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560 V 9. H. Minkowski. Kapillaritit.

sind. Alsdann ist ein tiiberwiegender Anteil dieser Energie dem
Volumen der Fliissigkeit proportional, wobei der Proportionalitits-
faktor, negativ genommen, einen Druck im Raume angibt, den man
die Kohdsion der Fliissigkeit nennt.

Es soll hier die erstere Auffassung der Kapillaritit vorangestellt
werden, welche dieser Energieform die Trennungsflichen als aus-
schliesslichen Sitz zuweist. Diese Auffassung erscheint hernach als
ein mathematisch einfacher Grenzfall der anderen tieferen Auffassung,
welche die ganzen Massen als Spielraum von Kohisionskriften an-
nimmt.

I. Kapillaritit als Flichenenergie.

2. Oberflichenenergie und deren Variation. Eine Trennungs-
fliche zwischen einer Fliissigkeit 4 und einem zweiten Medium B
ist verkniipft mit einer potentiellen Energie 745 F45, wobei F, 5z den
Flicheninhalt der Fliche und 75 eine von den beiderseits angrenzen-
den Medien abhiingende Konstante ist. Dabei sind 4 und B homogen
gedacht und sollen Anderungen von Temperatur und Dichte zunichst

nicht in Betracht kommen. 7',z hat die Dimensionen %g% und heisst
Oberflichenspannung von A gegen B. Unter der Oberflichenspannung
schlechthin versteht man fiir eine Fliissigkeit diejenige gegen ihren
gesittigten Dampf, wovon die einer Trennungsfliche gegen Luft!)
vielfach keine Verschiedenheit zeigt. Fiir Wasser gegen Luft ist

_ erg gr Gewicht
=148 = 0015 £

fiir Quecksilber gegen Luft 7'= 0,55 gr Gewicht/cm, fiir Quecksilber
gegen Wasser T = 042 gr Gewicht/cm.

Die Folgerungen aus dem Bestehen des Terms 7,z F,p in der
Energie liessen sich am kiirzesten darlegen auf Grund der Be-
merkung, dass genau derselbe Ausdruck der Energie Platz greifen
wiirde fiir eine unendlich diinne elastische Haut, welche die Trennungs-
fliche bedeckt, wenn in ihr iiberall eine konstante Spannung = T,
herrscht, d. h. jede in ihr angebrachte Schnittlinie an beiden Ufern
einen von dem anderen fort gerichteten Zug 7,5 auf die Lingenein-
heit erfihrt. Diesen Vergleich von vorn herein einzufiihren, hiesse
aber, die Schwierigkeit, welche fiir die Theorie der Kapillaritdt in
der Notwendigkeit der Annahme von Druckdiskontinuititen trans-

1) Von einer Oberflichenspannung gegen eine gasformige Phase kann,
streng genommen, nur bei Flissigkeiten die Rede sein, welche mit der gas-
formigen Phase in chemischem Gleichgewicht koexistieren.
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versal zu einer Trennungsfliche liegt, nicht beseitigen, sondern nur
sie einem anderen Kapitel der Mechanik zuschieben. Um hinsichtlich
der Voraussetzungen der Theorie Klarheit zu gewinnen, ist es des-
halb notwendig, im wesentlichen den Gang von Gauss einzuhalten
und den Einfluss des Terms T'F' der Energie auf Grund eines all-
gemeinen Prinzips der Mechanik zu verfolgen, wie des Prinzips, dass
Gleichgewicht durch ein Minimum der potentiellen Energie oder, bei
Beriicksichtigung auch thermodynamischer Umsténde, durch ein Mini-
mum der Energie bei konstanter Entropie charakterisiert wird.

Hiernach muss vor allem die virtuelle Veréinderlichkeit von T'F
betrachtet werden. Gauss hat, indem er bei diesem Anlasse iiber-
haupt die Prinzipien fiir die Variation von Doppelintegralen mit ver-
inderlichen Grenzen schuf, eine fundamentale Transformation fiir die
Variation von TF entwickelt. Man kann sich allerdings, worauf
auch Gauss beildufig hinweist, das Resultat dieser Transformation
durch infinitesimale Betrachtungen leicht plausibel machen, indem
man eine beliebige unendlich kleine Verriickung einer Fliche in eine
erste Verriickung, wobei jeder Punkt normal zur Fliche fortschreitet,
und eine zweite Verriickung, wobei jeder Punkt tangential zur Fliche
fortschreitet, zerlegt. Doch erscheint es angemessen, hier auch das
eigentliche analytische Prinzip jener Umwandlung, welches in einer
gewissen partiellen Integration besteht, anzugeben. In Anbetracht des
Umstandes jedoch, dass die Variationsrechnung, namentlich in Hin-
sicht auf Probleme mit Nebenbedingungen, wie sie hier schliesslich
vorliegen werden, noch keine allgemein anerkannte Darstellung be-
sitzt, auf die sonst einfach zu verweisen wire, mag es zur Durch-
sichtigkeit beitragen, wenn wir nur auf bekanntere Hilfsmittel der
Integralrechnung rekurrieren.

Die Trennungsfliche F 5, die wir uns berandet denken wollen,
durchlaufe bei einer virtuellen Bewegung, wihrend welcher der Para-
meter w von w ==0 an wichst, eine Schar von Flichen F(w).
Wir konstruieren auf jeder Fliche die zwei zueinander orthogonalen
Scharen von Kriimmungslinien und sodann zwei Flédchenscharen
#y = const., u, = const., welche aus den F(w) gerade diese Kriim-
mungslinien herausschneiden. Wir stellen uns der Einfachheit halber
die Flichen F (w) sidmtlich als auseinanderliegend und derart vor,
dass in dem von ihnen erfiillten Gebiete jedem Punkte sich hiernach
Werte u,, 4,, w eindeutig zuordnen. Die Richtungen von einem
Punkte u,, u,, w aus, in denen nur u,, nur w,, nur w und zwar zu-
nehmend variiert, sollen in Argumenten trigonometrischer Funktionen
kurz durch wu,, uy, w angedeutet werden, und # bedeute die nach B
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hin gerichiete Normale auf F(w); die u,, u,, n-Richtung sollen stets ein
Rechtsschraubensystem wie die Ko-

M‘, B ordinatenaxen 2, y, # bilden (Fig. 1).

Die Berandung von F(w) wird
durch eine Gleichung w, = 5 (u,, w)
dargestellt sein, und da wir irgend
eine Funktion von u, und w als
einen neuen Parameter an Stelle
von u, einfithren konnen, so diirfen

R'w! / wir diese Gleichung als w nicht
‘; A enthaltend: w#, = y(u,) annehmen.
M;'( Das Quadrat des Linienelements in
Fig. 1. dem von den F(w) erfiillten Ge-
biete wird sich
1) ds®=dx2? + dy* + d2*

= L*(du, — |, dw)® 4 L (duy — lydw)® 4+ N2*dw?®
schreiben lassen, wobei L, >0, L, > 0 und ——— v (wn) = L >0 sei, also

N mit dem Vorzeichen von cos(wn) gerechnet werde. Nun ist

F=ffL1L2duldu2,
2) —ff 1 d’ +L:, aw )duldug,

wo das Doppelintegral sich iiber das Innere von u, = y(u,) erstreckt.

Der Ausdruck hier gestattet auf Grund der charakteristischen
Bigenschaft der Kriimmungskurven, dass die Normalen lings ihnen
eine abwickelbare Fliche bilden, eine wichtige Umformung durch
Produktintegration?). Zu einem Punkte P(u,, u,, w) liegt auf der
benachbarten Fliche F(w + dw) in der kleinstmdglichen Distanz
Ndw =dn, also auf der Normalen von F(w) der Punkt Q(u, 4 I, dw,
g+ lydw,w 4 dw). Entsprechend liege normal iiber P, (u, + du,, uy, )
auf F(w + dw) der Punkt Q,; es sei M, der Kriimmungsmittelpunkt
der Kriimmungslinie PP, auf F(w), also der Treffpunkt der Geraden
P@ und P, Q,, R, der Kriimmungsradius M, P und zwar positiv,
falls M, P die Richtung » nach B hin hat, anderenfalls negativ. Man hat
PP, — L,du,. Aus der Ahnlichkeit der Dreiecke M, PP,, M, QQ,
und im Hinblick auf (1) folgt

2) Die zunichst folgende infinitesimale Betrachtung dient nur dazu, diese
Eigenschaft der Kriimmungslinien schnell in eine Formel umzusetzen.
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PQ _Q&—PP dn__ 1 0L, ot
MPp= PP’ B I (an dn + Ly 5o d“’)’
d. i. nach Fortlassung des Faktors dw
N _ 1 (0L | 0L 4 0L 4 g ok,
R, - I, \ow, b+ duy ly + ow +L13u,1)
Eine entsprechende Relation gilt fiir den zweiten Hauptkrimmungs-
radius R; in P und durch Addition beider entsteht
1 1 A 0L, | 0L L, | 3L Lk
N(R,‘ + ﬁ:) LiL=1 ow + L, ow ou, + Ou,

Macht man hiervon in (2) Gebrauch und fithrt partielle Inte-
grationen nach w, und u, aus, so ergibt sich

dF 1 1 duy du,
o=+ 5) df_()fL‘L”(llW — s ) 45,
N .

darin bedeutet allgemein df das Flichenelement, ds das Randlinien-
element von F(w) in positivem Umlauf um die Normale n. Be-
zeichnet man mit j die Richtung, die normal auf ds ins Innere der
Fliche F (w) hineinfiihrt (s. Fig. 1), so ist

dw

5 = — 08 (u ),

d ;
L, ‘d% = cos (1), Ly
— Ll = Lcos (wyw), — Lyl, = L cos (uyw);
schreibt man noch L cos (wj)dw = dj, so entsteht daher aus der

letzten Gleichung die folgende Darstellung der ersten Ableitung der
Kapillarenergie TF nach dem Variationsparameter w:

aFr dn (1 1 dj

@ Yo 1(11‘) aw (R: * R:) v Zl'fd% “

die insbesondere fiir w = O anzuwenden sein wird. Darin bedeuten
dann die dn = Ndw fir die Punkte der Trennungsfliche die zur
Fliche normalen und die dj = L cos (wj)dw fiir die Punkte ihres
Randes die in die Fliche fallenden, zum Rande normalen Kompo-
nenten der einem Zuwachs dw entsprechenden Verriickungen; hierauf
fussend kann man sich die Transformation (3), wie schon oben an-

gedeutet, unmittelbar geometrisch plausibel machen?®). —;-(Ri -+ —}i_)

1 2
soll, wie die Vorzeichen von R, und R, oben festgelegt sind, die
mittlere Kriimmung der Stelle df nach B hin heissen.

2% Wir haben im Ubrigen die gebriuchlichen Zeichen 8 F, 0w u.s.w. der
ersten Variationen vermieden, um evident zu machen, dass es sich schlieBlich
nur um Differentialquotienten im gewghnlichen Sinne handelt.



564 V 9. H. Minkowski. Kapillaritit.

Da in (3) die Parameter der Kriimmungskurven wieder eliminiert
sind, so ist diese Darstellung nicht an die anfinglich betreffs der
Koordinaten wu,, uy, w gemachte Beschréinkung gebunden.

Die Volumina von 4 und B seien V,, Vjp, ihre Dichten ¢4, gz.
Wir merken noch an, dass bei den fraglichen virtuellen Verriickungen
die Volumina gemiss

av av.
4) To =) iwit, Gw=—)amdf
¥y Fap
variieren, ferner die potentielle Energie beziiglich der Schwerkraft
fiir beide Medien zusammen die Ableitung nach w:

= d
© gos—en) 7 imar
erfahrt; dabei ist die 2-Axe wertikal nach oben gedacht.

3. Differentialgleichung fiir eine freie Oberfliche. Die Tren-
nungsfliche von 4 gegen B sei frei beweglich (B eine Fliissigkeit
wie A oder ein (tas), und neben der Kapillaritit komme nur noch
die Schwere in Betracht. Stabiles Gleichgewicht des Systems wird
durch ein Minimum der potentiellen Energie gegeniiber allen vir-
tuellen Verriickungen charakterisiert. Nun liegt aber eine Neben-
bedingung in der Konstanz des Gesamtvolumens von 4 (oder von B,
vgl. 4)) vor. Um dieser Nebenbedingung Rechnung zu tragen, ziehen
wir die Regeln der Differentialrechnung fiir ein sogenanntes relatives
Extremum heran.

Wir denken uns wieder die Trennungsfliche F4p als das Element
w =0 einer beliebigen von einem Parameter w abhingenden Schar
von Flichen z=¢(z, y, w), welche alle den Rand gemein haben
mogen. Der Nebenbedingung wiirde allerdings, wihrend w sich ver-
dndert, nicht mehr geniigt werden. Denken wir uns aber noch eine
beliebige zweite solche Schar von Flichen z = y*(z, y, w*), welche
wieder fiir w* = 0 von der gegebenen Fliche ausgeht, und erweitern
wir diese zwei einparametrigen Scharen irgendwie zu einer Fldchen-
schar mit zwei Parametern 2z = y(z, y, w, w*), welche fiir w* =0
in die erste, fiir w = 0 in die zweite einparametrige Schar tibergeht,
so wird die Grosse des Volumens ¥V, bei den Flidchen dieser all-
gemeineren Schar eine Funktion V,(w, w*) der zwei Parameter sein,
und innerhalb der zweiparametrigen Schar gibt uns diejenige ein-
parametrige Schar, welche durch die Bedingung ¥, (w, w*) = V4(0, 0)
ausgeschieden wird, jetzt eine tatsdchliche virtuelle Bewegung der
Trennungsfliche. Danach haben wir die Bedingung zu formulieren,
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dass unter allen Flichen der zweiparametrigen Schar, fiir welche

Vi(w, w*) =V 4(0,0) ist, die Fliche w = 0, w* = 0 das Minimum
der potentiellen Energie

E=T.3Fs+go, [2dv+ go, [#dv
P B

liefert; (die Bezeichnung hier ist so zu verstehen, dass dv in dem
ersten Integral die Volumenelemente von A4, in dem zweiten die-
jenigen von B durchlduft). Fiir dieses Extremum mit einer Neben-
bedingung liefert nun die Differentialrechnung in bekannter Weise
die zwei Gleichungen

gf-;-a“%_o ,+1ABL;Z._0 (0 = 0, w* = 0)
mit einer geeigneten Konstante 1,5. Die zweite Gleichung dient uns
jetzt nur dazu, um zu erkennen, dass der Wert von A,z in keiner
Weise von der beliebig angenommenen ersten Schar z = y(z, y, w)
abhiingt, also fiir die Trennungsfliche F, 3 an sich eine bestimmte
Bedeutung hat; und bei ausdriicklicher Hinzunahme dieser Tatsache
vertritt die erste Gleichung bereits das System der beiden. Danach
muss (vgl. 3), @), (6)) mit einer geeigneten Konstante 4,3, die sich
schliesslich aus dem Werte von ¥V, bestimmen wird, die Bedingung

fN(TAB(R% + R%) +9(e,— ep)2 + Aup)df =0

gelten. Dabei unterliegt vermdge der willkiirlichen Wahl der Schar

dn

F(w) die Funktion N = T auf der Fliche F,p einzig der Be-

schrinkung, dass sie durchweg stetig ist und am Rande gleich
Null genommen wird. Fiir N in diesem Umfange kann das vor-
stehende Integral nur dann bestindig gleich Null ausfallen, wenn der
Faktor von N an jeder Stelle innerhalb F,p verschwindet, d. h. die
Gestalt der freien Oberfliche muss der Differentialgleichung

(6) Tan (3 + 3) + 90, — 05+ 2un=0
gentigen 3).

Es kann F,p auch aus mehreren getrennten Stiicken bestehen
und i,p hat fiir die verschiedenen Stiicke denselben Wert.

Ein Minimum von ¥ ist hier jedenfalls nur mdglich, wenn
T482>0 ist, da sonst durch ein Hin- und Herfalten der Trennungs-
fliche an ihrem Orte sich E beliebig verringern liesse.

3) Laplace, Supplément au livre X de la Méc. céleste, no. 4.
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5 Sein. Setzen wir

Es mdge 0,2 ¢

g ot
48 g(e,—ey)’
so wird durch z =z, eine bestimmte horizontale Ebene angewiesen,
welche Niveauebene heissen soll. Verlegen wir 2 = 0 nach der Niveau-
ebene, so folgt die Gleichung (6) in der Gestalt

1 1

(6a) TAB(E + j;g;) =—g(e,— 0p)2
Danach ist an jeder Stelle der Trennungsfliche aus der mittleren
Kriimmung nach B hin sofort auf die Lage der Niveauebene zu
schliessen. Ist o, > o,, so liegen die Stellen der Trennungsfliche, wo
diese mittlere Kriimmung positiv ist, d. h. die Fliche nach B hin
konvex-konvex oder konvex-konkav mit
grosserem Betrage der ersteren Haupt-
krimmung ist, wnterhalb der Niveau-
ebene und zwar um so tiefer darunter,
je stirker jene mittlere Kriimmung ist;
Stellen, wo diese Kriimmung nach B hin
negatiw ist, liegen oberhald der Niveau-
ebene, Stellen, wo sie Null ist, notwendig
genau in Hohe dieser Ebene (Fig. 2).
Insbesondere kann die Trennungsfliche asymptotisch eben nur in
Hohe dieser Ebene sich gestalten, wodurch ihre Bezeichnung als
Niveauebene begriindet ist.

4. Randwinkel. Zur vollstindigen Festlegung von F,p sind
ausser der Differentialgleichung (6) weitere Bedingungen fiir den
Rand der Fliche dort, wo 4 und B an dritte Medien C grenzen, er-
forderlich.

Grenzen drei Fliissigkeiten 4, B, C mit drei Trennungsflichen
F4z, Fac, Fpe, in denen die Oberflichenspannungen 743, Tac, Tre
herrschen, lings einer Kurve zusammen
(Fig. 3), so wiirde zwar mit jedem vir-
tuellen Bewegungszustand der Rand-
kurve stets auch der entgegengesetzte
Bewegungszustand fiir sie virtuell sein;
immerhin wollen wir (weil hernach
auch ein Fall von nicht in diesem Sinne
umkehrbaren Verrtickungen in Betracht kommt), zunichst nur von
dem vorausgesetzten Gleichgewichtszustand an (nicht durch ihn hin-
durch) variieren, und wir denken uns eine von einem Parameter w (>>0)
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abhiingende Schar von Lagen dieser Randkurve, mit den niimlichen
Endpunkten, falls nicht die Kurve geschlossen ist, und von gewissen
damit verbundenen Lagen der drei Trennungsflichen; dabei sollen diese
stets gemeinsam an der Randkurve ansetzen, ihre sonstigen Randteile
aber fest behalten und zugleich in ihren inmeren Partien solche De-
formationen erfahren, dass die ganzen Volumina von A4, B, C unver-
indert bleiben. Um zum Ausdruck zu bringen, dass die Gesamt-
energie I im (leichgewichtszustand fiir w = O am kleinsten ist, haben
wir dann in Anbetracht der erst einseitigen Variation bloB die Un-
gleichung

dE
w20 w=0

zu fordern. Da aber fiir die Trennungsflichen gemiss (6) bereits
solche Gleichungen feststehen, dass die hierin als Flichenintegrale
auftretenden Terme fiir sich Null sind, so zieht sich diese Ungleichung
gemiss (3) zu

——fL(TAB cos Wjanp) + Taccos (wisc) + Trecos wipc))ds >0

zusammen, wobei das Integral iiber die gegebene Lage der Randkurve
zu erstrecken ist und an jedem Elemente ds unter w die Richtung,
unter Ldw die Grosse der dem Zuwachs dw entsprechenden Ver-
riickung des Randpunktes, unter jsz, jac, jrc die auf ds ins Innere
der Fldchen hin errichteten Normalen zu verstehen sind. Da die
Funktion L hier beliebig gewihlt werden kann, nur dass sie stetig
und stets > O ist und an den Endpunkten der Randkurve verschwindet,
so folgt hieraus

() — Tupcos (wjap) — Taccos (Wjac) — Tre cos (wipe) =0

lings der ganzen Randkurve, und zwar noch fiir beliebige Richtungen
w. Nun konnen wir aber mit jeder Richtung w die entgegengesetzte
kombinieren, und ist daher das Zeichen > hier durch = zu ersetzen.
Hiernach miissen sich drei Vektoren von den Lingen T4z, T4c,
Tgc und den zu jas, jac, jec parallelen Richtungen zu einem ge-
schlossenen Dreiecke aneinanderfiigen). Der Winkel (j4zjic) = o4
z. B. ist dann der von den zwei ersten Seiten in diesem Dreieck ge-
bildete Aussenwinkel und hat hiernach lings der ganzen Randkurve
einen konstanten aus den drei Spannungen folgenden Wert. Dieser
Winkel w, heisst der Randwinkel von A gegen B und C.

Ein erstes Erfordernis fiir das angenommene Gleichgewicht ist

4) Diese Bedingung ist von F. Neumann aufgestellt und zuerst in der
Dissertation von Paul duw Bois-Reymond (Berlin 1859) verdffentlicht worden.
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nun, dass aus den drei Lingen T35, Ts¢, Ts¢ iiberhaupt ein Dreieck
zu bilden ist, d. h. dass von jenen drei Spannungen keine grdsser als
die Summe der beiden anderen ist. Ist jedoch etwa T4z> Tic + Tge,
so wird vielmehr C sich zwischen A und B ausziehen, eventuell zu
einer diinnen Schicht mit zwei einander derart nahe liegenden Trennungs-
flichen gegen A und B, dass dadurch Umsténde resultieren, die erst
auf Grund der Annahme einer rdumlichen Verteilung der Kapillar-
energie genauer zu verfolgen sein werden.

Die Relation T45> T4¢ + Tsc fiir drei Medien dient als hin-
reichende Erkldrung der mannigfachsten Kapillarphénomene?).

Nach den Beobachtungen von Marangoni®) ist in allen Fiéllen
fiir zwei Fliissigkeiten die gegenseitige Oberflichenspannung kleiner
als die Differenz ihrer Oberflichenspannungen gegen Luft?), hierbei also
niemals jenes Dreieck von Spannungen realisierbar. Der Fall von
Quecksilber und Wasser, den Marangoni als eine Ausnahme ansah,
fiigt sich dieser allgemeinen Regel®®). Wenn Wasser auf Quecksilber
in einem Tropfen steht, so haften der Quecksilberoberfliche fremde
Bestandteile an, die ihre Spannung herabsetzenT).

Stellt C einen festen Ko6rper vor, so kann die Treff-
linie von A4, B, C nur auf der Oberfliche dieses frei ver-
schoben werden, und erhalten wir die Relation (7) in
dem entsprechenden beschrinkteren Umfange, nidmlich,
wenn C keine Diskontinuitit der Tangentialebene an der
Randkurve hat (Fig. 4), einmal so, dass w mit jsc, das
andere Mal so, dass w mit jp¢ zusammenfillt, und wir
erschliessen damit

Tpe — T4o

COS @y = —m'*,

5) Eine bis zur Gegenwart reichende Ubersicht der Beobachtungsmethoden
und -ergebnisse zur Kapillaritit bringt der Artikel von F. Pockels im Handbuch
der Physik, herausg. von A. Winckelmann, Bd. 1 (Breslau 1907).

6) Marangoni, Sull’ espansione delle goccie di liquido galleggiante sulla
superficie di altro liquido, Pavia 1865; Ann. Phys. Chem. 143 (1871), p. 348.
Dieselbe Tatsache fanden van der Mensbrugghe, Mém. cour. de I’Acad. de Belg.
34 (1869); ferner Liidtge, Ann. Phys. Chem. 137 (1869), p. 362.

6%) Quincke, Ann. Phys. Chem. 139 (1870), p. 66. Lord Rayleigh, Sc. papers
3, p. 662.

7) Das Ausbreiten eines Tropfens einer Fliissigkeit auf einer anderen
Flissigkeit geschieht jedesmal in charakteristischen Formen, die mit den Sub-
stanzen sehr mannigfaltig variieren, den Tomlinsonschen Koh#sionsfiguren; vgl.
dariiber O. Lehmann, Molekularphysik 1 (Leipzig 1888), p. 260; Paul du Bois-
Reymond, Ann. Phys. Chem. 139 (1870), p. 262.
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wo w4 wieder den Randwinkel (j4pjsc) von A gegen B und C be-
zeichnet?®).

Diese Relation wiirde unmoglich sein, wenn der Quotient rechts
dem Betrage nach > 1 (oder < — 1) ausfillt. Im Falle T3¢ >Tuc+ Tas
(es brauchten hier T's¢, T¢ nicht > 0 zu sein) kommt dann Gleich-
gewicht dadurch zu Stande, dass sich die Fliissigkeit 4 am festen
Ko6rper C in einer selbst mikroskopisch nicht messbharen diinnen
Schicht entlang zieht, C benetst, wodurch an der zu bemerkenden
Randlinie B beiderseits an A grenzt und daher eben nach dieser
Formel (8), worin nun 4 statt ¢ und 744 = 0 zu nehmen ist, sich
der Randwinkel von A4 gleich Null herausstellt.

Hat die Wand des festen Korpers
C an der Randkurve gerade eine Schneide,
(ein Fall, wie er sich bei der Adhision
einer Fliissigkeit an einem festen Korper
leicht darbietet (Fig. 5)), so kommen
zweierlei nicht entgegengesetzte Ver-
schiebungen der Randkurve auf C in Betracht. Das Ergebnis ist
dasselbe, als wenn man sich die Schneide als Grenze abgerundeter
Formen denkt; man kommt zur Ungleichung (7) einmal so, dass
darin w durch js¢, aber jpc¢ durch die zu j4 ¢ entgegengesetzte Rich-
tung, das andere Mal so, dass darin w durch jzc, aber js¢ durch
die zu jpc entgegengesetzte Richtung vertreten wird; man erhilt
demnach

— T4 cos (jchAB) — Tye+ Tse 2. 0,
it — T4z cos (jecjas) + Tac— Tpe =0,
(9) (jAGjAB) _2_ 0 4, (jABjBC) _Z_ T — @4,

wo @, den durch (8) bestimmten Winkel >0 und < = bedeutet.
Aus beiden Relationen zusammen folgt

(Jacjse) 2.

Danach kann im Zustande des Gleichgewichts die Grenzlinie der
freien Oberfliche niemals lings eines endlichen Stiicks auf einer kon-
kaven Schneide des festen Korpers liegen?).

8) Quincke (Ann. Phys. Chem. 137 (1869), p. 42) fand, dass lings einer auf
Glas keilférmig aufgetragenen diinnen Silberschicht Wasser oder Quecksilber
einen konstanten Randwinkel erst dort ergibt, wo die Dicke der Silberlamelle
mindestens 50 >< 10—7 cm betrigt.

9) Gauss, Principia generalia theoriae figurae fluidorum, art. 30.
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Die Bedingungen fiir das Zusammentreffen von vier Fliissigkeiten
in einem Punkte sind nunmehr ohne weiteres ersichtlich. Die Mog-
glichkeit der Bildung einer neuen Trennungsfliche an einer Linie,
lings der mehr als drei Fliissigkeiten zusammentreffen, erdrterte Gribbs1°).

b. Kapillardruck. Oberflichenspannung. Wollen wir den Be-
griff des Drucks in einer Fliissigkeit auch bei Erscheinungen der
Kapillaritit verwenden, so wird die Vorstellung notwendig, dass
dieser Druck an einer Trennungsfliche zweier Fliissigkeiten im All-
gemeinen sich diskontinuierlich &ndert. Die Diskontinuititen sind
mit den Schwerpunkts- und Flichensitzen. der Mechanik in Uberein-
stimmung zu bringen. Will man die Diskontinuititen weiter be-
griinden, ohne jedoch Hypothesen iiber Molekularkriifte einzufiihren,
so kann man von dem Ansatze ausgehen, dass in einer Fliissigkeit
an jeder Stelle eine rdumliche Energiedichte besteht, welche von der
Massendichte daselbst und auch noch von den &rtlichen Differential-
quotienten der Massendichte abhéingt. Man hat sodann einen Grenz-
iibergang in der Weise zu vollziehen, dass die Differentialquotienten
der Massendichte im Allgemeinen gleich Null gesetzt werden und
nur an gewissen Flichen derart unendlich werden, dass dort die
Massendichte einen konstanten Sprung erfihrt. Der Begriff des
Druckes entsteht dabei als der negativ genommene Differentialquotient
der Energie einer Masse nach ihrem Volumen (Gl (42) in Nr. 18).

Der Kiirze wegen begniigen wir uns hier mit folgenden mehr
axiomatischen Festsetzungen: Innerhalb einer einzelnen Fliissigkeit A
variiert der Druck stetig mit der Dichte, ist aber nur bis auf eine
additive Konstante zu bestimmen; bei gewisser Verfiigung iiber diese
Konstante wollen wir von ihm als kinetischem Druck sprechen. Nun
seien zwei verschiedene, der Schwere unterworfene Fliissigkeiten A4
und B durch eine horizontale Ebene z = 0 getrennt und eine jede
derart beschaffen, dass in ihr Dichte und Temperatur iiberall nur
von der VertikalhGhe # abhingen. Alsdann erleidet der kinetische
Druck beim Ubergang von A nach B eine Diskontinuitit, die wir
als Kohdsionssprung bezeichnen wollen. Die beziigliche Abnahme
des kinetischen Drucks von A4 nach B konnen wir in die Form
K, — Kp setzen, so dass K, nur von 4, Kz nur von B abhingt.

Die Differenz P4 — K, = p4 soll dann der hydrodynamische
Druck in A heissen; dieser Druck wiirde nun an horizontalen Tren-
nungsflichen keinerle Diskontinuitit erfahren. In einer ruhenden
Flissigkeit 4, in welcher die Dichte nahezu als konstant anzusehen

10) Gibbs, Equilibrium of heterogeneous substances, p. 453.
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ist, variirt der Druck p, derart, dass er abhingig von der Vertikal-
hohe z allgemein den Ausdruck p, — ¢,gz hat, wo p, eine Kon-
stante ist.

Nun mogen zwei ruhende Fliissigkeiten 4 und B von verschiedener
Dichte eine beliebige, der Differentialgleichung (6) entsprechende
Trennungsfliche F,p haben; wir bestimmen die Niveauebene dazu,
wihlen sie als Ebene 2 = 0 und denken uns andererseits in einem
sehr weiten Gefisse ebenfalls 4 und B und beide durch eine hori-
zontale Ebene und zwar genau in Hohe jener Niveauebene getrennt,
und verbinden endlich die 4 beiderseits
und die B beiderseits je durch eine kom-
munizierende Rohre (Fig. 6), so wird das
Gleichgewicht nach der Gleichung (6a)
bestehen bleiben. Ist nun p, der in jener
horizontalen Trennungsfliche in A und B
gleiche hydrostatische Druck, so ist dieser
Druck in A in einer Héhe z gleich
p,=7p, — 0,94 und in B in einer Héhe
z gleich p, — p, — ¢,92. An einer beliebigen Stelle der Trennungs-
fliche F, 5 findet daher gemiéss (6a) eine Druckdiskontinitit

1 1
(10)  p,—py=—g(,—e)s="Tus (5 + )

statt. Diese Differenz heisst der Kapillardruck an der Stelle in A.

Stellt B den gesittigten Dampf der Fliissigkeit 4 vor, so ist p,
der Siattigungsdruck iiber einer ebenen Fliissigkeitsoberfliche, und
wiirde dagegen p, den Druck des im Gleichgewicht mit der Fliissig-
keit befindlichen Dampfes iiber einer solchen Stelle der Fliissigkeit,

welche nach dem Dampfe hin die mittlere Kriimmung %(R—}— -+ 1—;—)
1 2

zeigt, angeben; danach tiberwiegt der letztere Sattigungsdruck p, um
Op 1 1
e o (& + E)

den Druck p,'). Es folgt daraus z. B. ein vermehrtes Verdampfungs-
bestreben kleinster Wassertropfchen in der Luft, weil mit dem Gleich-

11) W. Thomson, Edinburgh Proc. Roy. Soc. 7 (1870), p. 638. — In einer
Kapillarrshre vom Radius 0,00012 cm, in welcher Wasser 1300 cm steigt,
wiirde der Gleichgewichtsdruck des Wasserdampfes um etwa /,,, kleiner als
der Wert dafiir tiber der Niveauebene sein. Mit den durch die Relation (10)
gegebenen Umstéinden hingt auch der Siedeverzug luftfreier Fliissigkeiten, ferner
die Schwierigkeit der Bildung der ersten Blischen bei der Elektrolyse zusammen.
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gewichtsdruck des Dampfes iiber einer ebenen Wasseroberfliche noch
nicht der Gleichgewichtsdruck iiber den Oberflichen der Tropfchen
erreicht ist.

Ist in dieser Weise einmal die Druckdiskontinuitit des Kapillar-
drucks eingefithrt, so wiirde das Bestehen der Trennungsflichen-
energie nach dem Ausdrucke (3) ihrer Ableitung vollstindig mit
der weiteren Annahme zu erschopfen sein, dass ausserdem an jedem
Randelement der Trennungsfliche in ihr, normal gegen den Rand
nach innen gerichtet, eine konstante Zugspannung = T3, auf die .
Léngeneinheit der Randlinie berechnet, herrscht.

Indem nun die Formel (3) sich auch auf jeden beliebigen Aus-
schnitt aus der Trennungsfliche anwenden lisst, wiirden die Kapillar-.
drucke lings der Fliche und diese Zugspannungen an ihrem Rande
fiir die virtuelle Arbeit gleichbedeutend mit der Annahme sein, dass
tiberall inmerhald der Tremnungsfliche eine konstante Spannung = T 43
herrscht. Aber sprechen wir in solcher Allgemeinheit von einer
Spannung innerhalb der ganzen Fldche, so heisst dieses im Grunde
nichts anderes als: Es besteht fiir die Trennungsfliche eine potentielle
Energie = T3 F45, wovon wir eben ausgegangen sind.

Auf diese Analogie einer Fliissigkeitsoberfliche mit einer elasti-
schen Haut griindete Zhomas Young'?) eine vollstindige Theorie der
Kapillarphinomene, die allerdings durch Vermeidung mathematischer
Symbole an Durchsichtigkeit einbiisste. Den Begriff der Oberflichen-
spannung einer Fliissigkeit hat Segner'®) eingefiihrt.

6. Formen freier Oberflichen. Tropfen. Die Differentialgleichung
einer freien Oberfliche kommt in Versuchen namentlich unter zweierlei
speziellen Umsténden in Betracht; nidmlich es handelt sich meist ent-
weder um Rotationsflichen um eine vertikale Axe oder aber um
Zylinderflichen mit horizontalen Krzeugenden, wobei letztere Flichen
auch noch als eine Approximation der ersteren bei grossem Quer-
schnitt dienen.

Im Falle einer Rotationsfliche um die z- Aze sei fiir die Meridian-
kurve r der Abstand von der Axe, ¢ der Neigungswinkel der Tangente
gegen die horizontale r-Axe (Fig. 7), also tg o = dz/dr, so ist die

12) Th. Young, Essay on the cohesion of fluids, Phil. Trans. Roy. Soc.
London 1805. — Fiir die Wiirdigung der Leistung von Young vgl. Lord Ray-
leigh, Phil. Mag. 80 (1890), p. 285, 456 = Scientific papers 3, p. 397.

18) Segner, Comment. soc. reg. Gotting. 1 (17561), p. 301. — Plateau (Statique
des liquides, chap. V) gibt eine bis 1869 gefiihrte historische Ubersicht iiber die
Arbeiten zur Theorie der Oberflichenspannang. Mannigfache Belege zu dieser
Theorie hat namentlich Van der Mensbrugghe beigebracht.
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Kriimmung der Kurve — 1% m— (—co—s—;% und die reziproke Linge
der Normale ———RI: = sn:.q’, die Gleichung (6) geht also in

Al s
11) TR 0t g(e,— o) Moheo

iiber.

Zumeist handelt es sich um eine solche parti-
kuldre Losung dieser (leichung, welche die Axe
trifft und sie dann notwendig senkrecht durchsetzt,
damit die Flidche sich an der Stelle regulir verhilt.
Diese Losung hiéngt nur noch von einer Konstante
ab, da dz/dr=0 fiir r =0 gefordert wird. Ver- Fig. 1.
legt man den Koordinatenanfang in jenen Treff-
punkt mit der Kurve, so bedeutet 27,3/4,5 den Kriimmungsradius
daselbst und bei Wahl dieser Grdsse als Léngeneinheit hingt die Form
der Kurve nur noch von einem Parameter ab, der die Relation zwischen
dem vorgeschriebenen Werte des Randwinkels von 4 am Ende der
Meridiankurve und dem Volumen von A vermitteln muss.

Laplace'*) und in der Folge Lord Kelvin'®) haben die Meridian-
kurve der kapillaren Rotationsfliche aus kleinen KreisbGgen mit stetig
sich aneinanderreihenden Tangenten unter Berechnung der Kriimmung
am Anfange jedes Bogens gemiss der Gleichung (11) angenihert auf-
gebaut. C. V. Boys'®) hat diese Methode besonders handlich gemacht,
indem er die Kreisbogen durch eine feste Marke an einem (durchsich-
tig hergestellten) Lineal beschreibt, auf dem das Drehungszentrum
sukzessive verdndert wird, wodurch die Stetigkeit in den Tangenten
der sukzessiven Kreishogen gesichert wird. Zudem sind die Teilstriche
des Lineals durch ihre reziproken Entfernungen von der festen Marke
bezeichnet, an der selbst dann oo steht. Bashforth'") lieferte aus-
gedehntes Tabellenmaterial zu jener partikuliren Losung von (11).
C. Runge'®) nahm die Gleichung als Beispiel bei Darlegung einer
numerischen Integrationsmethode fiir die Differentialgleichungen zweiter

14) Laplace, Connaissance des Temps, 1812.

15) W. Thomson, Capillary attraction, Proc. Roy. Inst. 11 (1886), aufgen. in
Popular lectures and addresses 1, London 1889. Der Aufsatz enthilt verschie-
dene Diagramme zur Illustrierung des Verfahrens. — J. C. Schalkwijk, Leiden
Communic. No. 67 (1901).

16) C. V. Boys, Phil. Mag. (5) 36 (1893), p. 75.

17) Bashforth and Adams, An attempt to test the theories of capillary
action, Cambridge 1883.

18) C. Runge, Math. Ann. 46 (1895), p. 167.

Enoyklop. d. math, Wissensch. V 1. 37



574 . V9. H. Minkowsks. Kapillaritit.

Ordnung. Eine im Bereiche 0 < ¢ < 7/2 konvergente Entwicklung
von z nach Potenzen von # fiir die Losung von (11) behandelten
K. Lasswite?), Th. Lohnstein®®). Allerhand Annaherungsformeln, bez.
des Kriimmungsradius fiir » = 0, des Maximalwertes von » u.s.w. findet
man bei Poisson®'), Fr. Neumann®?), A. Konig®), H. Siedentopf**).

Die Formen eines Quecksilbertropfens auf einer horizontalen
Unterlage, einer gegen eine Horizontalebene stossenden Luftblase,
eines an einer Horizontalebene hingenden Wassertropfens sind Rota-
tionsfliichen, bestimmt durch die Differentialgleichung (11), durch die
Forderung, die Axe zu treffen, durch den Randwinkel am End-
punkt der Meridiankurve und durch das vorliegende Volumen.

Héngt die Losung der Gleichung (6) von y nicht ab, ist sie also
eine Zylinderfliche mit horizontalen Erzeugenden parallel der y-Auxe,
so wird die Gleichung ihres vertikalen Querschnitts mit der zz-Ebene,
wenn ¢ den Winkel der Tangente gegen die z-Axe, ds das Bogen-
element bedeutet:

(12) T P22 — 7,592 — dus + (o, — 00)".

Es ist das die Gleichung der Gleichgewichtsform, die ein elastischer
gleichformiger unendlich diinner und ohne #ussere Krifte geradliniger
Stab annimmt, wenn an den Enden zwei in die Richtung der positiven
und negativen 2-Axe fallende entgegengesetzt gleiche Krifte und da-
zu die geeigneten Kriftepaare angreifen®). Die Differentiation von
(12) nach s ergibt

d? .
Tan g0 = 9(0,— 05) sin g,

und ist danach, ¢, > ¢, angenommen, die Abhingigkeit des Winkels
n — @ von s dieselbe wie des Ausschlags eines gewGhnlichen mathe-

T
matischen Pendels mit der Linge 0 AZ von der Zeit. Wird 2 =0
A7 OB
nach der Niveauebene gelegt, also 1,5 =0 angenommen, so erhilt
man aus (12) durch Multiplikation mit tg ¢dz = d# und Integra-

tion, entsprechend dem Integral der lebendigen Kraft in der Pendel-

19) K. Lasswitz, Inaug.-Diss. Breslau 1873.

20) Th. Lohnstein, Inaug.-Diss. Berlin 1891.

21) Poisson, Nouv. théor. de 1'act. capill.,, Paris 1831.

22) F'r. Neumann, Vorl. iiber Capill. 1894.

238) A. Konig, Ann. Phys. Chem. 16 (1882), p. 10.

24) H. Siedentopf, Ann. Phys. Chem. 61 (1897), p. 235.

25) Vgl. z. B. 4. E. H. Love, A treatise on the mathematical theory of
elasticity 2 (Cambridge 1898), Arts. 227—229.
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bewegung:
2
(13) Tan(c— cosg) =g(o,— 0;) 5"

Darin ist die Integrationskonstante ¢=1, wenn die Fliche sich
asymptotisch an die Niveauebene heranzieht, und ¢> 1, wenn sie
sonst eine horizontale Tangente hat; andererseits ist, wenn die Fliche

einen Wendepunkt (%% = ) besitzt, notwendig ¢ < 1.

Die Form eines an einer Horizontalebene hingenden zylindrischen
Tropfens, wie er durch Austreten einer Fliissigkeit aus einem langen
Spalt entstehen konnte, hat Fr. Neumann®®) behandelt. Um iiber
die Stabilitit der Form zu entscheiden, haben wir das Jacobische Kri-
terium fiir ein Extremum in einem Variationsproblem heranzuholen.
Benetzt A die Ebene und wird der Einfachheit halber 27, ,: g(0,— 0,)
als Flacheneinheit eingefiithrt, so kommt hier das Variationsproblem
darauf hinaus, in einem Intervalle — 2, < 2 < x,, dessen Linge 2z,
ebenfalls noch gesucht wird, eine an den Enden verschwindende stetige
Funktion #(x) derart zu bestimmen, dass

(e

— o
Zo

zu einem Minimum wird, wihrend | 2dx = J gegeben ist. In einer
gewissen Tiefe 12, unter der Horizontalebene zeigt das tellerformige
Profil des Tropfens durch einen Wendepunkt die Niveauebene an und
verlduft sodann geméss (13) bis zum tiefsten Punkte als spiegelbild-
liche Fortsetzung am Wendepunkt, so dass 2z, die ganze Tiefe des
Tropfens wird. Ist 26 die Neigung der Wendetangente gegen die
Horizontale und % = sin@, so findet man auf Grund von (13):
,=2V2%, 5,=V2Q2E—K), J=ugz,
wo K und E die vollsténdigen elliptischen Integrale erster und zweiter
Gattung vom Modul % sind. Der Ausdruck J = xy%, hat ein Maxi-
mum ungefihr bei § = 35° 32" mit J = 2,606. Nur wenn das Vo-
lumen des Tropfens auf die Liéngeneinheit des Spalts, J, unterhalb
dieser Grosse liegt, gibt es iiberhaupt Tropfenformen, welche den
Gleichungen des Problems entsprechen, und zwar dann eine breitere
und weniger tiefe Form, wobei 6 < 35° 32" ist, und eine schmilere
tiefer herunterhiingende, fiir welche diese stérkste Neigung gegen die
Horizontale > 35° 32" ist. Nur die erstere Form ist stabil.

26) Fr. Neumann, Vorl. iiber Capill, p. 117.
37%
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Dass fiir rotationsférmige hingende Tropfen die Verhéltnisse
analog liegen diirften, geht aus einem Experiment von Lord Kelvin®")
hervor, wonach eine um einen horizontalen Metallring gespannte diinne
Kautschukhaut, die durch Hinaufgiessen von Wasser in eine tropfen-
dhnliche Form gedehnt wird, in einem gewissen Stadium der Fiillung
ruckweise eine Lage instabilen Gleichgewichts passiert.

Nach dem Abreissen eines Tropfens zieht sich der ausgezogene
zuriickschnellende Hals in einen oder mehrere kleinere Tropfen zu-
sammen. Der Vorgang wird der Beobachtung zuginglicher, wenn die
Tropfenbildung in einer nur wenig leichteren Fliissigkeit erfolgt, ist
jedoch einer mathematischen Behandlung noch nicht unterzogen?®).

7. SteighShen. Die in einem Gefiisse C senkrecht unterhalb der
Trennungsfliche F,p, von der Niveauebene # = z,p an gerechnet,
stehende Masse von A iiberwiegt die dadurch verdringte Masse von
B um

g9(e,— gﬂ)f(z — 243) cos (no)df = — T“f(j;—l— + T;;) cos (n&)df

AB AB
(14)
S TAchos (J,52)ds,

wo letzteres Integral sich iiber den Rand von F,z erstreckt. Die
erste Umformung folgt aus (6), die zweite durch Anwendung der
Formel (3) auf eine Parallelverschiebung der Fliche in der #z-Rich-
tung, wobei ihr Flicheninhalt sich nicht #ndert. Steht die Gefiss-
wand am Rande von Fp iiberall vertikal, so ist hier (j432) =7 — @y,
unter w4 den Randwinkel von A4 verstanden, und wird daher der
letzte Ausdruck in (14) = T4pcos w4U, wo U den Umfang der
Randkurve bedeutet, insbesondere demnach positiv, Null oder negativ,
je nachdem der Winkel w, spitz, ein rechter oder stumpf ist.

Stellt C eine vertikale Kapillarrdhre mit kreisformigem Quer-
schnitte vom Radius R vor, so tritt in der Rohre ein Aufsteigen

27) W. Thomson, Popular lectures and addresses 1, London 1889, p. 38.
— Daraus sind die Tropfenformen in Fig. 8 oben entnommen.

28) G. Hagen, Ann. Phys. Chem. 67 (1846), p. 1, 152; 77 (1849), p. 449. —
C. V. Boys, Seifenblagsen. Vorl. iiber Capill. Deutsche Ubers. von G. Meyer,
Leipzig 1893, p. 33, 656. — Die Beziehungen zwischen dem Durchmesser einer
Rohre und dem Gewicht daraus abfallender Tropfen behandeln Lord Rayleigh,
Phil. Mag. 48 (1899), p. 821 (Sc. papers 4, p. 415), Th. Lohnstein, Ann. Phys.
Chem. 20 (1906), p. 287, p. 606. — A. M. Worthington and R. S. Cole, Impact with
a liquid surface, London Phil. Trans. 189 (1897), p. 137.
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oder eine Depression von Fliissigkeit ein (wir denken uns hier ¢, > ¢,

und B oberhalb A4 gelegen), je nachdem der Randwinkel von A4 spitz
oder stumpf ist, im speziellen also ein Ansteigen, wenn 4 die Rohre
benetzt. Die mittlere Steighthe iiber der Querschnittsfliche der Réhre
ist nach (14)

2T, gcos w, Tge— T,

™ ges—ep R - 9(94—93)_1?’
also wmgekehrt proportional dem Radius der Rohre®). Der Meniskus lisst
sich in erster Annéherung als eine Kugelfliche ansehen. Approximiert
man ihn genauer als ein Rotationsellipsoid um die Rohrenaxe®),
welches mit ihm im Randwinkel, in dem Kriimmungsradius auf der
Axe und im angehobenen Gewicht tiibereinstimmt, so folgt z. B.,
wenn A die Rohre benetzt, als SteighShe auf der Axe
h— I
ey,

Werden in einer Kapillarrohre mehrere die Wand nicht be-
netzende Fliissigkeiten 4, B, B)* ... iibereinander geschichtet, so ist
das gesamte angehobene Gewicht das néimliche, als wenn sich tiber A4
nur B befinde. Ein Einwand, den Young aus Beobachtungen gegen
diese Schlussfolgerung und damit {iberhaupt gegen die Theorie von
Laplace erheben zu miissen glaubte, wurde durch Poisson®') entkriftet.

Zwischen zwei parallelen vertikalen Platten ist zufolge (14) die
mittlere Steighthe halb so gross als in einer Kapillarrhre von einem

Fig. 8.

Durchmesser gleich dem Abstand der Platten. Stehen die zwei
vertikalen Platten mit geringer Keiloffnung gegeneinander, so steigt

29) Die Proportionalitit der Steighthe in einer Kapillarrshre mit dem Rezi-
proken des Durchmessers scheint zuerst von Borelli (De motionibus naturalibus
a gravitate pendentibus, Reggio 1670) ausgefiihrt zu sein; der Satz wird von
manchen Autoren Jurin (Phil. Trans. 80 (1718)) zugeschrieben.

30) Mathieu, Capillarité, Paris 1883, p. 49.

31) Poisson, Nouv. théor. de l'act. capill,, p. 141.
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die Fliissigkeit an ihnen zu einer gleichseitigen Hyperbel empor
(Fig. 9). In einer konischen Rohre kann unter Umstéinden ein Tropfen
im Gleichgewicht sein bei spitzem Randwinkel, wenn die Rohre sich
nach oben verjiingt (Fig. 10), oder bei stumpfem Randwinkel, wenn
sie sich nach unten verjiingt (Fig. 11).

8. Kapillarauftrieb. Adhtsion. Der Korper C sei nur mit den
Flussigkeiten 4 und B in Berithrung. Um den von C zur Erhaltung
des Gleichgewichts gegen A und B zu leistenden Gegendruck in der
Komponente — P, nach einer beliebigen Richtung % zu ermitteln,
lassen wir C in dieser Richtung parallel mit sich verschiebbar sein.
Wir nehmen sodann eine von einem Parameter w abhingende Schar
von Verriickungen des Systems vor, wobei C in jener Richtung um
die Léangen w fortschreitet, die Partien F,¢, Fp¢, also auch ihre ge-
meinsame Randlinie unverindert mitgehen, alle Grenzflichen in denen
A und B an andere Medien als C anstossen, festbleiben, endlich F,p
noch sich derart deformiert, dass die Volumina ¥, und V3 ungeéindert
bleiben. Wir konnen alsdann fiir die gesamte ins Spiel kommende Energie

E, einschliesslich des Terms w P, fiir den Gegendruck — P, , die Relation

%g = 0 ansetzen. Nun sind die Flécheninhalte von F,¢, Fp¢ unver-

andert, lings F,p besteht die Differentialgleichung (6), zur Verein-
fachung legen wir # =0 in die Niveauebene von 4, B, haben also
Aap==0. Im Hinblick auf (3) und (5) erhalten wir daher:

P, — [9(0,— 0g)#cos(wn) df — [ 9 (e, — 0)¢ cos (wn)df
Fueo Fge

— TAchos(wj“)ds =0,

wo sich das erste Integral auf F,;, das zweite auf Fzo, das dritte
auf ihren gemeinsamen Rand bezieht und % die #ussere Normale von
C bezeichnet.

Der auf C ausgeiibte vertikale Auftrieb berechnet sich hieraus,
indem wir fiir w die z-Richtung nehmen. Hat die Trennungsfliche
F4p keine Begrenzung ausser ihrer Randlinie auf C, d. h. verliuft sie
im Ubrigen asymptotisch an die Niveauebene, so zeigt die bei (14)
vorgenommene Transformation, dass der letzte Term in (15) alsdann
=g (o, — @) V,, wird, unter ¥, das unterhalb F,, bis zur Niveau-
ebene reichende Volumen verstanden (soweit F,p unterhalb der
Niveauebene verliuft, ist das dazwischenliegende Volumen in V,3p
negativ einzurechnen). Von diesem Volumen entfalle der Anteil 7
auf das Medium 4 (Fig. 12, daselbst steht .5 anstatt F,3). An-
dererseits werde C durch Fortfihrung der Niveauebene in einen

(16)
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unteren Teil vom Volumen V(% und einen oberen Teil vom Vo-
lumen V{® zerlegt, so werden der “zweiteTund dritte Term in (16) bez.

—9(94_90)(V((1A)+ AB_V)I —_g(QB—QC)(V(cB)_ AB+ V)
und folgt demmnach
(16) P,=glo,— ) Vi +9(e;—0) VP —g(e,—ep) V-

Die ersten zwei Terme bilden den hy-
drostatischen Auftrieb, falls die Trennungs-
fliche in die Niveauebene fiele, der dritte
Term, der kapillare Auftrieb (bezw. negative
Abtrieb) ist entgegengesetzt gleich dem
infolge der Kapillaritit iiber die Niveau-
ebene gehobenen Fliissigkeitsgewicht. Hier-
nach kann bei stumpfem Randwinkel o,
unter Umstinden ein Korper auf einer
Fliissigkeit von geringerem spezifischen Ge-
wicht schwimmen.

Wird eine kreisférmige Scheibe C auf eine weite horizontale
Oberfliche von A in B gelegt (Fig. 5) und mit horizontal bleibender
Basis, die stets ganz mit 4 in Berithrung sei, kontinuierlich senkrecht
gehoben, so entspricht die am Rande der Scheibe ansetzende freie
Rotationsfliche wieder der Gleichung (11); die Meridiankurve ver-
liuft asymptotisch an die Niveauebene, wihrend der Randwinkel ¢
von A gegen die horizontale Basis der Scheibe kontinuierlich abneh-
mend zufolge der ersten Ungleichung (9) nur bis zu dem durch (8)
bestimmten Werte @, heruntergehen kann, wobei dann die Fliissig-
keit abreisst. Bei grossem Flicheninhalt S der Scheibe ergibt sich die
maximale Hohe z, des Anhebens angenshert aus (13) fiir c=1,
@ = w4 und zwar als unabhingig von S und folgt das dabei iiber die
Niveauebene gehobene maximale Fliissigkeitsgewicht 4 dem Gewicht
der Scheibe aus (16), indem dort Vi = —¢,S substituiert und

V=7V, aus (14) mittelst (j,,2) = % + w4 berechnet wird.

Bei der Adhiision zweier sehr nahe befindlicher gleicher horizon-
taler Platten, sie mdgen etwa wieder kreisformig vom Fldcheninhalte
S sein, vermdge einer zwischen ihnen befindlichen diinnen und sie
benetzenden Flissigkeitsschicht 4 vom Volumen V', ist fiir die ange-
nihert durch (12) bestimmte Meridiankurve die Hthe 2, die wir von
der oberen Fliche der Schicht rechnen, und damit auch dg/ds wenig
veriinderlich und daher die Kurve angenihert ein Halbkreis vom
Durchmesser V,/S (Fig. 13). Nach (12) befindet sich dann die Niveau-
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ebene in einer Hohe s=—4z,, die umgekehrt proportional diesem
Werte ist. Aus (15) entsteht wieder genau die Relation (16), wobei
Vi = — Sz,, ¥V =0 einzusetzen ist, und folgt daraus der auf die
obere Platte mitsamt ihrem Gewicht ausgeiibte Zug nach unten, und
zwar als proportional mit S%/V,. Bei kleinem ¥, kann daher eine
dusserst grosse Kraft zur Trennung der Platten nétig sein.

Hemmmmmmmm === N

“h

Fig. 18. Fig. 14.

Sind dagegen die Randwinkel an den Platten stumpf, so liegt die
Niveauebene tiber der Schicht, es richtet sich die Grosse der von 4
bedeckten Fliche der Platten nach dem Werte von ¥4, und es ist ein
entsprechender Druck auf die Platten nétig, um ihre Distanz zu ver-
ringern (Fig. 14).

Stellt C eine auf beiden Seiten gleich beschaffene vertikale, der
yz-Ebene parallele Platte von einer sehr grossen Breite L vor, die
in 4 und B eintaucht, wobei aber der Stand der Trennungsflichen F, 5
beiderseits an C verschieden hoch sein kann (Fig. 15), so berechnet
sich aus (15) die Summe der zwei Drucke P und P} in Richtung
der z-Axe, welche die Platte links und rechts, auf der Seite der
kleineren bzw. der grosseren x erfahrt; die zwei Randintegrale heben
sich auf, die Flichenintegrale bleiben nur fiir den einerseits von 4,
andererseits von B bedeckten Teil der Platte iibrig. Steht A4 links
bis zur Hohe #7, rechts bis zur Hohe ¢+ an der Platte, so resultiert
als Gesamtdruck

Pz=g(94—" QB)‘(it)i_;(‘z:)t L= TAB(C+'—- 0_) L,
wenn fiir die Form der Fliche F,p nach (13) links die Integrations-
konstante ¢~, rechts ¢* in Betracht kommt.

Tauchen jetzt zwei Platten C- und C+ von gleicher Breite L
parallel zur yz-Ebene und sehr nahe zueinander ein und kommt fiir
den Meniskus in der zs-Ebene zwischen ihnen die Integrations-
konstante ¢ in Betracht, wihrend jenseits von ihnen die Flichen F,p
asymptotisch an die Niveauebene verlaufen mogen, also hier die be-
treffoende Konstante den Wert 1 hat, so werden die Platten mit einer
Kraft T45(c — 1)L gegeneinander getrieben. Bildet nun 4 an beiden
Platten spitze oder an beiden Platten stumpfe Winkel, so zeigt der
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Meniskus in der xz-Ebene zwischen den Platten notwendig eine Stelle
mit horizontaler Tangente und ist daher nach (13): ¢ > 1, es findet also
eine scheinbare Anziehung der Platten statt und zwar, da ¢ — 1 nach
(13) dem Quadrat der Steighthe an jener Stelle proportional ist, an-
gendhert umgekehrt proportional dem Quadrat des Abstandes der
Platten. Bildet 4 an einer Platte spitze, an der anderen stumpfe Winkel,
so entspricht einer gewissen Distanz der Platten ein labiles Gleich-
gewicht, das bei Anndherung der Platten (durch stirkere Kriimmung

des Meniskus) zu einer Anziehung, bei Entfernung zu einer Abstossung
fithrt 2).

9. Ausschaltung der Schwerkraft. Die Wirkung der Schwere
auf die Gestalt der Trennungsfliche von A4 gegen B erscheint
nach (6) ausgeschaltet, wenn ¢ ,— ¢, ist, die beiden Fliissigkeiten
also gleiche Dichte haben. Dieser Umstand, an den schon Segner'®)
gedacht hat, wurde von Plateau®®) vielfiltig benutzt, um reine Kapillar-
wirkungen zu studieren.

Ein Oltropfen, in eine gleich schwere Mischung von Wasser und
Alkohol gebracht, nimmt nach (6) im Gleichgewicht die Figur einer
Fliche konstanter mittlerer Kriimmung an. Schwebt der Tropfen
vollkommen frei, so zeigt er daher notwendig Kugelgestalt, denn die
Kugel ist die einzige geschlossene singularititenfreie Fliche von
konstanter mittlerer Kriimmung3). Ist die Oberfliche des Tropfens
nicht allseitig geschlossen, sondern lehnt sie sich teilweise an ein-
getauchte Rotationskérper an, so mag sie sich als eine Rotationsfliche
um die beziigliche Axe bilden. Sind nun auf einer beliebigen Normale
der Meridiankurve dieser Fliche nacheinander (Fig.16) P der Punkt der
Kurve, M das Kriimmungszentrum, N der Treffpunkt mit der Axe,
also PM, PN die zwei Hauptkriimmungsradien der Rotationsfliche
und ist endlich @ derart gelegen, dass PNQM vier harmonische
Punkte sind, also

‘ NI S
PM T PN T PQ
ist, so muss nach (6) oder (11) die Léinge P¢ konstant ausfallen;

32) Laplace, Suppl. & la théor. de Vact. capill. (De l'attraction et de la
répulsion apparente des petits corps qui nagent & la surface des fluides). —
Poisson, Nouv. théor. de l'act. capill, chap. VI. — Allgemeinere Theoreme iiber
Anziehung und Abstossung schwimmender Koérper entwickelt W. Voigt, Kom-
pendium der theor. Phys. 1, Leipzig 1895, p. 239.

33) Plateaw, Mém. de 'Acad. de Belgique, 1848 bis 1868; Statique expéri-
mentale et théorique des liquides (Gand 1878).

34) Vgl. Liebmann, Math. Ann. 53, p. 81.
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-das Spiegelbild @* von @ an der Axe liefert daher eine konstante
Summe PN + N@Q*= P@, wihrend PN und N@Q* entgegengesetzt
gleiche Neigung gegen die Axe zeigen. Lassen wir nun P die Meri-
-diankurve beschreiben und konstruieren fortwihrend in der dargelegten
Weise N, @, @% so wird, weil P @ konstant ist, @ eine Parallelkurve
gur Meridiankurve beschreiben, daher die Bewegung von @ stets
normal zu NP und also die spiegelbildlich dazu an der Axe ver-

| o

Unduloid

o/

|
]
|
i ¥ Katenoid
! /.
| /
| /
H /
/
| /
| 4
v
/
7
Nodoid
Fig. 16. Fig. 17.

laufende Bewegung von @* stets normal auf N@Q* sein. Daraus ist
ersichtlich, dass die Meridiankurve unserer Rotationsfliche durch den
Brennpunkt P eines bestimmten Kegelschnittes erzeugt wird, den man
ohne Gleiten auf der Rotationsaxe abrollen lisst, dessen anderer Brenn-
punkt Q* und dessen doppelte groBe Axe P @ ist3s).

Wird der Tropfen durch zwei mit den Zentren vertikal iiber-
einander liegende horizontale Scheiben oder Ringe gestiitzt, so kénnen
durch Abinderung der Distanz dieser Stiitzen sowie der zwischen
ihnen befindlichen Olmasse die verschiedenen Formen dieser Rotations-
flichen konstanter mittlerer Kriimmung erzielt werden, das Unduloid
in den Grenzen Kugel — Zylinder — Katenoid, das Nodoid in den
Grenzen Katenoid —Kugel, welche bzw. einer rollenden Ellipse oder
Hyperbel und den Grenzflichen Strecke, Kreis, Parabel entsprechen
(Fig. 17). Dabei werden ausserhalb an den Ringen sich jedesmal noch
Kugelkalotten von der nimlichen mittleren Kriimmung wie der da-
zwischen befindliche Tropfen ansetzen. Das Katenoid ist hier eine

85) Ch. Delaunay, J.de math. (1) 6 (1841), p. 309. — Die Litteratur tiber
die Flichen mittlerer Kriimmung bis 1869 bespricht ausfihrlich Plateau (Sta-
tique des liquides 1, p. 131).
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stabile Gleichgewichtsfigur, nimlich wirklich eine Fliche von kleinstem
Flicheninhalt bei gegebener Grosse des zwischen den zwei Basiskreis-
flichen gehaltenen Volumens, nur so lange die Tangenten in den zwei
Endpunkten der sie erzeugenden Meridiankurve ihren Schnittpunkt vor
der Rotationsaxe finden3®), und die Zylinderfliche ist in demselben
Sinne stabil, nur so lange die Hohe des Zylinders nicht den Umfang
des Querschnittes erreicht®”).

Wird der freischwebende und eine Kugelgestalt bildende Oltropfen
mit Hiilfe einer in das Ol eingetauchten Scheibe in gleichf6rmige
Rotation um eine Axe — etwa die s-Axe — gesetzt, so entsprechen
wachsenden Werten der Winkelgeschwindigkeit @ der Rotation ver-
schiedene Gestalten des Tropfens; er erscheint zuerst ellipsoidisch,
vertieft sich oben und unten, endlich 16st sich am Aquator ein Ring
ab, der an der Rotation teilnimmt3¥). Denkt man sich, was freilich dem
Versuche nur unzureichend entspricht, es rotiere nur der Tropfen A4,
nicht die umgebende Fliissigkeit B, und behandelt die Bewegung von
mitrotierenden Koordinatenaxen aus unter Einfiihrung des Potentials

der Zentrifugalkrifte — 502—2 0, J r2dv, so erhilt man (mit Bezeich-

4
nungen wie in (11)) als Gleichung fiir die Meridiankurve des rotieren-
den Tropfens:

d(rsi 2 d
Tl s, %o (i)

Hieraus bestimmt sich z als hyperelliptisches Integral in  vom
Geschlecht 2 und kommt man je nach den Werten von o auf
sphéroidische oder ringférmige Flichen®). — Einen Vergleich der hier
auftretenden Figuren mit den Gestalten gravitierender in stationfirer
Rotation befindlicher Fliissigkeitsmassen konnte man allenfalls zu
Stande bringen, indem man von Fernkriften mit dem Ausdrucke

e—CT
—kE
stanz » ausgeht, woraus einerseits Gravitation, andererseits Oberflichen-
spannung als die zwei Grenzfille ¢ = 0 und ¢ = oo folgen.

(¢ =>0) als Potential fiir zwei Masseneinheiten in der Di-

10. Fliissigkeitshiiute. Unter Umstinden kann eine Fliissigkeit 4
in einem Medium B lingere Zeit hindurch als eine diinne Haut mit
zwei einander sehr nahen Tremnungsflichen gegen B bestehen. Die

86) L. Lindelof in Motigno- Lindeldf, Calcul des variations, Paris 1861,
P. 209, 281. — Poincaré, Capillarité, p. 66.

87) Plateau, Statique des liquides 2, chap. IX. — Poincaré, Capillarité, p. 95.

38) Plateaw, Mém. de 'acad. de Bruxelles 16 (1843).

89) Beer, Einl. in die math. Theorie der Elastizitat u. Capillaritit, Leipzig 1869.
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Dauerhaftigkeit solcher Fliissigkeitshéiute beruht nach Plateau®®) auf
einer vornehmlich nach den Grenzschichten hin hervortretenden gallert-
artigen Beschaffenheit (Oberflichenviskositit). Diese wieder erklirt
sich durch eine andere Verteilung der stofflichen Bestandteile in den
Oberflichenschichten als im Inneren der Haut, wodurch jene Schichten
eher die Kigenschaften eines festen Korpers als einer Fliissigkeit
haben*!). In Hiuten von sehr geringer Dicke wird dann ein Fliessen
des Inneren zwischen den Oberflichenschichten ausserordentlich durch
die innere Reibung der Fliissigkeit verzogert*?) und dadurch eine
Variation des gegenseitigen Abstandes der zwei Trennungsflichen sehr
erschwert. Sind Fiz, Fj'{; die Flicheninhalte der zwei Seiten der
Haut, so ist alsdann zum Gleichgewicht der Haut das Minimum der
potentiellen Energie

TAB(F‘&'I'FA—I%)-I' 9(e,— QB)de” + g@Bdev
A 4-4+B

ganz allein in Bezug auf solche virtuelle Verriickungen von A4 zu
fordern, wobei die normalen Abstéinde der zwei Trennungsflichen un-
geindert bleiben; denn andere Verriickungen sind als unausfiihrbar
anzusehen. Diese Forderung kommt nun, wenn noch die Dicke der
Haut als verschwindend zu betrachten ist, im Hinblick auf (3), (4),
(5) einfach darauf hinaus, dass fiir die Haut 27,45 F 45 oder also Fz,
darunter die ganze Ausdehnung der Haut verstanden, ein Minimum
gein soll. Wird z. B. ein Rahmen, irgendwie aufgebaut aus festen
Drihten, beweglichen Fiden, als Stiitze dienenden festen Oberfléichen,
in eine Seifenlosung getaucht, so spannt sich hiernach innerhalb der
vorgeschriebenen festen und veréinderlichen Grenzen die Seifenlsung
in der Form einer Minimalfliche (Art. von Lilienthal, II1 D 5, p. 307)
aus, und man trifft hier einen der seltenen Fille an, dass ein rein
mathematisches Gebiet aus einer verhdltnismissig leichten Experi-
mentierkunst die vielseitigste Anregung zu schopfen vermocht hat.
Als Differentialgleichung fiir die Form der Haut erhilt man

1 1
1) =0

wihrend fiir ihren Rand, soweit er nicht fest vorgeschrieben ist, die
Bedingung resultiert, auf die dazu dargebotenen Flichen senkrecht

40) Platcau, Statique des liquides 2, chap. VIL

41) Marangoni, Nuovo Cimento (2) 5, 6 (1871/72); (3) 8 (1878). — Lord
Rayleigh, Proc. Roy. Soc. 48 (1890), p. 127 (Sc. papers 3, p. 363).

42) Vgl. die beziiglichen Rechnungen bei Gibbs, Equilibrium of hetero-
geneous substances, p. 475.
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aufzutreffen. Dabei konnen sich infolge der vorgeschriebenen Grenz-
bedingungen Kreuzungsstellen der Haut in ihrem Verlaufe als not-
wendig erweisen; in stabilem Gleichgewicht konnen aber niemals mehr
als drei Lamellen lings einer Kurve und zwar dann immer nur unter
gleichen Flichenwinkeln, also von 120°, zusammentreffen und hochstens
vier, und zwar mit gleichen Raumwinkeln um einen Punkt herum an-
setzen*®). So bildet sich z. B. in dem Kantengeriist eines reguliiren
Tetraeders eine Seifenhaut, bestehend aus sechs ebenen Lamellen, den
sechs Dreiecken vom Schwerpunkt des Tetraeders aus nach den ein-
zelnen Kanten, dagegen entsteht innerhalb des Kantengeriists eines
Wiirfels jedesmal eine Fliche, die nicht alle Symmetrien des Wiirfels
tibernimmt, sondern ein beliebiges Paar seiner Seitenflichen be-
giinstigt (Fig. 18)%).

Es ist eine charakteristische Eigenschaft der Minimalflichen, dass
ihre Abbildung durch parallele Normalen auf eine Kugelfliche eine
konforme mit Umlegung der Winkel ist. Soll
nun die Begrenzung der Minimalfliche ein ge- |
gebener geschlossener Streckenzug sein oder all-
gemeiner, soll sie stiickweise in vorgeschriebenen
Geraden oder Ebenen verlaufen, so miissen die
Geraden Asymptotenkurven auf der Fliche werden
und die Ebenen Kriimmungskurven aus ihr heraus-
schneiden, und jene sphérische Abbildung wird ein Fig. 18.
Kreisbogenpolygon von bekanntem Umriss. Die
analytische Bestimmung der fraglichen Minimalfliche erfordert die
konforme Abbildung dieses Polygons auf eine Halbebene, diese Ab-
bildungsaufgabe hiangt von einer linearen Differentialgleichung zweiter
Ordnung mit rationalen Funktionen als Koeffizienten ab, und schliess-
lich soll man eine endliche Anzahl von Parametern, die in diese
Gleichung eingehen, den Lingen und Winkeln des gegebenen Rahmens
entsprechend einrichten, worin transzendente Relationen liegen, deren
Theorie erst in Spezialfillen zu befriedigendem Abschluss gebracht
werden konnte?®).

Plateau®®) und in der Folge H. A. Schwarz*®) haben eine Menge
verschiedenartiger Minimalflichen (z. B. das Katenoid innerhalb zweier
senkrecht iibereinander gehaltener Kreisringe, eine Schraubenfliche
innerhalb eines Glaszylinders zwischen zwei Erzeugenden) durch

43) Lamarle, Mém. de l'acad. de Belg. 36, 36. — Plateaw, Statique des
liquides 1, chap. V.

44) Plateaw, 1. c. p. 818.

45) Vgl. H. A. Schwarz, Gesammelte math. Abh. 1, Berlin 1890.
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Seifenlamellen realisiert und zugleich die Grenzen ihres extremalen
Charakters sowie die Umlagerungen bei eintretender Instabilitit theore-
tisch wie experimentell festgestellt. — Innerhalb eines Drahtes, der
in den sechs Kanten eines geraden, regelmissigen, sechsseitigen Prismas
und den sie abwechselnd in der einen und der anderen Grundfliche
verbindenden Seiten ausgespannt ist, bildet sich, falls die Prismenkanten
im Verhiltnis zu den Basisseiten hinreichend lang sind, eine Lamelle
aus, die auf der Mittellinie des Prismas einer der zwei Grundflichen
wesentlich n#her liegt und die durch ein leichtes Schiitteln in das
Gegenbild in Bezug auf die andere Grundfliche iiberspringt; diese auf-
fallende Erscheinung soll aber ganz allein auf die stets vorhandenen
geringen Unvollkommenheiten der Modelle zu schieben sein.

Fiir die Stabilitit einer Fliissigkeitshaut in einem festen Rahmen
ist die Bedingung die, dass keine unendlich nahe Minimalfliche durch
irgend ein auf der Fliche liegendes geschlossenes Kurvensystem mog-
lich ist*%). Fiir den Fall beweglicher Grenzen geben die allgemeinen
Kriterien von Hilbert*") beziiglich des Vorhandenseins eines Extre-
mums Aufschluss iiber die Stabilitét.

Indem man geeignet verfihrt, kann man innerhalb eines festen
Rahmens auch Seifenlamellen einspannen, in denen vollstindig ge-
schlossene Flichen (Blasen) auftreten. (Zum Bei-
spiel kann man innerhalb des Kantengeriists eines
Wiirfels eine Seifenhaut herstellen, welche aus einer
7 innen schwebenden geschlossenen nach aussen ge-
kriimmten Fliche mit den Symmetrien des Wiirfels
und zwolf, deren Schneiden mit den entsprechenden
Wiirfelkanten verbindenden trapezartigen, ebenen

Fig. 19. Lamellen besteht (Fig. 19)*).) Dabei enthilt jede

geschlossene Blase B® ein ganz bestimmtes Luft-

quantum bei irgend einem Volumen V@ und irgend einem Druck p®,
und ist demgemiss zur potentiellen Energie des gesamten Systems
jedesmal noch der entsprechende Term — p®@V® hinzuzufiigen. Da-
durch folgt dann fiir eine Seitenfliche der Blase, auf welche auf der
anderen Seite ein Druck p® herrscht, in Anbetracht der zwei Trennungs-
flichen der Lamellen anstatt (17) allgemeiner und im Einklang mit (10):

A 1 1
0 — ) — 1, v
=0y 2T"B(R1 | R,)’

46) H. A. Schwarz, Acta soc. scient. Fennicae 15 (1885), p. 815 (Ges. math.
Abh. 1, p. 228).

47) Hilbert, Gott. Nachr. 1905, p. 159.

48) Plateau, 1. c. p. 361,
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wo die Kriimmungsradien positiv bei nach aussen konvexer Kriimmung:
zu rechnen sind; zur Festlegung der p® dienen der Wert des dusseren
Druckes sowie die Betriige der einzelnen eingeschlossenen Luftquanta.
Die Randbedingungen beim Zusammentreffen dreier Flichen sind die-
selben wie im fritheren Falle nicht geschlossener Lamellen. So lassen
sich z. B. mit Hiilfe zweier fester Ringe wieder alle Formen des
Unduloids und Nodoids, geschlossen durch angesetzte Kugelkalotten,
erzielen. Kine einzelne freie Seifenblase hat notwendig Kugelgestalt.
und ist der Uberdruck innen umgekehrt proportional ihrem Radius.
und der Proportionalititsfaktor das Vierfache der Oberflichenspan-
nung.

11. Stabilitit einer Trennungsfliche. Fiir das stabile Gleich-
gewicht einer Trennungsfliche F,z, die bereits der friiher erdrterten
Bedingung —g% = 0 (w==0) in jeder von einem Parameter w abhingen-
den und durch sie hindurch fiithrenden Schar von virtuellen Verriickungen
entspricht, ist weiter der definit-positive Charakter der zweiten Ab-
leitung der potenticllen Emergie nach dem Variationsparameter w, d. i.
die Ungleichung:

(18) PE 0 firw=0
dw?*

erforderlich. Nehmen wir an, der Rand von F,z sei festzuhalten, so-
dass das Kurvenintegral in (3) fortfillt, so folgt durch Differentation.
nach w aus (3), (4), (5) im Hinblick auf (6): -

2
%‘f;=fN{TAB*3%(“I% + ”1%2‘) +9(9A_93)a%§}df-

¥4

Hiervon sei eine spezielle Anwendung gemacht. Die
Trennungsfliche falle in die Niveauebene 2 = 0. Die Fliissig-
keit B befinde sich oberhalb A4 in einem nach unten offenen
Gefésse, sei aber schwerer als 4, also ¢,>¢, (Fig. 20).
Hier ist fiir die variierten Flichen

— 0 (1 1\__ 0N 0:N
2= Nw (mod’wg), 57; (-_Rl_ + ji':) = ‘a—x; -_— a—yg (mOdW)’

(wobei durch das Zeichen = und den Zusatz (mod w? bzw. (mod w)
eine (fleichheit bis auf Glieder von der Ordnung w? bez. w ange-
deutet werden soll), und kommt die Bedingung (18) auf

19 [¥{— 2w GE + ) — oo, — ) N} ar>0

hinaus, withrend die Konstanz des Volumens ¥V, die Gleichung
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(20) [Nar=o
¥Fup
erfordert und ferner N am Rande von F,z durchweg Null sein soll.

In einer mehr elementaren Ausfithrung sagt Mazwell*®), der
Integrand in (19) miisse durchweg > O sein, was iiberhaupt niemals
fir den ganzen Umfang der hier zuzulassenden Funktionen N zu er-
zielen wire.

Ist die Offnung des Gefisses ein Kreis vom Radius R um den
Nullpunkt, so trigt man der Bedingung des Verschwindens von
N(z,y) am Rande in allgemeinster Weise Rechnung durch den An-
satz:

N (rcosg, rsingp) =2 2 I (l"gr> (@, cosme + b, sinme),
m=0 k=1

worin J,,(1) die Bessel'sche Funktion erster Art von der Ordnung m
und 4,,, 4,,,,... ihre der Grosse nach geordneten positiven Nullstellen
bedeuten®). Aus (19) entsteht dann

% Rgz 2 <m1;;'2 TAB "9(93 94))( +1()'mk)>2(amk + b k)>0)

m=0 k=1

wihrend aus (20) die Gleichung:

2n Rt D) Silbon.

k=1 0k

@y, =0

wird. Nach der Grossenfolge der 1,, kommt die Forderung hier in
der Tat auf das von Mazwell angegebene Kriterium fiir Stabilitdt
hinaus, dass

T
B< ;'“Vg(e A—Be,q)

sein soll. Benetzt B die Gefiisswand, so kann die obere Grenze hier
by
Ve
Kapillarrohre vom Radius 1 ist (vgl. Nr. 7)5); die Konstante 4,,/)/2
hat den Wert 2,709...

Ist die Offnung des Geefiisses ein Rechteck mit den Seiten a, b
und a > b, so wird fiir die Stabilitit des Gleichgewichtes

49) J. C. Maxwell, Scientific papers 2, p. 585.

50) Vgl. Die part. Differentialgl. d. math. Physik, nach Riemann’s Vorl.
neu bearbeitet von H. Weber, 2, p. 262; 1, p. 164.

51) Beobachtungen von Duprez (Mém. de I’Acad. de Belgique 26 (1851), 28
(1864)) sind in Ubereinstimmung mit diesem theoretischen Ergebnisse.

Vh,, geschrieben werden, wenn %, die mittlere Steighthe in einer
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4,1
£ (a—s—l—b—z) Tis—9(0p—09)>0

erfordert, woraus zugleich fiir o = oo die entsprechende Bedingung
in Bezug auf einen langen Spalt ersichtlich ist.

12. Kapillarschwingungen. Im Gleichgewichtszustand befinde
sich A ganz unterhalb, B ganz oberhalb der Niveauebene z = 0, und
ihre unbegrenst gedachte Trennungsfliche fiihre nunmehr unter Ein-
fluss der Oberflichenspannung und der Schwere flache Schwingungen

2 =¢f(x, y, t) (mod &%)

aus, worin ¢ einen Parameter in gewisser Umgebung von O bedeutet.
In A wie in B mogen Geschwindigkeitspotentiale = c¢, bez. == e,
(mod &%) gelten, welche der Laplace’schen Differentialgleichung geniigen
und deren wegativ genommene Differentialquotienten nach den Koordi-
naten die beziiglichen Geschwindigkeitskomponenten darstellen. An
der Trennungsfliche haben wir einerseits fiir 4, andererseits fiir B
erstens die kinematische Forderung einer zur Fliche tangentialen
Relativgeschwindigkeit, zweitens fiir den dort geltenden Druck
= p, + ep, bez. =p,+ &p, (mod &%) das Integral der lebendigen Kraft
und bestimmt sich drittens die Druckdifferenz = &(p,—p,) (mod &?)
als Kapillardruck gemiss (10). Fir lime =0, d. h. fiir unendlich
flache Wellen werden diese Beziehungen:

of 3‘PA_39’B Py 094 Pp 09 .
ot oz T 9z a—*a—{—‘yf, (j;-‘g;—‘gf; (¢=0),
0* 0*
PA~PB=—TAB(5;Q+%";)°
Soll noch A4 fiir limg = — oo, B fiir lims = -+ oo ruhen, so

wird allen hier genannten Bedingungen in einer Weise, die zur addi-
tiven Konstruktion ihrer allgemeinen Auflosung hinreicht, durch den
partikuliren Ansatz:

= m(e—ia‘F(x, y)), P, = R (_. 16 ek:—io:F) q,Bzm(lkEe—kz—ia:F)’
0*F
P + 6y

geniigt, worin o, %k reelle positive Konstanten sind, R das Zeichen
fiir den reellen Teil der dahinter aufgefiihrten Grosse ist und wo dann
noch aus den letzten Relationen die Beziehung:

6\ %" Cg Typ
1) (k) e tepk +u+93

zwischen % und o folgt.
Encyklop. d. math. Wissensch. V 1. 38
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Wellen, die von y nicht abhéngen, folgen. bei dem Ansatze
F = Cet*®-=) und damit ist 1 = g’:—t die Linge horizontal - zylindri-
scher, in einer Richtung fortschreitender oder auch stehender Wellen
von der Schwingungszahl;—”' Diese Beziehung (21) haben Lord

Kelvin®?), ferner Kolaéek®®) gegeben; sie findet Anwendung auf die
Fortpflanzung von Wellen einer unbegrenzten Wasserfliche unter der
gemeinsamen Wirkung von Schwere und Kapillaritdt ohne Wind,
ferner auf solche erzwungene stehende Kapillarschwingungen, bei
denen die Knotenlinien als parallele Geraden gelten konnen®).

Der Gleichung (21) zufolge hat, ¢, > o, vorausgesetat, die Fort-

A
pflanzungsgeschwindigkeit ¢ = % ein Minimum c,, bei einer gewissen
Wellenlinge 4,,, mit welchen Grossen dann (21) sich
c? 1 /2 Am
(21a) =3+

schreibt. (In Fig. 21 ist die hierdurch bestimmte Kurve in 4 und ¢
nebst den Kurven ¢*/c}, = 1+ 1/4, und ¢*/c}, = % 4,/4 dargestellt, um
' die Wirkungen von Schwere und
Kapillaritit zu vergleichen.) Mit einem
jeden Werte c¢>c, vertragen sich
alsdann zweierlei Wellenlingen, eine
kiirzere 1, < 4, und eine lingere

> A_, wobei die Quotienten LY und
m? 7"”

% reziprok sind. Die Wellen mit

A<A4,, bei denen in (21) der Term
mit T4 gegeniiber demjenigen mit g
iiberwiegt, bezeichnet Lord Kelvin als
Hripples®. Fiir Wasserwellen in Luft
cm
=

Lord Kelvin erorterte ferner den Einfluss des Windes auf die
Geschwindigkeit von Wasserwellen. Hierbei wird die Annahme ge-
macht, dass die obere Fliissigkeit B fiir limz = oo mit einer gegebenen
Geschwindigkeit « in Richtung der z-Axe fortschreitet. Bei der

Fig. 21.

ist etwa 1, = 1,75 cm, ¢, = 23,2

52) W. Thomson, Phil. Mag. (4) 42 (1871), p. 368; Edinburgh Proc. Roy.
Soc. 1870/71, p. 374.

53) Kolaéek, Ann. Phys. Chem. 5 (1878), p. 425; 6 (1879), p. 616.

54) Vgl. die ausgedehnten Versuchsreiben von L. Grummach, Wiss. Abh.
d. kais. Normalaichungskommission, Berlin 1902, p. 101.
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Wellenlinge 4 sind alsdann zweierlei Fortpflanzungsgeschwindigkeiten

4 B
=tV (":E;)
moglich, wo ¢ die durch (21a) bestimmte Geschwindigkeit fiir u = 0
ist. Ein imaginirer Wert der Quadratwurzel hier wiirde bedeuten,
dass die unveréindert als Ausgangspunkt zu nehmende komplexe Parti-
kulérldsung nunmehr in ihrem reellen Teile Wellen mit bestindig zu-
nehmender Amplitude darstellt. Diese Instabilitit kommt fiir simt-

liche Wellenléingen nicht in Frage, sowie u < +; ' 156
e

Denkt man sich wieder A in horizontal-zylindrischer, von y nicht
abhingender Bewegung derart, dass das von # = O wenig abweichende,
im iibrigen aber vollig willkiirlich angesetzte Wellenprofil von A4
gleichférmig mit der Geschwindigkeit ¢ in der z-Richtung fortschreitet
und andererseits 4 fiir # = — oo ruht, so gewinnt man durch das
Integral der lebendigen Kraft an der Oberfliche von A4 und anderer-
seits den Kapillardruck eine Integralgleichung (Fourier'sches Integral),
um das Wellenprofil gerade einer willkiirlich angenommenen Verteilung
des dusseren Druckes p, an der Oberfliche anzupassen. Insbesondere
wirkt eine mit einer Geschwindigkeit ¢ > ¢,, in der 2-Richtung schwim-
mende zur y-Axe parallele Gerade, welche an ihrem Orte den Gesamt-
betrag des Druckes auf die Lingeneinheit um P vermehrt, wihrend
sonst der Druck p, konstant sei, genau wie eine sprungweise Zu-
nahme des Richtungskoeffizienten dz/dx des Wellenprofils um den
Betrag 2 P/T45 und ruft in einiger Entfernung vor sich her einfach-
harmonische Wellen von der Linge 4, (< 4,), hinter sich von der
Linge 4, (> 4,,) hervor. — Eine gegen ihre Fortschreitungsrichtung

einen Winkel %—-—0 bildende Drucklinie wirkt dann, als wenn sie

nur senkrecht gegen sich die Geschwindigkeit ¢ cos @ hat, woraus durch
eine Integration nach 0 sich die Wirkung eines gleichférmig mit der
Geschwindigkeit ¢ schwimmenden, druckvermehrend wirkenden Punktes
berechnet und insbesondere sich zeigt, dass ein solcher eine keilférmige
Wellenfront (man denke an das Bild von Schiffswellen) mit dem

durch ¢ cos § =¢, bestimmten Offnungswinkel 2 (% — 0) vor sich
hertreibt54).

Die Beriicksichtigung der dnneren Reibumg wird fiir flache, in
einer Richtung fortschreitende Wellen auf einer reinen Wasserober-

54) Lord Rayleigh, Proc. Lond. Math. Soc. 15 (1883), p. 69 (Sc. papers 2,
p. 258).
88%
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fliche derart zu geschehen haben, dass an der Oberfliche die Schub-
spannung gleich Null angenommen, die Zugspannung dem Kapillar-
druck entsprechend berechnet wird. Ist u der Reibungskoeffizient und
v=yu/g,, so findet man zu gegebener Wellenlinge A anstatt der
fritheren Fortpflanzungsgeschwindigkeit ¢, wofern & = 2z /¢4 klein

ausfillt, (fiir Wasserwellen ist 277”1 = 0,0048 cm), eine modifizierte

Wellengeschwindigkeit =¢(1 —}/2 ﬂ%), wihrend zugleich die Am-
8n2vy

plituden einen Dimpfungsfaktor e % | also eine Relaxationszeit

—8—:;% (= 0,712 A%sec fiir Wasser)
aufweisen.

Die beruhigende Einwirkung von Ol auf Wasserwellen wird da-
durch erklirt56)57), dass zunichst infolge Uberwiegens der Oberfliichen-
spannung von Wasser gegen Luft iiber die Summe der zwei Ober-
flichenspannungen von Ol gegen Wasser und gegen Luft das Ol sich
zu einer Ausserst diinnen Haut auf dem Wasser auszieht-und fiir die
Oberflichenschicht mit der Beimengung von Ol dann elastische Eigen-
schaften zu Tage treten; ihre Spannung bleibt nicht linger konstant,
sondern wichst, wenn die Dicke durch Streckung weiter zu reduzieren
gesucht wird; dadurch wirkt sie gleichsam wie eine biegsame und
schwer dehnbare Membran und hindert durch ihren Zug auf das darunter
befindliche Wasser die freie Entfaltung und Fortpflanzung der Wellen.
Infolgedessen ist, wenn man den Einfluss der inneren Reibung er-
mitteln will, nicht mehr, wie im Falle einer reinen Wasseroberfléiche,
mit der Grenzbedingung an der Oberfliche zu rechnen, dass dort die
Schubspannung Null ist, sondern eher mit der anderen, dass dort die
horizontale Geschwindigkeitskomponente Null sei®). Fiir diesen an-
deren extremen Fall ergibt sich eine gegen die vorhin betrachteten
Umstéinde im Verhiltnis 4)/28: 1 kleinere Relaxationszeit.

Die kleinen Schwingungen einer Trennungsfliche von der Gestalt
eines Kreiszylinders behandelte Lord Rayleigh®®), um von da aus die
Stabilitat der Fliissigkeitsstrahlen beurteilen zu konnen. Die Schwere

55) Vgl. H. Lamb, Hydrodynamics, 3 ed., Cambridge 1906, p. 563.

56) Reynolds, Brit. Assoc. Rep. 1880 (Sc. papers 1, p. 409).

57) Aitken, Edinburgh Roy. Soc. Proc. 12 (1883), p. 56.

58) H. Lamb, Hydrodynamics, 8* ed., Cambridge 1906, p. 570.
; 59) Lord Rayleigh, Lond. Proc. Math. Soc. 10 (1878), p. 4; Proc. Roy. Soc.
29 (1879), p. 71 (Sc. papers 1, p. 861, 877; Theory of sound, 2. ed. chapt. XX);
in Phil. Mag. 34 (1892), p. 145 (Sc. papers 3, p. 585) wird noch der Einfluss der
inneren Reibung der Flissigkeit in Betracht gezogen.
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wird nicht beriicksichtigt. Es sei A4 innerhalb, B ausserhalb des
Zylinders befindlich, R der Radius des Zylinders, seine Axe die z-
Axe, und
r= R + ¢f(s 0, t) (mod &), (2 4 iy = re®),
im lim ¢ = O seine Schwingungsgleichung. Wird der dussere Druck
in B konstant angenommen, was damit gleichwertig ist, ¢, =0 zu
nehmen, so kann man fiir das Geschwindigkeitspotential in 4 den par-
tikuléren Ansatz
eR(C®e=0t+m0) J (ikr))(mod &%)

machen, wobei J,, die Bessel'sche Funktion erster Art von der Ord-
nung m bedeutet, und man gelangt durch die kinematische Bedingung
und andererseits die Druckgleichung an der Oberfliche zu der Relation
kRI,(RR) \ T,n
*’jﬁk‘m*(k R+ m?— I)PAR’ :

Fir m = 0 wird ¢2<< 0, falls 2R < 1 ist, was den instabilen
Charakter von Stérungen bedeutet, deren Wellenléinge 2x/k den Umfang
des Zylinders iiberschreitet. Die Instabilitit wird infolge des Fak-
tors el?l* in den Amplituden am grossten, wenn dabei |¢| am grossten

ausfillt, was auf 2—; = 4,51 >< 2R hinfiihrt, so dass fiir Schwellungen
und Kontraktionen von dieser Wellenlinge die Tendenz des Strahls 4
zum Zerfallen in Tropfen am stirksten ist.

Nach #hnlichen Prinzipien behandelt Lord Ragyleigh ) den Fall
0,=0, 0,>0, wobei sich als die Wellenlinge grosster Instabilitét
27 — 6,48 >< 2R ergiht.

Das erste Ergebnis findet Anwendung auf das Zerfallen eines
Wasserstrahls in Luft, das zweite auf das Zerreissen eines durch
Wasser geschickten Luftstrahls. Die Schwingungen fiir m = 2, 3, 4
treten pridominierend hervor, wenn der Strahl aus einer Offnung von
elliptischer, dreieckiger, quadratischer Form austritt.

Die kleinen Schwingungen einer Trennungsfliche von der Gestalt

einer Kugel erledigen sich ausgehend von dem gleichzeitigen An-
satze °1) %)

_m(—cw Y,.(6,w)e=), ¢B=?R< c_E "Y,(6, w)e“"‘)

6'=

m Rm +1 m+1
d‘PA dgy "
wobei der kinematischen Bedingung —— = —, an der Oberfliche

60) Lord Rayleigh, Phil. Mag. (3) 34 (1892), p. 177 (Sc. papers 3, p. 594)
61) Lord Rayleigh, Proc. Roy. Soc. 29 (1879), p. 71 (Sc. papers 1, p 377).
62) Webb, Mess. of math. 9 (1880), p. 177.
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Rechnung getragen ist; darin bedeuten 7, 6, ¥ Polarkoordinaten vom
Kugelzentrum, Y, (0, ¢) die Kugelflichenfunktion m** Ordnung, R den
Radius der Kugel. Es stellt sich alsdann

T,
6:= m(m + 1)(m - 1)(”” + 2) ((m+ 1)gA—]|3-mgB)R’

heraus. Das Ergebnis findet Anwendung auf die Schwingungen eines
Wassertropfens in Luft, einer Luftblase in Wasser; in abfallenden
Tropfen treten durch ein Nachwirken des Abreissens der Tropfen
noch die Schwingungen 3. Ordnung (m = 3) hervor ).

II. Kapillaritit als riumlich verteilte Energie.

13. Die Hypothese der Kohisionskriifte. Die Kapillaritits-
erscheinungen ergeben sich als notwendige Folgerungen aus einer
Hypothese, wonach zwischen zwei materiellen Teilchen gleicher oder
verschiedener Substanzen neben der Gravitation noch eine andere, nur
von der Distanz abhéingende Anziehungskraft in der Verbindungslinie
wirksam ist, die man Kohdsionskraft nennt und deren Gesetz irgend
welcher Art sein mag, nur dass sie mit wachsender Entfernung der-
art rasch abnimmt, dass sie bereits auf eine Ausserst kleine, mikro-
skopisch nicht wahrnehmbare Distanz ganz ausser Betracht fillt.

Zunichst wurde das Ansteigen von Fliissigkeit in einer kapillaren
Réhre allein mit einer von der Rohre auf die Fliissigkeit ausgeiibten
Anziehung erklirt, die nach der Unabhingigkeit der Erscheinung
von der Dicke der Rohre nur von den der Wand nichstgelegenen
Partikeln ausgehen konnte®). Clairaut®) erkannte es als notwendig,
eine Anziehung der Fliissigkeitsteilchen unter einander mit in Riick-
sicht zu ziehen. Laplace®) konnte sodann eine vollstindige Theorie
der Kapillaritidt einzig mit der vorhin skizzierten Hypothese iiber die
Kohisionskrifte aufbauen.

Laplace berechnete fiir eine Flissigkeitsmasse, deren Teile ge-
miss jener Hypothese kohdrieren, in der Hauptsache das Potential
der Kohisionskrifte fiir eine Stelle der Oberfliche und fand es als
eine lineare Funktion der mittleren Kriimmung daselbst. Er betrachtete
zunichst das Potential einer Kugel auf eine Stelle der Oberfliche,
ging von da zum Potential eines durch zwei unendlich nahe Meridian-

63) Lenard, Ann. Phys. Chem. 30 (1887), p. 209.

64) Hawkesbee, London Trans. R. Soc. 26, 27 (1709—1718).

65) Clairaut, Traité sur la figure de la terre, Paris 1743, chap. X.
66) Laplace, Théorie de 'action capillaire.



