder

1) Vgl. die Gedéchtnisrede von 4. Slaby auf Hiril, Verh. des Ver. z. Beforde-
rung des Gewerbfleisses 69 (1890), p. 286 = Calorimetr. Untersuchungen, p. 285.
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die englische noch die franzosische Litteratur der neueren Zeit haben dem
Grashof’schen Werke ein gleich umfassendes an die Seite zu stellen.

Aus der gleichen Zeit (1875) stammt die Abhandlung von
C. Linde ,Theorie der Kilteerzeugung® in den Verhandlungen des Ver-
eins zur Beforderung des Gewerbfleisses in Preussen; die von dem
Verfasser fiir den giinstigsten Arbeitsprozess der Kompressions-Kilte-
maschinen aus der Umkehrung des Carnot’schen Prozesses der Dampf-
maschine abgeleiteten Grundsitze werden durch den vollkommenen
Erfolg der danach konstruierten Ammoniak-Kompressionsmaschine be-
stitigt; auf keinem Gebiet der praktischen Anwendung ist der Einfluss
der theoretischen Thermodynamik so unmittelbar nachgewiesen wie bei
der Kiiltetechnik.

Die Entwicklung der technischen Thermodynamik war durch die
oben genannten klassischen Werke ihrer Begriinder vorgezeichnet und
so begann etwa seit 1875 eine emsige Kinzelarbeit auf ihren ver-
schiedenen Gebieten, hauptsiichlich in experimenteller Richtung, welche
auch heute noch nicht als abgeschlossen gelten kann, wenn schon in
den letzten Jahren wieder versucht wird, das grosse Material zu-
sammenfassend zu verarbeiten wie in der ,Technischen Wirmelehre®
von H. Lorens und dem ,Grundriss der Warmelehre von Weyrauch.
Natiirlich beteiligen sich alle Kulturnationen an dieser Arbeit; hier
konnen nur die allgemeinen Arbeitsrichtungen angedeutet werden;
Einzelheiten wiirden zu weit fiihren.

Die schon von Rankine und Clausius, namentlich aber von Zeuner
besonders klar formulierten Forderungen fiir den Idealprozess der
Dampfmaschine liessen die Grenzen, welche der zweite Hauptsatz
ihrer Okonomie steckt, erkennen — es galt nun, innerhalb derselben
wenigstens nach Moglichkeit den stdrenden Einfliissen zu begegnen;
den Weg dazu hatte Hirn gebahnt, indem er die Wirkung der Cylinder-
wandungen nachwies und durch die Uberhitzung des Dampfes zu be-
kimpfen suchte. Damit war ein freilich wieder lange Zeit unbeachtet
bleibender Anstoss zur Erforschung der Eigenschaften des iiberhitzten
Dampfes gegeben, dessen Zustandsgleichung und spezifische Wirme
von praktischem Interesse wurden. Die Gewinnung umfassenderen
Versuchsmateriales nach dieser Richtung beschiftigt gegenwirtig eine
Anzahl von Forschern, ohne endgiiltig abgeschlossen zu sein. Nach-
dem die Praxis festgestellt hatte, dass die Uberhitzung nicht iber
gewisse Grenzen hinaus getrieben werden darf, richtete man auf Grund
der Lehren der Thermodynamik sein Augenmerk auf die untere Tempe-
raturgrenze, welche durch die Hinzufiigung einer zweiten, mit SO,
(oder NH,) arbeitenden Dampfmaschine (Abwirmemaschine) auf das

Encyklop. d. math. Wissensch. V 1. 16
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niedrigst-mogliche Mass reduziert werden kann. Ja es fehlte nicht
an Vorschligen, auch die obere Temperaturgrenze durch Hinzunahme
einer dritten, in dieser Beziehung giinstigeren Fliissigkeit noch hinaus-
zuriicken; eine griindliche Untersuchung der Frage bietet die Arbeit
von Schreber, Theorie der Mehrstoff-Dampfmaschinen.

Einen weiteren Anstoss zu wissenschaftlichen Untersuchungen
verdankt die technische Thermodynamik der Dampfturbine, durch
welche das alte Problem der Ausstromung von Démpfen in den
Vordergrund des Interesses getreten ist; die Grundlagen dafiir waren
ja auch schon in Zeuner's Werk enthalten, sie bedurften aber der
Erweiterung und Vertiefung namentlich durch experimentelle Unter-
suchung; die bemerkenswertesten experimentellen Beitriige hierzu finden
sich in den Arbeiten von Fliegner, Stodola, Lewicky und Biichner, um
nur die wichtigere deutsche Litteratur zu nennen. Niheres hieriiber
in der Abteilung b) dieses Artikels.

Durch die rasche Entwicklung der Verbrennungsmotoren ist die
technische Thermodynamik mehrfach vor neue Aufgaben gestellt
worden; gelegentlich des Auftretens des Dieselmotors ergab sich die
Notwendigkeit, die Frage nach dem Idealprozess dieser Maschinen zu
beantworten, woran sich besonders Lorenz und E. Meyer beteiligt
haben; es war die Verinderlichkeit der spezifischen Wirme der Ver-
brennungsprodukte mit Temperatur und Druck zu untersuchen (Mallard-
Lechatelier, Langen u. a.), eine Arbeit, die noch nicht zu vollem
Abschluss gelangt ist. Namentlich aber erwies es sich als not-
wendig, Sitze der Thermochemie mit heranzuziehen, worauf schon
1898 von Stodola in einer Abhandlung tiber die Kreisprozesse der
Gasmaschinen hingewiesen worden war. Doch sind nach dieser
Richtung erst Anfinge zu verzeichnen (Lorensz, Technische Wirme-
lehre).

Ein hervorragendes Beispiel der Verwertung wissenschaftlicher
Forschung zu praktischen Zwecken riihrt abermals von Linde her,
dessen Methode der Luftverfliissigung, auf dem unscheinbaren Drosse-
lungsversuch von Thomson und Joule aufgebaut, sich nicht nur zu
technischen, sondern namentlich auch zu wissenschaftlichen Zwecken
als ausserordentlich fruchtbar erwiesen hat.

Aus den obigen, ganz kurzen Andeutungen geht wohl zur Ge-
niige hervor, dass die technische Thermodynamik keineswegs eine
abgeschlossene Wissenschaft ist, vielmehr fortwéhrend ihre Grenzen
erweitert, alte Gebiete abst6sst und vor allem danach strebt und
streben muss, der rastlos schaffenden Technik feste, wissenschaftlich
begriindete Richtungslinien zu geben und das kostspielige, zeitraubende
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empirische Tasten immer mehr durch rationelle Vorausbestimmungen
zu ersetzen.

2. Die allgemeinen Gleichungen der Thermodynamik., In der
Anwendung der allgemeinen Gleichungen der Thermodynamik auf
spezielle Probleme ist die Technik darauf angewiesen, dass die
experimentelle Physik ihr die unentbehrlichen Daten beziiglich der
Konstanten fiir die in Betracht kommenden Korper liefert. Insofern
kann man sagen, dass die monumentale Arbeit Regnaults®) die Grund-
lage der technischen Thermodynamik bildet. Auf der anderen Seite
aber verdankt die allgemeine Thermodynamik der *Technik ganz
wesentliche Anregung und Forderung. Im Auge zu behalten ist
dabei stets, dass das Genauigkeitsbediirfnis der Technik in manchen
Fillen durch grobere Annsherung befriedigt wird als das der Physik.

Im folgenden sind die allgemeinen Gleichungen der Thermo-
dynamik in der Form zusammengestellt, die in der Technik ge-
briuchlich ist®) und die, sofern sie von der in der Physik iiblichen
Formulierung abweicht, hauptsichlich durch die Arbeiten Zeuner's
begriindet ist.

1) Zustandsgleichung eines Korpers (genauer gesagt: eines ein-
fachen thermodynamischen Systems, s. Art. V 3, Nr. 3)

f(p,v,8)=0.
2) Gleichung der inneren Arbeit pro kg
u="F(p,v) =9 1) =1¢(1).
3) Wirmegleichung (erster Hauptsatz), auf 1 kg bezogen,
dq = du 4 Apdv.
4) Andere Form der Wirmegleichung mit Einfihrung der En-
tropie (zweiter Hauptsatz)
dq = Tds = du + Apdv.
5) Dritte Form der Wérmegleichung mit Einfiihrung der Er-
zeugungswirme bei konstantem Druck, i:
dq = Tds = di — Avdp
mit =u -+ Apo.
Die Einfiihrung der Grosse ¢, welche nichts anderes ist als das

thermodynamische Potential , (Art. 3, Nr. 16), in die technische
Thermodynamik verdankt man Mollier®); von den ibrigen thermo-

2) V. Regnault, Relation des expériences etc. etc. Paris 1847—70, 3 Bde.
8) Nach der vorziiglichen knappen Darstellung R. Mollier’s in dem Ab-
schnitt III des Kapitels iiber die Wirme in der 18. Auflage der ,Hiitte*,
Berlin 1903. Wegen der Einfilhrung von ¢ vgl. p. 284,
16*
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dynamischen Potentialen, namentlich dem in der Physik und physi-
kalischen Chemie so iiberaus fruchtbaren F, = u — T's (,freie Ener-
gie“ nach Helmholtz), hat die Technik bislang noch keinen Gebrauch
gemacht.

Aus den Gleichungen unter 3, 4 und 5 sowie aus den Betrach-
tungen Nr. 18 und 19 des Art. 3 folgen sodann die Beziehungen:

o 7=(31),= (), = 7(z),

) 710:(%) =(%%) T(dt)

8) y,— 7y, — AT (dt) (%’) .. [71] und [95].

9) ds=A(%’)vdv+y,T--[95];=—A(dt)d 4 7, [96].
0) () = (), 01— (85, = (), - o

dt
P
(Go) = AT (3) — 4p -~ (95}
1) (7) =7 (@) =4  (7),=n
(i"—‘)‘= _ AT(%)ﬁ Av - - . [96]

) ()= 4238, 1 ()= — 2(3), - o

3. Graphische Darstellungen. Die technische Thermodynamik
macht in ausgedehntestem Masse Gebrauch von graphischen Dar-
stellungen, fiir welche meist ebene, rechtwinklige Koordinaten benutzt
werden und zwar

im Spannungs- oder Arbeitsdiagramm o als Absc., p als Ordinate,
, Intropie- » Wirmediagramm s , , T , ”

» Diagramm der Erzeugungswirme*) s , , 7 ”

Bemerkenswerte Beziehungen bestehen zwischen dem Arbeits-
und Wirmediagramm; einer Zustandsinderung 1—2 im ersteren
(Fig. 1) entspricht eindeutig im Warmediagramm eine Kurve 1'—2’
(Fig. 2); Zeuner nennt daher letztere die Abbildung der ersteren.
Der Zusammenhang ist dadurch gegeben, dass aus der Zustands-
gleichung 1) fiir jeden Punkt der Kurve 1—2 die Temperatur be-

4) Nach Mollier a. a. O. (Anm. 2) S. 285.
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stimmt ist und dass daher aus der Verbindung der Wirmegleichung
mit der Gleichung der inneren Arbeit fiir jeden Punkt in Fig. 1 die
Entropie berechnet werden kann:

dq
s = | 77 - const.,

Fig. 1. Fig. 2.

wobei die Konstante wegfillt, wenn man jedesmal den Nullpunkt
von dem aus s gerechnet wird, geeignet wihlt. Das Flichenelement
in Fig. 1 stellt das Differential der &usseren Arbeit fiir die Gewichts-
einheit dar, indem

pdv = dw; fpdv=w,
das Flichenelement der Fig. 2 dagegen entspricht dem zugefiihrten
Wiirmeelement, da ja:

Tds=T—‘-qu—= 95 fTGl]"q=q=A(“2"‘“1)+Aw;

mithin stellt die Fliche zwischen der Abscissenaxe, den Endordi-
naten und der Kurve in Fig. 2 die gesamte von der Gewichtseinheit
aufgenommene (oder abgegebene) Wirmemenge dar; das Vorzeichen
wird so festgesetzt, dass ein Anwachsen der Entropie, also Warme-
zufuhr von aussen, der Bewegung von links nach rechts entspricht.

Ausserdem besteht noch die Beziehung, dass in einem beliebigen
Punkt des Warmediagrammes die Subtangente gleich der spezifischen
Wiirme p ist:
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Die Adiabaten und Isothermen erscheinen im Wirmediagramm
als vertikale bezw. horizontale Gerade; wenn, wie dies bei technischen
Anwendungen sehr héufig vorkommt, die Warmezufuhr der Temperatur-
dnderung proportional ist, hat man:

dq=124-aT

s=f%q—=llogT+const.*)

Uber andere Darstellungsweisen, von welchen unser Warme-
diagramm ein spezieller Fall ist, s. Mollier®).

Wegen der rdumlichen Darstellung, bei welcher man z. B. p, v, T
als Koordinaten wihlen kann, verweisen wir auf den Artikel von
Kamerlingh-Onnes; die Technik benutzt fast ausschliesslich ebene Dar-
stellungen. ~

.

4. Vollkommene Gase (vgl. auch V 3, Art. Bryan, Nr. 22). Ob-
wohl die Technik es war, welche die Mittel geliefert hat, um den
fritheren Begriff des permanenten Gases als unhaltbar nachzuweisen,
indem heute alle Gase als mehr oder weniger weit von ihrem Sitti-
gungszustand entfernte, iiberhitzte Dampfe erkannt sind, so macht
doch die technische Thermodynamik von den auf die Kontinuitit des
fliissigen und gasformigen Zustandes aufgebauten, das ganze Bereich
umfassenden Gleichungen von van der Waals u. a. bislang keinen Ge-
brauch. Das Genauigkeitsbediirfnis der Technik wird vollkommen
befriedigt und gleichzeitig dem in technischen Anwendungen stets
auftretenden Wunsch nach moglichst einfachen und durchsichtigen
Beziehungen Rechnung getragen, wenn in hergebrachter Weise der
Unterschied zwischen vollkommenen (permanenten) Gtasen und iiber-
hitzten Démpfen in den zu verwendenden Zustandsgleichungen fest-
gehalten wird und fiir erstere mit dem vollen Bewusstsein der, fiir
technische Zwecke eben belanglosen Ungenauigkeit das Gesetz von
Boyle und Gay-Lussac in der klassischen Form

pv= BT
zur Anwendung kommt. Hierin ist B die sogenannte Gaskonstante,
bei Mischungen B, = Ezg(%c)ﬂ

Dieselbe ist umgekehrt proportional der Dichte oder dem Mole-
kulargewicht u des Gases®); setzt man also B = R/u, so ist R eine

* »log* bedeutet hier und im Folgenden stets den natirlichen Logarithmus.

5) R. Mollier, Das Wirmediagramm, Berlin, bei Simion 1898,

6) Setzt man fiir Wasserstoff als Bezugsgas B=B,=422,86 und p==p,=2,
8o ist fiir ein beliebiges Gas
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fiir alle Gase gemeinsame, universelle Konstante. Die Zustands-
gleichung des Gases geht alsdann iiber in

pop = RT,
d. h. bezogen auf eine Gewichtsmenge von so viel kg, als das Mole-
kulargewicht angiebt (Kilogramm-Molekiil), haben alle Gase eine und
dieselbe Zustandsgleichung?).

Benutzt man in (11) die Boyle-Gay-Lussac'sche Gleichung als
Zustandsgleichung zur Bestimmung des partiellen Differentialquotienten,
so folgt fiir Gase:

dw d

@)= 47 (), — 42 =0,
d. h. die innere Arbeit der vollkommenen Gase ist nur eine Funktion
der Temperatur, was fiir die technischen Rechnungen im allgemeinen
als geniigend genau angesehen wird?®).

Setzt man ferner fiir vollkommene Gase innerhalb missiger
Temperaturgrenzen y, = const. und y, = const., so ergeben sich der
Reihe nach aus (8), (11) und (12) mit der Abkiirzung 7,/p, = x die
fiir technische Rechnungen benutzten Beziehungen:

x—1

Vp— Vo =AB=yp,(x—1)=1p,——,
A
du=y,dT=md(pv),

. An
di = ;_—ld(pv) = ypdl,
dg =9,dT + Apdv =p,dT — Avdp
4 (vdp + xpdv)

x—1

und nach (9)

s =y, log (pv*) 4 const. = p, log p + p, log v + const.,
=y, log (T'v*~*) + const. = p, log T' - ABlog v 4 const.,

=y, log ;;f—;_—; + const. =y, log T — A Blog p + const.

B p_ 242285 8457
B, w7 s w’
wofiir hiufig mit praktisch geniigender Anniherung gesetzt wird
2428 oder, mit A=4—;§, AB=%.
7) S. dariiber z. B. A. Stodola, Z. d. Vereins Deutscher Ingenieure 42 (1898),
p. 1045.
8) W. Thomson und Joule haben aus ihren Drosselungsversuchen mit Luft
eine genauere Beziehung abgeleitet (s. Art. 3, Nr. 28); auf dieselbe hat spiter
Linde sein Verfahren zur Verflissigung der Luft gegriindet; vgl. diesen Art. Nr.22.
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5. Zustandsinderungen der Gase. Alle technisch in Betracht
kommenden Zustandséinderungen permanenter Gtase lassen sich auf die
Form der sogenannten polytropischen Kurve zurtickfiihren, fiir welche,
unter n einen beliebigen Exponenten verstanden,

pv" = const.

Zur zeichnerischen Darstellung derselben sind zwei Methoden
gebriuchlich. Entweder zieht man bei gegebenem Anfangszustand
Py, v, die unter dem Winkel « gegen die Abscissenaxe geneigte Ge-
rade durch O, berechnet den Winkel 8 aus der Gleichung

1+ tg = (1 + tg o
und zieht nun, wie die Fig. 3 zeigt, von den Punkten C und D aus-
gehend abwechselnd Senkrechte und unter 45° geneigte Linien, so

\ e
is0 ]7
2

X
&

|

|

s
Fig. 3.

sind die Punkte 2, 3, 4 Punkte der Kurve (nach Brauwer®). Oder
man geht davon aus, dass

pot =0, pyoy =0, abo Vi, (Voy0))' = 0O,
d. h. das geometrische Mittel je zweier zusammengehoriger Koordinaten
liefert einen weiteren Punkt der Kurve, was seinen graphischen Aus-
druck in dem Verfahren der Fig. 4 (nach Tolle?)) findet.
Aus der Gleichung der Polytrope im Verein mit der Gay-Lussac-
schen Gleichung folgen unmittelbar die Beziehungen

T
n—1 —
Tv*~! = const.,, ——; = const.,

P

9) E. A. Brauer, Z. d. Vereins Deutscher Ingenieure 29 (1885), p. 433.
10) M. Tolle, Z. d. Vereins Deutscher Ingenieure 38 (1894), p. 1456,
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(2)
1 B
w= [ pdv = m(plvl — Pyvy) = ,T_—;(Tx — Ty,
¢y} L

Aw:?’o;'j(Tl_' Ty,

i —1
=29, — 1)+ Aw = »,(T, — T)) (1 _:—1)
= 7’7::_:—: (T, — 1) =9, (T, — T)),

n—mxn
Vo =Yooy —1"

Die Beziechung zwischen Temperatur und Volumen I'v"—!= const.
fiilhrt sofort auf die graphische Darstellung des Verlaufes der Tem-
peraturen durch die sogenannte Charakteristik, eine polytropische Kurve
mit einem um 1 kleineren Exponenten, deren Konstruktion aus Fig. 5
hervorgeht. Man projiziert alle Kurvenpunkte durch Horizontale auf

7
’ it o cotel)

PN
N

A | :
\\ | /)
| LS
\\ | y-: CETSSE
> I
% . o
Fig. 4. Fig. 5.

die zur Abscisse v; gehorige Ordinate p, und zieht durch die erhaltene
Punktreihe ein Biischel aus O; dessen Schnittpunkte mit den zu-
gehorigen Ordinaten liegen auf der gesuchten Kurve pv"—!= const.,
deren Ordinaten in dem Massstab ab =T, die Temperaturen dar-
stellen. . (Bei konstanter Temperatur z. B. geht die Charakteristik in
eine horizontale, die Polytrope in eine gleichseitige Hyperbel iiber.)

Hiufig liegt bei Anwendungen ein Diagramm, wie solche durch



250 V 5. M. Schréter u. L. Prandtl. Technische Thermodynamik.

besondere Instrumente (Indikatoren) an Maschinen aufgenommen werden,
in natura vor und es handelt sich um die Bestimmung des Exponenten
n der als Polytrope vorausgesetzten Kurve. Das Diagramm giebt den
thatsichlichen Zusammenhang zwischen dem Gesamtvolumen V des
Arbeitsstoffes und seinem Druck p an. Man verfihrt dabei entweder
nach Fig. 6 mit Hilfe des Planimeters; zufolge der Gleichung der

4
\
Svamiee

—F A
; >t logV L
‘ | Je

: by oo

T ? A logp,

Fig. 6. Fig. 7.

Polytrope erhilt man fiir die zwischen der Kurve und den Koordi-
natenaxen gelegenen Flichen F; und F;:

n
n—1

F,
F, = ,Tl_l(l”lvl“‘l’svs) und .Fs= (2, V1—1,V3), also F: ="n.

Oder man trigt in rechtwinkligen Koordinaten nach der Formel

nlog V; + log py =nlog ¥V, + log p,

(Fig. T) als Abscissen die log 7 und als Ordinaten die log p auf; im
Fall einer Polytrope erhilt man eine Gerade, deren Neigungswinkel
den Exponenten ergiebt, indem # = tg a. '

Sehr einfach ist die Abbildung der Polytrope im Wirmediagramm,

indem
dq T,
S fT 7"1:gT,

wird (Fig. 8). Die Subtangente der Kurve ist nach fritherem = y,,
also constant.

Wenn » spezielle Werte annimmt, so ergeben sich alle technisch
wichtigen besonderen Zustandsinderungen, z. B.
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fir » = 4~ oo die Zustandsind. bei const. Volumen; y, = y,,
n=0 » » » »  Druck; VYn = ¥p>
n=1 ” ” const. Temperatur (Isotherme),

n = 1,41 = k, adiabatische Zustandsind. y, = 0.

PR
¥olog 3‘§=Y16‘”9§

Fig. 8. Fig. 9.

Im Wirmediagramm entsprechen diesen vier Fillen die charak-
teristischen Kurven I—IV (Fig. 9).

6. Gesittigte Dimpfe (vgl. auch V 3, Art. Bryan, Nr. 23). Da
in dem Zustand der Sittigung bei einer verdampfenden oder sich
kondensierenden Fliissigkeit sowohl die Temperatur als auch das spe-
zifische Volumen des dampfformigen wie des fliissigen Teiles erfahrungs-
gemiiss Funktionen des Druckes allein sind, so kommt eine Zustands-
gleichung wie fiir die Gase hier nicht in Frage; die genannten
Funktionen des Druckes werden in der technischen Thermodynamik
gewohnlich nicht in analytischer sondern in Tabellenform gegeben
und zwar mittelst der nach Regnault’s Versuchen berechneten Zeuner-
schen Dampftabellen. Neben dem Druck fiihrt man als zweite unab-
hingige Verinderliche in der Regel den spezifischen Dampfgehalt z
(Dampfgewicht dividiert durch Gesamtgewicht von Dampf und Fliissig-
keit) ein. Man bezeichnet als ,nassen Dampf“ ein Gemisch von Dampf
und Flissigkeit in gesiittigtem Zustand, fiir welches das specifische
Volumen durch die Beziehung gegeben ist:

v=g0 —v") 4"
mit den Grenzwerten
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v=2" fiir 2 =0 (Flissigkeit),
v=10v , =1 (trocken gesittigter Dampf).
Die Gleichung fiir die innere Arbeit lautet dann
du = dg, 4 d(z4,),
= gq,+ i,
wobei die Konstante dadurch eliminiert wird, dass alle Wirmemengen
von 0° C. ab gezihlt werden. (Wegen der Bedeutung von g,, 4, 4
sowie wegen der Bezichung 4 = i, + Ap (v — v”) vgl den Abschnitt
»Bezeichnungen®) Als weitere, den gesittigten Démpfen eigentiim-
liche Gleichung tritt hinzu die Gleichung von Clapeyron-Clausius:
L= AT .. [138)

v —

und schliesslich die Wiarmegleichung in der allgemeinen Form:
dq = dg, + d(zd) + Apdv;
fiir Wasser im speziellen, die technisch wichtigste Fliissigkeit, kann
innerhalb der Grenzen der Anwendung
v” = 0,001 = const.
gesetzt werden, sodass dv = d (z@ — ¢”)) wird. Damit ergiebt sich
fir dq weiter, wenn man noch Apdv = Ad(pv) — Avdp setzt:

dg=dg,+d(x-4) + Ad(z-p[v'— v"]) — Az (V' — v") dp
und mit Beniitzung der Beziehung 4 =1, + Ap (v — ")
dq=dg,+ d(zd) — Az (v'— ") dp.
Das letzte Glied ldsst sich mit Beniitzung der Gleichung von Cla-
peyron-Clausius schreiben:
Az —oYap =22 ar

und nach leichter Umformung hieraus:
ph
dg=dg, + T-d(7),

eine Form der Wirmegleichung, die zuerst von Clausius gegeben
wurde und sich sehr gut zur Berechnung der Entropie der gesiittigten
Démpfe eignet, indem

T
s= iTq_p.I_,wT_l — '+ —5") ... [140]
218
wobei s” die Entropie der Fliissigkeit und s’ diejenige des ganzen kg
(Gemisch von Dampf und Flissigkeit) bezeichnet,
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Endlich wird die Erzeugungswérme bei konstantem Druck pro
1 kg des Gemisches:

t=gq,+ zl.
Alle Eigenschaften der gesittigten Dimpfe, welche fiir die tech-
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Fig. 10.

nische Thermodynamik in Betracht kommen, lassen sich mit Hilfe
einer graphischen Darstellung sowohl im pv-Diagramm als im 7's-Dia-
gramm ableiten; charakteristisch fiir diese Korper sind vor allem
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Fig. 11.

in beiden Diagrammen die sogenannten Grenzkurven oder Sittigungs-
kurven, welche erhalten werden, wenn man einmal fiir gesittigte Fliissig-
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keit (z =0) und sodann fiir trockenen gesiittigten Dampf (z = 1)
den geometrischen Ort der zusammengehorigen Werte von p und v
beziehungsweise von 7' und s darstellt — wozu die erwihnten
Dampftabellen das erforderliche Zahlenmaterial, die unentbehrliche
Grundlage der ganzen technischen Thermodynamik, liefern. Die Fig.
10 und 11 stellen fiir Wasser die betreffenden Kurven dar; fir 2 =0
fillt die Grenzkurve in Fig. 10 mit der Ordinatenaxe zusammen, weil
v” bei Wasser innerhalb der fiir gesittigten Dampf in Betracht kom-
menden Driicke so klein ist, dass es sich der zeichnerischen Darstellung
entzieht; in Fig. 11 ist die Ordinatenaxe so gelegt, dass die Entropie
des fliissigen HyO bei 0° C. = Null gesetzt ist.
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Fig. 12.

Der Inhalt der umriinderten Fliche in Fig. 11 stellt in Kalorien
die Gesamtwirme g, 4, 4 Ap(v'— ") beziechungsweise die Er-
zeugungswirme ¢ bei konstantem Druck dar; trigt man den Flichen-
inhalt als Ordinate ¢ zu dem betreffenden s auf, so ergiebt sich das
dritte, fiir die technische Thermodynamik der gesittigten Dimpfe
charakteristische Diagramm Fig. 13 (nach Mollier'?)). In jedes dieser
Diagramme ist ein Netz von Kurven konstanten Druckes eingezeichnet,
welche im pv- und 7's-Diagramm als horizontale, im si-Diagramm
als geneigte Gterade erscheinen; fiir letztere wird die Tangente des
Neigungswinkels nach Gleichung (12) gleich 7. Ebenso leicht lisst
sich in jedes dieser Diagramme ein Netz von Kurven konstanter spe-
zifischer Dampfmenge einzeichnen, da solche immer den horizontalen
Abstand der Grenzkurven (im si-Diagramm die geneigten geraden
Strecken konstanten Druckes zwischen den Grenzkurven) in gleichem
konstantem Verhéltnis « teilen. Infolge dessen schneiden sich die Tan-
genten im T's-Diagramme (vgl. Fig. 11 oder Fig. 12, welche eine etwas

11) R. Mollier, Neue Diagramme zur technischen Warmelehre, Z. d. Vereins
Deutscher Ingenieure 48 (1904), p. 271.
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abgeiéinderte Wiederholung von Fig. 11 darstellt) an alle Kurven kon-
stanter Dampfmenge fiir einen bestimmten Druck in einem Punkte, wo-
durch sofort (als Subtangenten) die spezifischen Wirmen auf den Kurven

konstanter spezifischer Dampfmenge gegeben sind, da p,= (%) .

Man sieht auch, dass beim Durchlaufen aller Werte von z auf einer
Kurve konstanten Druckes (oder konstanter Temperatur) die spezi-
fische Wirme ihr Vorzeichen wechselt, um in dem Fusspunkte des
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Fig. 13.

Lotes aus dem gemeinsamen Tangentenschnittpunkte zu Null zu
werden. Der geometrische Ort dieser Fusspunkte heisst daher die
Nullkurve. Man erkennt ferner aus dem Diagramm Fig. 12 ohne
weiteres, dass bei Wasser p’ negativ ist, mit steigender Temperatur
aber gegen Null hin wichst.

Ausserst einfach gestaltet sich im Wirmediagramm die Verfolgung
der Vorginge bei adiabatischer Expansion oder Kompression von ge-
sittigtem Dampf — die Vertikalen zeigen sofort die dabei auftretenden
Anderungen der spezifischen Dampfmenge; man sieht in Fig. 11, wel-
chen Einfluss die anfingliche spezifische Dampfmenge auf den Um-
stand hat, ob im Verlauf der adiabatischen Expansion Verdampfung
oder Kondensation eintritt u. s. w.

Den Vorgang der Abbildung eines pv-Diagrammes in das System
des T's-Diagrammes hat Boulvin'®) in sehr eleganter und hochst ein-
facher Weise in ein und demselben Axenkreuz durchgefiihrt mit Be-

12) J. Boulvin, Cours de mécanique appliquée, Paris 1893, fasc. 3, p. 76.
Vgl. auch Revue de mécanique 1900.
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nutzung der Spannungskurve p = f(7), sodass die Ubertragung mit
dem Lineal allein ausgefiihrt werden kann (s. Fig. 14).

Im oberen Quadranten rechts ist das Wirmediagramm verzeichnet,
fir Wasserdampf so, dass die Temperatur 0° C. mit der horizontalen
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Axe X—X zusammenfillt. Im zweiten Quadranten (oben links)
wird die Spannungskurve p = f(T') eingetragen; zieht man eine be-
liebige Horizontale M—N und legt durch den Punkt M derselben
(auf der Grenzkurve x = O gelegen) eine Parallele zur Tangente an
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die Spannungskurve, so schneidet diese auf der Vertikalen durch N
eine Strecke ab, welche — 4 (v'— v"); es ist namlich

oder TL"—T =AT- dig" (Gleichung von Clapeyron- Clausius).

Legt man das Dreieck M NN’, wie die Schraffur andeutet, an
die Axe X—X an und tiibertriigt man die Strecke 4 (v'— v”) in
den dritten Quadranten (links unten) als Abscisse zur Ordinate p, so
erhilt man die Kurve der 4 (v'— v”). Wegen der ausserordentlichen
Kleinheit von ¢” bei Wasser kann man die Ordinatenaxe dieser Kurve,
welche eigentlich um A4v” iiber der Axe X—X liegt, zeichnerisch
gar nicht von letzterer unterscheiden und es stellt somit die Kurve
der A (v'— ") nichts anderes dar als die Sittigungskurve (z =1)
im Koordinatensystem p,v; sie entspricht der rechten Grenzkurve
z =1 im Wirmediagramm, wihrend der Grenzkurve z = 0 des letz-
teren die Axe X—X entspricht. Sucht man nun zu irgend einem
Punkt B im Spannungsdiagramm den entsprechenden Punkt B’ im
Wirmediagramm, so hat man nur zu beachten, dass demselben ein
bestimmter Wert der spezifischen Dampfmenge z zugehort, d. h., dass
B’ die Strecke M— N im gleichen Verhiltnis teilen muss, wie B
die Strecke M,—N,; durch Ziehen der Geraden B—B,—B’ ist
also B, d. h. ein beliebiger Punkt im Sattigungsgebiet des Spannungs-
diagramms, in das Warmediagramm iibertragen. Irgend eine Kurve,
welche im Spannungsdiagramm gezeichnet vorliegt, z. B. die Linie
konstanten Volumens a—a, lisst sich so punktweise, wie angedeutet,
ins Wirmediagramm (Linie ¢"—a") umsetzen. Dabei ist einleuchtend,
dass die Zeichnung der Tangenten an die Spannungskurve beziehungs-
weise der Parallelen dazu gar nicht nétig ist — die Methode bleibt
richtig, auch wenn die Sittigungskurve im p, v-System in irgend
einem beliebigen Massstab (durch Auftragen der den Tabellen zu ent-
nehmenden Werte v" — v” gezeichnet wurde.

Die Darstellungsweise der Eigenschaften der gesittigten Diampfe
durch ihr Wérmediagramm giebt auch sehr anschaulichen Aufschluss

iber das Verhalten im kritischen Punkt und seiner Umgebung, fiir

welchen (ﬂ)) = 00 (@) = (d_g) =00 = oo. Fir die
at)y — 0 \ap)e = 2 \ai), = 0 Vo=

technisch zur Zeit allein in dieser Region in Betracht kommende CO,

nehmen die Grenzkurven im pv- und T's-System folgende Grestalt

an'®) (Fig. 15 und Fig. 16):

18) Nach R. Mollier, Zeitschr. f. d. ges. Kilteindustrie 1896, p. 656; s. auch
Z. d. Vereins Deutscher Ingenieure 48 (1904), p. 271.
Encyklop. d. math., Wissensch, V 1. 17
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7. Uberhitzte Dimpfe. Fiir fechnische Zwecke ist'4) festzuhalten,
dass die Zustandsgleichung der iiberhitzten Dampfe nur dann brauchbar
ist, wenn sie in einfacher Weise zu gegebenem p und 7' das Volumen
zu berechnen gestattet; dies gilt von der, in der technischen Thermo-
dynamik bislang am héufigsten verwendeten Zeuner'schen Gleichung®),
welche fiir Wasserdampf in der Absicht aufgestellt ist, einerseits noch
fiir die Grenzkurve 2 =1 die Beobachtungswerte richtig wiederzu-
geben und andererseits die technisch verwerteten, hochstens 500° C.
erreichenden Uberhitzungen mit zu umfassen. Die Gleichung lautet

n—1
pv =BT — COp = (Zustandsgleichung) ,

wo B, C und » die Konstanten des Dampfes sind. Man kann die
beiden letzteren aus der Gleichung eliminieren, wenn man dafiir die
zum Drucke p gehorige Sittigungstemperatur 7’ und das zu p ge-
horige spezifische Volumen ¢ im geséittigten Zustande einfiihrt. Schreibt
man némlich die obige Gleichung einmal fiir iiberhitzten Dampf, das
andere Mal fiir gesiittigten Dampf hin, wobei in Betracht kommf,
dass dieselbe ja den letzteren Zustand noch mit umfassen soll, und
subtrahiert beide von einander, so ergiebt sich:

v=v’—|—§(T—— T).
Fir die Dampfkonstante B folgt hieraus die Bedeutung
0v
B == p (a—t—)p .

Die oben benutzte Konstante n hat fir Wasserdampf den Wert 4/3.
Der Zuwachs der inneren Arbeit berechnet sich nach Zeuner'®) zu

du = d(pv)
n—1

Ferner ist die Erzeugungswirme bei konstantem Druck
@=q‘;+ i +yp(T,_ T))
und die Wérmegleichung

14) Die Experimentalphysik ist gegenwiirtig (1904) am Werke, unsere noch
sehr liickenhaften Kenntnisse in Bezug auf das Verhalten der iiberhitzten Dimpfe
zu vervollstindigen, namentlich in Bezug auf Zustandsgleichung und spezifische
Wirme (letztere in Abhiéingigkeit von Temperatur und Druck) — die Riicksicht
auf den Raum verbot hier, iber das im Text gegebene hinauszugehen.

15) Zeuner, Techn. Thermodynamik 2, Leipzig 1901, p. 221.

16) Ebenda, p. 218 ff.

17*
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Zur Ableitung der Entropie kann man wieder von der Grenzkurve
ausgehen und den Zuwachs der Entropie gegeniiber dem gesittigten
Zustande berechnen, indem man entweder den Druck oder das Volumen
konstant hilt. Mit konstanten Werten von y, und p, hat man dann

@ s=5+plog7 oder (b) s==+7log;

I Y/ A Y
A ' aavi
oAy e Ve VAl
8 " Nohlenodie. Y/ Y7 /
0] Y/ VA1
SN/ VYV
® T4 divarap.
“ = A7 /y/‘/
20 = | y
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300 ] //
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T T T T
-004 a0 2]

Enbropic Sinks

Fig. 18.
in der technischen Thermodynamik benutzt man einfach das Warme-
diagramm, in welches die Kurven konstanten Druckes nach der vor-
stehenden Formel (a) eingezeichnet werden. Fiir HyO-Dampf ist dies
in Fig, 17, fiir CO, in Fig. 18 geschehen; beidemal ist das zugehdrige
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¢s-Diagramm hinzugefiigt. Fig. 17 schliesst sich an Fig. 11 und 13,
Fig. 18 an Fig. 16 an. Was die ¢s-Diagramme betrifft, so beachte
man, dass in ihnen die Kurven konstanten Druckes beim Ubergange
aus dem Sittigungszustand in das Gebiet der Uberhitzung keine Dis-
kontinuitdt der Tangentenrichtung zeigen; es ist ndmlich nach Gl. (12)

), =1

d. h. die Tangente des Neigungswinkels einer Kurve konstanten Druckes
gegen die s-Axe ist gleich der absoluten Temperatur und verhdlt sich
daher beim Durchgange durch die Grenzkurve stetig.

II. Kreisprozesse der thermodynamischen Maschinen.

8. Allgemeines iiber die technischen Kreisprozesse. Alles vor-
hergehende, aus der Experimentalphysik und der allgemeinen Thermo-
dynamik heriibergenommene liefert nur die notwendige, freilich noch
sehr viele Liicken aufweisende Grundlage fiir die Losung der Haupt-
aufgabe der technischen Thermodynamik, die Arbeitsprosesse der thermo-
dynamischen Maschinen so rationell und vorteilhaft als moglich zu ge-
stalten. Den Ausgangspunkt hierfiir bildet das Studium des Kreis-
prozesses, zuniichst in der Form des allgemeinen, umkehrbaren'”) Pro-
zesges, wie er in den Koordinaten p, ¥V und 7, S in den Fig. 19
und 20 dargestellt ist. Das Wesen desselben geht aus dieser Dar-
stellung klar hervor: nach dem ersten Hauptsatz ist

AW =([)i@=e,— @,

wenn ), die zugefithrte, @, die gesamte entzogene Wirme bedeutet,
nach dem zweiten Hauptsatz dagegen ist

(f)-o

was darin zum Ausdruck kommt, dass das Wirmediagramm, wenn
Punkt fiir Punkt des Arbeitsdiagrammes abgebildet wird, sich
schliesst. Soll, wie es die Technik verlangt, dauernd mit einem be-
liebigen arbeitenden Korper ein solcher Prozess beliebig oft ausgefiihrt
werden, so muss einer Volumvergrdsserung bei hohem Druck (ge-

17) Die Umkehrbarkeit des Prozesses, die in Wirklichkeit nicht statt hat,
wird bei den allgemeinen Uberlegungen im Sinne einer Idealisierung und Ver-
einfachung des Problems stets vorausgesetzt. Man denkt also bei diesen Uber-
legungen nicht eigentlich an die wirklichen Prozesse in den Maschinen, sondern
an ideale Grenzfille derselben.
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leistete Expansionsarbeit) eine Volumverminderung bei niederem Druck
(aufgewendete Kompressionsarbeit) beziehungsweise einer Warmezufuhr
bei hoherer Temperatur eine Wirmeentziehung bei niederer Tempe-
ratur gegeniiberstehen — die gewonnene Arbeit ist immer die Differenz
von positiver und negativer Arbeit, ihr Wiarmeiiquivalent die Differenz
zwischen zugefiihrter und entzogener Wirme.

Denkt man sich die Richtung, in der der Prozess durchlaufen
wird (in der Fig. 19 und 20 durch Pfeile angedeutet), umgekehrt, so
ist auch das Resultat das entgegengesetzte: es wird nicht Arbeit ge-
wonnen, sondern es muss solche aufgewendet werden, die sich in

———-——-‘rls‘
Fig. 19. Fig. 20.

Wirme verwandelt und, zu der zugefiihrten Wirme addiert, bewirkt,
dass bei hoherer Temperatur eine grossere Wirmemenge abgegeben
wird als bei niederer Temperatur aufgenommen wurde. Wahrend der
direkte Prozess in den Wiirmekraftmaschinen verwirklicht wird, bezieht
sich der umgekehrte auf die Kdaltemaschinen (bei welchen der Haupt-
nachdruck auf der Wirmezufuhr bei niederer Temperatur liegt). Kenn-
zeichnend fiir die Okonomie des Prozesses ist im einen wie im andern
Falle der Wirkungsgrad, d. h. das Verhdltnis des Erzeugnisses der
Maschine (bei den Warmekraftmaschinen: mechanische Arbeit; bei der
Kiltemaschine: erzeugte Kilte) zu dem dafiir zu leistenden Aufwand
(bei der Wirmekraftmaschine: zugefiihrte Warme; bei der Kilte-
maschine: aufgewendete mechanische Arbeit); der Prozess ist jederzeit
so zu leiten, dass der Wirkungsgrad unter den gegebenen Bedingungen
ein Maximum wird.



264 V 6. M. Schriter u. L. Pranddl. Technische Thermodynamik.

9. Die Wirmekraftmaschinen und ihr Wirkungsgrad. Xine
allgemeine Formulierung der Bedingungen des maximalen Wirkungs-
grades gewinnt man durch Zerlegung des Diagrammes in Elementar-
prozesse besonderer Art, wie sie von Carnot betrachtet worden sind?8);
man legt eine Schar von unendlich benachbarten adiabatischen Kurven
durch das Diagramm (vgl. Fig. 21 und 22) und denkt sich mit ver-
schwindend kleinem Fehler die Stiicke der Diagrammkurve zwischen je
zwei aufeinander 'folgenden Adiabaten durch unendlich kleine Stiicke

Fig. 21.

von Isothermen ersetzt, auf welchen z. B. bei der Temperatur 7" das
Wirmeelement d @’ zugefiihrt, bei 7" das Element d@Q” abgeleitet
wird. Fiir einen solchen elementaren Carnot’schen Prozess gilt die

Beziehung fiir den Wirkungsgrad (vgl. Art. 3, Nr. 7):

T —1" aQ o, "

hieraus leitet man als Grundregel fiir Wirmekraftmaschinenprozesse
ab: Jedes zugefiihrte Wirmeelement muss bei der hochstmoglichen Tem-
peratur zugefiihrt, jedes abzuleitende bei moglichst tiefer Temperatur ab-
geleitet werden.

Danach ergiebt sich die Bedeutung des zweiten Hauptsatzes fiir
die Technik, indem er dariiber aufklirt, wie ein Kreisprozess mit
Riicksicht auf 6konomische Verwertung der Wirme eingerichtet werden

18) Sadi Carnot, Reflexions sur la puissance motrice du feu 1824, Wieder-
abdruck 1878 Paris, Gauthier-Villars. Auch in Ostwald’s Klassikern, Nr. 87,
Leipzig 1892.
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muss und welchen Grenzwert die iiberhaupt mogliche Ausniitzung
einer gegebenen Wirmemenge besitzt. Von besonderer Wichtigkeit
ist die mit Hilfe des zweiten Hauptsatzes fiir einen Carnot’schen
Elementarprozess gewonnene Einsicht, dass das Warmetquivalent der
nach aussen abgegebenen Arbeit d W ein Produkt aus zwei Faktoren

ist: Entropie (%,2) mal Temperaturdifferenz (7} — T,). Man kann

dies so aussprechen: Die aus Wirme zu gewinnende mechanische
Energie hat zwei Faktoren, einen FExfensitdts- und einen Infensitiits-
faktor; denkt man sich im Wirme-
diagramm die in der Natur ein fiir
allemal fest gegebene tiefste Tempera-
tur 7, eingetragen und zihlt man die
Ordinaten von dieser Axe aus, so ist
der geometrische Ort aller Punkte,
welche gleichen Arbeitsleistungen ent-
sprechen, eine gleichseitige Hyperbel;
einer Abnahme des Intensititsfaktors
entspricht bei festgehaltener Arbeits-
leistung eine solche Zunahme des Ex-
tensititsfaktors, dass das Produkt das
gleiche bleibt. ——> Subaple

In Fig. 23 sind drei endliche , Fig. 23.
Carnotsche Prozesse von der gleichen
Arbeitsleistung eingetragen, die sich also im Wérmediagramm
der Kig. 23 durch inhaltsgleiche Rechtecke darstellen; allein diese
verschiedenen, endlichen Carnot’schen Prozesse sind nicht etwa gleich-
wertig, denn der Wirkungsgrad nimmt mit zunehmendem Extensitits-
faktor ab, weil ‘

e
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Ist also, wie angenommen, T, gegeben, so wird der Wirkungsgrad
desjenigen Carnot’schen Prozesses am giinstigsten, fiir den 7, mog-
lichst gross ist. In Fig. 23 ist dies derjenige Prozess, der durch das
Rechteck von grosster Hohe dargestellt wird.

Aus Fig. 24 und 25 ist leicht ersichtlich, dass und warum irgend
ein Kreisprozess (1— 2 — 8 —4 —1), bei welchem wiihrend des Uber-
ganges von 7, nach 7, die Entropie sich veréndert, einen kleineren
Wirkungsgrad haben muss als ein Prozess, bei welchem sie konstant
bleibt, d. h. als ein Prozess mit adiabatischem Ubergang. Nimmt die
Entropie auf dem Wege 1—2 zu (Fig. 24), so wird bei gleicher zu-
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gefitlhrter Warme (a4bca = a412da) die entzogene Wirme bei einem
Carnot'schen Prozess (a3b'ca) kleiner, als bei dem Prozess mit zu-
nehmender Entropie (a32da), daher der Wirkungsgrad des letzteren
kleiner; bei abnehmender Entropie (Fig. 25) auf dem Wege 1—2
wird bei gleicher zugefiihrter Wirme (a41ba) die Arbeit (34123)

4 4T,
X 4 4 1T,
|
|
J

3] ! T; [ _21;

T+ T
ﬂw___)J ‘ € a -—b‘&
Fig. 24. Fig. 25.

kleiner als bei dem entsprechenden Carnot’schen Prozess (341¢3) und
daher abermals der Wirkungsgrad jenes Prozesses kleiner wie der des
Carnot'schen.

Fir die Anwendung auf thermodynamische Maschinen folgt nun
freilich aus der oben dargestellten Zerlegung eines Prozesses in
Carnot’sche Elementarprozesse nicht, dass man wnter allen Umstinden
dahin streben miisse, jedes zuzufiihrende Wirmeelement d Q" bei einer
und derselben hochsten Temperatur zuzufiihren und sdmtliche Wirme-
elemente d Q" bei konstanter tiefster Temperatur abzuleiten, also einen
endlichen Carnot’schen Prozess als Idealprozess einer jeden thermo-
dynamischen Maschine anzustreben. Aus den fiir die Ausfiihrung
solcher Maschinen massgebenden Bedingungen geht vielmehr ein etwas
anderer Prozess als allgemein giltiges Ideal hervor.

Bedenkt man nimlich, dass Warmemitteilung und -entziehung in
Wirklichkeit nur durch Vermittlung von wérmeren, beziehungsweise
kilteren Korpern moglich ist, so wird sofort klar, dass zum Prozess
der Wirmekraftmaschinen ausser dem ,arbeitenden“ Korper noch ein
oder mehrere ,Heizkérper®, welche Wirme liefern, sowie ein oder
mehrere ,Kiihlkérper”, welche Wérme aufnehmen, gehdren. Erstere
miissen notwendigerweise wihrend der Wirmeabgabe sich abkiihlen,
letztere wihrend der Wirmeaufnahme sich erwidrmen, da beide nur
eine endliche Wirmekapazitit haben. Wenn die Warmeiibertragung
aber vollkommen wire, so miisste in jedem Moment Gleichheit der
Temperatur zwischen wirmeaufnehmendem wund wérmeabgebendem
Korper hestehen — der Ubergang von den hohen Temperaturen der
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Wirmeaufnahmeperiode zu den tiefen der Warmeentziehungsperiode
miisste durch adiabatische Arbeit (Expansion und Kompression) er-
folgen. Wihrend derselben muss der arbeitende Kérper sowohl vom
KiihlkSrper als vom Heizkorper vollstindig getrennt bleiben, damit
die Temperaturerniedrigung bis zur tiefsten Temperatur des Kiihl-
korpers beziehungsweise die Temperaturerhshung auf die hchste Tem-
peratur des Heizkorpers in der giinstigsten Weise d. h. bei konstanter
Entropie erfolgen kann, wie es auch der Carnot’sche Prozess verlangt.

Mit Recht hat Lorenz'®) hervorgehoben, dass der auf obiger Uber-
legung beruhende, von ihm eingefiihrte Prozess, aus zwei Adiabaten
und zwei polytropischen Kurven bestehend, besser als der Carnot’sche,
zwischen zwei Isothermen und zwei Adiabaten verlaufende Prozess
geeignet sei, den Idealprozess der thermodynamischen Maschinen all-
gemein darzustellen, weil er nicht, wie jener, die Forderung unend-
lich grosser Mengen des Heiz- beziehungsweise Kiihlkérpers erhebt,
sondern sich an die in Wirklichkeit bestehenden Verhaltnisse besser
anschliesst, ohne den oben dargelegten Grundsatz zu verldugnen.

Im pV- und 7'S-System ist in Fig. 26 und 27 dieser Prozess

5
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Fig. 26. Fig. 27.

dargestellt; sei H die Gewichtsmenge des Heizkorpers, die zur Ver-
fiigung steht, p, seine spezifische Wirme, so ist ein von dem Heiz-
kérper abgegebenes Wirmeelement d @, = y, HdT; mit K und yp, fir
den Kiihlkérper wird ein von dem Kiihlkérper aufgenommenes Wirme-
element dQ, = y,KdT; bedeuten dS, und dS; die zugehdrigen

19) H. Lorenz, Die Grenzwerte der thermodynamischen Energieumwandlung.
Digs. Miinchen, Oldenbourg 1895.
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Entropieinderungen bei der Warmezufuhr bezw. Wirmeabgabe, so gilt
fiir diese:
dS, =y,Hdlog T; dS;=y,KdlogT

Nach Nr. 4 entsprechen diese Werte in der That dem Gesetz je eimer
polytropischen Kurve bezw. ihrem Abbild im Wirmediagramm. Mit
den Bezeichnungen der Fig. 26 und 27 ergiebt sich sodann fiir die
Gesamtwirme @, oder @,, die der Heizkorper abgiebt oder der Kiihl-
kérper aufnimmt:

Q=nHI,— 06); Q= rK(0,— IT);
wobei nach dem zweiten Hauptsatz sein muss

T, o,
7, HaT fydeT
T = T
h T,
d h.
T\E __ (O5\ X ’
(&)™ = ()™

Der Wirkungsgrad dieses Prozesses berechnet sich nun zu

@, — 0, -1 VkK(@s — 1)

=" T3, H(T,—6)’

In dem Falle, dass die beiden Polytropen den gleichen Exponenten
haben (so z. B. beim Otfo’schen Viertaktprozess, vgl. Nr. 13) wird

_T1_@a__@1“‘Ts
"= T e

Die Natur des arbeitenden Korpers tritt hier, wie beim Carnot-
schen Prozess vollstindig zuriick; in Wirklichkeit spielt dieselbe frei-
lich wegen der durch sie bedingten Druck- und Volumverhéltnisse eine
entscheidende Rolle und deshalb ist man heute in der technischen
Thermodynamik iiberwiegend dazu gelangt, nicht fiir alle Wirme-
kraftmaschinen einen einzigen Idealprozess aufzustellen, mit welchem
man die ausgefiihrte Maschine vergleicht, sondern man leitet fiir jede
Kategorie solcher Maschinen (Dampfmaschinen, Gtasmaschinen etc.)
aus den besonderen Eigenschaften des arbeitenden Korpers einen ab-
strakten ,verlustlosen Prozess“ ab und misst an diesem das Ergebnis
des wirklich ausgefiihrten Prozesses.

Unter den verschiedenen Arten von Wirmekraftmaschinen sind
die technisch wichtigsten die Dampfmaschinen und die Verbrennungs-
motoren (Gasmotoren u. s. w.). Diese beiden Gattungen sollen hier
allein Behandlung finden. Uber Heissluftmaschinen, die heute tech-
nisch bedeutungslos sind, existieren aus &lterer Zeit eine Reihe schoner
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Arbeiten, hinsichtlich derer aber hier ein Hinweis auf die Lehrbiicher
geniigen mag: Man findet sie behandelt in Zewner, Thermod. 1,
§ 49—65, Weyrauch § 51—57. Die Theorie der Arbeitsiibertragung
mit Druckluft, in die auch die Thermodynamik hineinspielt, ist bei
Weyrauch § 58 dargestellt.

10. Die Dampfmaschine im besonderen. Fiir die Dampf-
maschine ist, so lange sie mit gesittigten Dimpfen arbeitet, durch die
Natur der Sache isothermische Wirmezufuhr (wihrend der Dampf-
bildung) und Wirmeableitung (wihrend der Kondensation) gegeben
— es ist hier iiberhaupt gar nicht moglich, polytropische Kurven
anzuwenden, sodass der verlustlose ideale Prozess in diesem Falle
allerdings der Carnot’sche wird (Fig. 28 und 29). Die obere Tempe-
ratur 7 ist dabei die dem Kesseldruck entsprechende Siedetemperatur,
die untere Temperatur 7, ist bei Auspuffmaschinen die atmosphirische
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Fig 28. Fig. 29.

Siedetemperatur, bei Maschinen mit Kondensator®) die im Konden-
sator herrschende Temperatur. In diesem Referat ist weiterhin
immer dieser letztere Fall angenommen; er ist der thermodynamisch
vollkommenere, und nur dann dem ersten wirtschaftlich unterlegen,
wenn die Wirme ¢, des Auspuffdampfes zu irgend welchen Heiz-
zwecken Verwendung findet. In letzterem Falle wird die Auspuff-
maschine die wirtschaftlichste Wirmekraftmaschine.

20) Uber die Theorie des Kondensators vgl. z. B. Zeumer, Thermod. 2,
§ 18 und 19. Reiches Zahlenmaterial findet man in dem Buche von E. Haws-
brand (vgl. Litteraturiibersicht).
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Zur Verwirklichung dieses Idealprozesses miisste, in Anlehnung
an die ausgefiihrte Konstruktion, aber unter Abstraktion von allen
auftretenden Unvollkommenheiten, die in Fig. 30 dargestellte Anord-
nung getroffen werden. A4 ist ein Rohrenkessel, mit Wasser und
Dampf vom Druck p, gefiillt und von einem Gefiiss B umgeben, in
welchem sich eine Heizfllissigkeit (die Heizgase der Feuerung) be-
findet, welche fortwihrend Wirme an das Wasser in 4 abgiebt

Fig. 30.

und dasselbe beim Druck p, in Dampf verwandelt. Ein #hnlicher
Réhrenkessel EE bildet den Kiihlapparat (Kondensator); er ist eben-
falls mit Wasser und Dampf aber von dem niedrigen Druck p, ge-
fiillt und wird von einem Gefiss umgeben, durch welches Kiihlwasser
getrieben wird, welches fortwéhrend dem in EE befindlichen Gemisch
Wirme entzieht, d. h. den Dampf beim konstanten Druck p, konden-
siert. Beide Apparate sind durch die Cylinder C und D mit den
Arbeitskolben K, und K, verbunden, wobei C Expansionscylinder, D
Kompressionscylinder ist. Durch die Rohrleitungen und Ein- sowie
Auslassorgane wird nun ermdglicht, dass bei jedem Spiel oder Prozess
G kg im Kessel A gebildeter Dampf in den Cylinder C eintreten, dort
bei Hin- und Riickgang des Kolbens das Diagramm I liefernd, wih-
rend gleichzeitig aus E ebenfalls Gkg Mischung nach D iibertreten,
dort komprimiert und verfliissigt werden unter Aufwand der durch
das Diagramm II dargestellten, von aussen in die Maschine einzu-
filhrenden Arbeit und schliesslich in flissigem Zustand mit dem Druck
p, nach A4 zuriickgelangen, um abermals verdampft zu werden und
das Spiel von neuem zu beginnen. Man hat es also mit einer so-
genannten geschlossenen Maschine zu thun, bei der ein und dasselbe
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Quantum des arbeitenden Korpers immer wieder den Prozess vollfiihrt.
Man kann Fig. 28 so auffassen, dass in ihr die Diagramme I und II
aufeinander gezeichnet sind, wobei dem Diagramme I das bis an die
Ordinatenaxe heran horizontal verlingerte schraffierte Gebiet der
Fig. 28, dem Diagramme II die Fliche zwischen Ordinatenaxe und
schraffiertem Gebiet entspricht. Die Differenz von I und II ergiebt in
der schraffierten Fliche der Fig. 28 die sogenannte ,indizierte Leistung®.

Der Wirkungsgrad einer solchen vollkommenen Dampfmaschine
ist lediglich eine Funktion der Temperaturgrenzen

n = ‘4 —: T,

und wird im idealen Fall auch dadurch nicht geindert, dass man den
ganzen Prozess teilt, d. h. dass man z B. zwischen 7, und 7" eine
erste Maschine mit einer bestimmten Arbeitsfliissigkeit 4, zwischen 1"
und 7" eine zweite mit B und zwischen 7" und 7, eine dritte
Maschine mit einer dritten Arbeitsfliissigkeit C wirken ldsst; es sind
dann drei solche Kombinationen, wie Fig. 30 deren eine zeigt, notig;
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Fig. 31.

die im ersten Prozess entzogene Wirme dient im zweiten als zugefiihrte
(an Stelle der durch die Heizgase abgegebenen) und #dhnliches gilt fiir
den Zusammenhang des zweiten und dritten Prozesses. Solche
Kombinationen sind als ,mehrstoffige Dampfmaschinen“?!), auch
yAbwirmekraftmaschinen“®®) ausgefiihrt; das Carnot’sche Diagramm
einer dreistoffigen Maschine zeigt Fig. 31.

21) K. Schreber, Die Theorie der Mehrstoffdampfmaschinen, Leipzig 1903.
22) E. Josse, Neuere Erfahrungen mit Abwirmekraftmaschinen, Miinchen
und Berlin, Oldenburg 1901.
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Wihrend Wirkungsgrad und Arbeitsverhiltnis in der idealisierten
Betrachtung durch die Unterteilung des ganzen Prozesses nicht ge-
indert werden und daher eine solche Unterteilung scheinbar zwecklos
ist, kann dieselbe unter den thatséichlichen Verhiltnissen der Praxis
dennoch Vorteile gewihren.

Die wirklich ausgefiihrte Dampfmaschine unterscheidet sich von
der Anordnung in Fig. 30 dadurch, dass der Kompressionscylinder
nicht ein Gemisch von Dampf und Fliissigkeit dem Kondensator ent-
nimmt, sondern nur Fliissigkeit und diese in den Kessel 4 hiniiber-
driickt, ohne ihre Temperatur zu #ndern; hierzu muss im Kessel noch
die Flissigkeitswirme zugefihrt werden. Der Cylinder D reduziert
sich also in der Praxis auf eine Speisepumpe (punktiert gezeichnet
in Fig. 30) und sein Diagramm auf das Rechteck (p, — p,)v”. Dies
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Fig. 32. Fig. 33.

hat zur Folge, dass das Diagramm einer Idealdampfmaschine nunmehr
die Gestalt annimmt, wie sie in Fig. 32 und 33 dargestellt ist; man be-
zeichnet diesen Prozess als den Rankine-Clausius'schen Prozess®) und
betrachtet die vorliegende Abweichung vom reinen Carnot’schen Pro-
zess nicht als eine Unvollkommenheit der ausgefiihrten Dampfmaschine.

Die in neuester Zeit in den Vordergrund des Interesses getretenen
Dampfturbinen stellen nicht etwa eine prinzipielle Verbesserung der
Wirmeausniitzung dar — es ldsst sich leicht zeigen, dass das Dia-
gramm des Clausius-Rankine'schen Prozesses auch fiir diese Maschinen

23) Rankine, The Steam Engine, IX. Edition, p. 376; Clausius, Mech.
Wirmetheorie 2, Abschnitt XI, § 4.
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das Ideal darstellt und die Erfahrung hat gezeigt, dass auch die An-
niherung der ausgefiihrten Dampfturbine an den vollkommenen Pro-
zess im Grossen und Ganzen dieselbe ist wie bei der Kolbendampf-
maschine. Vgl. hierzu Nr. 23 dieses Artikels.

Die Wirkungsgrade der vollkommenen Dampfmaschine nach
Fig. 32 und 33 sind sehr niedrig, weil die Spannungskurve des Wasser-
dampfes (der einzigen Fliissigkeit, die bis heute fiir die obere Tempe-
raturgrenze in Betracht kommt) verhdltnismissig niedere Werte von
T, bedingt; man erhilt z. B. fiir

Py =0,1 kg/qem, T, = 318,6° abs.
bei

Dy
n

6 7 8 10 12 kgjgem
0239 0,247 0253 0,266 0,276

und die wirklich ausgefiihrte Dampfmaschine erreicht im allergiinstigsten
Fall mit allen modernen Errungenschaften hochstens 73 Prozent
dieser Werte, also bei p, = 12 Atm. rund 0,20!

11. Verbundmaschine. Anwendung von iiberhitztem Dampf.
Die zuletzt genannten Errungenschaften beziehen sich bei der Kolben-
dampfmaschine auf die Anwendung von Mitteln, um den Wirme-
austausch zwischen Dampf und Cylinderwandungen moglichst un-
schidlich zu machen. Die weitaus wichtigste und fiir die Okonomie
nachteiligste Abweichung der Wirklichkeit von den Voraussetzungen
des Rankine- Clausius-Prozesses ist namlich die Unméglichkeit, in
einem metallischen Cylinder, dessen Wandungen eine niedrigere Tem-
peratur haben, als die Sittigungstemperatur, die dem Druck des ein-
tretenden Dampfes entspricht, die teilweise Kondensation des letzteren
durch Berithrung mit den Winden zu verhindern. Hierdurch geht
natiirlich diejenige Wérmemenge fiir den Arbeitsprozess zum gréssten
Teil verloren, die man urspriinglich zur Erzeugung des an den Wan-
dungen wieder verfliissigten Dampfes aufgewendet hat.

Das Verdienst diese Verlustquelle zuerst erkannt zu haben, ge-
biihrt 4. Hirn (vgl. Nr. 1, p. 241). Eine analytische Untersuchung
der Wirmewirkung der Cylinderwandungen ist von E. G. Kirsch ge-
geben worden (vgl Litteraturiibersicht).

Die erfolgreichsten Einrichtungen der Neuzeit zur Verminderung
der durch die geschilderten Umstéinde bewirkten Abweichung vom
Idealprozess der Dampfmaschine sind: die Verteilung der gesamten
Expansion auf mehrere Cylinder (Compound- oder Verbumdmaschine,
Mehrfach-Expansionsmaschine) und die Uberhitzung des Dampfes.

Encyklop. d. math. Wissensch. V 1. 18
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Der Grundgedanke der ersteren besteht darin, die Abkithlung der
Wandungen, die bei der Eincylindermaschine durch die Beriihrung der
Winde mit dem unter dem niedrigen Kondensatordruck p, austretenden
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Fig. 34, Fig. 35.

Dampf hervorgerufen wird, dadurch zu verringern, dass man das ganze
Temperatur- bezw. Druckgefille in mehrere Teile teilt, von denen jeder
in einem besonderen Cylinder ausgeniitzt wird, wie dies schematisch
durch die Fig. 34 und 35 dargestellt ist. Natiirlich sind durch das not-

Sndihatorct
MWMM-

wendige Hiniiberschieben des Dampfes in den jeweils folgenden Cy-
linder Verluste an Spannung unvermeidlich, die in Fig. 36 durch die
Zwischenriume zwischen den Einzeldiagrammen dieser Figur und den
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unvollkommenen gegenseitigen Anschluss derselben dargestellt werden,
aber die Erfahrung hat léingst gezeigt, dass die Vorteile iiberwiegen.
Fig. 36 zeigt auch, dass man in Wirklichkeit nicht, wie es in der
schematischen Fig. 35 geschehen, die gesamte Druckdifferenz, sondern
etwa die gesamte Arbeitsleistung, d. h. die Diagrammfliche in drei
gleiche Teile zerlegt und gleichférmig auf die drei Kolben verteilt.
Wenn man den Dampf von T, auf 7" dberhitzen will, so kann
dies praktisch nur so geschehen, dass man ihm auf dem Wege vom
Kessel zur Maschine pro 1 kg bei konstantem Druck p, die Wirme

zufiihrt
yp(T '— T 1);

im Arbeitsprozess #ndert sich dann bei der Idealmaschine nur die
Wirmezufuhrperiode, die jetzt aus zwei Teilen, einem isothermischen
(wie bei gesittigtem Dampf) und einem bei konstantem Druck aber
steigender Temperatur erfolgenden, besteht; das Diagramm des voll-
kommenen Prozesses sieht dann so aus wie die Fig. 37 und 38 zeigen.
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Der Gewinn ist fiir den verlustlosen Prozess #usserst gering; man
erhilt z. B. fiir

p,=10 kg/gem p,= 0,1 kg/qem 7" =300 4 273 = 573

n ohne Uberhitzung 0,266
7 mit y 0277

18*
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in Wirklichkeit aber reduziert die Uberhitzung des Dampfes den
Wirmeaustausch mit den Wandungen (wegen der geringen Wirme-
leitungsfahigkeit des iiberhitzten Dampfes) erheblich, sodass der that-
sichliche Vorteil den theoretischen weit iibertrifft.

4
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Fig. 39.

In den Figuren 39, 40 und 41 sind die Wérmediagramme einer
zweicylindrigen Verbundmaschine unter drei verschiedenen Betriebs-
verhéltnissen dargestellt.

Fig. 39 bezieht sich auf gesittigten Dampf, die beiden andern
Figuren auf schwach und stark iiberhitzten Dampf. Der Flichen-
inhalt der ganz schraffierten Diagramme stellt die Wirmeiquivalente
der in den beiden Cylindern geleisteten Arbeiten dar; die gesamte
zugefilhrte Wirme ist durch den Flicheninhalt der umrinderten
Konturen dargestellt. Man erhilt also den Wirkungsgrad des Arbeits-
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prozesses jeweilig als Quotient der erstgenannten dividiert durch die
letztgenannten Flichen. In den Figuren 39 bis 41 ist auch die Kon-
densatortemperatur eingezeichnet; da diese die Fliche des Wirme-
dquivalentes der Arbeit bei dem Prozess einer vollkommenen Dampf-
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maschine nach unten hin abgrenzt, so giebt unsere Darstellung auch
dariiber Aufschluss, wie weit die ausgefiihrte Maschine sich dem Ideal-
prozess nihert).

12. Der Gesamt- oder wirtschaftliche Wirkungsgrad der
Dampfmaschine. Vom technischen Standpunkt aus geniigen die bis-

24) Wegen aller Einzelheiten, in welche hier nicht eingetreten werden
kann, vgl. M. Schriter und A. Koob, Untersuchung einer von Van den Kerchove
in Gent gebauten Tandemmaschine, Z. d. Vereins Deutscher Ingenieure 47 (1903),
p. 1281, 1405, 1488
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herigen Betrachtungen {iber den Prozess der Dampfmaschine aller-
dings noch nicht zur erschopfenden Beurteilung derselben — die Er-
zeugung der Wirme aus dem Brennmaterial und der Ubergang von
der im Cylinder geleisteten zu der effektiv abgegebenen Arbeit fehlen

=
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Fig. 41.

noch zur Charakterisierung der technischen Wirtschaftlichkeit der
Umwandlung der chemischen Energie der Kohle in die Form der an
der Dampfmaschinenwelle abgegebenen mechanischen Arbeit. Nur
der Vollstindigkeit halber sei angefithrt, dass durch Aufstellung des
wirtschaftlichen Wirkungsgrades % als Produkt von drei Einzel-
wirkungsgraden 7, 7,, 7, die Technik diesem Umstand Rechnung
trigt, indem man setzt:
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9 dem arbeitenden Korper zugefiilhrte Wirme
M= H T absoluter Heizwert des daftir verbrauchten Brennmaterials
= Wirkungsgrad der Erzeugung und Ubertragung der Wirme,
AW, Aquivalent der indizierten Arbeit .
Mz == T(,” = dem arbeitenden Korper zugefihrte Warme

= Wirkungsgrad des thermodynamischen Prozesses im Cylinder,

AW, _ Aquivalent der effektiven Arbeit an der Welle
s = AW, Kquivalent der indizierten Arbeit im Cylinder
= Wirkungsgrad der mechanischen Einrichtung.

. AW,
Somit 7 =1, - 7, - ng= 5"

Massgebend ist allerdings von den drei Faktoren 7, 7,5, 5, der in
den vorangehenden Nummern betrachtete Wirkungsgrad 7,; denn die
beiden andern erreichen als idealen Grenmzwert die HEinheit und in
Wirklichkeit bei guten Ausfithrungen Werte bis 0,80 bezw. 0,93,
wihrend 7, seine obere Grenze in dem Wirkungsgrad des Rankine-
Clausius-Prozesses findet.

Was den Wirkungsgrad 7, betrifft, so bleibt es fraglich, ob man
bei seiner Definition als disponible Warme einfach den absoluten
Heizwert des Brennmateriales oder vielleicht eine daraus abgeleitete
Grosse (nach Zeuner den ,,Arbeitswert der Brennstoffe®) anzusehen hat ).

13. Die Verbrennungsmotoren (Giasmaschine, Dieselmotor) als
zweite Klasse der thermodynamischen Kraftmaschinen unterscheiden
sich von den Dampfmaschinen vor allem dadurch, dass es durch Ver-
wendung von gasférmigem oder fliissigem (entsprechend fein verteiltem)
Brennmaterial moglich ist, den Prozess der Warmeerzeugung in den
Arbeitscylinder hinein zu verlegen, die Wéarmetibertragung an den
arbeitenden Korper (das Gemisch aus Verbrennungsprodukten und
tiberschiissiger Luft) also ohne Zuhilfenahme von Heizflichen direkt
auszufiihren und die dabei entstehenden hohen Temperaturen (bis
1800° C. und dariiber) fiir den Dauerbetrieb dadurch unschidlich
zu machen, dass die Cylinderwandungen von aussen durch Kiihl-
wasser auf beliebig niedriger Temperatur erhalten werden. Der weit-
aus verbreitetste Arbeitsvorgang zur Realisierung eines solchen Pro-
zesses besteht in dem sogenannten Viertaktverfahren, nach welchem
bei seiner urspriinglichen Ausfiihrung ein auf der Vorderseite offener,
stets mit der Atmosphére in Verbindung stehender Cylinder benutzt
wird, dessen Kolben auf der Hinterseite die folgenden vier Phasen
des Prozesses vollzieht:

25) S. Zeuner, Techn. Thermodynamik 1, § 77.
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Fig. 42.

Beim ersten Hub wird das Verbrennungsgemisch in den Cylinder
bei atmosphérischem Druck und atmosphérischer Temperatur, p, und
T,, eingefiihrt, beim zweiten Hub wird dasselbe verdichtet, im Ideal-
fall adiabatisch auf p’ und 7'f Die Wirmezufuhr kann nunmehr auf
drei verschiedene Arten geschehen: entweder im Totpunkt, bei kon-
stantem Volumer mit Druck- und Temperatursteigung auf p, und 7}
(Diagramm a) und nachfolgender adiabatischer Expansion auf p, und 7j;
oder bei konstantem Druck p’ mit Temperaturerhhung auf 7" (Dia-
gramm b) und nachfolgender Expansion auf 7,” und p,’, oder endlich
(Diagramm c) bei konstanter Temperatwr T, mit sinkendem Druck
und nachheriger adiabatischer Expansion auf 7,” und p,”. Prozess a)
ist der Idealprozess der sogenannten Offo’schen Gasmaschine, b) der-
jenige des Dieselmotors, ¢) wird praktisch nicht benutzt. Der vierte
Hub dient dem Ausstossen der Verbrennungsgase in die Atmosphire.
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Die Arbeit des ersten und vierten Hubes lisst sich auch durch
besonders angebrachte Lade- und Ausspiilpumpen ersetzen; dadurch
wird es ermoglicht, den Arbeitscylinder, der nunmehr den zweiten
und dritten Hub zu verrichten hat, im Zweitakt arbeiten zu lassen
(System v. Ochelhiuser, Kirting u. a.). Da der Lade- und Ausspiil-
hub thermodynamisch keine Rolle spielt, ist weiterhin eine gemein-
same Betrachtung von Zweitakt- und Viertakt-Verfahren zuldssig.

Wie ersichtlich, besteht gegeniiber dem Arbeitsprozess der Dampf-
maschine noch der weitere, fundamentale Unterschied, dass der arbei-
tende Korper nicht wirklich einen Kreisprozess mit Riickkehr in den
Anfangszustand ausfiihrt, sondern dass derselbe durch den chemischen
Prozess der Verbrennung seine Natur insofern #ndert, als damit eine
Anderung des spezifischen Volumens verbunden ist. Ausserdem muss
bei jedem Spiel eine neue Menge eines Korpers eingefithrt werden,
der von dem den Prozess verlassenden verschieden ist.

Es gentigt jedoch fiir die Zwecke der Technik zuniichst noch?®)
diese an und fiir sich nicht bedeutenden Unterschiede zu vernach-
lissigen und den Idealprozess so aufzustellen, als ob es sich nur um
Erwdrmung der Luft in einem geschlossenen um-

kehwrbaren Kreisprozess handeln wiirde — die be- ]
schriebenen drei Prozesse bilden sich dann im 1
TS-System ab wie Fig. 43 zeigt. Dieselbe ist ﬂ g
so gezeichnet, dass fiir die Félle a) und b) die ' "

gleiche zugefiihrte Warmemenge ins Spiel kommt;
man sieht auf den ersten Blick, dass der Pro-
zess a) den besten, ¢) den niedrigsten Wirkungs- &
grad liefert und dass der Carnot’sche Prozess
hier dberhaupt nicht in Frage kommen kann, weil —5

derselbe bei der ihm entsprechenden Forderung, Fig. 43.

die hochste Temperatur durch adiabatische Kom-

pression zu erreichen, auf enorme Pressungen fiihrt, welche niemals
realisierbar sind.

Bei den mit Gemischen aus Luft und Gas arbeitenden Motoren,
welche das zur Verbrennung fertig bereitete Gemenge ansaugen und
komprimieren, bildet fiir den Kompressionsdruck diejenige Pressung,
bei welcher Gefahr der Selbstentziindung des Gemenges vor Erreichung

26) Eingehende Wiirdigung finden die thatséichlichen Verhiltnisse in der
Arbeit von A. Stodola, Die Kreisprozesse der Gasmaschinen, Z. d. Vereins Deut-
scher Ingenieure 1899 und bei A. Fliegner, Thermodynamische Maschinen ohne
Kreisprozess, Vierteljahrsschrift d. paturforsch. Gesellschaft, Ziirich 1901,
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des Totpunktes vorliegt, eine uniiberschreitbare Grenze — fiir diese
ist also der Prozess a) als Idealprozess anzusehen, wenn man die Ver-
hiltnisse so wihlt, dass p, keine unzulissige Hohe erreicht.

Derselbe ist in Fig. 44 und 45 noch einmal besonders dargestellt
und zwar sowohl fiir den Fall der vollstindigen Expansion auf atmo-
sphirischen Druck (ausgezogen), als auch fiir die Arbeitsweise im Vier-
takt (punktiert).

Kann man aber, wie dies beim Diesel-Motor, der mit fliissigem
Brennstoff arbeitet, der Fall ist, Luft und Brennstoff wihrend der
Kompression getrennt halten, dann liefert der Prozess b) das Maximum
des Wirkungsgrades, indem man die adiabatische Kompression bis
auf den hochsten zuldssigen Druck treibt.

%
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Fig. 44. Fig. 45.

In Figur 46 und 47 ist derselbe sowohl im Spannungs- als im
Wirmediagramm noch besonders dargestellt und zwar gilt auch hier
das zu Fig. 44 und 45 Gesagte, sodass die ausgezogene Linie der voll-
stiindigen Expansion, die punktierte dem Viertakt entspricht.

Aus den Wirmediagrammen des Idealprozesses erkennt man
augenfillig, welch entscheidende Bedeutung unter den fiir denselben
gemachten Voraussetzungen (s. oben) fiir die Beurteilung der Ver-
brennungsmotoren dem Wert der spezifischen Warme (y, und p,) zu-
kommt. Ist dieselbe konstant, so sind die Kurven der Wirmezufuhr
und Warmeentziehung bei konstantem Volumen oder Druck solche
mit konstanter Subtangente; nimmt dagegen die spezifische Wirme,
wie vielfach angenommen wird, mit der Temperatur zu, so sind jene
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Kurven (wegen Zunahme der Subtangente) unter immer kleiner wer-
denden Winkeln gegen die Abscissenaxe geneigt, d. h. bei der Warme-
zufuhr bei konstantem Volumen oder konstantem Druck erreicht man
bei gleicher Wirmemenge nicht so hohe Temperaturen und bei der
Wiirmeentziehung fallen letztere langsamer — auch die Endtempera-
turen adiabatischer Zustandsinderungen werden beeinflusst: kurz, das
ganze Bild des Idealprozesses verschiebt sich gegeniiber der Annahme
konstanter spezifischer Warme. Die beziiglichen Verhdltnisse sind
aber noch nicht gentigend geklart®?).

Obwohl kein Carnot’scher Prozess, so ist doch der Idealprozess
des Verbrennungsmotors demjenigen der Dampfmaschine an Wirkungs-

5"

Fig. 47.

grad meist tberlegen; letzterer betrigt bei Begrenzung des Dia-
grammes durch zwei Kurven konstanten Volumens oder zwei Kurven
konstanten Druckes unter Annahme konstanter spezifischer Wiarmen
und einer bei der Verbrennung unverinderlichen Gaskonstanten B

T'—T,
n=—7

ist also gleich dem eines Carnotprozesses zwischen Anfangs- und End-
temperatur der Kompression. Diese Uberlegenheit zeigt sich auch bei

27) 8. z. B. E. Meyer, Untersuchungen am Gasmotor, Z. d. Vereins Deut-
scher Ingenieure, 1902, p. 1303.
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den ausgefiihrten Verbrennungsmotoren, weil deren Anniherung an
ihren Idealprozess ungefihr die gleiche ist wie bei der Dampfmaschine.

Thatsichlich steht der Diesel-Motor heute in bezug auf Wirkungs-
grad an der Spitze aller Wirmekraftmaschinen, im giinstigsten Falle
hat man 5 = 0,40, also das Doppelte der Dampfmaséhinen erreicht.
Die Praxis darf sich natiirlich mit dieser thermodynamischen Ver-
gleichung nicht begniigen, sondern muB eine okonomische Ver-
gleichung durchfithren. Nach letzterer verdient der Dieselmotor nur
in solchen Gegenden vor der Dampfmaschine den Vorzug, wo eine aus
Petroleum gewonnene Wirmeeinheit billiger ist als zwei aus Kohle
gewonnene Wirmeeinheiten.

14. Kiltemaschinen. Die Umkehrung des arbeitliefernden thermo-
dynamischen Prozesses liefert den arbeitkonsumierenden Prozess der
Kiltemaschine, deren Aufgabe darin besteht, die Temperatur gegebener
Korper auf tiefere Wirmegrade zu bringen (oder auf solchen dauernd

%«'
Z //,%4 .a

2

e/ @
Q

— 7

Fig. 48. Fig. 49.

zu erhalten) als sie in der Umgebung sich vorfinden®). Die Um-
kehrung des Lorens’schen Diagrammes ergibt auch hier den all-
gemeinsten Fall; wihrend bei der Warmekraftmaschine aber die poly-
tropischen Kurven moglichst weit auseinander liegen sollen, siehe Fig.26
und 27, handelt es sich hier darum, dieselben einander maglichst nahe zu
bringen, einer mdaglichst kleinen zu leistenden Arbeit entsprechend, siehe
Fig. 48 und 49; dieselbe Zerlegung eines beliebigen Kreisprozesses in
Elementarprozesse wie sie in Fig. 21, 22 ausgefiihrt wurde, ergibt fiir
Kiltemaschinen die Grundregel: Das Maximum der Okonomie tritt
ein, wenn der arbeitende Korper zur Aufnahme von Wirme (Kilte-

28) S. Luegers Lexikon der gesamten Technik, 5. Artikel: Kiltemaschinen
von C. v. Linde; ferner H, Lorenz, Neuere Kithlmaschinen, 3. Aufl., Miinchen,
Qldenbourg.
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erzeugung) an keiner Stelle des Prozesses auf tiefere Temperaturen, bezw.
zur Wirmeabgabe (an das Kiihlwasser) niemals auf hihere Temperaturen
gebracht wird, als sie durch die der Kiltemaschine gestellic Aufgabe be-
dingt sind.

Auch bei dem umgekehrten Prozess kann, wie bei dem direkten
entweder ein verdampfender Korper oder atmosphirische Luft als
arbeitender Korper Verwendung finden — ersteres entspricht den
Kaltdampfmaschinen, letzteres den Kaltluftmaschinen. Bei ersteren, den
technisch weitaus wichtigsten, ist der Prozess der verlustlosen Maschine
wieder, wie bei den Dampfmaschinen, soweit er im Sittigungsgebiet ver-
lauft, ein Carnot’scher; hiufig greift er etwas in’s Uberhitzungsgebiet iiber.

Die Flissigkeiten, welche sich fiir den Kaltemaschinenprozess
als arbeitende Korper eignen, sind Ammoniak (NH;), schweflige
Siure (80,), Kohlenséure (CO,) u. s. f.; ihre Natur und Eigenschaften
bringen es mit sich, dass man hier den Prozess als einen wirklich
geschlossenen, mit fortwidhrender Zirkulation einer und derselben
Fiillung der Maschine ausfiihren muss. Die ideale Anordnung (Fig. 50)
entspricht vollkommen der Umkehrung von Fig. 30 und, wie dort die
wirklich ausgefithrte Dampfmaschine durch Weglassung des Kom-
pressionscylinders charakterisiert war, so entsteht hier die wirklich aus-
gefiihrte Kiltemaschine aus der idealen durch Weglassung des Expan-
sionscylinders, an dessen Stelle das sog. Regulierventil tritt, ein Drossel-
ventil, durch welches der Ubergang der Fliissigkeit aus dem Kon-
densator E—FE nach dem Verdampfer 4—A geregelt wird.

Fig. 51 stellt ein Idealdiagramm der Maschine mit Expansions-
cylinder, Fig. 52 das einer Maschine mit Drosselventil dar (fiir
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Ammoniak als arbeitenden Korper). Der Drosselungsvorgang wird
als ohne Wirmemitteilung vor sich gehend betrachtet und vollzieht sich
dann als Zustand konstanter Erzeugungswirme: ; = u + 4 pv = const.
(vgl. hieriiber Nr. 22).

In Fig. 51 und 52 bedeuten die weitschraffierten Flichen die Kilte-
leistungen, d. h. die der zu kiihlenden Substanz entzogenen Wirme-
mengen @, die engschraffierten Teile die Wirmetiquivalente der auf-
zuwendenden Arbeiten W; die in Fig. 52 angewandte Darstellung

des nicht umkehrbaren Drosselungsvorgangs ist nach der in Nr. 16
auseinandergesetzten Art erfolgt; die in Wirme zuriickverwandelte
Arbeit ist dabei durch das Dreieck zwischen den Linien z = 0,
i = const. und 7' = 7, dargestellt.

Der Wirkungsgrad der Kiltemaschine (vgl. Nr. 8) ist durch die
Flichen fiir @, und W mit gegeben; er ist

"= aAw
Man kann wohl sagen, dass die Kiltemaschine von heute im
Prinzip nicht mehr verbesserungsfihig ist — sie verdankt dies dem
Umstand, dass ihre Konstruktion von Anfang an (durch C. v. Linde)
auf die Grundsitze der Thermodynamik aufgebaut wurde.

(Abgeschlossen im Dezember 1904.)
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b) Stromende Bewegung der Gase und Dimpfe. Von L. Prandtl.

Vorbemerkung. Die Bezeichnung der Formelgrossen ist gemiss

der Zusammenstellung von p. 235 gewihlt. Folgende Grissen kommen
neu hinzu:

Zeichen Benennung Dimension
w Geschwindigkeit =
sec
a Schallgeschwindigkeit 55
g Erdbeschleunigung == 9,81 5:—3—,
0= (716 Dichtigkeit, Masse der Volumeinheit klgn i
G Sekundliche Gewichtsmenge, kg
nAusflussgewicht sec
F Stromungsquerschnitt m?
o Kontraktionsziffer | unbenannt
w Ausflussziffer "
2 Widerstandsarbeit pro 1 kg Fliissigkeit,
» Widerstandshdhe* m
¢ & Widerstandskoeffizienten unbenannt, é .

Masseinheiten. Als Masssystem ist ebenso wie in dem ersten
Teil des Artikels das ,technische” benutzt, d. h. jenes, in dem Liinge,
Zeit und Kraft die Fundamentaleinheiten sind. Es bedeuten hiermit
also die Grossen u, v die innere Energie und das Volumen der Ge-
wichtseinheit. Die Formeln sind fast durchgiingig in den Dimensionen
homogen, wo nicht, sind als Einheiten das Meter, die Sekunde und
das Kilogramm gew#hlt; die Wirmemengen sind in der Regel im
Arbeitsmass gemessen, d. h. das Wirmeiiquivalent 4 ist = 1 gesetzt
(vgl. V 8, 2, Bryan); nur in den fiir den numerischen Gebrauch be-
stimmten Formeln ist das Wirmedquivalent besonders bezeichnet.

Abkiirzungen in den Zitaten:

Zeuner, Therm. = Technische Thermodynamik, 1. und 2. Aufl. (Leipzig
1887, 1900).

Grashof, Masch.-L. = Theoretische Maschinenlehre (Leipzig 1875).

Stodola, Dampfturb. = Die Dampfturbinen, 3. Aufl. (Berlin 1905);
(in Klammern sind die §§ der 1. Aufl. beigefiigt).

Forschungsarb. = Mitteilungen tiber Forschungsarbeiten auf dem Ge-

biete des Ingenieurwesens (herausgeg. vom Ver. deutscher Ing.,
Berlin).
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Anmerkung. Eine Darstellung der geschichtlichen Entwicklung
des Gebietes findet sich in Nr. 18.

15. Abgrenzung des Stoffes. Die Bewegungserscheinungen der
Gase zeigen, so lange die Geschwindigkeiten und die Druckdifferenzen
in missigen Grenzen bleiben, wesentlich dasselbe Geprige, wie die der
volumenbestéindigen Fliissigkeiten®), deren Theorie im Band IV dieser
Encyklopidie in den Artikeln 15 und 16 (Hydrodynamik) von Love,
und 20 (Hydraulik) von Forchheimer behandelt ist. Handelt es sich
indes um grosse Druckdifferenzen und Geschwindigkeiten®), so ist
die Verinderlichkeit des Volumens von grossem Einfluss auf die
Bewegungserscheinungen. Der Umstand, dass diese Druck- und Volumen-
Anderungen nur im Zusammenhalt mit den thermischen Vorgingen
in dem Gase oder Dampfe richtig beurteilt werden kénnen, gab die
Veranlassung dazu, diesen Abschnitt in Band V in die Warmetheorie
einzuordnen, wihrend derjenige Teil, der sich mit den missigen Ge-
schwindigkeiten befasst, die sogenannte Aérodynamik, sich als Arti-
kel 17 von Finsterwalder in Band IV bei den hydrodynamischen Ab-
handlungen befindet.

Viele von den hier behandelten Aufgaben gehen in der Problem-
stellung, wie in der Art der Behandlung vollig parallel mit ent-
sprechenden Aufgaben der Hydraulik. An derartigen Stellen des
Textes finden sich Hinweise auf die entsprechenden Abschnitte des
Artikels von Forchheimer.

Mit Ausnahme von Nr. 22 beziehen sich die nachstehend zu be-
handelnden Aufgaben nur auf stationdre Bewegungen; die Ergebnisse
sind indes ohne grossen Fehler auch fiir langsam veréinderliche Be-
wegungen verwendbar®!), wie sie sich z B. beim Ausstromen aus
einem Gofiss mit einer nicht zu grossen Offnung ergeben.

29) Zur Illustration dieser Bemerkung sei erwihnt, dass fir Luft zur Er-
zeugung einer Geschwindigkeit von 40 's%lé eine Druckdifferenz von 19, des

absoluten Druckes geniigt; die entsprechende Dichtigkeitsdifferenz ist dann (unter
Zugrundelegung der Adiabate) 0,7 %,. Rechnet man statt mit der veriinderlichen
Dichte mit einer mittleren konstanten Dichte, so wird bei der obigen, etwa einem
starken Sturme entsprechenden Geschwindigkeit dieser Fehler gegeniiber anderen,
schwerer zu beriicksichtigenden Einfliissen ganz bedeutungslos.

30) Eine Geschwindigkeit oder Druckdifferenz kann als gross oder klein an-
gesehen werden, je nachdem sie im Vergleich mit der Schallgeschwindigkeit
bezw. mit dem absoluten Druck in Betracht kommt oder nicht.

ow

31) Als langsam vertéinderlich kann eine Bewegung so lange gelten, als 7
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Die Helmholt?schen Wirbelgesetze3®), insbesondere der Satz, dass
eine anfiinglich ruhende Fliissigkeitsmasse sich dauernd wirbelfrei
bewegt, sind unter Annahme der Reibungslosigkeit auch auf Gase
anwendbar; ausgenommen sind allerdings diejenigen Bewegungsformen,
bei denen endliche Druckspriinge®®) auftreten. Diese Uberlegung ist
von Nutzen, wenn man sich Rechenschaft dariiber ablegen will, in
wie weit man berechtigt ist, die Aufgaben iiber Gasstromung — wie
das bisher durchaus iiblich war — als eindimensionale Probleme zu
behandeln®). Man kann die Sache so auffassen, dass man aus der
ganzen Stromung einen ,Stromfaden”, etwa den mittelsten, willkiirlich
zur Behandlung herausgreift, und hernach Druck und Geschwindigkeit
fiir die korrespondierenden (im selben ,Querschnitt“ gelegenen) Punkte
der iibrigen Stromfiden gleich den gefundenen Werten setzt. Fiir
ein Rohr von veréinderlichem Querschmnitt enthalten die hierdurch be-
gangenen Vernachlissigungen bei Wirbelfreiheit die Kriimmung der
Rohrwand in der Strémungsrichtung in der ersten Potenz, die Neigung
der Rohrwand gegen die Achse in der zweiten Potenz. Bei den
turbulenten Bewegungen®), die bei lingeren Rohren die Regel bilden,
ist man von vornherein zur Einfilhrung von Mittelwerten gezwungen,

so dass man hier von selbst auf das eindimensionale Problem ge-
fithrt wird.

16. Allgemeine Theorie der stationéren Stromungen. — Problem-
stellung. Eine zusammendriickbare (,elastische’) Fliissigkeit sei in statio-
nirer Bewegung begriffen. Untersucht wird der Bewegungszustand
eines mittleren Stromfadens, der als Reprisentant fiir alle iibrigen
Stromféden betrachtet wird. Es soll, unter Beriicksichtigung der
Wirkung von #usseren Kriften, von Strémungswiderstinden und
Wirmemitteilung durch die Wandungen, das Verhalten von Druck,
Volumen und Geschwindigkeit in der strémenden Fliissigkeit unter-
sucht werden, unter der Voraussetzung, dass fiir irgend einen Quer-
schnitt diese Grossen (p, v, w) gegeben sind. Die thermodynamischen
Eigenschaften der Fliissigkeit werden dabei als gegeben vorausgesetzt,
ebenso die — meist durch feste Winde gebildete — Begrenzung des
Flissigkeitsstromes.

gegen w%ﬁ u. 8. w. und gv@ u.8. w. (Euler’'sche Gleichungen IV 15, 8) nicht

ox
in Betracht kommt.
32) IV 16, 3, auch 2, (Love).
83) Vgl. Nr. 20 u. IV 19, 11 (Zemplén).
34) Diese Behandlungsart ist auch hier in Nr. 16—20 festgehalten.
85) IV 15, 17 (Love).
Encyklop. d. math, Wissensch. V 1. 19
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Zur Behandlung des vorstehenden Problems dienen die im Folgen-
den zu gewinnenden Gleichungen.

Im stationdren Stromungszustand muss durch jeden Querschnitt
des Stromes in der Zeiteinheit dasselbe Fliissigkeitsgewicht G hindurch-
treten; es muss also sein:

(a) F,vw = @ = const.
(ksnematische oder Kontinuitéits-Gleichung).

Die Aussage, dass jedes Massenelement in der Bewegungsrichtung
nach Massgabe der dort wirkenden #usseren Krifte beschleunigt wird,
fithrt zu der mechanischen Gleichung:

(b) 9—‘;’2+vdp+dh+dz=o.

Hierin bedeutet dh eine der Schwererichtung entgegengesetzte,
also nach oben positive Hohenverinderung, dz einen durch Reibung
u. dgl. verursachten Bewegungswiderstand, gemessen durch die sog.
Widerstandshohe. Die einzelnen Terme der Gl (b), wie auch der
folgenden Gleichungen stellen Energieinderungen (Arbeiten) pro
Gewichtseinheit des Gases vor.

Als dritte Gleichung hat man die Aussage, welche der erste
Hauptsatz der Thermodynamik (Gl 3, p. 243) fiir den Zustand im
Innern des Massenelements liefert. Zu beachten ist dabei, dass die
Widerstandsarbeit d2 in Gl. (b) hier als zugefiilhrte Wirme neben der
von aussen zugefiihrten Wérme dg wieder auftritt. Die Warme-
gleichung lautet also:

(e) 4 dq + dz = du + pdv.
Durch Verbindung von Gl (¢) mit (b) erhiélt man die Gleichung
wdw

du + d(pv) + —y T dh=dq,
die integrabel ist und in dieser Form:
w!
(d) u—|—pv-|—2—g-|—h=const.—|—q
als Gleichung der Gesamtenergie angesprochen werden darf. (Mit

G = F%’— multipliziert, giebt die linke Seite der Gl. den gesamten

sekundlichen Energietransport durch den Querschnitt F; Ggq ist dabei
die bis zum Querschnitt F' dem Gas zugefiihrte Wirme.) Die Wider-
standsarbeit # kommt in dieser Gleichung nicht vor, da die ver-
schwundene Arbeit als Wirme in der Gesamtenergie enthalten bleibt.

Durch Einfithrung der ,Erzeugungswirme® ¢ = u 4 pv (thermo-
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dynam. Potential §, in Art. V 3)%%) gewinnt Gl. (d) die im folgenden
gebrauchte, etwas einfachere Gestalt

i+%+h=conat.+q.

Ist von der stromenden Fliissigkeit das Gesetz der inneren Energie

u = f(p, v)
bekannt, ferner das Gesetz fiir den Bewegungswiderstand z und die
Wiérmemitteilung ¢, so reichen die Gleichungen (a) bis (d) aus, um
fiir vorgegebene geometrische Verhiltnisse der Stromung (Angabe iiber
F und h an jeder Stelle des Stromfadens) die Losung des Problems
vollig bestimmt zu machen, falls ein Anfangszustand (p,, v,, w,) oder
dquivalente Daten gegeben sind. Wird die Wirmemitteilung als von
Temperaturdifferenzen abhingig dargestellt, so muss zur Festlegung
der Temperatur in der stromenden Fliissigkeit noch die ,Zustands-

gleichung®
. F(p,v, T)=0
hinzugenommen werden.

Die vorstehende strenge Grundlegung des Problems findet sich
— allerdings nicht genau in obiger Fassung, und gleich fiir perma-
mente Gase spezialisiert — bei F. Grashof 1863%7). Ausfiihrliche
Darstellungen finden sich in Grashof, Masch.-L. § T5; Zeuner,
Therm. § 40. .

Wirklich durchgefiihrte Rechnungen mit diesen allgemeinen Voraus-
setzungen existieren nicht. Die Hohenunterschiede %, die praktisch
sehr wenig Bedeutung besitzen, sind durchweg vernachlissigt. Meist
bleibt auch die Wirmemitteilung unberiicksichtigt. (Eine Losung mit
Wiirmeleitung bei Rohrleitungen von konstantem Querschnitt giebt
Grashof %), eine Behandlung des Ausflussproblems Fliegner®?)).

Eine graphische Darstellung der in Gl (b) bis (d) enthaltenen
Beziehungen, die sich zuerst bei Zeuner®®) findet, moge in der etwas
verinderten Fassung, die ihr Stodola*') und Biichner*?) gegeben haben,
hier Erwiéihnung finden.

86) Vgl. p. 243, Ziff. 5, ferner p. 2564 und 260.

37) ,,Uber die Bewegung der Gase im Beharrungszustande in Rohrenleitungen
und Kaniilen“, Zeitschr. d. Ver. deutsch. Ing. 7 (1863), p. 243, 273, 335.

88) Masch.-L. § 109 u. 115.

39) Civiling. 28 (1877), p. 433.

40) Civiling. 17 (1871), p. 71.

41) Zeitschr. d. Ver. deutsch. Ing. 47 (1908), p. 1 u. f. = Dampfturb. § 21 u.
22 (§ 2 u. 8).

42) Zur Frage der Laval'schen Turbinendiisen. Diss. Dresden 1903 =

19*
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In Fig. 53 soll in einem p-v-Koordinatensystem die Geschwin-
digkeitserzeugung in einem Gase (oder Dampfe) verfolgt werden, das
von dem Zustand p,,v,, wo die Geschwindigkeit « == 0 ist, be-

ginnend, lings der Kurve 1-2
expandiert. Hohendifferenzen wund
7 Wiirmemitteilung sollen ausser Be-
tracht bleiben. Gleichung (b) und
(d) lauten somit in der Integralform

,,E‘m 0 g

L Y @) B

v Zieht man durch 1 eine Adiabate

Fig. 53. bis zum Druck p, herab (1-3), so
hat man, da diese das Zustands-

gesetz bei widerstandsloser Bewegung ist (vgl. den nichsten Abschnitt),
in der Fliche 0-1-3-4-0 ein Mass fiir die verfiighare kinetische Energie:

1

’2

29

(b")

= [ vdp.
8

Die wirklich erreichte kinetische Energie ergiebt sich, wenn man
durch 2 eine Kurve ¢ = const. bis zum Schnittpunkt 5 mit der Adia-
bate legt; mach (d) und (b”) wird sie durch die Fliche 0-1-5-6-0
dargestellt. Somit reprisentiert die Fliche 5-6-4-3-5 den durch die
Widerstiinde verursachten Energieverlust.

Durch Vergleich von (b") mit (b”) findet man, dass die Wider-
standsarbeit # durch die Fliche 1-2-4-6-5-1 dargestellt ist; dass diese
Fliche um den nicht schraffierten Teil 1-2-3-1 grosser ist als die
des Energieverlustes, ist damit zu erkliren, dass ein Teil der in
Wirme verwandelten Widerstandsarbeit zur weiteren Expansion nutz-
bringend Verwendung findet.

Eine #hnliche Darstellung ldsst sich in Temperatur-Entropie-
koordinaten (dem sog. Wirmediagramm) durchfiihren (Fig. 54). Die
Flichen oo-1-1-00 und oo—2-2'—oo/’ stellen 4, und 4, dar, 1-3 ist die
Adiabate, die verfiighare Energie 1;—9 =14, — 4y ist durch oo-1-3-00

dargestellt, der Energieverlust durch 1'-3-2-2-1', die Widerstands-
arbeit # durch 1’-1-2-2-1".

Forschungsarb. Heft 18, p. 47 u. f;; Auszug Zeitschr. d. Ver. deutsch. Ing. 48
(1904), p. 1029 u. 1097.
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Noch einfacher, aber weniger eindrucksvoll wird die Darstellung
im ¢-s-System (Fig. 55); die Strecke 1-3 stellt die verfiighare, 1-5 die
erreichte kinetische Energie, 5-3 den Verlust dar.

Fig. b54. Fig. 5.

Ist am Ende des Stromungsvorgangs die Geschwindigkeit wieder
=0, so ist nach (d') 4, =14,. Dies ist die Beziehung, welche beim
Uberstromen mit Vernichtung der Stromungsgeschwindigkeit eintritt
(vgl. Nr. 22).

17. Bewegung ohne Widerstinde und Wirmemitteilung.
Gleichung (c) lautet hier: du - pdv = 0; sie liefert mit u = f(p, v)
einfach das Gesetz einer adiabatischen Zustandsinderung:

v=o(p, p, »1),
hiermit wird Gl. (b) integrabel; es wird
P

[
() o — fodp;
p

Py, v, w, sind dabei die Werte von p, v und w in einem gegebenen
Anfangsquerschnitt. (leichung (a) ordnet jetzt mit Hilfe der vor-
stehenden Beziehungen jedem Querschnitt F' eine bestimmte Ge-
schwindigkeit und einen bestimmten Druck zu.
Ist p, der Druck in dem Raume, von dem die Fliissigkeits-
stromung ausgeht, und kann dort w,*> = 0 gesetzt werden, so wird
p

Betrachtet man fiir diesen Fall den Verlauf des Stromungsquerschnitts

F= %’—’, der zu einem bestimmten sekundlichen Gewicht G gehort, als
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Funktion von p, so findet man, dass micht nur fiir p = p, (wegen
w = 0), sondern auch fiir p = 0 (wegen v = 00) F = oo ist (vgl
Fig. 56). Fiir das zwischen beiden Grenzen liegende Minimum von F'
findet man die Bedingung

dp __dp
PN G
W= —9Y" 3 de’

Fig. 56.

wo ¢ die Dichte ist. Diese Gleichung besagt nichts anderes, als dass
die Geschwindigkeit im engsten Querschnitt des Stromfadens gleich
der dem dortigen Zustande entsprechenden Schallgeschwindigkeit

—1/%P s ;
a—V;é ) ist.

Dieses Ergebnis scheint zuerst von Hugoniot**) allgemein be-
wiesen worden zu sein, nachdem es etwas frither O. Reynolds*®) fiir
permanente Gase als zutreffend erkannt hatte.

Der innere Grund dieses eigenartigen Resultates ldsst sich etwa
folgendermassen einsehen: Eine missige Druckschwankung irgend
welcher Art rollt in einem cylindrischen Rohr mit Schallgeschwindig-
keit tiber die darin befindliche Fliissigkeit hinweg; lisst man die
Fliissigkeit mit Schallgeschwindigkeit fliessen, so wird es dadurch
moglich, dass die Druckdifferenzen an Ort und Stelle stehen bleiben.

Da man den Stromfaden an der engsten Stelle (Stetigkeit von ‘;—f

vorausgesetzt) als Cylinder ansehen darf, fordern hier die stationdren
Pressungsunterschiede eine Stromungsgeschwindigkeit gleich der Schall-
geschwindigkeit. :

Nach dem Vorstehenden giebt es fiir jeden Querschnitt, der

43) Vgl. Encykl. IV, Art. 24 Akustik, von Lamb.

44) Paris C. R. 103 (1886), p. 1178.
46) Phil. Mag. V, 21 (1886), p. 185. = Pap. II, p. 811.
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grosser ist, als der engste Querschnitt, je zwei Werte von p und w.
Fiir den Verlauf von p ist dies in Fig. 57 angedeutet (die stark ge-
zeichneten Linien). Welche Kombination der Kurvenzweige in einem
bestimmten Fall eintreten
wird, richtet sich nach dem
Druck an den Enden des
Rohres.

Untersucht man fiireine.
fest vorgegebene Rohre die
den verschiedenen  Stro-
mungsvorgingen mit glei-
chem p, und v, entsprechende
sekundliche Ausflussmenge
G, so zeigt sich als Folge-
rung aus dem Vorstehenden,
dass diese einen Grosstwert
erreicht, wenn im engsten
Querschnitt Schallgeschwin-
digkeit eintritt.

Verschiedene  Druck-
verteilungen, die kleineren
Werten von G entsprechen, sind in Fig. 57 durch die diinn aus-
gezogenen Linien dargestellt. Die gestrichelten Linien beziehen sich
auf Ausflussmengen grosser als Gumax; sie fithren nicht von einem
Rohrende zum andern, entsprechen daher keiner hier mioglichen
Stromung.

18, Ausstromen aus Offnungen und Mundstiicken. Die Be-
antwortung der Frage, welche Luftmenge bei vorgegebener Druck-
differenz pro Zeiteinheit durch eine gegebene Offnung hindurchtritt,
entspricht einem alten Bediirfnis der Technik. Dies ist offenbar der
Grund dafiir, dass sich die #lteren Arbeiten aus dem Gebiete des vor-
liegenden Referates gerade um diese Frage gruppieren. Es mag also
wohl passend erscheinen, an dieses Thema eine Schilderung der
historischen Entwicklung der hier auftretenden Gedankenreihen an-
zukniipfen.

Die ilteste Notiz tiber den Ausfluss ,elastischer Fliissigkeiten
scheint bei Daniel Bernoulli*®) 1738 zu stehen. Er giebt die An-
weisung, die Berechnung wie bei einer inkompressiblen Fliisssigkeit
vorzunehmen; die Geschwindigkeit sei zu setzen:

«

46) Hydrodynamica, Strassburg 1738, p 224.
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w=1V29(p, —102)’01 )
die Ausflussmenge wird mit G = F-_- berechnet. Diese Be-

rechnungsweise, der die Vorstellung zu Grunde lag, dass die Ge-
schwindigkeit gemiss dem Torricelli’schen Theorem einfach durch die
im Ausflussgefiiss ,vorhandene Druckhthe h = v, (p, — p;) erzeugt
werde, und dass die Geschwindigkeitserzeugung fiir jedes Teilchen
plotzlich beim Verlassen des Gefisses erfolge, findet sich bei d’Alem-
bert*®) und anderen wieder; sie schien auch durch verschiedene Ver-
suchsreihen®), die freilich alle mit kleinen Pressungen angestellt
waren, bestitigt zu werden. Erst Nawvier®') fand
1829 den richtigen Weg, die unter allméhlicher
Expansion des Gases stattfindende Geschwindig-
>y keitserteilung mit Hilfe von Differentialbetrach-
= tungen zu berechnen. Er besitzt die Beziehung (b)
in ihrer einfachsten Form (vgl. p. 293) und er-
A hilt aus ihr mit der Annahme, dass der Druck in
Fig- 58. der Miindung gleich dem &#usseren Druck p, ist,
unter Voraussetzung des Mariofte'schen Gesetzes:

pv = C fiir eine der Fig. 58 entsprechende Miindung

_-_._=__ Dy 52
G o |/ 2gClog )

Er diskutiert die Gleichung nach verschledenen Richtungen, zeigt auch,
dass sie fiir sehr kleine Pressungsunterschiede in die bei inkom-
pressiblen Fliissigkeiten gebréuchliche tibergeht. Er findet auch bereits,
dass (fiir konstantes () der Querschnitt F' als Funktion von p ein
Minimum besitzt, zieht aber daraus falsche Schlussfolgerungen. Des

N

48) Im folgenden bezeichnet der Index 1 immer die Zustéinde in dem Raume,
aus dem die Fliissigkeit ausfliesst; der Index 2 die Zustéinde in dem Raume, in
den sie eintritt.

49) Traité de I'équilibre et du mouvement des fluides, Paris 1744, p. 165 u. f.

50) Die bemerkenswerteren Arbeiten iiber Ausflussversuche bei geringem
Uberdruck sind G. Schmidt, Ann. Phys. Chem. (1) 66 (1820), p. 39; Lagerhjelm,
Stockholm Akad. 1822; Bericht hieriiber von Girard, Journ. génie civil 1829;
K. L. Koch, Versuche iiber die Geschwindigkeit ausstrdmender Luft, Gottingen
1824; Bericht hieriiber von G. Schmidt, Ann. Phys. Chem. (2) 2 (1824), p. 39;
Aubuisson, Ann. des mines 13 (1826), p. 483; H. Buff, Ann. Phys. Chem. (2) 37
(1886), p. 277 u. 40 (1887), p. 14; (Neuberechnung der Koch'schen Versuche und
Bericht iiber eigene Versuche).

51) Mémoire sur I'écoulement des fluides élastiques, Paris, Mém. de I'Acad.
9 (1830), p. 311.

62) Die sehr verschiedenen Formelbezeichnungen und Bezugsgrossen sind
iiberall in die unsrigen umgeschrieben.
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weiteren werden nach den Methoden der Hydraulik Ausstromung aus
Offnungen in dinner Wand, Energieverluste durch plétzliche Er-
weiterung und Kontraktion in Rohren, und &hnliches behandelt.

Um einen grossen Schritt wurde die Theorie zehn Jahre spiiter,
1839, von den Ingenieuren B. de Saint-Venant und L. Wantzel *%)
gefordert. Sie berticksichtigen durch Verwendung des Laplace-Poisson-
schen Adiabatengesetzes pv* = const. die bei der Expansion ein-
tretende Abkiihlung des Gtases und erhalten so die Formeln:

w=9 ‘/,‘2—%11 0 (1 - (%)“—:_1);
e=en ()Y (- ()

(p und p sind durch Versuche zu ermittelnde Korrektionsziffern).

De Saint-Venant und Wantzel diskutieren die Beziehungen und finden,

dass G als Funktion von p, (bei festgehaltenem p; und g) ein Maximum
bei dem Werte

, 9 x—1
r=(1) m

besitzt. Der Gedanke, dass es widersinnig ist, dass die Ausflussmenge
abnehmen soll, wenn der Druck auf der Ausstromseite erniedrigt wird,
fihrt sie auf den Gedanken, dass der Druck p in der Miindung bei
grosseren Druckdifferenzen hoher sein miisse, als der Aussendruck p,,
und jedenfalls nie unter den eben definierten Wert p’ heruntersinken
konne. Ihre Experimente (Einstromen der Luft in den Recipienten
einer Luftpumpe) zeigen, obwohl die Messungen wegen Nichtbeachtung
der auftretenden Temperaturdifferenzen mangelhaft sind, diese An-
nahmen bestitigt. (Zwischen py = 0 und p, = 04 p, war die Aus-
flussmenge konstant, nahm dann bei grosserem p, erst langsam, dann
rascher ab.) Spiitere Versuche von 1843%) an einem Dampfkessel
gaben #hnliche Resultate.

Die Arbeit von de Saint-Venant und Wantzel geriet merkwiirdiger
Weise wieder in Vergessenheit. Zum Teil war daran wohl die schroffe
Ablehnung schuld, welche ihr von Poncelet’®) zu Teil wurde, der, auf
Versuche von Pecqueur gestiitzt, die alte Bernoulli'sche -Hypothese

58) Mémoire et expériences sur I'écoulement de I'air, Journ. éc. polyt. 27
(1839), p. 85.

54) Paris C. R. 18 (1843), p. 1140.
56) Paris C, R, 21 (1845), p. 178; Replik und Duplik p. 866 u. 387,
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verteidigte. Ein anderer Grund mag darin liegen, dass de Saint- Venant
und Wantzel zur Diskussion ihrer Versuchsergebnisse mnicht ihre
rationelle Formel verwendeten, sondern aus ihnen eine ziemlich will-
kiirliche empirische Formel ableiteten.

Die rationellen Formeln fiir w und G wurden erst 1855 von
Jul. Weisbach®®) wieder gefunden und fithrten lange seinen Namen.
M. Herrmann®") diskutierte 1860 das Maximum von G und deutete
es, wie de¢ St. Venant und Wantzel: der Miindungsdruck sinkt nie unter
9’ herab.und die Geschwindigkeit steigt erst ausserhalb der Miindung
unter Ausdehnung des Strahls auf den p, entsprechenden Wert.

In derselben Zeit (1856) kamen — wieder unabhéngig von den
bisherigen — W. Thomson und Joule®®) von der Seite der Thermo-
dynamik her zu einer Losung des Ausflussproblems. Sie besitzen die
Gleichung (d) in der auch bei beliebigen Widerstinden giltigen Form

2
32”_7, =ty — Uy + PO, — Py = ‘yf I, — 1)
und gewinnen hieraus ebenfalls die Formeln fiir w und G bei adia-
batischer Expansion; sie bemerken dabei auch das Maximum von G.

Inzwischen war auch das adiabatische Ausstromen des Wasser-
dampfes in Angriff genommen. Nach der ersten Theorie von Redien-
bacher®), 1855, die wegen fehlender Beriicksichtigung der Condensation
im expandierenden Dampf unrichtig war, wies 1860 F. Grashof®) auf
den richtigen Weg. Durchgefiihrt wurde die Rechnung auf Grund
unserer Formel (d) aus den Gesetzen fiir nasse Dimpfe (vgl. Nr. 6)
von G. Zeuner 1863%). Er erhilt

2 l 4 7 H ”
A% = x.lTll (Tl - Tﬁ) + qpl - qp’ - TS(SI _"'82) _'- Av (}71 —pz),ﬁs)
wofiir er fir Uberschlagsrechnungen noch die Niherungsformel

w?
g —ar,i—To)

angiebt.
Das zur Berechnung des Ausflussgewichtes notige Dampfvolumen
wird aus der Gleichung der Adiabate ermittelt. Die Formeln werden

86) Lehrbuch der Ingenieur- und Maschinenmechanik, 3. Aufl. 1855, § 431.

57) Zeitschr. d. dsterr. Ing.-Ver. 12 (1860), p. 34.

58) London Proc. Roy. Soc. 8 (1856), p. 178.

59) Gesetze des Lokomotivbhaues, Mannheim 1855, p. 34.

60) Zeitsch. d. Ver. deutsch. Ing. 4 (1860), S. 95.

61) Das Lokomotivblasrohr, Ziirich 1863, p. 76 u. f.

62) In dieser Weise findet sich die Formel erst etwas spiter in der 2. Aufl.
der ,,Grundziige”, p. 411,
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fiir den Ausfluss von trocken gesittigtem Dampf, sowie von heissem
Wasser (Kesselwasser)%) spezialisiert und durch Tabellen erldutert.
Fiir letzteres findet er das merkwiirdige Resultat, dass fiir Aus-
stromen in die Atmosphire das sekundliche Ausflussgewicht fiir 1 gem
Offnung fast unabhingig vom Kesseldruck ungefihr 0,11 kg betrage®).

Die Theorie des Ausstromens wurde nach der thermodynamischen
Seite hin weiter gefordert von Grashof, der 1863 in der bereits
zitierten grundlegenden Arbeit®”) den Einfluss der durch die Wider-
stinde hervorgerufenen Erwirmung des Gases richtig einschitzen
lehrte, des weiteren von Zeuner 1871 in seiner ,Neuen Darstellung
der Vorginge beim Ausfluss der Gase und Dimpfe aus Gefiss-
miindungen“®).  Zeuner beriicksichtigt hier (bei Luft) den Einfluss
der Widerstandsarbeit unter der Annahme, dass sie der Temperatur-
senkung, d. h. dem Zuwachs der kinetischen Energie proportional wire:

2
dz =td (%) = ¢ 24T (vgl p. 298).

Er erhilt so als Gesetz der Zustandsinderung statt pov* — const. die
Beziehung po" = const., worin der ,Ausflussexponent % mit dem
Widerstandskoeffizienten { durch die Gleichung

w0

14 §n

zusammenhéngt. Das Ausflussgewicht ergiebt sich hiernach zu

1 n—1
v Py 7‘/2 gx (1 __ (P 7 ).
G= aFo(Px) ®»—1 v (1 (Pl) )
Der Koeffizient « ist dabei durch den Zusammenhang zwischen

dem freien Strahlquerschnitt 7' und dem Miindungsquerschnitt Fj ge-
geben: F'= aF,. Zeuner empfiehlt unterhalb

n

Dy
bei gut abgerundeten Miindungen « = 1 zu setzen. Bei grosserem
Druckverhiltnis ist «>1 und es wird hierfiir G unabhingig vom
Aussendruck gleich dem Maximalwert

1 -
o 2 \n—-1 29x n—1 2
G_aF°(n+1) l r—1 nf1 v’

63) Zuerst im Civilingenieur 10 (1864), p. 87.

64) Neuere Untersuchungen fiihrten zu andern Ergebnissen. Vgl. hierzu
den Schluss dieser Nummer,

65) Civiling. 17 (1871), p. 71.

= ("—;-l—)m (kritisches Druckverhiltnis),
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worin der neue Koeffizient o fiir abgerundete Miindungen = 1 zu
setzen ist. Fiir gesittigte Dampfe, sowie auch fiir tiberhitzte schligt
er denselben Rechnungsgang vor®). Es ist dazu nur notig, fiir die
adiabatische Expansion einen mittleren Exponenten % anzunehmen.
Fiir gesittigten Wasserdampf giebt er an: » = 1,035 + 0,10x,, wo
z, die spezifische Dampfmenge beim Druck p, ist.

Fir Ausfluss von trocken gesittigtem Dampf erhélt man aus
obiger Formel, wenn man das Volumen v, durch den Druck ausdriickt
(pv“ = const.), nach Grashof®") die einfache Beziehung

G / o FO = p0,96965;

die Konstante C ist fir ¢ =0, wenn F|, in m¥ p in kg/m? G in
kg/sec gemessen wird, C = 0,02018.

Inzwischen waren von Verschiedenen Versuche zur Priifung der
Theorie und zur Gewinnung von Korrektionskoeffizienten unternommen
worden.

Voranzustellen sind die vorziiglichen Versuche Weisback’'s von
1856, iiber die er 1859 %) berichtet, deren Zahlenmaterial er aber erst
1866%%) ausfiihrlich mitgeteilt und bearbeitet hat. Seine Versuche,
mit in einem Kessel komprimierter Luft angestellt, waren dadurch
wesentlich vollkommener als die der friiheren Experimentatoren, dass
Weisbach bei den Druckablesungen, aus denen die Ausflussmengen be-
stimmt wurden, jedesmal den Ausgleich der bei der Expansion ent-
stehenden Temperaturdifferenzen abwartete. Ein Teil seiner Versuchs-
resultate, die sich auf sehr verschiedene Arten von Miindungen, mit
und ohne Ansatzrohr, beziehen, wurde von Grashof™) einer ver-
bessernden Neuberechnung unterzogen. Die Anderung des Ausfluss-
gesetzes bei Uberschreitung des kritischen Druckverhiltnisses war
Weisbach unbemerkt geblieben, seine Versuche reichten nur eben bis
an diese Grenze. Das Verdienst, diese Dinge zuerst einwandfrei nach-
gewiesen zu haben, gebiihrt R. D. Napier™) (1866). Er stellt die
Ergebnisse seiner Ausflussversuche mit Wasserdampf (abgerundete Miin-
dungen) in folgenden zwei Formeln zusammen:

66) Vgl. auch die Darstellung in Therm. II, 1. Aufl. § 20 u. 22; 2. Aufl.
§ 21 u. 23.

67) Masch.-L. § 111,

68) Civiling. 5, p. 1.

69) Civiling. 12, p. 1 u. 77.

70) Zeitschr. d. Ver. deutsch. Ing. 7 (1863), p. 279; Masch.-L. 1875, p. 580.

71) On the velocity of steam and other gases, London 1866; Engineer 28
1867), p. 11.
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" -, G 29 . Dy — ps) s
fiir p2>%p1 15t_F:—V1+§ ) )

s 4 G 1 29 P12
fir p, <4 p, 1st~1_;,;—-—2—|/1—+§7i )

Er hat auch zuerst™) den Druck in der Miindung experimentell er-
mittelt (durch Druckmessung an einer feinen Bohrung in der Ausfluss-
miindung, vgl. Fig. 59) und damit die Annahme von de Saint-Venant und
Wanizel, die er selbst nicht kannte, wohl bestitigt.

Als weitere Versuche iiber Luftausfluss sind
vor allem zu nennen die umfangreichen Versuche
von Zeuner 1871 ™) und F'liegner 1874 und 18777).
In der letzteren Arbeit untersucht Fliegner auch den
Einfluss der Wiirmeleitung im Mundstiick theoretisch
sowohl als auch experimentell, er findet bei einem
Mundstiick aus Messing den Ausflussexponenten
n =137 (¢ = 0,077), bei Buchsbaumholz » = 1,395 (¢ = 0,027); aus
diesen Zahlen schliesst er auf eine bedeutende Wirkung der Wirme-
leitung. In sorgfiltigen Beobachtungen des Miindungsdruckes p,, findet
er, dass dieser nie unter den ,kritischen Druck
herabgeht, und immer etwas hoher als p, liegt. | T
Als Niherungsformeln fiir gut abgerundete Metall- 2,

miindungen empfiehlt er (p in kg/m? F in m?) i

G — " 1
7= 016 /BB fur p > 2,

G P . 1
7 =038 V?;T fiir p, <5y,

P A—

[.

In Fig. 60 findet man die Ergebnisse der Fliegner- ¢
schen Versuche veranschaulicht; es sind die Grossen I
#,, und G in ihrer Abhingigkeit von p, bei fest-
gehaltenem p, dargestellt.

Erwihnenswert sind auch die sorgfiltigen
Versuche, die G. A. Hirn 18847%) mit Luft bei
gewohnlichen und hoheren Temperaturen, sowie mit Kohlenséure und
Wasserstoff angestellt hat. Er liess die Gase aus einem Gasometer

IL

Fig. 60.

72) So sind die Formeln von Zeuner (Therm. II, § 24) umgeschrieben worden.

78) Engineer 28 (1869), p. 287. Vgl auch Rankine, Engineer 28 (1869),
p. 862 u. 868 = Civiling. 16 (1870), p. 85.

74) Vorlduf. Bericht Civiling. 20 (1874), p. 1. (Dort ist auch die Prioritat
von de Saint- Venant und Wanizel wieder aufgedeckt.) Ausfihrlicher in Therm. I
(1. Aufl), § 49—51.

76) Civiling. 20, p. 18 und Civiling. 23, p. 443.

76) Briissel Mem. Acad. Roy. 156 (1886), Nr. 3; Ann. chim. phys. (6) 7
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in einen evakuierten Raum einstrémen und erreichte dadurch eine
sehr einwandfreie Messung der Ausflussmengen. Die Hirn'schen Ver-
suche bestitigen die frilheren Ergebnisse; sonderbarer Weise glaubte
Hirn selbst, indem er die Geschwindigkeit auch iiber das kritische
Druckverhéltnis hinaus mit der Formel w = Guv,/F berechnete, einen
Widerspruch zwischen Theorie und Versuch nachgewiesen zu haben;
seine Ansicht wurde von Hugoniot™) und Parenty™) 1886 widerlegt.

Parenty hat spiter™)®®), auf den Hirn’schen Versuchen fussend,
eine empirische Naherungsformel von grosser Allgemeinheit angegeben.
Er stellte fest, dass die Ausflussmenge G in ihrer Abhingigkeit von
py (vgl. Fig. 60) sehr nahe durch einen Ellipsenquadranten und dessen
horizontale Tangente dargestellt werden kann. Es moge nun das
Verhiltnis (p, — p;)/p, =0 und (p, — p")/p, = &' gesetzt werden
(p" = kritischer Miindungsdruck), ferner sei «, der Kontraktions-
koeffizient, der der Miindung fiir Wasserausfluss unter Wasser zu-
kommt; dann ist nach Parenty fiir beliebige Miindungen das Produkt
d’- «, eine Konstante, ferner Gumax proportional Jey; die Konstanten
werden so bestimmt, dass fiir ¢y =1 der adiabatische Ausfluss er-
halten wird. Mit

¥oa=0/=1— ()" (gl p. 297)

wird

fir 8 <8 % =20,/ g8/ 0,0 (1— =2,

fir 0> 0": 5= 00 V290,03

| @

von den Koeffizienten d," und «, der vorstehenden Formeln hiingt der
eine nur von der Gasart ab, der andere nur von der Miindungsform.
Neuerdings hat Parenty an Hand der Rateaw'schen Versuche (s. u.)
die Anwendbarkeit seiner Formeln fiir Dampfausfluss gezeigt®?).
Ferner hat Boussinesq ®%) gezeigt, dass — fiir adiabatischen Ausfluss —
eine Reihenentwicklung nach d die Parenty'sche Ellipsenformel als
zweite, bereits sehr befriedigende Naherung ergiebt.

(1886), p. 289; Recherches expérimentales sur la limite de vitesse que prend
un gaz etc., Paris 1886.

77) Paris C. R. 102 (1886), p. 15645,

78) Paris C. R. 103 (1886), p. 125.

79) Paris C. R. 113 (1891), p. 184; 116 (1898), p. 1120; 119 (1894), p. 419.

80) Ann. chim. phys. (7) 8 (1896), p. 5.

81) Ann. des mines (10) 2 (1902), p. 403.

82) J. des Mathem. (5) 10 (1904), p. 79.
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In neuerer Zeit (1897) hat auch Zeuner®) Luftausflussversuche
mit einem Vakuumkessel gemacht, die ihn zu einer neuen Hypo-
these gefithrt haben; besonders Versuche mit grossen Widerstinden
fihren ihn auf die Beziehung, ,dass die Luft in den leeren Raum
mit der dem Zustande der Luft in der Miindung entsprechenden
Schallgeschwindigkeit w, = }J/xgpv ausstrémt, welche Widerstinde
hierbei auch beim Hinstromen nach der Miindung vorliegen mogen“.
Diese Greschwindigkeit ergiebt sich aus (d) zu

“2gn
w:= u-}—l plvl'

Die Ausflussmenge wird hierbei

2\ L 2gx%
G="I u+_1)"“‘ Vi
Wie W. Schiile®) nachwies, ist das Maximum der &lteren Zeuner'schen
Formel, die unter dem kritischen Druckverhiltnis weiter gelten sollte,
grosser als der vorstehende Wert; man kann indes diesen Wert durch
verschiedenes #» in beiden Formeln mit dem Maximum zusammen-
fallen lassen. — Zeuner's Versuche ergaben — fiir Druckverhiltnisse
iiber dem kritischen Wert — den Ausflussexponenten n zu 1,375
bis 1,38; dieses entspricht Werten von ¢ = 0,065 bis 0,055.

Uber den Ausfluss von Dampf®®) sind nach Napier von Ver-
schiedenen Versuche angestellt worden. So hat Zeuner 1870 Aus-
flussversuche mit Hilfe eines Injektors (Dampfstrahlpumpe) gemacht
(erst 1890 veroffentlicht®)). Ferner sind zu erwihnen die Versuche
von C. H. Peabody und L. H. Kuhnhardt®") (mit Messung des Miindungs-
druckes), von Parenty®®), von Rosenhain ®®) (mit Messung der Reaktion
der ausfliessenden Strahlen, bei verschiedenen Miindungen, auch konisch
erweiterten Rohren, vgl. Nr. 20), von Gutermuth und Blaess®®) (mit
verschiedenen Miindungen, Rohren und Diisen, wie sie bei Dampf-

83) Therm. I (2. Aufl), p. 242 u. 256. :

84) Dingler's Polyt. Journ. 318 (1903), p. 3565, 869 u. 388,

85) Ein zusammenfassender Bericht iiber éltere Versuche (auch solche mit
Luft) findet sich bei R. Kolster, Zeitschr. d. Ver. deutsch. Ing. 11 (1867), p. 438 u.
711 u. 12, p. 97. Besonders genannt seien die Versuche von Tremery, Ann. des
mines (3) 20 (1841), p. 343) und von Mnary und Résal, Ann. des mines (5) 19
(1861), p. 379 (deutsch im Civiling. 8 (1862), p. 101).

86) Therm. II, § 25.

87) Trans. Am. Soc. of Mec. Ing. 1890; Bericht im Engineering 49 (1890), p. 64.

88) Proc. Instit. of Civ. Ing. 140 (1900), p. 199.

89) Phys. Ztschr. 4 (1902), p. 82; Zeitschr. d. Ver. deutsch. Ing. 48 (1904),
p. 76 = Forschungsarb. Heft 19 (1904), p. 45.
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turbinen und bei den Schiebern der Dampfmaschinen in Verwendung
stehen). Diesen Versuchen, bei denen die Ausflussmengen durch die
kondensierten Wassermengen gemessen wurden, stehen Versuche von
A. Rateau®) gegeniiber, bei denen die Dampfmengen durch die an
das Kiihlwasser abgegebenen Wirmemengen bestimmt wurden. Durch
gleichzeitige Messung der Dampffeuchtigkeit konnen diese Versuche
fiir besonders zuverldssig gelten; sie liefern das Resultat, dass die
Ausflussmengen fiir abgerundete Miindungen bei grossen Druckunter-
schieden sehr gut durch die Formeln fiir verlustlose Strémung dar-
gestellt werden; die Rateaw’sche Formel
G/o Fy = p, (0,01904 — 0,00096 log™ p,),

wo p und F, auf Metermass bezogen sind, stimmt sehr genau mit der
Grashof’schen Formel p. 300 iiberein; die #lteren Versuche hatten,
wohl durch mangelnde Trockenheit des Dampfes entstellt, grossere
Werte ergeben. Fiir missige Druckunterschiede liegen die Rateau-
schen Zahlen bis zu 5%, unter den theoretischen Werten.

Bemerkenswert ist auch die von Rateau gefundene Thatsache,
dass der Kontraktionskoeffizient fiir Offnungen in diinner Wand, dar-
gestellt durch das Verhiltnis der hier auftretenden Ausflussmenge zu
der bei abgerundeter Offnung, sowohl fir Dampf als auch fiir Gase
(Versuche von Hirn) bis zu Drucken p; = 0,45p, herab sehr genau
eine lineare Funktion des Druckverhiltnisses ist, z. B. fir Dampf

oy = 0,645 + 0,35 (p; — py)/p;-

Ausfluss von heissem Wasser. Uber den Ausfluss von Wasser
aus dem Wasserraum eines Dampfkessels — also Wasser von der
dem Druck p, entsprechenden Siedetemperatur — wurden von den
Ingenieuren Pulin und Bonnin 1890 Versuche angestellt, iiber die
Sauvage™) berichtet hat. Die Ergebnisse weichen vollstindig von
den theoretischen Resultaten Zeuner's®) ab, die Ausflussmengen waren
10—12mal so gross, als die theoretischen. Zeuner®) erklirte spiter
die Differenz durch die Annahme einer verzogerten Verdampfung des
Wassers, wodurch der Ausflussvorgang sich mehr dem Ausfluss kalten
Wassers nihere.

Neuerdings haben unabhéngig voneinander A. Rafeaw %) und
A. Fliegner®*) nachgewiesen, dass man unter Beachtung des de Saint-

90) Rev. de mécanique 7 (1900), p. 167; Ann. des mines (10) 1 (1902), p. 5.
91) Ann. des mines (9) 2 (1892), p. 192.

92) Therm., 2. Aufl.,, § 22.

93) Rev. de mécanique 9 (1901), p. 660 = Ann. des mines (10) 1 (1902), p. 59.
94) Schweiz. Bauztg. 456 (1905), p. 282 und 306.
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Venant- Wantzel’schen Prinzipes bedeutend hohere Ausflussmengen er-
hilt, als Zeuner gefunden hatte. Nach Fliegner ergiebt sich z. B. fiir
p, = 6 atm (absolut) das Maximum der Ausflussmenge fiir 1 gem Off-
nungsquerschnitt zu 0,42 kg/sec bei einem Milndungsdruck p’= 5,4 atm,
wihrend Zeuner unter Annahme eines Miindungsdruckes von 1 atm
die Zahl 0,108 erhalten hatte.

Beide Autoren zeigen ferner, dass sich noch viel grossere Ausfluss-
mengen ergeben, wenn man annimmt, dass die Temperatur des aus-
fliessenden Wassers um einige Grade unter dem dem Kesseldruck
entsprechenden Siedepunkt liegt; Rateauw und Fliegner verwerten dieses
Ergebnis zu einer Erklirung der auch gegen ihre Zahlen noch drei-
mal grosseren Versuchswerte von Pulin und Bownin. Fliegner be-
rechnet u. a., dass bei 6 atm Dampfspannung fiir die Verdreifachung
der Ausflussmenge 6° Temperaturerniedrigung ausreichend sind. Indes
zeigen neue, noch unverdffentliche Versuche von J. Adam®), dass
die Zeuner'sche Erklirung durch verzogerte Verdampfung die zu-
treffendere ist. Adam findet bei vergleichenden Versuchen mit heissem
und kaltem Wasser, dass das Verhdltnis der Ausflussmengen von
heissem und kaltem Wasser (bei 6 atm) von 0,91 bei Offnungen in
diinner Wand bis auf 0,56 bei kurzer abgerundeter Miindung und
weiter auf 0,44 bei einem missig langen Ansatzrohr herabsinkt.

19. Stromungswiderstinde. Man pflegt die bei den Stromungs-
bewegungen auftretenden Widerstiinde in kontinuierlich verteilte und
in konzentrierte einzuteilen, je nachdem es sich um die hemmende
Wirkung eines lingeren Rohres oder einer ortlichen UnregelmiBig-
keit (plotzliche Verengung, Erweiterung, Richtungsinderung usw.)
handelt. Das iibliche Mass fiir den Widerstand bildet die durch
Gl (b) definierte Widerstandshshe #, bezw. ein durch Vergleich mit
der Geschwindigkeitshohe w?/2g gewonnener Widerstandskoeffizient.

a) Uber die konzentrierten Widerstinde ist, abgesehen von den
im vorigen Abschnitt behandelten Ausflusswiderstéinden, wenig Litte-
ratur vorhanden. Ein Versuch, die Vorginge bei plotzlichen Ver-
engungen und Erweiterungen eines Rohres zu berechnen, findet sich
bereits bei Nawier®!). Er glaubt jedoch, die Widerstandshéhe bei
plotzlicher Rohrerweiterung einfach, wie bei inkompressiblen Fliissig-
keiten®), als Carnot'schen Stossverlust
(wy —w,)*

="

95) Ausgefiihrt im Laboratorium fiir technische Physik zu Miinchen,
96) Vgl. Encykl. IV 20, 7 (Forchheimer).
Encyklop, d. math, Wissensch. V 1. 20
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setzen zu diirfen. Erst Grashof®) zeigte 1875, dass man bei kom-
pressiblen Fliissigkeiten im Falle einer plotzlichen Rohrerweiterung

2 2
Z=@1—§3?1)‘+p1(”1_”2)+£/‘pd”

setzen miisse. Im besonderen entwickelte er®) unter Beriicksichtigung
der Wiirmevorgiinge die Formeln fiir einen Widerstandskoeffizienten,
der nach dem Muster der Hydraulik

_ 24

=4
gesetzt wird, unter der vereinfachenden Annahme, dass die Zustands-
inderung wihrend der Einwirkung des Widerstands als eine Polytrope
pv™ = const. angenommen werden darf. Mit diesen Formeln unter-
zieht er einige Versuche von Weisbach®)®) iiber Kniershren usw.
einer Neuberechnung. Er entwickelt auch die Beziehungen fiir den
Widerstand einer plétzlichen Verengung mit darauffolgender Erweite-
rung und erliutert die ziemlich verwickelten Formeln durch Zahlen-
beispiele.

Anmerkung. Mit der eben besprochenen Aufgabe ist durch die
Art der Behandlung (Anwendung des Satzes von der Bewegungs-
grosse®)) die Theorie der Strahlapparate verwandt. Es gehort zu
diesen das Lokomotivenblasrohr (vgl. hieriiber die Monographie von
Zeuner®)), ferner das Dampfstrahlgeblise; grosses theoretisches Inter-
esse bietet auch die Dampfstrahlpumpe von Giffard (der sogenannte
Injektor, dessen wirmetheoretische Analyse auch von Zeuner'®®) ge-
geben worden ist), sowie der Strahlkondensator von Korting.

Die Behandlung dieser Dinge musste hier unterbleiben, da eine
Anzahl Beziehungen, die besser in die Referate iber Hydraulik passen,
hierzu hitten erdrtert werden miissen. Die Eigenart der vorgenannten
Apparate erlaubt fast durchgiingig, die wirmetheoretische Bestimmung
der in ihnen auftretenden Mischungsvorginge, ohne Hinzunahme der
Dynamik, vorweg zu behandeln. In dynamischer Beziehung unter-
scheiden sie sich in nichts anderem von den im Artikel IV 21 (Griibler)
zu behandelnden Strahlpumpen, als dass das Mischungsvolumen nicht
gleich der Summe der zustromenden Volumina ist, sondern sich durch
die vorhergehende thermische Untersuchung bestimmt.

97) Masch.-L. § 76.

98) Masch.-L. § 108.

99) Encykl. 1V 20, 2b (Forchheimer).

100) Civiling. 6 (1860), p. 811; vgl. auch p. 322.
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b) Die kontinuierlichen Widerstinde werden hier durchgingig nach
dem in der Hydraulik iiblichen Ansatze°?)

dz = §11§‘—’—;—dw

in Rechnung gesetzt; dz bedeutet dabei ein Liéngenelement in der
Rohraxe gemessen, §; einen Widerstandskoeffizienten, der zumeist als
Funktion des Rohrquerschnitts angesehen wird, manchmal aber als
auch von der Geschwindigkeit abhingig betrachtet wird. Girard'®),
Nawier®®) und andere setzten, ganz entsprechend den Ansitzen in der
Hydraulik ¢ = §>< Umfang : Fliche des Querschnitts, also fiir den
Kreisquerschnitt (Durchmesser d)
4
b= -
Beztiglich der Werte von 8 (eine reine Zahl) ergeben die verschiedent-
lich angestellten Versuchsreihen sehr widersprechende Resultate.
Wihrend #ltere Experimente!%®) sowie auch neuere von Zeuner™) fiir
Rohrdurchmesser von 0,5 ~ 3 c¢m g ziemlich konstant = 0,00594 ~
0,0064 ergeben, zeigen andere Versuche merkliche Abhingigkeit vom
Durchmesser und von der Geschwindigkeit; die von Grashof ') neu-
berechneten Versuche von Weisbach)®)

(d=1~25cm, w=30~ 110 m/sec)

werden gut durch die Formel
0,0028
B= 39,56 ,,0,1675

dargestellt (d und % in Metern). Die Versuche an technischen Druck-
luftleitungen %) (d = T ~ 30 cm) ergaben f unabhingig von w, nimlich
f = 0,00242
2081
Ein #hnliches Gesetz wurde iibrigens auch schon frither (fiir
d =1~ 3 cm) von Pecqueur®™) gefunden: § — const/dd. In den theo-
retischen Arbeiten iiber die Stromung mit Widerstinden (vgl. hieriiber
den folgenden Abschnitt), wird § ausnahmslos als unabhingig von

der Geschwindigkeit, also als Funktion des Durchmessers allein ein-
gefiihrt.

101) Encykl. IV 20, 4 (Forchheimer).

102) Ann. chim. phys. 16 (1821), p. 129 = Ann. Phys. Chem. (2) 2 (1824), p. 69.

108) Vgl. %) (Aubuisson, Buff’), %) (Pecqueur).

104) Therm. I, 2. Aufl., § 48.

105) Masch.-L., § 106.

106) Eine Zusammenstellung davon findet sich bei H. Lorenz, Zeitschr.
d. Ver. deutsch. Ing. 36 (1892), p. 621 u. 835.

20*
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20. Stromung durch Réhren und Diisen!”). Die verlustfreie
Stromung durch Réhren von veréinderlichen Querschnitt ist bereits in
Nr. 17 besprochen. Hier handelt es sich also um das Studium der
durch Widerstinde beeinflussten Bewegungen. Die kontinuierlichen
Widerstinde werden in der in voriger Nummer dargelegten Weise
in Ansatz gebracht; der Koeffizient § pflegt dabei als eine im iibrigen
beliebige Funktion des Rohrdurchmessers betrachtet zu werden.

Schliesst man Wirmeleitung aus%®), so lauten die Grundgleichungen
(a), (b) und (d) hier:

(a) Gv=Tw,
(b) wdw + gvdp + & ?;—’dx =0,
(d) w' =29 (i —9);

i, ist dabei die Erzeugungswirme im Anfangszustand p,v,, bei welchem
w =0 ist. Ist ¢ als Funktion von p und v gegeben, so lassen sich
aus Gl (a) und (d) bei bekanntem p, F' und G die Grdssen v und w
bestimmen, eine fiir Auswertung von Versuchen sehr niitzliche Be-

ziechung'®)., Hat man hierdurch » und w kennen gelernt, so liefert
Gl (b) Aufschluss iiber .

Durch Elimination von dv und dw kann g% als Funktion von
p, v, § und —}7 %—5-' , oder, nach Vorstehendem, wenn noch ¥ und § als
Funktionen von x gegeben sind, als Funktion von p,  und G er-
halten werden. Fiir ein gegebenes G lisst sich also die Aufgabe

auf die Losung einer Differentialgleichung ‘—;—ﬁ = [ (p, ) zuriickfiihren.

Diesen Weg haben H. Lorenz''?) und L. Prandtl*'') — unter der
vereinfachenden Annahme des Gasgesetzes — beschritten. In seiner
allgemeinen Bedeutung scheint er von A. Stodola''*) zuerst klar er-
kannt worden zu sein. Auf demselben Gedanken beruht auch das

107) Vgl. hiermit Encykl. IV 20 (Forchheimer) 8 b) und d).

108) Auf die Grashof’sche Theorie der Luft- und Dampfbewegung in Rohren
mit Warmeleitung ist schon hingewiesen woraen?8). Die Besprechung der ziem-
lich verwickelten Rechnungen mag hier unterbleiben, da sich weitere Arbeiten
nicht daran angekniipft haben.

109) Anscheinend unabhiéingig von Stodola!®) und Biichner **) gefunden; in
etwas anderer Weise von A. Fliegner ''%) benutzt.

110) Phys. Zeitschr. 4 (1908), p. 833 = Zeitschr. d. Ver. deutsch. Ing. 47,
p. 1600.

111) Zeitschr. d. Ver. deutsch. Ing. 48 (1904), p. 348.

112) Dampfturb. § 26 (§ 7).
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zeichnerische Verfahren von G. Fanno''%), der im T'-s-System mit
Hilfe der Kurven ¢ = const. und v = const. unter Anwendung von

Gl (a) und (d) Kurven %r—— const. ermittelt, und dann fiir eine ge-

gebene Rohre u. s. w. die zu einem bestimmten G gehorige Zustands-
kurve durch schrittweises Vorgehen gewinnt.

Fiir permanente Gtase findet man mit ¢ = ;i—l pv, dass hier w

einfach als Funktion von % dargestellt werden kann. Zur Dis-

kussion von 371: wird zweckmissig die dem jeweiligen Zustande p, v

entsprechende Schallgeschwindigkeit a — }/xgpv eingefiihrt.

Erreicht die Stromungsgeschwindigkeit irgendwo die Schall-
geschwindigkeit, so ist dies immer fiir den aus (d) erhiltlichen unver-
dnderlichen Wert

, N
w=a = A 19h%
der Fall (Zeuner®®), Lorenz'\). Das am meisten Ausschlag gebende
Glied der Formel fiir ‘—(% hat den Faktor

2 dF w?

7 iz *hav

et —w? )
man sieht, dass Zg sein Vorzeichen wechselt, je nachdem w kleiner
oder grosser ist als die Schallgeschwindigkeit. Fiir w =a wird
Zg = oo, wenn nicht gleichzeitig der Zihler des Bruches = 0 wird.

Dies trifft indes regelméssig zu, wenn in einem Rohr mit stetig ver-

dnderlichem %g die Schallgeschwindigkeit im Sinne wachsender Ge-

schwindigkeit iiberschritten wird. Die Einzelheiten dieses Wertes %

wurden von R. Proell*'*) einer genaueren Feststellung unterzogen. (Vgl.
auch p. 312)

Die vorstehenden Beziehungen haben spezielle Anwendung ge-
funden, einmal auf das gerade cylindrische Rohr, dann in neuester
Zeit auf das kegelférmige Rohr und die Laval'sche Dampfturbinen-
diise. Um diese Beispiele sei deshalb die weitere Besprechung gruppiert.

a) Cylindrisches Rohr. Diese Aufgabe wurde, soweit es bei dem
damaligen Stande der Kenntnisse moglich war, bereits von Navier®)
1829 gelost. Er verwendet — neben den Gleichungen (a) und (b) —

113) Dampfturb. § 28.
114) Zeitschr. d. Ver. deutsch. Ing. 48, p. 349.
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an Stelle der ihm unbekannten Gleichung (d) das einfache Mariotte-
sche Gesetz pv = const. Seine Formeln sind iibrigens auch nach
dem heutigen Standpunkte noch richtig, wenn man die Aufgabe so
stellt, dass durch einen vollkommenen Wirmeaustausch mit der Um-
gebung das Gas in der Rohre auf konstanter Temperatur gehalten
wird. Navier findet p - w = const. und erhilt durch Integration

G 2 173
9t —p*) = (F) nY (§1x+210g%‘) (p =p, fir x =0),
woraus sich das Ausflussgewicht bei gegebener Druckdifferenz ergiebt.

Fiir sehr lange Leitungen erhélt man nach Unterdriickung von log %
die Niherungsformel

e
p=p1V1 ~ gp,5, 9%

Die Strémung der Luft in einem Rohr ohne Wirmemitteilung wurde

von Grashof®") 1863 untersucht. Mit der von Zeuner®) eingefiihrten

Schallgeschwindigkeit a’ = V2g 22 ”;i f”-_l)w‘s erhilt man

2 ‘2
rral—a) = —1+2logg

Die Integrationskonstante ! bedeutet die maximale beim Stromungs-

zustand p,, v;, w, mogliche Rohrlinge. Fiir x =1 wird w = ¢’ und

‘;—: = 0o. Der obiger Formel entsprechende Druckverlauf (aus GI. (a)

und (d) zu gewinnen) ist in Fig. 61
dargestellt; er ist durch Versuche
von Fliegner*®) und Zeuner8) gut
bestitigt. Sobald der Aussendruck
p, hinter dem Rohrende < o’ ist,
ist im Endquerschnitt w = a'.

b) Kegelformiges Rohr. Die
Stromung eines Gases durch ein
kegelférmig erweitertes Rohr wurde
unter der Annahme eines konstanten
Widerstandskoeffizienten g (vgl.
Nr. 19b) von R. Proell %) theore-
tisch behandelt. Ist der Radius eines Querschnitts » =r 4 aw,
so ergiebt sich die Geschwindigkeitsverteilung aus der Formel

a'? (w? 1-e
,";,— (5,—" -_ 8) = const. 74,

Fig. 61.

115) Schweiz. Bauzeitg. 81 (1898), p. 68, 78, 84.
116) Zeitschr. f. d. gesamte Turbinenwesen 1 (1904), p. 161 u. 2 (1905), p. 151.
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wobei a’ dieselbe Bedeutung wie im vorigen Absatz hat, und

. «@=+1

T ae—1) 4 fx

ist. Eiune Diskussion der Proell'schen Formeln ergiebt das bemerkens-
werte Resultat, dass (bei hinreichend schlanken Kegeln) jedem Er-
weiterungsverhéltnis o eine Geschwindigkeit w’ == a’}/ & entspricht,
die sich in der ganzen Erstreckung des Rohres konstant erhilt. Ist
o« < 3Px, so ist w' < a’ und es treten fir w > " #hnliche Verhilt-
nigse auf wie beim cylindrischen Rohr (Zustreben der Geschwindig-
keit auf die Schallgeschwindigkeit u. s. w.). Fiir o> }fx%, also
w’ > a’, ndhert sich die Geschwindigkeit asymptotisch dem Wert «’
oder Null, je nachdem sie grosser oder kleiner als o’ ist. Fir
o« =13%pfx (W =a) ergiebt sich bemerkenswerter Weise ein solcher
Geschwindigkeitsverlauf, dass die Geschwindigkeit der Querschnitts-
fliche umgekehrt proportional ist; die zugehérige Zustandsinderung
ist eine Kompression bei konstantem Volumen.

¢) Dampfturbinendiise von De Laval. Um die im Dampf verfiig-
bare Arbeit in moglichst regelmissiger Expansion in die kinetische
Energie eines Dampfstrahls zu verwandeln, hat der schwedische Inge-
nieur De Laval 1889 eine Diise (Strahlrohr) angewandt, die hinter dem
engsten Querschnitt kegelformig erweitert ist.

&

Die Theorie der verlustfreien Strémung in derartigen Diisen ist
bereits in Nr. 17 enthalten; vergl. auch Zeuner, Theorie der
Turbinen 7).

Fir die praktische Berechnung der mit gesittigtem und iiber-
hitztem Wasserdampf betriebenen Diisen hat R. Proell'!®) eine nach
d Ocagne’schen Methoden!®) entworfene graphische Rechentafel heraus-
gegeben. Eine graphische Konstruktion mit Hilfe des 7-s-Diagramms,
die auch eine summarische Beriicksichtigung der Widerstinde erlaubt,
wurde von 4. Koob'®) angegeben.

Zur Untersuchung der Strémung mit Widerstinden kann man
(nach Prandtl'') in dem Koordinatensystem von p und « die zu einem
bestimmten Wert von G gehorigen Kurven gleicher Geschwindigkeit
zeichnen (vgl. p.308) — die gestrichelten Linien in Fig. 62 — und
dann fiir eine Anzahl iiber die Ebene verteilter Punkte die Richtung

117) Leipzig 1899, p. 267 u. f.

118) Zeitschr. d. Ver. deutsch. Ing. 48 (1904), p. 1418.

119) Vgl. Encykl. I F 46 von Mehmke.

120) Zeitschr. d. Ver. deutsch. Ing. 48 (1904), p. 275, 660, 754.



312 V 5. M. Schréter u. L. Prandtl. Technische Thermodynamik.

dp
dx .
gezogenen Linien — ergeben.

Fiir den Doppelpunkt dieser Kurvenschar tritt der p. 309 erwihnte

tg « == auftragen, woraus sich die Stromungskurven — die aus-

Fall -g— ein. Fiir den Anfangsdruck p,, dem kleinsten, bei dem die

Menge G noch durch die Diise getrieben werden kann, ergeben sich
wieder zwei verschiedene Enddriicke p, und p,.

Versuche von A. Fliegner'™®), A. Stodola*')**") und K. Biichner'*?)
haben gezeigt, dass sich bei Gegendriicken p, zwischen p, und p, ein
Ubergang von der stark gezeichneten Linie zu der auf p, fiihrenden
einstellt. Dieser Ubergang wurde von Sfodola'®') als , Verdichtungs-
stoss“ gedeutet (entsprechend den Riemann’schen Diskontinuititen bei
Luftwellen mit endlichen Druckunterschieden)23).

Ist bei einem stationdren Verdichtungsstoss der Zustand vor der
Diskontinuitit (p’, o', w") gegeben, so ergiebt sich daraus nach Stodola
der Zustand nach dem Stoss (p”,v”, w”) aus den Gleichungen:

121) Dampfturb. § 24 (§ 4).

122) Dessen Abhandlung *%) enth#lt auch eine Zusammenstellung verschiedener
fritherer Versuche.

123) Encykl. IV 19, 8 (Art. Zemplén)
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,r

w w
(a*) i)
% w?® W’ " ’
(b¥) v — =9 — 1),
(d*) w?— w’? = 2g(" — 7).1%)

In ihrer Anwendung auf permanente Gase wurde die Theorie des
Verdichtungsstosses von Prandtl*'') und Proell %) weiter ausgearbeitet;
u. a. ergibt sich, bei Einfiihrung der Schallgeschwindigkeit a’ (vgl.
p- 309) die einfache Beziehung: w'w” = a’%; da immer w’ > w” ist,
so folgt hieraus, dass zum Zustandekommen eines Verdichtungsstosses

w > a sein muss.

Fig. 63.

Die nach der vorstehenden Theorie fiir eine Lavaldiise bei einem
bestimmten Anfangszustand p,, v, sich ergebenden Druckkurven sind
in Fig. 63 dargestellt. Das Ausflussgewicht G ist zwischen p, = p,
und p, = p, verdnderlich, fiir p, < p, konstant = Gmax (Wwas durch
Versuche®) gut bestitigt ist).

Anm.: In cylindrischen Rohren sind fiir w >> a’ ebenfalls Ver-
dichtungsstosse moglich.

124) Bei Riemann selbst ist statt Gl. (d*) die Beziehung p = @(v) an-
genommen, was vom Standpunkt der Wirmetheorie aus unzulissig ist.
125) Zeitschr. f. d. ges. Turbinenwesen 1 (1904), p. 161.
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21. Stationire Wellen in einem freien Gasstrahl. [E. Mach
und P. Salcher?®) entdeckten 1889 bei der optischen Untersuchung
von Strahlen ausstromender Druckluft (Schlierenmethode) deutlich
ausgepriigte stationire Wellen. Die Erscheinung wurde spéter an Luft
und anderen Gasen von L. Mach'*") und
R. Emden'®®), an Wasserdampf von
P. Emden'®), ebenfalls mit Hilfe von
optischen Methoden genauer untersucht.
Druckbeobachtungen sind von Parenty *)
und Stodola'®") gemacht worden. Parenty
fand die Strahlform abhingig von dem

Verhiltnis £~ der Driicke in und vor

der Mt‘indung2 (tiber den Miindungsdruck

Fig. 64. p vgl p.297). Im Einklang damit ist

die von R. Emden (fiir kegelformig ver-

engte Miindungen, engster Durchmesser d) aufgestellte Gesetzmissig-
keit zwischen der Wellenlinge 4 und obigem Druckverhiltnis:

—1240 V% 1.
1 —124d ]/pg 1
Eine Theorie der Wellen mit sehr kleinen Amplituden gab

L. Prandtl*®®). FEr findet fiir einen Strahl von Kreisquerschnitt
(Cylinderkoordinaten » und z, vgl. Fig. 64) das Strdmungspotential

@ = Wz -+ a sin ﬁxJo(ﬁr V'g;_. 1).
Aus der Grenzbedingung ergeben sich die moglichen Wellenléngen zu

27 = )/ w?
h="r—d )%,
wobei % die mittlere Geschwindigkeit im Strahl, d den mittleren
Strahldurchmesser und e, die »n* Wurzel der Bessel'schen Funktion
Jy bedeutet. B, ist mittels der letzten Gleichung durch e, erkldrt
und fiir B ist in der vorletzten Gleichung einer der Werte g, ein-
zutragen.

126) Wien Ber. 98% (1889), p. 1303; Ann. d. Phys. (3) 41, p. 144.

127) Wien Ber. 1062 (1897), p. 1025.

128) Uber die Ausstromungserscheinungen permanenter Gase, Leipzig 1899.
Ausziiglich in Ann. d. Phys. (3) 69 (1899), p. 264.

129) Die Ausstrémungserscheinungen des Wasserdampfes, Diss. Basel (Miin-
chen) 1903.

130) Paris C. R. 118 (1894), p. 183; Ann. chim. phys. 12 (1897), p. 289,

131) Dampfturb. § 35 (§ 11).

182) Phys. Zeitschr. 5 (1904), p. 599.
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Aus dem Auftreten von stationiren Wellen haben Parenty'*),
R. Emden'®) und A. Fliegner%), indem sie dieselben als ebene Schall-
wellen betrachteten, geschlossen, dass der Strahl sich mit Schall-
geschwindigkeit bewege und dass iiberhaupt die Geschwindigkeit eines
stationdiren Gasstromes nicht tiber die Schallgeschwindigkeit hinaus-
kommen konne*). Die Expansionsarbeit von p’ (Miindungsdruck) bis p,
(Aussendruck) sollte dabei vollstindig in ,Wellenenergie“ verwandelt
werden. Dem gegeniiber lehrt die vorstehende Beziehung fiir die
Wellenléinge, dass diese stationiiren Wellen, die im Gegensatz zu Schall-
wellen auch Transversalbewegung aufweisen, nur moglich sind, wenn
die Strahlgeschwindigkeit @ grosser als die Schallgeschwindigkeit ist.

Bei den beobachteten Wellen finden sich meist gut ausgeprigte
Diskontinuititen vor, die mit den Mach’schen Geschosswellen 1%5) Ahn-
lichkeit haben. Aus ihren Winkeln lassen sich wie dort Schliisse auf
die Geschwindigkeit w (> a) ziehen#)127)111)  Dags die von der Theorie
geforderten hohen Geschwindigkeiten wirklich erreicht werden (auch bei
gewohnlichen Miindungen durch Expansion hinter dem Ausflussrohr),
ergiebt sich auch aus den Beobachtungen des Stossdruckes von
Dampfstrahlen von Delaporte'®®) und E. Lewicki'37).

Bemerkung. An dieser Stelle moge eine Untersuchung von
A. Stodola und A. Hirsch'®) iiber zweidimensionale Strémung eines
Gases Erwihnung finden, in der unter der Annahme pv = const. das
Problem behandelt wird, dem bei inkompressiblen Fliissigkeiten die
Strémung X 4 ¢Y = (x 4 ¢y)" entspricht.

22, Uberstromen. a) Uberstromen im Beharrungseustande. Zur
Herabminderung des Druckes eines Gases oder Dampfes beim Uber-
stromen von einem Raum in einen zweiten (zum ,Drosseln® des-
selben) werden Verengungen des Stromungsquerschnitts (durch Ventile,
Klappen u.s. w.) angewandt. Ist die Geschwindigkeit weiter ab von der

188) Ziirich Vierteljahrschr. Naturf. Ges. 47 (1902), p. 21; Schweiz. Bau-
zeitg 48 (1904), p. 104 u. 140.

134) Die Ansicht, dass die Luft keine groBere Geschwindigkeit als Schall-
geschwindigkeit annehmen konne, wurde schon frither von C. Holtznann (Lehr-
buch des theor. Mechanik, Stuttgart 1861, p. 376) vertreten, mit der gleichfalls
unzutreffenden Begriindung, dass die Aussenluft nicht schneller als mit Schall-
geschwindigkeit ausweichen konne.

135) Encykl. IV 18, 4, Fussnote 52 (Cranz).

1386) Rev. de mécanique 10 (1902), p. 466.

137) Zeitschr. d. Ver. deutsch. Ing. 47 (1908), p. 441, 491, 5256 = Forschungsarh.
Heft 12, p. 73 u. f.

138) Dampfturb. § 95 (§ 35).
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Verengung diesseits und jenseits gering genug, so dass die kinetische

Energie dort ausser Betracht bleiben darf, so giebt Gleichung (d),

wenn noch von Wirmezufuhr und Hohendifferenzen abgesehen wird:
i = 1.

Uber den Anteil der ,Drosselung® am Kreisprozess der Kaltdampf-

maschine vgl. Nr. 14.

Bei idealen Gasen ergiebt
sich mit ¢=1y,7 aus dem
Vorstehenden T, = T,. Joule
und W. Thomson'®) fanden
diese Beziehung in ihren be-
kannten ,,Versuchen mit dem
Wattepfropfen“ bei den wirk-
lichen Gasen nicht genau
bestitigt; sie erhielten eine
Abkiihlung nach der Formel

ar _ ¢

dp — T¥
Fiir p in kg/m? ist bei Luft
C = 2 zu setzen.

Diese Abkiihlung bei Drosselung ist in dem Luftverflissigungs-
verfahren von Linde's?) technisch verwertet. Es wird hierbei (vgl. die
Fig. 65) in einem Gegenstromapparat (Wirmeaustauscher) die unter
einem sehr hohen Druck ankommende Luft durch die ihr entgegen-
kommende bereits entspannte Luft abgekiihlt, so dass sich die Tem-
peratur am untern Ende des Gegenstromapparates allméhlich bis auf
die Verflissigungstemperatur erniedrigt.

b) Uberstromen bei konstantem Gefiissvolumen. Die Vorginge
beim Uberstromen eines Gases oder Dampfes aus einem Gefiss in
ein anderes, in dem der Druck geringer ist, wurden unter der An-
nahme, dass durch die Gefisswinde keine Wirmeleitung stattfindet,
und dass der augenblicklich mit wesentlicher kinetischer Energie be-
haftete Teil des Gases jederzeit nur einen zu vernachlissigenden
Bruchteil der ganzen Gtasmenge ausmacht, von J. Bauschinger'*') 1863
einer ausfiihrlichen Behandlung unterzogen (vgl. auch Zeuner, Therm. I,

139) Encykl. V 8, 28 (Bryan).

140) Zeitschr. d. Ver. deutsch. Ing. 39 (1895), p. 1157 (Vortrag von Schréter);
Ann. Phys. Chem. (3) 57 (1896), p. 828, ,,Erzielung niedrigster Temperaturen*.

141) Zeitschr. f. Math. u. Phys. 8 (1863), p. 81 u. 1563 (Uberstromen von Gasen),
p. 429 (Uberstromen von Wasserdampf). Dort findet sich weitere Litteratur.
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§ 35,37). Es seien V; und V, die beiden Volumina, G, und G, die
anfinglichen Gas- (oder Dampf-) Gewichte4?) in den Gefissen, G, und
G, die augenblicklichen Gewichte.

Dann gelten die Beziehungen, dass das Gtesamtgewicht und der
gesamte Energiegehalt der beiden Gefisse konstant sind:

G, + G, = G, + G,
G.u, + Gu, = Gyu, + Gyu,.
Ferner ist G v, = ¥V, und G,v, = V,.
Im Ausflussgefiiss findet adiabatische Expansion des jeweils
zuriickgebliebenen Gasquantums statt; hierdurch bestimmt sich sehr
einfach die zu einem gegebenen augenblicklichen Druck gehorige

Energie dieses Gefiisses und damit nach obigem auch die zugehdrige
des zweiten Gefisses. In diesem wird die Energie durch das Ein-

stromen der Menge d G, um dG, (u' +p,0 + 1_;;_5) vermehrt («/, v im

Strahl hinter der Miindung). Fiir die Veréinderung von u in beiden
Gefissen erhilt man so (mit dG = dG, = — d@,)

aa aaG
dux': _px,v:c-G—z; duy__“ (va:z + ux——uy)m"

Ist w = f(p, v) gegeben, so ergeben sich Gleichungen fiir p, und p,
als Funktionen der Gewichte G. Die Einfilhrung der Zustands-
gleichung (Berechnung von 7') lehrt, dass als Kompensation zu der
adiabatischen Abkithlung im ersten Gefiss im zweiten eine erhebliche
Temperatursteigerung eintritt.

Fir das Ende des Uberstromens, das sich in endlicher Zeit
vollzieht (bei kleineren Druckunterschieden ist diese Zeit dem Ausdruck

p 1‘2 5 %ﬁ proportional %)), wird p, = p,; fiir permanente Gase
stellt sich hierbei als Enddruck ein
b Vit p:7s )
P="v 5,

142) Hier nicht Gewichte pro Zeiteinheit, sondern einfach Gewichte!

143) Uber den zeitlichen Verlauf der Ausfluss- und Einstrémungsvorgiinge
findet man Notizen bei de Saint- Venant und Wantzel 5%), Weisbach®®), § 428, be-
sonders aber bei Grashof, Masch.-L. § 121 u. 122; neuerdings bei Schiile®%). An
dieser Stelle mag auch Erwihnung finden, dass Zeuner in seinem ,,Lokomotiven-
blasrohr* ®%), p. 199 u. f. den zeitlichen Verlauf des Auspuffvorganges bei einem
Dampfcylinder theoretisch verfolgt hat, unter Beriicksichtigung der Veriinder-
lichkeit der von der Steuerung dem Dampf dargebotenen Ausstrémungséffnung. —
Der zeitliche Verlauf des Einstromens des Kesseldampfes in den Cylinder wurde
neuerdings von V. Blaess (Zeitschr. d. Ver. deutsch. Ing. 49 (1905), p. 697) und
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Als Spezialfille des Vorstehenden sind besonders das Ausstrémen
eines komprimierten Gases in die freie Atmosphire und das Ein-
dringen von Luft in ein evakuiertes Geféiss von Bedeutung; im letzteren
Falle wird die Temperatur im Gefiss

G
T,=xT — ’CT; (T, — T5);

ist das Gteféiss zuerst luftleer (G, = 0), so ergiebt sich das bemerkens-
werte Resultat, dass 7, wihrend des Einstromens konstant = » T} ist.

23. Dampfturbinen. Hier mogen einige Worte iiber diese
Maschinen Platz finden, in denen die kinetische Energie des stromen-
den Dampfes nutzbar gemacht wird. Man unterscheidet wie bei den
Wasserturbinen 1*) Reaktions- und Aktions-Turbinen (Uberdruck- und

Bealtionsschaufdung.
Fig. 66.

Druck-Turbinen), je nachdem im Laufrade eine wesentliche Geschwin-
digkeitsvermehrung stattfindet oder nicht (vgl. Fig. 66 und 67). Eine
weitere Unterscheidung ist die in einstufige und mehrstufige Turbinen,

je nachdem das ganze Druckgefille in einem

Rad verarbeitet wird, oder der Dampt
| Lestraider mnach einander durch eine Reihe von Réidern
NSLawufrider tritt, und so seine Energie stufenweise ab-
giebt.

Neben Druckabstufung (Expansion von
Rad zu Rad) findet man auch Geschwindig-
keitsabstufung, wobei die in den Diisen

- erzeugte Geschwindigkeit in mehreren Rédern

Fig. 68. schrittweise verringert wird. Die Stufen wer-

den angewandt, um die sonst sehr hohen
Schaufelgeschwindigkeiten (200—400 m/sec) zu erméssigen.

Die Dampfarbeit ldisst sich an der Hand der Diagramme von

P. Debye (Ber. d. Aachener Bez.-Ver. deutsch. Ing. 7. Juni 1905) behandelt und
zu einer Theorie der Abmessungen der Steuerungskanille verwertet.
144) Encykl. IV 21 (Gribler).
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Nr. 16 zeichnerisch verfolgen; fiir verlustlosen Arbeitsvorgang
entsprechen diese Diagramme genau denen fiir eine verlustlose
Kolbendampfmaschine. Fig. 68 giebt das Diagramm einer vielstufigen
Reaktionsturbine.

Die ersten technisch verwertbaren Turbinen waren die von
C. A. Parsons (1885) — eine vielstufige Reaktionsturbine — und die
von G. De Laval (1893)'%) — eine einstufige Aktionsturbine. In
neuerer Zeit sind als vielstufige Aktionsturbinen mit Druckstufen die
Rateau- und Zoellyturbine hinzugekommen. Eine Aktionsturbine mit
Geschwindigkeitsabstufung ist die von Curtis.

Die Litteratur tiber Dampfturbinen, erst sehr spirlich, ist in den
letzten Jahren stark im Zunehmen begriffen; den Lesern der Ency-
klopddie sei besonders das Stodola’sche Buch empfohlen, in dessen
dritter Auflage (1905) die meisten neueren Arbeiten Beriicksichtigung
gefunden haben. Als kiirzere zusammenfassende Aufsitze seien noch
genannt die Abhandlung von A4. Rateau in der Revue de mécanique 7
(1900), p. 167, ferner der Artikel ,Dampfturbinen in Lueger’s Lexikon
der gesamten Technik, 2. Aufl. Stuttgart 1905, Bd. II, p. 624, von
R. Proell. Besonders dieser letztere Aufsatz enthilt zahlreiche Litte-
raturnachweise.

145) Die Jahreszahlen beziehen sich aunf die erste Ausstellung der Maschinen.

(Abgeschlossen im Juli 1905.)






