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Druckkomponenten, welche auf die Seitenflichen wirken. Nach der
Gastheorie entsteht diese Beschleunigung dadurch, dass der im Pa-
rallelepiped enthaltenen Gasmasse durch die von den Seitenflichen
ein- und austretenden Molekiile Bewegungsmoment zugefiihrt wird.
Der Druck, welcher auf die der YZ-Ebene parallele Seitenfliche des
Parallelepipedes wirkt, muss also gleich dem in der Abszissenrichtung
geschitzten Bewegungsmomente sein, welches die Molekiile in der
Zeiteinheit durch diese Fliche hindurchtragen, wozu natiirlich das
entgegengesetzte Bewegungsmoment zu addieren ist, welches die aus-
tretenden Molekiile heraustragen.

Mazwell ®') bestimmt in seiner ersten gastheoretischen Abhand-
Inng bei Berechnung des Gasdruckes die Anzahl der auf den Stempel
treffenden Molekiile, indem er jedes, wie er es bei Berechnung der
Gasreibung thut, daraufhin priift, in welcher zum Stempel parallelen
Schichte es zum letztenmale mit einem andern zusammengestossen ist.

Uber die Berechnung des Gasdruckes aus dem Clausius'schen
Satze vom Virial und in dem Falle, dass die Molekiile elastische
Kugeln sind, deren Wirkungssphiire nicht gegen das Volumen des
Gases verschwindet, werden wir in Nr. 29 sprechen.

B. Wirmegleichgewicht.

6. Begriff des Wirmegleichgewichtes. Wenn das Gefiiss, wel-
ches das Gas umschliesst, absolut glatte elastische Winde und eine
einfache geometrische Form, z. B. die eines Parallelepipedes hat, so
werden unter entsprechenden Anfangsbedingungen allerdings Bewe-
gungen der Molekiile mdglich sein, welche ausserordentliche Regel-
missigkeiten zeigen. Es konnen sich z. B. alle Molekiile in Geraden
bewegen, welche einer Kante des parallelepipedischen Gefésses parallel
sind. Allein nach allen Erfahrungen, welche sich auf Ereignisse be-
ziehen, deren Eintreffen durch das Zusammenwirken ausserordentlich
vieler sich in der mannigfaltigsten Weise durchkreuzender Wirkungen
bedingt sind, kdénnen wir erwarten, dass dies nur vereinzelte Aus-
nahmefille sind.

Sobald die Gestalt des Gefidsses und der Anfangszustand der
Molekiile keine einander angepassten Regelmissigkeiten zeigen und
obendrein die Gefasswiinde aus Molekiilen bestehen, welche ebenfalls
in Wiarmebewegung begriffen sind, wird sich im Gase mit der Zeit
ein Zustand herausbilden, welchen wir einen molekular ungeordneten

21) Mazxwell, Scientific papers 1, p. 389; Phil. mag. (4) 19 (1860), p. 80.
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nennen wollen und in welchem die verschiedensten Geschwindigkeiten
und Geschwindigkeitsrichtungen in der regellosesten Weise unter den
Molekiilen verteilt sind.

Sei do ein Raumteil innerhalb des Gases, so wird man fiir die
Anzahl der Molekiile, fiir welche der Schwerpunkt innerhalb do liegt
und dessen Geschwindigkeitskomponenten zwischen den Grenzen

§ und § 4 dé
®) n und 7 +dy
¢ und ¢+ dg

liegen, einen Ausdruck von der Form

f(§7 7, ?)dgdndﬁdo

erhalten. Ist das Gas an allen Stellen innerhalb des Gefiisses gleich-
beschaffen, so wird die Funktion f dieselbe bleiben, wie immer der
Raumteil do innerhalb des Gases gewihlt werden mag. Ist jedoch
das Gas an verschiedenen Stellen verschieden beschaffen, wie es z. B.
eintreten muss, wenn die Schwere einen erheblichen Einfluss darauf
ausiibt, so kann die Funktion f verschieden ausfallen, wenn der Raum-
teil do an verschiedenen Stellen innerhalb des Gases gewihlt wird.
Man kann aber, wenn die Anzahl der Gasmolekiile geniigend gross
ist, noch immer an jeder Stelle des (Gases einen Raum & von der
Beschaffenheit konstruieren, dass er ausserordentlich viele Molekiile
enthiélt, dessen Dimensionen aber noch immer sehr klein gegeniiber
den experimentell zuginglichen Lingen sind, und von dem man
annehmen kann, dass die Funktion f unverindert bleibt, wenn man
den oben mit do bezeichneten Raumteil innerhalb des Raumes &
beliebig wihlt.

Nimmt man noch an, dass der Weg, den ein Molekiil von einem
Zusammenstosse bis zum ndchsten zuriicklegt, gross ist gegeniiber der
Distanz zweier Nachbarmolekiile, so werden die Verhiltnisse an der
Stelle, wo es das erstemal zum Zusammenstoss gelangte, vollkommen
unabhéingig sein von denen an der Stelle, wo es das nichstemal zum
Zusammenstoss gelangt. Man kann daher die Anzahl der Zusammen-
stosse, welche im Gase innerhalb einer gegebenen Zeit in gegebener
Weise stattfinden, mit gentigender Anniherung nach den Gesetzen der
Wahrscheinlichkeitsrechnung berechnen. Durch alle diese Umstiinde
ist derjenige Zustand des Glases bestimmt, welchen wir einen mole-
kular ungeordneten nennen.

Sein Eintreten ldsst sich aus den allgemeinen Bewegungs-
gleichungen der Mechanik nicht mit mathematischer Notwendigkeit
beweisen, ja er lisst sich vielleicht nicht einmal scharf gegen andere
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Zustinde abgrenzen, in denen noch gewisse Regelmissigkeiten vor-
handen sind, welche molekular geordnet sind. Dagegen sind die Ver-
suche, zu zeigen, dass der definierte Zustand des Gleichgewichtes der
lebendigen Kraft auf Widerspriiche fithre oder mit den Gesetzen der
Mechanik unvereinbar sei, ebenfalls erfolglos geblieben.

Die Voraussetzung dieses Zustandes muss also vorlaufig- als eine
Hypothese betrachtet werden, welche mathematisch einwandfrei ist, deren
Zulissigkeit nach allen Erfahrungen iiber Anwendbarkeit der Wahr-
scheinlichkeitsrechnung sehr plausibel ist und deren praktische Brauch-
barkeit durch die mannigfaltigen Ubereinstimmungen des mit ihrer
Hilfe konstruierten Bildes mit der Erfahrung bewiesen wird.

Nimmt man aber einmal an, dass ein Gas unter unveréinderten
dusseren Bedingungen wihrend sehr langer Zeit in einem molekular
ungeordneten Zustande bleibt, so lésst sich beweisen (vgl. Nr. 12 und
13), dass sich die Funktion f einer gewissen Form immer mehr
nihern muss, welche sie dann unverindert beibehdlt. Den durch
diese Form bedingten Zustand, der sich also gemiss den Wahrschein-
lichkeitsgesetzen im Gase stationir erhilt, nennt man den des Gleich-
gewichtes der lebendigen Kraft oder des Wirmegleichgewichtes.

7. BErster Beweis Maxwell’s fiir sein Geschwindigkeitsverteilungs-
gesetz. Die Form dieser Funktion wurde zuerst von Maxwell be-
stimmt. Derselbe setzte bei seiner ersten Ableitung ?¥) der Form
dieser Funktion voraus, dass sich das Gas nach allen Richtungen im
Raume vollkommen gleich verhdlt, dass daher fiir die Richtung der
Geschwindigkeit eines Molekiiles jede Richtung im Raume gleich
wahrscheinlich ist. Diese Voraussetzung ist wohl unbedenklich, wenn
der Einfluss der Schwere oder sonstiger #usserer Krifte auf das Gas
vernachléssigt werden kann. Berticksichtigt man jedoch den Einfluss
der Schwere, so bedarf sie eines besonderen Beweises.

Mazwell nimmt hierzu noch die zweite Annahme, dass die Wahr-
scheinlichkeit, dass die z-Komponente der Geschwindigkeit eines
Molekiiles zwischen bestimmten Grenzen liegt, vollkommen unabhingig
ist von der y- und z-Komponente der Geschwindigkeit desselben Mole-
kiiles. Letztere Annahme, von welcher spiter ausfithrlicher gesprochen
werden soll, wollen wir die Annahme A nennen. Aus ihr folgt, dass
sich der Ausdruck fiir die Anzahl der Molekiile, deren Schwerpunkte
in den Richtungen der Koordinatenaxen Geschwindigkeitskomponenten
haben, welche zwischen den in voriger Nummer mit (9) bezeichneten
Grenzen liegen, in der Form darstellt

22) Moaxwell, Phil. mag. (4) 19 (1860), p. 22; Papers 1, p. 380.
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FEF(n)f (&) dagdnag.
Da aber anderseits die Wahrscheinlichkeit einer bestimmten Geschwin-
digkeit nur von deren Grdsse, nicht von ihrer Richtung im Raume
abhiingen soll, so muss sich das Produkt f(£)f(n)f({) fir beliebige
Werte von £, , { auf eine Funktion von &% 4 %% -+ £ reduzieren,

woraus sofort folgt
f) = ae¥,

wobei @ und b Konstanten sind. Die letztere muss einen negativen
Wert haben, wenn sich die Anzahl der Molekiile als eine endliche
ergeben soll.

Mazxwell bemerkt jedoch selbst®), dass es nicht gerechtfertigt ist,
a priori die besprochene Annahme zu machen, dass dieselbe vielmehr
erst bewiesen werden kann, wenn sein Geschwindigkeitsverteilungs-
gesetz schon in anderer Weise abgeleitet worden ist, welche andere
Ableitung in nidchster Nummer besprochen werden wird. Dieselbe
Bemerkung wurde nachher noch oft wiederholt*). Trotzdem ging
dieser erste Mazwell'sche Beweis seiner ausserordentlichen Einfachheit
wegen in sehr viele Lehrbiicher und Darstellungen der Gastheorie
iiber und wurde besonders auch von Tait?%) wieder eingehend dis-
kutiert. Ja Bertrand und Poincaré®®) scheinen das Mazwell'sche Ge-
setz nur aus jenen Darstellungen gekannt zu haben, da sie dasselbe
widerlegt zu haben glauben, indem sie unter Ignorierung seiner spi-
teren Beweise wieder neuerdings auf den besprochenen schon von
Mazwell selbst und nachher so oft erkannten Mangel seines ersten
Beweises hinwiesen. Andere ebenfalls nicht ganz einwandfreie Beweise
des Mazwell'schen Geschwindigkeitsverteilungsgesetzes wurden von
Meyer ) und Buchanan *) gegeben.

8. Zweiter Beweis Maxwell’s fiir sein Geschwindigkeitsvertei-
lungsgesetz. Der zweite Beweis *), den Maxwell fiir sein Geschwin-

23) Maxwell, Phil. mag. (4) 35 (1868), p. 145; Papers 2, p. 43; Phil. Trans.157.

24) Kirchhoff, Wirmetheorie, 13. Vorles., § 6, p. 140; Voigt, Theor. Phys. 2,
p. 801; Boltzmann, Ann. Phys. Chem. 53 (1895), p. 958.

26) Tait, Edinb. Trans. 33, p. 66 und 252; Burbury, Phil. mag. (5) 21,
p. 481; Boltzmann, ebenda 23, p. 306; Burnside, Edinb. Trans. 383, p. 501.

26) Bertrand, Paris C. R. 122 (1896), p. 963, 1083, 1314; Boltzmann, Paris
C. R. 122 (1896), p. 1178; Bertrand, Calcul des probabilités, p. 29—32; Poincaré,
Calcul des probabilités, p. 21.

27) O. E. Meyer, Ann. Phys. Chem. 7 (1879), p. 317; 10 (1880), p. 296; Theorie
der Giase, 1. Aufl. math. Anhang; Boltzmann, Ann. Phys. Chem. 8 (1879), p. 653; 11,
p. 529. 28) Buchanan, Phil. mag. (5) 25 (1888), p. 165.

29) Maxwell, Papers 2, p. 44; Phil. mag. (4) 35 (1868), p. 186; Boltzmann,
Gastheorie, p. 82.
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digkeitsverteilungsgesetz liefert, bezieht sich in der Form, die ihm
Mazwell giebt, auf den Fall, dass die Molekiile vollkommen elastische
Kugeln oder materielle Punkte sind, welche eine Kraft auf einander
ausiiben, deren Richtung in ihre Verbindungslinie fallt und deren
Grosse eine solche Funktion ihrer Entfernung ist, welche nur fiir sehr
kleine Entfernungen erhebliche Werte annimmt.

Im Falle des Warmegleichgewichtes eines homogenen Gases kann
der Ausdruck fiir die auf die Volumeneinheit entfallende Zahl der Gas-
molekiile, fir welche die Komponenten der Geschwindigkeit in den
drei Koordinatenrichtungen zwischen den Grenzen liegen, welche in
Nr. 7 als die Grenzen (9) bezeichnet wurden, nach dem Gesagten in
die Form gebracht werden]

(10) fEnEdEdqdg.

Wir wollen nun die Anzahl dv der Zusammenstdsse berechnen,
welche diese Molekiile wihrend irgend einer Zeit 0¢ mit solchen Mole-
kiilen erfahren, deren Zustand vor dem Zusammenstosse durch die
folgenden zwei Bedingungen bestimmt ist: Die eine Bedingung soll
der Bedingung (9) vollkommen analog lauten, nur dass simtliche
darin vorkommenden Grdssen im allgemeinen irgend welche andere
Werte haben, welche wir mit dem Index 1 bezeichnen wollen. Wir
wollen diese erste Bedingung die Bedingung (11) nennen. Unsere zweite
Bedingung, welche (11a) heissen mége, soll verlangen, dass die Liinge
der kiirzesten Entfernung OO’ der beiden Geraden, in denen sich die
Centra der Molekiile vor dem Stosse bewegten, zwischen b und
b + db liegen und dass die Richtung der Geraden OO" mit einer be-
stimmten Richtung G einen Winkel bilde, welcher zwischen ¢ und
&+ de liegt. Als letztere Gerade kann man die Durchschnittslinie
einer auf der Richtung der relativen Geschwindigkeit ¥ der Molekiile
vor dem Stosse senkrechten und einer beliebigen fixen Ebene wihlen.

Da der Zustand des Gases unserer Annahme gemiss molekular
ungeordnet ist, so kann die Anzahl dv der Zusammenstosse, welche
wir berechnen wollen, nach den Gesetzen der Wahrscheinlichkeits-
rechnung gefunden werden. Wir ziehen durch den Mittelpunkt jedes
der Molekiile, deren Anzahl durch die Formel (10) gegeben ist, eine
Ebene senkrecht zu V, konstruieren in jeder dieser Ebenen den Kreis-
ring, welcher von den dem Molekiile konzentrischen Kreisen mit den
Radien b und b 4 db begrenzt ist. Aus jedem solchen Kreisring
schneiden wir durch die beiden Radien, welche mit der Gteraden G
die Winkel ¢ und & 4 dé& bilden, ein Flichenelement heraus und kon-
struieren iiber jedem solchen Flichenelemente ein rechtwinkliges
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Parallelepiped von der Hohe Vd¢, also dem Volumen bdbdeVédt. —
Da die Anzahl dieser Parallelepipeda ebenfalls durch die Formel (10)
gegeben ist, so erhalten wir das gesamte Volumen aller dieser
Parallelepipeda, indem wir das Volumen eines derselben mit dem Aus-
drucke (10) multiplizieren. Die Anzahl der Molekiile, welche sich in
einem dieser Parallelepipeda zu Anfang der Zeit 0¢ befinden und fiir
welche die Geschwindigkeitskomponenten innerhalb der Grenzen (11)
liegen, wird nach den Wahrscheinlichkeitsgesetzen gefunden, indem
man dieses Produkt noch mit f(§,, v, &) d§, dn, df, multipliziert, und
man sieht leicht, dass alle diese Molekiile wihrend der Zeit d¢ an
einem Molekiile, dessen Geschwindigkeitskomponenten zwischen den
Grenzen (9) liegen, so voriibergehen wiirden, dass dabei zugleich b
und & zwischen den Grenzen b und b 4 db und ¢ und & -+ de liegen,
wenn zwischen den Molekiilen keine Wechselwirkung stattfinden wiirde,
d. h. dass alle diese Molekiile zugleich unserer Bedingung (11a) ge-
niigen.

Nun ist die Anzahl der so berechneten Voriibergiinge gleich der
frither mit dv bezeichneten Zahl der Zusammenstosse und man hat

(12)  dv={((EnO)fEmb)VbdEdydf dE dy, df, dbdedt.

Fiir alle diese Zusammenstdsse sollen nun die Geschwindigkeitskompo-
nenten der beiden Molekiille nach dem Stosse zwischen den Grenzen

¢ und & + dé
(13) 7y und 7y + dng

& und & + df
und

£, und &5 + d&
(14) 7y und 7y + d7g

& und & 4 d§;

liegen. Dann ist die Zahl der Zusammenstosse, welche in der Volumen-
einheit des Gases wihrend der Zeit 0¢ umgekehrt so erfolgen, dass
vor denselben die Gleschwindigkeitskomponenten der beiden stossenden
Molekiile zwischen den Grenzen (13) und (14) liegen, wihrend b und ¢,
deren Werte durch die Zusammenstisse so wenig wie der von V ver-
#ndert werden, zwischen denselben Grenzen liegen,

(15) dv; = [ (§3ms gz)f@a’isés) Vbdt dngdfy db; dmydb; dbde ot.

Fiir die letzteren Zusammenstosse liegen aber umgekehrt die Ge-
schwindigkeitskomponenten der beiden stossenden Molekiile nach dem
Stosse zwischen den Grenzen (9) und (11), und man sieht sofort, dass

die Zustandsverteilung durch die Zusammenstisse nicht verindert wird,
Encyklop. d. math. Wissensch. V 1. 33
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wenn fiir alle moglichen Zusammenstosse dv = dv, ist. Nun ist
aber, wie wir sogleich in Nr. 10: sehen werden, stets

(16) dEdndtdE dn di = dt,dnydb dEsdngdi,,
daher ist die Gleichung dv = d», erfiillt, wenn man fiir alle mdog-
lichen Werte der Variabeln hat

(17) FENDf Em&) = F(Eameb) F(Esmsy)-
Hieraus folgt, wenn, wie wir bisher vorausgesetzt haben, alle Mole-
kiile gleichartig sind, mit Riicksicht darauf, dass die Energie beim
elastischen Stoss erhalten bleibt und dass die Funktion f nur von
der Verbindung £* 4 75? + ¢* abhingen kann,

711;(5% 7+

(18> f(g) N5 C) = Ade ’

welche Gleichung das Maxwell’sche Geschwindigkeitsverteilungsgesetz
ausdriickt. Ist n die Anzahl der Molekiile in der Volumeneinheit, so

erhilt man durch Integration iiber alle Werte von §, 9, ¢, 4 = —= -
o

Aus Formel (18) kann nun allerdings die Richtigkeit der in Nr. 8
mit A bezeichneten Annahme Mazwell's bewiesen werden, nicht aber
darf dieselbe zur Ableitung der Form des Geschwindigkeitsverteilungs-
gesetzes benutzt werden.

9. Bemerkungen zu Nr. 8. Ist das Gas ein Gemisch mehrerer
einfacher Gase, so gilt fiir die Zusammenstosse zweier verschieden-
artiger Molekiile eine der Gleichung (17) vollkommen analoge Glei-
chung, nur dass in derselben die beiden Funktionen £, die sich auf
verschiedene (fase beziehen, von einander verschieden sein konnen.
Man sieht sofort, dass dieselbe erfiillt ist, wenn jede dieser Funktionen
die Form (18) hat und die Werte der Konstanten «? sich verkehrt
wie die Massen eines Molekiiles des betreffenden (tases verhalten.
Daraus beweist man leicht, dass die mittlere lebendige Kraft der fort-
schreitenden Bewegung eines Molekiiles fiir alle Gtasarten denselben
Wert hat, wodurch eine der zur Erklirung des Awogadro’schen und
Dalton’schen Gesetzes erforderlichen Voraussetzungen (vgl. Nr. 4) gas-
theoretisch begriindet ist.

Dass in einem Gemische verschiedenartiger Gasmolekille durch
die Zusammenstosse Gleichheit der mittleren lebendigen Kraft aller
Molekiile bewirkt wird, wurde schon in einer fritheren Abhandlung %)
Maxwell's und spiter von Stefan®) und Tait ) bewiesen. Letzterer

30) Mazwell, Papers 1, p. 383; Phil. mag. (4) 19 (1860), p. 25.
31) Stefan, Wien. Ber. (2) 65 (1872), p. 354.
32) Tadt, Edinb. Trans. 33 (1886), p. 79; Edinb. Proc. 13, p. 21.
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sowie auch Natanson 3®) berechneten auch die Geschwindigkeit, mit
welcher der Ausgleich der lebendigen Kraft vor sich geht. Erwihnt
sei noch eine allerdings einen Spezialfall behandelnde Arbeit Rayleigh’s *).
Auch Waterston *°) hat diesen Satz in einer schon 1845 iiberreichten,
aber erst 47 Jahre spiter abgedruckten Abhandlung erwihnt, wenn
auch nicht zureichend begriindet. Letztere Abhandlung enthilt noch
vieles Interessante, so eine gastheoretische Ableitung der Schall-
geschwindigkeit, des Gasdruckes auf eine bewegte Wand u. s. w.

Aus dem bisher Entwickelten folgt bloss, dass die Maxwell'sche
Geschwindigkeitsverteilung, wenn sie unter den Gasmolekiilen besteht
durch die Zusammenstosse den Gesetzen der Wahrscheinlichkeit ge-
miss nicht geéindert wird. Maxwell®®) hat auch schon eine Schluss-
weise angedeutet, aus welcher hervorgeht, dass sie die einzige ist,
welche diese Bedingung erfiillen kann. Dieselbe wurde weiter aus-
gearbeitet durch Planck®") und Boltzmann®) und léuft darauf hinaus,
dass eine Geschwindigkeitsverteilung, welche dem Wirmegleichgewicht
entspricht, sich den Wahrscheinlichkeitsgesetzen gemdss durch sehr
lange Zeit erhalten muss. Kehrt man am Ende dieser Zeit die Rich-
tungen der Geschwindigkeiten aller Molekiile um, ohne deren Grosse
zu #ndern, so muss sie daher wieder in eine dem Wirmegleichgewichte
entsprechende iibergehen. Dabei treten aber an Stelle der Molekiile,
fiir welche die Variabeln zwischen den Grenzen (9) und (11) liegen,
diejenigen fiir welche sie zwischen den Grenzen (13) und (14) liegen
und umgekehrt, was dann direkt zur Gleichung (17) fiihrt.

Der gesamte soeben dargestellte Mazwell'sche Beweis fiir dessen
Geschwindigkeitsverteilungsgesetz wurde in etwas anderer Weise dar-
gestellt von Kirchhoff ).

10. Der Satz beziiglich der gastheoretischen Funktionaldeter-
minante. Der Beweis der Gleichung (16), welche auch so geschrieben
werden kann

2_‘_?_&_2_8772 0% 0& Ong 3_{,, =1

—— 0& On 0t 0§ om ¢&

33) Natanson, Ann. Phys. Chem. 84 (1888), p, 970.

34) Rayleigh, Phil. mag. (5) 32 (1891), p. 424.

35) Waterston, London Phil. Trans. 183 (1892), p. 1—81.

36) Maxwell, Papers 2, p. 46; Phil. mag. (4) 35 (1868), p. 187.

37) Planck, Miinch. Ber. 24, Nov. 1894,

38) Boltemann, Ann. Phys. Chem. 55 (1895), p. 223; Gastheorie 1, p. 44.

39) Kirchhoff, Vorles. tiber Wiarmetheorie, 14. Vorles.; vgl. auch Boltzmann,
Ann. Phys. Chem. 53 (1894), p. 966; 556 (1895), p. 223; Planck, Miinch. Ber. 24,
Nov. 1894.

33*
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(&7 ... & als Funktionen von £7 ... ¢ und den frither gebrauchten
Variabeln b und & gedacht), wurde von Maxwell selbst nur fliichtig
angedeutet. Ein ausfiihrlicher Beweis dieser Gleichung, sowie anderer,
welche teils spezielle Fille derselben, teils allgemeiner sind, wurde
zuerst von Boltzmann®®) erbracht. Die Gleichung selbst erwies sich
als spezieller Fall eines von Liouville aufgestellten Prinzipes %t).

Dieselbe wurde spiter in ziemlich umstéindlicher Weise von
Stankewitsch*?) bewiesen. Am einfachsten und klarsten jedoch von
H. A. Lorentz*®).

Letzterer beldsst in dem Differentialausdrucke d&dydfdé§, dn, dg,
zunichst die drei ersteren Variabeln, filhrt aber statt der drei letz-
teren die Komponenten u, v, w des gemeinsamen Schwerpunktes der
Molekiile in den drei Koordinatenrichtungen ein. Sind m, und m,
die Massen der moglicherweise verschiedenartigen Molekiile, so ver-
wandelt sich hier zunichst der Differentialausdruck in

(~———m‘ :l_m”)sdﬁ dyndtdudvdw.
2
In dem letzteren Differentialausdruck werden nun statt &, 5, & die
Geschwindigkeitskomponenten &, 7,, §, desselben Molekiiles nach dem
Stosse eingefiihrt, u, v, w aber belassen. Man sieht unmittelbar aus
der geometrischen Konstruktion, durch welche die Geschwindigkeits-
komponenten vor und nach dem Stosse, sowie die des Schwerpunktes
dargestellt werden, dass dann

dédndf = d&dn, dt

ist. Hierauf wird bei konstantem &,, 7,, {, an Stelle von w, v, w
wieder £, 7,, b eingefiihrt, was liefert

m 3

du dvdw — (mj—ﬁz) Ak, d, dg,,

womit die Gleichung (16) erwiesen ist. Diese Gleichung ist iibrigens
nur ein ganz spezieller Fall der viel allgemeineren, welche wir in
Nr. 28 kennen lernen werden.

11. Das H-Theorem. Es soll nun untersucht werden, unter
welchen Annahmen sich beweisen lisst, dass der Zustand des Gases
sich dem von Maxwell angegebenen Zustand des Wirmegleichgewichtes
nihern und in diesem sehr lange verharren muss.

40) Boltzmann, Wien. Ber. (2) 58 (1868), p. 517.

41) Kirchhoff, Vorles. iiber mathem. Phys.: Theorie der Wirme, p. 144.
42) Stankewitsch, Ann. Phys. Chem. 29 (1886), p. 153.

48) H. A. Lorentz, Wien. Ber. (2) 95 (1887), p. 115,
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Die allgemeinste Aufgabe, welche man sich da stellen kénnte,
wire folgende: Es herrsche in einem Gase anfangs nicht die Maz-
well'sche Zustandsverteilung, sondern es habe zu Anfang jedes Molekiil
eine gegebene Lage Geschwindigkeit und Bewegungsrichtung. Es soll
nun der ganze zeitliche Verlauf der allméhlichen Zustandsveriinderungen
berechnet werden. In dieser Allgemeinheit lisst sich nun die Auf-
gabe freilich nicht in fibersichtlicher Weise mathematisch 1sen; man
muss vielmehr, um zu verwendbaren Formeln zu gelangen, voraus-
setzen, dass der Anfangszustand des Gases molekular ungeordnet ist
und es auch im Verlaufe der Zeit bleibt. Das Gesamtvolumen des
Gases lisst sich also in Volumenelemente zerlegen, welche noch ausser-
ordentlich viele Molekiile enthalten, aber doch noch sehr klein sind
gegeniiber den sichtbaren R#umen, mit denen wir es wihrend der
Beobachtung zu thun haben. In jedem Volumenelemente sind ferner
Molekiile mit allen méglichen Geschwindigkeiten und Bewegungs-
richtungen unter einander gemischt, so dass der Anfangszustand des
Gases, sowie auch jeder folgende geniigend definiert ist, wenn man
den Wert einer Funktion f (xyz&nft) fiir die betreffende Zeit und
alle moglichen Werte der iibrigen Variabeln kennt. Das Produkt
dieser Funktion in den Differentialausdruck dzdydzdgdndE stellt
dabei die Anzahl der Molekiile dar, deren Mittelpunkte zur Zeit ¢ in
dem Volumelemente liegen, welches alle Punkte umfasst, deren Koordi-
naten zwischen den Grenzen

(19) z und x +dz, yund y+4dy, 2 und z+4 dz

eingeschlossen sind und fiir welche gleichzeitig die Komponenten der
Geschwindigkeit in den Koordinatenrichtungen zwischen den Grenzen

(20) gund £+ dE, oy und p+dy, & und -+ dE
liegen.

Die Verhiltnisse an der Stelle, wo ein Molekiil zum Zusammen-
stosse gelangt ist, sind ausserdem unabhingig von denen an der Stelle,
wo es das nichstemal zusammenstGsst, so dass die Héufigkeit der Zu-
sammenstosse von irgend einer Beschaffenheit nach den Gesetzen der
Wahrscheinlichkeitsrechnung bestimmt werden kann %4).

44) Diese Voraussetzung der Ungeordnetheit der Bewegung wird teilweise
aufgegeben von Burbury, dessen zitiertes Buch, sowie Phil. mag. (5) 50 (1900),
. 684; (6) 2 (1901), p. 403; 7 (1904), p. 467; Ann. Phys. 3 (1900), p. 3565. Vgl
auch Zemplen Gyozo, Ann. Phys. 2 (1900), p. 404; 3 (1900), p. 761. Mathematisch
durchgearbeitet wird der Begriff der Ungeordnetheit der Bewegung von Jeans,
Phil. mag. (6) 5 (1903), p. 597; Quart. journ. of pure and appl. math. 1904, n. 139;
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Die Gasmolekiile konnen dabei als elastische Kugeln oder als
Kraftzentra betrachtet werden, zwischen denen Zentralkrifte wirken.
Aussere Krifte wie die Schwere sollen nicht von der Betrachtung
ausgeschlossen werden, ihre Grosse nnd Richtung soll sich jedoch von
Volumelement zu Volumelement kontinuierlich #ndern, und es seien
X, Y, Z die Komponenten der beschleunigenden (auf die Massenein-
heit des Gases wirkenden) #usseren Kraft an der Stelle mit den
Koordinaten z, y, #

Dann reduziert sich das Problem, die Zustandséinderung des Gases
zu finden, auf die Aufgabe, die zeitliche Verinderung der oben ein-
gefiihrten Funktion f zu finden. Dieselbe wird hervorgerufen erstens
dadurch, dass die Molekiile vermége ihrer Bewegung aus einem Volum-
elemente in das andere wandern; zweitens dadurch, dass durch die
dusseren Krifte ihre Geschwindigkeitskomponenten verindert werden;
drittens durch die Zusammenstosse der Molekiile. Fasst man alle
diese Andemngen zusammen, so erhdlt man fiir die Funktion f die
folgende Diﬂ‘erentialgleichung-

el il el + x4+ vil4 2y

= [ (fafy —fﬂ)Vbdsldmdzl dbds.

Die Bedeutung der Buchstaben ist hier dieselbe wie in Nr. 9.

fs f1, I3, 3 sind Abkiirzungen fiir
f(xyzEntt), f(zyzén6it) ws w

Die Integration erstreckt sich auf alle Werte von &, 4, ¢, zwischen
— o0 und + oo, auf alle Werte O > &> 2x und alle diejenigen
Werte von b, welche kleiner als der Radius der molekularen Wirkungs-
sphire sind.

Ist ein Gemisch mehrerer Gase gegeben, so gilt fiir jedes einzelne
Gas eine analoge Gleichung, nur dass noch andere dem letzten Gliede
gleichgebaute auftreten, welche die Verinderung von f durch die Zu-
sammenstsse mit den Molekiilen anderer Art darstellen. Das Resultat,
welches man erhiélt, wenn man diese Gleichung mit dem Produkte
von dEdnd¢ und einer beliebigen Funktion von §, %, & multipliziert
und iiber alle £, 5, ¢ integriert, hat schon Mazwell*®) gegeben, die
Gleichung selbst findet sich zuerst bei Bolizmann*®). Will man bloss

@y

Pannekoek, Proc. Amst. Ak. 6 (1903), p. 42; Versl. (1903), p. 68; Liénard, Journ,
d. phys. (4) 2 (1903), p. 677.

45) Maazwell, Papers 2, p. 56; Phil. mag. (4) 35 (1868), p. 197.

46) Boltzmann, Wien. Ber. (2) 66 (1872), p. 324.
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das Meaxwell'sche Gteschwindigkeitsverteilungsgesetz beweisen, so kann
man sie natiirlich dadurch vereinfachen, dass man die dusseren Krifte
wegldsst und f von z, y, £ unabhiingig annimmt.

Aus der Gleichung (21) lésst sich der Beweis liefern, dass die
Grosse

(22) H= [flogfdxdydedtdndt

durch die fortschreitende Bewegung der Molekille und durch die
dusseren Krifte gar nicht geéindert wird, sobald die Gestalt des das
(tas umschliessenden Gtefiisses unveréindert bleibt. log bedeutet den
natiirlichen Logarithmus, die Integration ist so wie in dem letzten
Gliede der Formel (21) iiber alle moglichen Werte der Variabeln zu
erstrecken. Hat man es mit einem Gasgemische zu thun, so tritt an
die Stelle der durch Gleichung (22) gegebenen Grosse H eine Summe
gleichgebauter, auf jede einzelne Gtasart sich beziehender Glieder. Be-
ziiglich der Veréinderung, welche H durch die Bewegung der Gefiss-
wiinde erleidet, vgl. Boltemann, Gastheorie 1, p. 126.

Die Veréinderung der Grosse H infolge der Zusammenstdsse der
Molekiile stellt bei unveréinderlichen Gefésswinden iiberhaupt die ge-
samte Verinderung dieser Grésse dar. Man findet fiir dieselbe mit
Hilfe der Gleichung (21) zunichst den Ausdruck

8 [Yogf (fufy— f1) Vb do dw dw, db de.
Hierbei wurde zur Abkiirzung do, dw und de, fir dedyds, dEdydg
und d§ dn, d§ geschrieben. Die Integration ist wieder iiber alle
moglichen Werte der Variabeln zu erstrecken. Vertauscht man ein-
mal die Rollen der beiden zusammenstossenden Molekiile, dann in
beiden Fillen den Beginn und dasgEnde des Zusammenstosses, so
kann man unter Benutzung des in voriger Nummer entwickelten
Funktionaldeterminantensatzes der Gastheorie diesen Ausdruck in drei
andere transformieren, welche sich nur dadurch vom urspriinglichen
unterscheiden, dass an Stelle von logf tritt logf; respektive — logf, oder

dH].
at =

gleichen Ausdriicke, so folgt
dH
G = 1 [ Do () — 1o (A - (hfy — f1) Vb dododo, db .

Da dieser Ausdruck wesentlich negativ ist, so kann die Grosse H nur
abnehmen, und da sie nicht — co werden kann, so muss sie sich
einem Minimumwerte nahern, fiir welchen fiir alle moglichen Zu-
sammenstsse

— logf,. Setzt man gleich dem arithmetischen Mittel dieser vier
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(23) ffy=rlsfs

sein muss, wozu fiir ein Gasgemisch noch analoge Gleichungen fiir die
Zusammenstosse verschiedener Molekiile treten. Dieser Minimumwert
von H entspricht dem Wéarmegleichgewicht. Das H-Theorem wird
entwickelt von Boltzmann*') und Lorentz*8).

12. Konsequenzen des H-Theorems. Aus der Gleichung (23)
folgt unmittelbar das Maxzwell'sche Geschwindigkeitsverteilungsgesetz
und fiir ein Gasgemisch die Gleichheit der mittleren lebendigen Kraft
der Molekiile je zweier Gasarten.

Sobald dussere Kriifte wirken, folgt zudem aus der Gleichung (21),

in welcher fiir den Fall des Wirmegleichgewichtes % =0 wird und

welche fiir alle moglichen Werte von &, %, § erfiillt sein muss, dass
die Dichte in jedem Volumelement denjenigen Wert annimmt, welcher
den gewShnlichen aerostatischen Gleichungen entspricht (fiir ein schweres
Gas der Formel fiir das barometrische Hohenmessen), und dass sich
bei einem Gasgemische jedes Gtas unabhiéngig vom andern verteilt.
In jedem Volumelemente aber ist unabhiingig von den #usseren Kriiften
jede Bewegungsrichtung eines Molekiiles gleich wahrscheinlich, und es
herrscht die Mazwell'sche Geschwindigkeitsverteilung, wobei die mitt-
lere lebendige Kraft eines Molekiiles (die Temperatur) an allen Stellen
des Gases und fiir alle Molekiile gleich ist. In einem speziellen Falle
wurde dies schon von Maxzwell*®) nachgewiesen. Uber die Berech-
nung des Wirmegleichgewichtes in einem schweren Gtase vom Stand-
punkte der kinetischen (tastheorie ist eine ausgebreitete Litteratur
vorhanden ).

Die Sitze iiber das Wirmegleichgewicht von Gasen hat Bryan®?)
beniitzt, um den gastheoretischen Beweis des Avogadro’schen Gesetzes
zu vervollstindigen. Er denkt sich zwei ebene Winde 4 und B.
Zwischen beiden befindet sich ein Gemisch zweier Gase. B iibt auf

47) Boltzmann, Wien. Ber. (2) 66 (1872), p. 296; Gastheorie 1, p. 124.

48) Lorentz, Wien. Ber. (2) 95 (1887), p. 127; Amsterd. Versl. 5 (1896),
p. 252.

49) Maxwell, Papers 2, p. 76; Phil. mag. (4) 85 (1868), p. 215.

50) Loschmidt, Wien. Ber. 73 (1876), p. 128 und 136; 75 (1877), p. 287;
76 (1878), p. 209; Robida, Zeitschr. Math. Phys. 1864, p. 218; Clausius, Zeitschr.
Math. Phys. 1864, p. 8376; Guthrie, Nature 8 (1873), p. 67, 486; Hansemann, Ann.
Phys. Chem. Suppl. 6 (1874), p. 417; Murphy, Nature 12, p. 26; Houllevigue,
Journ. de phys. (3) 4 (1895), p. 180; Ritter, Zahlreiche Monographien und Abhandl.
in Ann. Phys. Chem. speziell iiber die Atmosphiren der Himmelskorper; F. M.
FExner, Ann. Phys. 7 (1902), p. 688.

51) Bryan, Wien. Ber. (2) 103, p. 1127.
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die Molekiile des einen und A auf die Molekiile des anderen Gases
eine bei unendlicher Anndherung unendlich gross werdende Abstossung
aus, so dass rechts von B nur Molekiile der zweiten und links von
A nur solche der ersten Gasart vorhanden sein kénnen, wihrend B
fir die Molekiile der zweiten und A fiir die der ersten Gasart per-
meabel ist. Die Schicht zwischen 4 und B ist dann ein mechani-
sches Bild einer zwei (Gase trennenden wirmeleitenden Wand, fiir
welche die (leichheit der mittleren lebendigen Kraft beider Molekiil-
gattungen aus den gastheoretischen Sitzen bewiesen werden kann.

13. Die Entropie. Berechnet man den Ausdruck H fiir ein im
Wiirmegleichgewicht befindliches einfaches oder zusammengesetztes
Gas, so findet man, abgesehen von einem konstanten negativen Faktor
und einem konstanten Addenden, einen Ausdruck, welcher mit der
Grosse identisch ist, die man in der Wiarmetheorie als die Entropie
des betreffenden Gases bezeichnet. Der Satz also, dass durch alle
Naturvorginge die Entropie eines abgeschlossenen Systems nur zu-
nehmen kann, ist vom gastheoretischen Standpunkte aus identisch mit
dem Satze, dass die Grosse H fiir beliebige in Bewegung begriffene
und diffundierende, fest umgrenzte Systeme von Gasen nur abnehmen
kann. -

Dieser Satz erhdlt noch eine Illustration durch die folgenden Be-
trachtungen *2). Wir nehmen an, wir hétten eine gegebene, sehr grosse,
aber endliche lebendige Kraft L unter eine sehr grosse, aber endliche
Zahl N von Molekiilen (materiellen Punkten oder nicht rotierenden
Kugeln) zu verteilen. Wir betrachten es als gleich mogliche Fille,
dass die Komponenten der Geschwindigkeit eines bestimmten Mole-
kiilles in den Koordinatenrichtungen zwischen den Grenzen

Ound ¢ Ound & O und &
oder

Ound ¢, Ound &, & und 26 u s w

liegen. Die Anzahl der Molekiile, die sich im ersten Falle befinden,
bezeichnen wir mit @y, die Anzahl derjenigen, welche sich im zweiten
Falle befinden, mit @y, u.s.w. Sind die Werte von gy, g, ge-
geben, so sagen wir, es ist eine bestimmte Geschwindigkeitsverteilung
G im Gase gegeben.

Jede Geschwindigkeitsverteilung kann in verschiedener Weise her-
gestellt werden, je nachdem sich die einen oder anderen Molekiile

62) Vgl. Boltzmann, Wien. Ber. (2) 76, Oktober 1877; Gastheorie 1, p. 38;
Wien, Ber. (2) 76 (1877), p. 378; vgl. auch das zit. Lehrbuch von Jeans.
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unter den @y, oder @y, u.s.w. Molekiilen befinden, und da es
als gleich moglich betrachtet wurde, dass sich ein bestimmtes Mole-
kil unter den @y, oder wy, u.s. w. Molekiilen befindet, so ist die
Anzahl der gleich moglichen Fille, unter denen die Geschwindigkeits-
verteilung G eintritt (die Wahrscheinlichkeit dieser Gteschwindigkeits-
verteilung) gleich der Zahl, welche angiebt, wievielmal sich » Ele-
mente so in Gruppen verteilen lassen, dass der ersten Gruppe g,
der zweiten wy, Elemente u.s. w. angehoren. Diese Anzahl ist aber
gleich

N!
@4 ol o1
Wir wollen nun ey, @y, . s. w. als sehr grosse Zahlen betrachten
und fiir die Faktorielle die bekannte Annéherungsformel gebrauchen.
Ferner fiihren wir statt o wieder die Bezeichnung f(§75¢{) ein,
welche Funktion wir vorldufig unabhingig von z, y, # voraussetzen.
Dann geht der allein verinderliche Nenner des Ausdruckes (24), ab-
gesehen von einem konstanten Faktor und Addenden, in den durch die
Gleichung (22) der Nr. 12 gegebenen Ausdruck H iiber. Da aber
der Ausdruck (24) die Wahrscheinlichkeit der betreffenden Zustands-
verteilung angiebt, so besagt der in Nr. 12 entwickelte Satz, dass der
Ausdruck H nur abnehmen kann, nichts anderes, als dass die Zu-
standsverteilung stets von einer unwahrscheinlicheren zu einer wahr-
scheinlicheren iibergeht und dass die Entropie mit dem Ausdrucke
der Wahrscheinlichkeit fiir die betreffende Zustandsverteilung iden-
tisch ist.

Man wiirde daher irren, wenn man glauben wiirde, die Maax-
well'sche Zustandsverteilung sei ein exzeptioneller Zustand. Sobald
man vielmehr ganz dem Zufalle iiberlassen die Geschwindigkeiten
bald so, bald so unter den Molekiilen verteilt, so werden bei weitem
die meisten Verteilungsarten den Charakter der Maxwell'schen an
sich tragen und nur verhiltnismissig ausserordentlich wenige in be-
merkbarer Weise davon abweichen. Dies ist eben die Ursache, warum
der Wahrscheinlichkeit gemiss die Mazwell'sche Zustandsverteilung
eintritt und sich durch enorm lange Zeit erhilt.

Analoges findet man bei der Methode der kleinsten Quadrate.
Die Gauss’'sche Fehlerverteilung ist keineswegs eine exzeptionelle, die
infolge besonderer Ursachen eintritt, sondern es fithren vielmehr bei’
weitem die meisten Anordnungen der Elementarfehler zum Gauss-
schen Gesetze, und nur ganz wenige exzeptionelle Verteilungen der
Elementarfehler fiihren auf wesentlich abweichende Fehlergesetze.

Das H-Theorem lésst sich bedeutend verallgemeinern und auf
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mechanisch viel komplizierter gebaute Systeme iibertragen, wie wir
zum Schlusse der Nr. 28 sehen werden. Es hat daher den Anschein,
dass die Einseitigkeit des Verlaufes aller Naturvorginge tiberhaupt
darin begriindet ist, dass die Zustinde immer von unwahrscheinlicheren
zu wahrscheinlicheren iibergehen.

Die Beziehung zwischen Entropie und Wah rscheinlichkeit zeigt
sich im Gibbs'schen Paradoxon®), dass die Entropie eines Ge-
misches zweier sehr #hnlicher Gtase plétzlich viel grosser ist, wenn
beide Gase vollstindig gleich sind.

14. Einwendungen gegen die Anwendung der Statistik auf
die Gastheorie. Die Beweise des Maxwell'schen Geschwindigkeits-
verteilungsgesetzes sind keineswegs so aufzufassen, als ob sich aus
den Bewegungsgleichungen der Mechanik allein beweisen liesse, dass
sich der Zustand einer endlichen Zahl von Gasmolekiilen, die sich in
einem von absolut elastischen Wénden umschlossenen Raume befinden,
wie immer ihr Anfangszustand beschaffen gewesen sein mag, mit
mathematischer Notwendigkeit einem stationéiren Endzustande nihern
miissten, der dann in alle Ewigkeit fortbesteht.

Dass dies nicht moglich ist, folgt, wie mehrmals hervorgehoben 5)
wurde, schon daraus, dass das Gas alle Zustinde genau in umgekehrter
Reihenfolge durchlaufen miisste, wenn in einem Zeitmomente die Rich-
tungen der Geschwindigkeiten aller Molekiile umgekehrt wiirden, ohne
Anderung ihrer Grosse.

Poincaré®) folgert es aus der vollkommenen Symmetrie der Be-
wegungsgleichungen der Mechanik, beziiglich der positiven und nega-
tiven Zeit, welche sie zur Erklirung eines einseitigen Verlaufes der
Naturvorginge ungeeignet mache.

Zum gleichen Resultate gelangt Zermelo®®) durch die folgenden
Betrachtungen: )

Wie wir in Nr. 27 sehen werden, besagt der Liouwille'sche Satz,
dass, wenn unendlich viele mechanische Systeme von unendlich nahe

53) Gibbs, Thermodynam. Studien, Leipzig 1892, p. 196; Wiedeburg, Ann.
Phys. Chem. 53 (1894), p. 684,

54) Breton, Mondes 2 (1875), p. 38; Loschmidt, Wien. Ber. (2) 73 (1876),
p. 139; Boltzmann, Wien. Ber. (2) 75, 11. Januar 1877. Zahlreiche Briefe in
Nature 51 vom 25. Okt. 1894 bis 18. April 1895, besonders Burbury, 22. Nov.
1894, Boltzmann, 28. Febr. 1895; Culverwell, Phil. mag. (5) 30, p. 59.

55) Poincaré, Paris C. R. 108 (1889), p. 550; Thermodynamique, p. 422.

56) Zermelo, Ann, Phys. Chem. 57 (1896), p. 485; 59 (1896), p. 798; Phys.
Zeitschr. 1 (1900), p. 317; Boltzmann, Ann. Phys. Chem. 57 (1896), p. 773; 60
(1897), p 392.
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liegenden Anfangsbedingungen ausgehen, das Produkt der Differentiale
der Koordinaten und Momente, welches angiebt, zwischen welchen
Grenzen diese eingeschlossen sind, seine Grosse mit der Zeit nicht
indert. Daraus schliesst Poincaré bei Behandlung gewisser mit dem
Dreikorperprobleme in Verbindung stehender Fragen, dass, spezielle
Fille ausgenommen, ein beliebiges mechanisches System, welches sich
so bewegt, dass alle seine Koordinaten und Momente stets innerhalb
endlicher Grenzen liegen, in geniigend langer Zeit immer wieder ein-
mal beliebig nahe seinem Anfangszustande kommen muss, ferner dass
dies in entsprechend langer Zeit zum zweiten Male u. s. w. geschehen
muss 7).

Diesen Satz verwendet Zermelo, um zu beweisen, dass sich ein
System einer endlichen Zahl von Molekiilen, die in einem starren un-
verinderlichen Gefiss eingeschlossen sind, iiberhaupt nicht einem
stationdren ¥ndzustande nihern kann, sondern immer wieder periodisch
dieselben Zustéinde durchlaufen muss.

So sehr diese Betrachtungen im Stande sind, den eigentlichen Sinn
der Sitze der kinetischen Gastheorie in ein klares Licht zu setzen,
so bilden sie doch keineswegs eine Widerlegung dieser Sitze, welche
ja blosse Sitze der Wahrscheinlichkeitsrechnung sind. Dass ein ab-
geschlossenes System einer sehr grossen aber endlichen Zahl mecha-
nischer Elemente, wenn die Bewegungsdauer desselben beliebig aus-
gedehnt wird, einmal wieder sehr unwahrscheinliche Zustinde annehmen
muss, ist keine Widerlegung der gastheoretischen Sitze, sondern folgt
vielmehr aus diesen selbst, da fiir ein abgeschlossenes System einer
endlichen Zahl materieller Punkte die Wahrscheinlichkeit, dass das-
selbe einen beliebigen, vom Wéarmegleichgewichte abweichenden Zu-
stand annimmt, zwar enorm klein, aber niemals mathematisch gleich
Null sein kann.

Der Zustand des Wirmegleichgewichtes zeichnet sich bloss da-
durch aus, dass die bei weitem meisten Arten der Verteilung der
lebendigen Kraft unter den mechanischen Elementen sich unter ihm
subsumieren, wihrend die anderen Zustinde seltene, exzeptionelle
sind. Nur aus diesem Grunde nihert sich, abgesehen von einzelnen
Ausnahmen, jeder anfangs exzeptionelle Zustand, nach vor- und riick-
wiirts verfolgt, dem des Wérmegleichgewichtes und verbleibt dann
darin wihrend einer enorm langen, aber nicht mathematisch unend-
lichen Zeit, wenn die Anzahl der mechanischen Elemente nicht mathe-
matisch unendlich gross ist.

57) Vgl. Boltzmann, Wien. pér. (2%) 106 (1897), p. 12.
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In rein mathematischer Beziehung besteht also der vollste Ein-
klang zwischen den Grundgleichungen der Gastheorie und dem von
Zermelo entwickelten Satze, und letzterer konnte nur dann eine Wider-
legung der Gastheorie bilden, wenn daraus folgen wiirde, dass z. B.
eine Entmischung diffundierter Gase in beobachtbarer Zeit zu er-
warten wiire.

Man darf sich aber nicht vorstellen, als ob aus Zermelo’s Theorie
folgen wiirde, dass zwei diffundierende Gase sich etwa alle Tage ein
paar mal mischen und wieder entmischen. Die Zeit, innerhalb welcher
wieder eine beobachtbare Entmischung zu erwarten wére, ist vielmehr
so beruhigend gross, dass jede Moglichkeit der Beobachtung eines
solchen Vorganges ausgeschlossen ist. Diese Zeit ist von der Grossen-
ordnung derjenigen, innerhalb deren nach den Wahrscheinlichkeits-
gesetzen durchschnittlich einmal zu erwarten wre, dass alle Hauser
einer grossen Stadt an demselben Tage in Brand geraten, und man
wiirde sich tiuschen, wenn man meinen wiirde, eine solche Unwahr-
scheinlichkeit sei praktisch von der Unmdglichkeit irgendwie ver-
schieden 58).

Theoretisch allerdings erfihrt dadurch der zweite Hauptsatz (der
Satz von der Irreversibilitit der Naturvorginge) eine besondere Be-
leuchtung. Man gewinnt hiervon, sowie von der Beziehung des H-
Theorems zur zeitlichen Umkehrbarkeit aller mechanischen Vorginge
am besten eine Anschauung, wenn man mit Boltzmann %°) die H-Kurve
konstruiert, das heisst, wenn man die Zeit als Abszisse und die dazu
gehorigen Werte der Grosse H fiir eine sehr grosse endliche Zahl
abgeschlossener Gasmolekiile als Ordinaten auftrigt. Die Ordinaten
dieser Kurve sind stets durch enorm lange Strecken fast genau gleich
dem Minimumwert von H, nur enorm selten treten grossere Diffe-
renzen (Buckeln der H-Kurve) auf, und zwar ist jeder Buckel wieder
enorm seltener, wenn er nur ein klein wenig grosser ist.

Wenn man daher von einem Werte von H ausgeht, der erheb-
lich grosser als ein Minimumwert ist, so wird man sich hdchstwahr-
scheinlich, sowohl wenn man in der Richtung der positiven als in
der Richtung der negativen Seite fortschreitet, bald wieder einem
Minimumwerte von H nihern, der dann enorm lange bestehen bleibt.

Will man sich die gesamte Welt unter diesem Bilde vorstellen,
so kann man, wenn man die Dauer derselben sich beliebig lange vor-
stellt, annehmen, dass hier und da gewisse Partien derselben erheb-

58) Lord Kelvin, Edinb. Soc. 8 (1873), p. 825; Nature 9, p. 441.
69) Boltzmann, Math. Ann. 50 (1898), p. 325.
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lich vom Wirmegleichgewichte entfernt sind. Wihrend sie sich dann
diesem nihern, geschehen fiir die Bewohner derselben alle Vorginge
irreversibel und es scheint denselben die positive und negative Zeit-
richtung unterschieden, wihrend sie es fiir die Welt als ganzes nicht
ist. Die statistische Methode zeigt also, dass Irreversibilitit der Vor-
ginge in einem gegeniiber der ganzen Welt kleinen Teile derselben,
bei speziellen Anfangsbedingungen auch in der ganzen Welt, mit der
Symmetrie der mechanischen (leichungen gegeniiber der positiven
und negativen Zeitrichtung sehr wohl vertriglich ist. Ausfiihrlich
verbreiten sich hieriiber Bertrand und Poincaré in ihren Biichern iiber
Wahrscheinlichkeitsrechnung. Vgl. das Zitat 26).

C. Reibung, Wiirmeleitung und Diffusion.

156. Verschiedene Mittelwerte ). Aus der Formel (18) folgt
sofort fiir die Anzahl der Molekiile in der Volumeneinheit, fiir welche
die Geschwindigkeit zwischen den Grenzen ¢ und ¢ + dc liegt, der
Ausdruck

cﬂ
(25) gOdc=4mde *cde.

Die Gesamtanzahl aller Molekiile in der Volumeneinheit aber ist

(252) n=j¢p(c)dc=AV§. .

Der Mittelwert irgend einer Potenz der Geschwindigkeit ist

(26) o= 'ﬁf e (¢) de.
0
Der Mittelwert des Produktes dreier beliebiger Potenzen der
Gteschwindigkeitskomponenten aber ist

o o o

(27) gy = %fff&“n”@“f(&né) dgdyde.
000

Nach Einsetzung der Werte (18) und (25) fiir die Funktionen
@ und f konnen die Integrationen ohne Schwierigkeit ausgefiihrt
werden. Es ergiebt sich, dass man nicht hat ¢? = (¢)% ebensowenig

B4 P = E . £%? w.s.w. Das hier definierte Mittel ist das sogenannte

60) Vgl. ausser den Abhandlungen Maxwell's und den Lehrbiichern: Meyer,
Theoria gasorum, Breslau Dissert. 1866.



