

Werk

Titel: Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen

Jahr: 1903

Kollektion: Mathematica

Digitalisiert: Niedersächsische Staats- und Universitätsbibliothek Göttingen

Werk Id: PPN360709532

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN360709532 **OPAC:** http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=360709532

LOG Id: LOG_0463

LOG Titel: C. Die adiabatischen Prozesse.

LOG Typ: chapter

Übergeordnetes Werk

Werk Id: PPN360504019

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN360504019 **OPAC:** http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=360504019

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions. Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de 89. Der isentrop. Prozess. Die adiab. Expansion ohne äuss. Arbeitsleistung. 937

mungen von Dieterici ¹⁰⁷²) fussenden Rechnungen Dalton's ¹⁰⁷⁸) entlehnt, die Kurve $v.\ d.\ W.$ der $van\ der\ Waals$ 'schen Hauptzustandsgleichung mit konstanten $a_{\rm w},\ b_{\rm w},\ R_{\rm w}$ (Nr. **64**b) ¹⁰⁷⁴).

Man findet bei solchen Werten von t, bei denen der Dampf sich im Avogadro'schen Zustand (Nr. 39a) befindet:

$$\gamma_{\rm vap} = \gamma_{\rm pA} - RT \frac{d \ln p_{\rm koex}}{dT}, \qquad (168)$$

den Umkehrpunkt bei diesen Werten von T also bei

$$\frac{\varkappa_{A}}{\varkappa_{A}-1} = \frac{d \ln p_{\text{koex}}}{dT}.$$
 (169)

Kamerlingh Onnes ⁶⁹⁶) benutzte bei seiner in dieser Art geführten Berechnung dieser Umkehrpunkte die aus der van der Waals'schen Hauptzustandsgleichung mit konstanten a_w , b_w , R_w abgeleitete Dampfspannungsformel Gl. (12) mit $f_{\rm wh}=1.5$ (Nr. 83c); dieselben werden sich bis etwa t=0.5 der Kurve v.~d.~W. in Fig. 78 anschliessen. Dargestellt sind noch die Kurve $f_w=2.9$, die mit Gl. (12) und dem experimentellen Wert $f_{\rm we}=2.9$ berechnet ist, und die sich aus der Nernst'schen Dampfspannungsformel Gl. (146) ergebende Kurve Nernst.

Für höhere Werte von $\kappa_{\rm A}$ bleibt also in Fig. 77 die $\gamma_{\rm vap}$ -Kurve ganz unterhalb der T-Achse 1075) 1076).

C. Die adiabatischen Prozesse.

89. Der isentropische Prozess. Die adiabatische Expansion ohne äussere Arbeitsleistung. a) Wir wollen schliesslich noch die Beziehung der bei der Untersuchung der adiabatischen Prozesse zu erhaltenden Ergebnisse zu dem Studium der Zustandsgleichung erörtern. Van der Waals 1077) leitete für den reversiblen adiabatischen oder isentropischen

¹⁰⁷²⁾ C. Dieterici. Ann. d. Phys. (4) 12 (1903), p. 154.

¹⁰⁷³⁾ J. P. Dalton, Fussn. 704. Die, nicht mit dem Korrespondenzgesetz zusammenfallende, Dalton'sche Annahme über γ_v/γ_{vA} wird das Resultat wohl nicht überwiegend beeinflusst haben.

¹⁰⁷⁴⁾ Ebenfalls nach Rechnungen Dalton's, Fussn. 1073.

¹⁰⁷⁵⁾ Fig. 78 beleuchtet auch deutlich, dass die Umkehrpunkte für γ_{vap} für Stoffe mit verschiedenen Werten von \varkappa_{A} bei verschiedenen Werten von t gefunden werden, entgegen der Annahme *Natanson*'s [ZS. physik. Chem. 17 (1895), p. 267].

¹⁰⁷⁶⁾ Für die Zeichnung und Diskussion der isopsychrischen ¹⁵²) γ -Kurven siehe *E. Mathias*, J. de phys. (4) 7 (1908), p. 618, 8 (1909), p. 888.

¹⁰⁷⁷⁾ J. D. van der Waals [a] p. 131, [d] p. 44.

938 V 10. H. Kamerlingh Onnes und W. H. Keesom. Die Zustandsgleichung.

Prozess aus seiner Hauptzustandsgleichung mit konstanten $a_{\rm w}$, $b_{\rm w}$, $R_{\rm w}$ und $\kappa_{\rm A}$ = konst. die Gleichung

$$\left(p + \frac{a_{\rm w}}{v^2}\right) \left(v - b_{\rm w}\right)^{\kappa_{\rm A}} = \text{konst.}$$
 (170)

ab, die für den Avogadro'schen Zustand in die Poisson'sche 1078) Gleichung

$$p v^{\kappa_{\mathbf{A}}} = \text{konst.} \tag{171}$$

[Enc. V 3. Art. Bryan, Gl. (112)] übergeht. Letztere gibt für die verschiedenen Werte von \varkappa_A ein System von Polytropen (Enc. V 5, Art. Schröter, Nr. 5).

Perman, Ramsay und Rose-Innes ¹⁰⁷⁹) fanden in empirischer Weise aus ihren Bestimmungen der Schallgeschwindigkeit in Ätherdampf und mit Gl. (51) für die Gleichung der Isentrope

$$pv^{11/9} = k_s - \frac{B_s}{v^{4/9}} + \frac{C_s}{v^{10/9}} + \frac{D_s}{v^{16/9}}, \tag{172}$$

in der B_s u. s. w. Konstanten sind und k_s ein die verschiedenen Isentropen charakterisirender Parameter ist. Es wäre diese Gleichung unter Heranziehung der thermischen Zustandsgleichung zur Ableitung der kalorischen Grundgleichung zu verwenden. Eine derartige Anwendung macht Worthing ¹⁰⁸⁰), indem er aus Messungen der Druckänderung bei isentropischer Expansion oder Kompression von ${\rm CO}_2$, dabei die entsprechende isothermische Druckänderung der empirischen Zustandsgleichung Gl. (31) entlehnend, mittels Enc. V 3, Art. Bryan, Gl. (75) z ableitet (vergl. Fussn. 368 und 637).

b) Die Bestimmungen der Temperaturänderung bei isentropischer Expansion von Flüssigkeiten ¹⁰⁸¹) haben zur Kontrolirung der Zustandsgleichung noch keine Anwendung gefunden.

¹⁰⁷⁸⁾ Poisson. Ann. chim. phys. 23 (1823), p. 1. G. Moreau, Paris C. R. 133 (1901), p. 732, benutzte zur Ableitung der Gleichung der Isentrope die Mallard- und le Chatelier'schen Resultate für γv (Nr. 55c β) und setzte $p v = p_0 v_0$ (1 + $\alpha t + \beta t^2$), durch den letzten Ansatz in das Gebiet der Dissoziation bei höheren Temperaturen 629) vordringend.

¹⁰⁷⁹⁾ E. P. Perman, W. Ramsay und J. Rose-Innes. London Phil. Trans. A 189 (1897), p. 167.

¹⁰⁸⁰⁾ A. G. Worthing. Phys. Rev. 32 (1911), p. 243, 33 (1911), p. 217.

¹⁰⁸¹⁾ J. P. Joule, London Phil. Trans. 149 (1859), p. 133. H. G. Creelman und J. Crocket, Edinb. Proc. Roy. Soc. 13 (1885), p. 311. C. I. Burton und W. Marshall, London Proc. Roy. Soc. 50 (1891), p. 130. Vergl. auch die Bestimmungen von Perman, Ramsay und Rose-Innes 1079) an slüssigem Äthyläther.

c) Es ist das S, V-Diagramm, wenn darin die Konnodale mit den Isophasen (Fig. 37), und im homogenen Gebiet das Netz der Isothermen und Isobaren verzeichnet sind, besonders geeignet zur Darstellung, wie die Isentropen in das heterogene Gebiet eintreten und verlaufen 1082). Diese Verhältnisse sind von besondrer Wichtigkeit für die Frage, ob und von welchem Druck ausgehend bei einer gegebenen Temperatur durch adiabatische Expansion die Verflüssigung früher permanent genannter Gase (Nr. 20) möglich ist. Man muss hierbei achten auf die seitens der Wände des Gefässes, in dem sich das expandirende Gas befindet, zugeführte Wärme, welche eine Ablenkung der den Prozess vorstellenden Linie von der Isentrope nach der Seite der +S bedingt. Diese kann so weit gehen, dass es gar nicht zum Schneiden mit der Grenzlinie kommt 1083).

Die Frage, ob bei isentropischer Expansion eines Gemenges von Flüssigkeit und Dampf Kondensation oder Verdampfung eintritt, wird durch die Art der Durchschneidung von Isentrope und Isopsychre ⁴⁵²) beantwortet ⁴⁰⁸⁴). Nach Natanson ⁴⁰⁸⁴) nennt man neutrale Kurve (zur Unterscheidung von den Nr. **72**b eingeführten kann man hinzufügen: für die isentropische Expansion eines Gemenges von Dampf und Flüssigkeit) den Ort der Berührungspunkte von Isentropen und Isopsychren, wo also eine elementare isentropische Expansion isopsychrisch vorgeht.

d) Gay-Lussac ¹⁰⁸⁵) und Joule ¹⁰⁸⁶) schlossen aus ihren Versuchen, dass beim Überströmen von Gas aus einem Gefäss in einen mit demselben verbundenen leeren Raum, der Wärmeverlust des im Gefäss übrig bleibenden Gases gleich der Wärmeentwicklung in dem

¹⁰⁸²⁾ Ein Beispiel der Behandlung für ein Gemisch (Luft mit Wasser) und Darstellung in einem log p, log T-Diagramm: H. Hertz, Meteorol. ZS. 1 (1884), p. 421, Gesammelte Werke I, p. 320, vergl. W. Voigt, Thermodynamik II, Leipzig 1904, p. 92.

¹⁰⁸³⁾ Diese Ablenkung erklärt, dass der Versuch von Otszewski, Fussn. 212, sowie der mit grösserer Weite des Expansionsrohres bei geringerem Drucke angestellte ähnliche von Kamerlingh Onnes, Fussn. 213, durch adiabatische Expansion das He zu verstüssigen, erfolglos waren.

¹⁰⁸⁴⁾ Raveau, J. de phys. (3) 1 (1892), p. 461. Weiter L. Natanson, ZS. physik. Chem. 17 (1895), p. 267, E. Mathias, J. de phys. (3) 7 (1898), p. 397, (4) 7 (1908), p. 618.

¹⁰⁸⁵⁾ Gay-Lussac, Mém. d'Arcueil 1 (1807), wieder abgedruckt in Mach, Prinzipien der Wärmelehre, Leipzig 1896, p. 461.

¹⁰⁸⁶⁾ J. P. Joule. Phil. Mag. (3) 26 (1845), p. 369.

in den leeren Raum hineinströmenden Gas ist (Enc. V 3, Art. Bryan, Fussn. 65). Hieraus würde folgen, dass die Expansion ohne äussere Arbeitsleistung zugleich isothermisch und adiabatisch geführt werden könnte. Cazin 1087), der dieselbe adiabatisch leitete 1088), fand aber für CO₂ eine Temperaturerniedrigung, die er mit der Rankine'schen Zustandsgleichung ⁵⁴³) und den Regnault'schen Kompressibilitäts- und Ausdehnungsbestimmungen in ziemlicher Übereinstimmung fand. Rechnungen über die adiabatische Expansion ohne äussere Arbeitsleistung (freie Expansion) auf Grund der empirischen Zustandsgleichung (Nr. 36) gab Worthing ¹⁰⁸⁹), dabei für Luft experimentelle Werte von z nach Koch ⁶⁰⁷), für CO₂ von ihm selbst bestimmte (vergl. a) benutzend. Besonders aber ist die Expansion mit äusserer Arbeitsleistung, wie der adiabatisch isenthalpische Prozess, der Joule-Kelvin-Prozess (vergl. Nr. 64c), zur Prüfung der Zustandsgleichung herangezogen. Wir gehen auf diesen in Nr. 90 weiter ein.

90. Der Joule-Kelvin-Prozess. a) Nachdem Gay-Lussac und besonders Joule (Nr. 89d) eine Abhängigkeit der inneren Energie eines Gases von v nicht gefunden hatten (vergl. Enc. V 3, Art. Bryan, Nr. 22), wurde zur empfindlicheren Prüfung jener Abhängigkeit die isenthalpisch (Nr. 53b) adiabatische Expansion 1090) vorgeschlagen von Kelvin 1094) und ausgeführt von Joule und demselben 1092) mit H_2 , N_2 , O_2 , Luft, CO_2 , zwischen O° und 100° C und mit Anfangsdrucken bis zu 6 Atm. Ausser diesen Versuchen sind noch zu erwähnen die Messungen von E. Natanson 1093) und von Kester 1094)

¹⁰⁸⁷⁾ A. Cazin. Ann. chim phys. (4) 19 (1870), p. 5.

¹⁰⁸⁸⁾ Indem er den Druckunterschied zwischen zwei mit einem Gas (H₂, CO₂, Luft) gefüllten Behältern sich adiabatisch ausgleichen liess, und den Enddruck beobachtete, gleich nachdem die Strömungsgeschwindigkeiten dissipirt waren.

¹⁰⁸⁹⁾ A. G. Worthing. Phys. Rev. 32 (1911), p. 245, 33 (1911), p. 217.

¹⁰⁹⁰⁾ H. L. Callendar, Phil. Mag. (6) 5 (1903), p. 50, nennt dieselbe im Gegensatz zu der adiabatischen reversiblen oder isentropischen "adiathermal".

¹⁰⁹¹⁾ W. Thomson. Edinb. Trans. Roy. Soc. 20 (1853), p. 289.

¹⁰⁹²⁾ J. P. Joule und W. Thomson. Phil. Mag. (4) 4 (1852), p. 481; London Phil. Trans. 143 (1853), p. 357, 144 (1854), p. 321; Report B. A. 1861, Trans. of the Sections p. 83; London Phil. Trans. 152 (1862), p. 579.

¹⁰⁹³⁾ E. Natanson. Ann. Phys. Chem. 31 (1887), p. 502.

¹⁰⁹⁴⁾ F. E. Kester. Physik. ZS. b (1904), p. 44. Phys. Rev. 21 (1905), p. 260. Vergl. auch noch die Versuche von W. A. D. Rudge, Phil. Mag. (6) 18 (1909), p. 159, Cambridge Proc. Phil. Soc. 16, I (1911), p. 48.

mit CO_2 , die von J P. Dalton ¹⁰⁹⁵) und von Bradley und Hale ¹⁰⁹⁶) mit Luft, von E. Vogel ¹⁰⁹⁷) mit Luft und O_2 , die von Hirn ¹⁰⁹⁸), Grindley ¹⁰⁹⁹), Griessmann ¹¹⁰⁰), Peake ¹¹⁰¹) und Dodge ¹¹⁰²) mit H_2 O ¹¹⁰³) ¹¹⁰⁴).

Die Versuche von Olszewski ¹¹⁰⁵) über die Inversionspunkte des Joule-Kelvin-Effektes (Nr. **64**c) können nach den Ausführungen von $Hamilton\ Dickson$ ⁷⁰⁷) ¹¹⁰⁶) und besonders den Experimenten Dalton's ¹¹⁰⁷) nicht einwandfrei als solche betrachtet werden.

Wegen der Anwendung des Joule-Kelvin-Prozesses in Linde's Methode (Nr. 20c) zur Verflüssigung von Gasen 1408) vergl. Nr. 20.

¹⁰⁹⁵⁾ J. P. Dalton. Leiden Comm. Nr. 109c (1909).

¹⁰⁹⁶⁾ W. P. Bradley und C. F. Hale. Phys Rev. 29 (1909), p. 258. Bei diesen Versuchen wurde aber nicht bewiesen, dass die Expansion tatsächlich isenthalpisch vorging (vergl. Fussn. 1107).

¹⁰⁹⁷⁾ E. Vogel. München Sitz.-Ber. 1909, Abh. 1. Diss. München (Berlin) 1910. Vergl. auch C. v. Linde, Fussn. 1108.

¹⁰⁹⁸⁾ G. A. Hirn. Théorie mécanique de la chaleur, 2te Aufl. 1865, p. 179.

¹⁰⁹⁹⁾ J. H. Grindley. London Phil. Trans. A 194 (1900), p. 1.

¹¹⁰⁰⁾ A. Griessmann. ZS. des Ver. d. Ingen. 47 (1903), p. 1852, 1880.

¹¹⁰¹⁾ A. H. Peake. London Proc. Roy. Soc. A 76 (1905), p. 185.

¹¹⁰²⁾ Dodge. J. Amer. Soc. Mech. Engs. 28 (1907), p. 1265, 30 (1908), p. 1227.

¹¹⁰³⁾ Bei diesen Versuchen wurde Wasserdampf durch Austreten aus einer engen Öffnung gedrosselt; an den Isenthalpen (vergl. aber Fussn. 1107) im p, T-Diagramm, den Drosselkurven, kann, wenn der Wert von \mathfrak{F}_{sp} für jede bekannt ist, durch $(\mathfrak{F}_{sp}/\mathfrak{F}T)_p = \gamma_p$ letztere Grösse abgelesen werden (vergl. Fussn. 638). Falls man von einem Gemenge von Dampf und Wasser ausgeht, kann aus der Endtemperatur der anfängliche Wassergehalt abgeleitet werden: Drosselkalorimeter, Osborne Reynolds, Manchester Mem. and Proc. Litt. and Phil. Soc. 41 (1896) Nr. 3.

¹¹⁰⁴⁾ Regnault, Mém. de l'Inst. 37 II, p. 579, Paris C. R. 69 (1869), p. 780, leitete die Expansion isotherm [Enc. V 3, Art. Bryan, Nr. 23, Vorgang a, der neuerdings wieder von E. Buckingham, Phil. Mag. (6) 6 (1903), p. 518, empfohlen ist] und bekam nur nach Überwindung vieler Schwierigkeiten Resultate, die mit denen der isenthalpisch adiabatischen Expansion in Übereinstimmung sind, vergl. auch E. Buckingham, Nature 76 (1907), p. 493.

¹¹⁰⁵⁾ K. Olszewski. Ann. d. Phys. (6) 7 (1902), p. 818. Phil. Mag. (6) 13 (1907), p. 722.

¹¹⁰⁶⁾ Vergl. auch W. Peddie, Edinb. Proc. Roy. Soc. 28 (1908), p. 394.

¹¹⁰⁷⁾ Nachdem Joule und Kelvin mit Expansion durch eine enge Öffnung keine befriedigenden Resultate bekommen hatten, sahen sie einen Wattepropfen im Expansionsrohr vor. J. P. Dalton ¹⁰⁹⁵) zeigte, dass man unter gewissen Bedingungen auch mit einem Reduzirhahn den richtigen Joule-Kelvin-Effekt bekommen kann.

¹¹⁰⁸⁾ Vergl. auch *C. v. Linde*, ZS. f. d. ges. Kälteindustrie 18 (1911), p. 132. Nach der *van der Waals*'schen Hauptzustandsgleichung mit konstanten $a_{\rm W}$, $b_{\rm W}$, $R_{\rm W}$ ist es mit diesem *Linde*-Prozess noch möglich, von $T=\frac{27}{4}T_{\rm k}$ ab zur Verflüssigung zu gelangen.

- b) Aus den in a erwähnten Messungen geht tatsächlich eine Abhängigkeit der inneren Energie eines Gases von v hervor, wie dieselbe in der Abweichung der experimentellen Zustandsgleichung von der eines vollkommenen Gases (Enc. V 3, Art. Bryan, Nr. 22) zum Ausdruck kommt. Schon die Joule-Kelvin'schen Resultate ergaben dieses. Dieselben sind mancherseits zur Kontrolirung von Zustandsgleichungen herangezogen. So von Joule und Kelvin selbst (Fussn. 543, vergl. auch Planck ebenda), van der Waals 1109), der mit seiner Hauptzustandsgleichung mit konstanten $a_{
 m w}$, $b_{
 m w}$, $R_{
 m w}$ Übereinstimmung für Luft bei 17° C, weniger aber 1110) für 90° C und nicht für CO₂ fand, Sutherland 1111), L. Natanson 1112) (vergl. Nr. 49b), Bouty 1118), Schiller (Nr. 48e), Leduc (vergl. Fussn. 1118), Nakamura 1114), Bevan 1115), Porter 1116) 1117). Der Ableitung einer für ein grosses p, T-Gebiet als gültig anzusetzenden Zustandsgleichung mittels des Joule-Kelvin-Effektes, der zur Kontrolirung zwar ein empfindliches Kriterium darstellt, steht zur Zeit die geringe Ausdehnung des experimentell erforschten p, T-Gebietes desselben entgegen.
- c) Für die differenzielle isenthalpisch adiabatische Expansion, oder den differenziellen Joule-Kelvin-Effekt (Nr. 64c) gilt die Gleichung

$$d T (\mathfrak{F}_{sp} = \text{konst.}) = -\frac{1}{\gamma_p} \left\{ v - T \left(\frac{\partial v}{\partial T} \right)_p \right\} d p.$$
 (173)

Wegen der Diskussion auf Grund der van der Waals'schen Hauptzustandsgleichung mit konstanten $a_{\rm w}$, $b^{\rm w}$, $R_{\rm w}$ siehe Nr. 64c.

¹¹⁰⁹⁾ J. D. van der Waals [a] p. 123.

¹¹¹⁰⁾ Leduc [b] p. 51 meint diese Beobachtung unrichtig.

¹¹¹¹⁾ W. Sutherland. Phil. Mag. (5) 22 (1886), p. 81

¹¹¹²⁾ L. Natanson. Diss. Dorpat 1887, p. 42.

¹¹¹³⁾ E. Bouty, J. de phys. (2) 8 (1889), p. 20, fand, dass sich für CO_2 die Clausius'sche Gl. (81) besser den Joule-Kelvin'schen Resultaten anschliesse als die van der Waals'sche Hauptzustandsgleichung mit konstanten a_W , b_W , R_W . Wie auch J. Rose-Innes, Phil. Mag. (5) 48 (1899), p. 286, bemerkt, ist, entgegen der Meinung von E. F. J. Love, Phil. Mag. (5) 48 (1899), p. 106, $(\partial U/\partial v)_T$ nicht ohne weitere Daten aus $(\partial T/\partial p)_{\mathfrak{R}_{SD}}$ abzuleiten.

¹¹¹⁴⁾ S. Nakamura. Referat J. de phys. (4) 2 (1903), p. 704.

¹¹¹⁵⁾ P. V. Bevan. Cambridge Proc. Phil. Soc. 12 (1903), p. 127.

¹¹¹⁶⁾ A. W. Porter. Phil. Mag. (6) 11 (1906), p. 554.

¹¹¹⁷⁾ Für besondere Linien und Punkte des Joule-Kelvin-Effektes vergl. auch D. Berthelot, Nr. 48e.

In erster Annäherung 1118) für kleine p gibt die empirische Zustandsgleichung in der Form (128):

$$d T (\mathfrak{F}_{sp} = \text{konst.}) = \frac{1}{\gamma_{pA}} A T \frac{dB^{(p)}}{dT} d p. \tag{174}$$

Dabei ist, wie bei der weiteren Diskussion, Nr. 82 α entsprechend, die Avogadroskala als mit der Kelvinskala zusammenfallend angenommen 1119).

Aus Gl. (174) geht hervor, dass auch in dem Avogadro'schen Zustande $(\partial T/\partial p)_{\mathfrak{F}_{sp}}$ nicht = 0 ist, ausser für einen solchen Wert von T, für den $dB^{(p)}/dT = 0$ oder nach Gl. (127):

$$B - T \frac{dB}{dT} = 0. ag{175}$$

Die Inversionstemperatur des Joule-Kelvin-Effektes im Avogadroschen Zustande ist also (für die Vorhersagung der Inversion für $\rm H_2$ vergl. Nr. 62a) eine korrespondirende. Gl. (37) gibt für dieselbe $\rm t=4,8$ (vergl. für die van der Waals'sche Hauptzustandsgleichung mit konstanten $a_{\rm w}$, $b_{\rm w}$, $R_{\rm w}$ Fussn. 706). Dalton ¹¹²⁰) findet aus speziellen Virial-koeffizienten für $\rm H_2$, die den Isothermen von Kamerlingh Onnes und Braak ³⁵⁴) angeschlossen sind, $\rm t=6,9^{-1121}$).

Aus Gl. (173) folgt, entsprechend dem in Nr. 62a für die Korrespondenz thermodynamischer Prozesse abgeleiteten Satze, unmittelbar, dass nur Gase mit gleichem κ_A für korrespondirende Druckänderungen auch korrespondirende Temperaturänderungen zeigen werden 1122).

In zweiter Annäherung und nach p integrirt, aber die auftretende Temperaturänderung noch so klein vorausgezetzt, dass die Virialkoeffi-

¹¹¹⁸⁾ Rechnungen auf Grund seines (vergl. Fussn. 902 und Fussn. 916): Leduc [b] p. 47 u.f.

¹¹¹⁹⁾ Gl. (138) entsprechend ist die experimentelle Bestätigung von Gl. (174) als ein Kriterium für die Gültigkeit jener Annahme anzusehen (vergl. weiter Nr. 82a). 1120) J. P. Dalton. Leiden Comm. Nr. 109a (1909).

¹¹²¹⁾ Es zeigt sich hier wieder (vergl. z. B. Nr. 76b, und weiter Nr. 84c u.s.w., zuletzt Nr. 87b) die Abweichung zwischen H_2 einerseits und N_2 und O_2 andrerseits in dem Unterschied zwischen der speziellen Zustandsgleichung für H_2 und der mittleren empirischen Zustandsgleichung (37), die in diesem Gebiet vom Anschluss an O_2 und N_2 zu demjenigen an H_2 übergeht.

¹¹²²⁾ Vergl. E. Buckingham, Fussn. 923, und auch H. N. Davis, Phys. Rev. 26 (1908), p. 407.

944 V 10. H. Kamerlingh Onnes und W. H. Keesom. Die Zustandsgleichung.

zienten und ihre Ableitungen sowie γ_{pA} dabei als konstant angesehen werden können, ist ¹¹²³):

$$\begin{split} T_2 - T_1 & (\mathfrak{F}_{sp} = \text{konst.}) = \frac{1}{\gamma_{pA}} \left(T \, \frac{dB}{dT} - B \right) \, (p_2 - p_1) \,\, + \\ & \frac{1}{2 \, A \gamma_{pA}} \left\{ T \, \frac{dC}{dT} - 2 \, C - \left(T \frac{dB}{dT} - B \right) \left(2 \, B - \frac{1}{\gamma_{pA}} T \frac{d^2B}{dT^2} \right) \right\} (p_2^2 - p_1^2). \, (176) \end{split}$$

Hiermit wäre z. B. die von E. Vogel 1097) beobachtete Abhängigkeit des Joule-Kelvin-Effektes vom Druck zu vergleichen.

Für kleine p nach T^{-1} entwickelend kommt

$$T_{2}-T_{1} \left(\Re_{sp} = \text{konst.} \right) = -\frac{\alpha_{A} T_{k}}{\gamma_{pA} p_{k}} \left\{ b_{1} + \frac{2b_{2}}{t} + \frac{3b_{3}}{t^{2}} + \frac{5b_{4}}{t^{4}} + \frac{7b_{5}}{t^{6}} \right\}.$$

$$\left(p_{2} - p_{1} \right), \quad . \quad . \quad (177)$$

in der noch γ_{pA} als mit T relativ wenig veränderlich (Nr. 55 und 56) anzusehen ist. Diese Gleichung umfasst die Temperaturabhängigkeit α T^{-1} — β , die van der Waals 1109) (auch Love, Fussn. 1113) aus seiner Hauptzustandsgleichung mit konstanten $a_{\rm w}$, $b_{\rm w}$, $R_{\rm w}$ ableitet (vergl. Nr. 44), sowie α T^{-2} — β , die Love 1113) aus der Clausius schen Gl. (81) ableitet, und den empirischen Ansatz von Rose-Innes 1124) Σ $\frac{\alpha_n}{T^n}$ (vergl. Fussn. 507) 1125).

Wegen der Verwendung des Joule-Kelvin-Effektes für die Ableitung der absoluten Temperaturskala vergl. Nr. 82a.

d) Wir wollen hiermit die Behandlung spezieller Zustände bzw. Zustandsgebiete und spezieller Prozesse sowie derer Verwertung für die Kenntnis der

¹¹²³⁾ Vergl. die Formeln Dalton's, Fussn. 1120, wobei Fussn. 360 zu beachten ist. In Gl. (176) ist auch die Änderung von γ_p mit p aufgenommen (vergl. Nr. 54c). Diese wirkt dahin, den Unterschieden zwischen der von Dalton, Fussn. 1095, beobachteten und der von ihm mittels der den Isothermen Amagat's angeschlossenen individuellen Virialkoeffizienten berechneten Abkühlung für Luft bei den höheren Drucken noch einen kleinen Beitrag hinzuzufügen, wie auch aus Fig 19 unmittelbar hervorgeht. Vergl. auch die Rechnungen für den differenziellen Joule-Kelvin-Effekt auf Grund der in Nr. 89d erwähnten Daten von Worthing 1089).

¹¹²⁴⁾ J. Rose-Innes. Phil. Mag (5) 45 (1898), p. 227, (6) 2 (1901), p. 130.

¹¹²⁵⁾ Für den Joule-Kelvin-Effekt für Gemische vergl. J. P. Joule und W. Thomson, London Phil. Trans. 152 (1862), p. 579, W. Sutherland, Phil. Mag. (5) 22 (1886), p. 81, E. Bouty, J. de phys. (2) 8 (1889), p. 20, sowie die Rechnungen Witkowski's 707) und die Bestimmungen von Joule und Kelvin 1092), Dalton 1095), Bradley und Hale 1096) und E. Vogel 1097) an Luft.

Zustandsgleichung abschliessen. Zunächst scheint eine Fortführung der in diesem Abschnitt behandelten Untersuchungen zu einer genaueren Kenntnis der empirischen Zustandsgleichung und zum Ausarbeiten der Bilder, die in Nr. 31 und 34 behandelt sind, führen zu können. Es werden durch dieselben jedenfalls wichtige Linien über die ganze Zustandsfläche festgelegt. Eine systematische Fortführung der in A behandelten Untersuchungen dürfte die Lösung verschiedener der in Nr. 52 genannten Probleme näherrücken. Als besonders vielversprechend dürfte die in Nr. 3a und 58a angegebene Richtung, die auf eine Verknüpfung der Betrachtungen über kalorische und thermische Eigenschaften hinweist, mit Berücksichtigung der Gesetze der molekularen Schwingungen (Nr. 74c, e, f, vergl. auch Nr. 43d und 57f) in Betracht kommen.

(Abgeschlossen Dezember 1911).

