

Werk

Titel: Monatshefte für Mathematik

Verlag: Springer Jahr: 1972

Kollektion: Mathematica

Digitalisiert: Niedersächsische Staats- und Universitätsbibliothek Göttingen

Werk Id: PPN362162050 0076

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN362162050_0076

LOG Id: LOG 0025

LOG Titel: Untere Schranken für zwei diophantische Approximations-Funktionen.

LOG Typ: article

Übergeordnetes Werk

Werk Id: PPN362162050

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN362162050

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

from the Goettingen State- and University Library.
Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de

Untere Schranken für zwei diophantische Approximations-Funktionen

Von

U. Betke und J. M. Wills, Berlin

(Eingegangen am 2. August 1971)

 $\mathbb R$ sei die Menge der reellen, I der irrationalen, $\mathbb Z$ der ganzen und $\mathbb N$ der natürlichen Zahlen. Nach einem einfachen Satz von Dirichlet über diophantische Approximation (s. [1], S. 1) gibt es zu jedem $\alpha \in \mathbb R$ und jedem $n \in \mathbb N$ ein $k \in \mathbb Z$ mit $k \in [1,n]$ und $||k\alpha|| \leq 1/(n+1)$, und das $\leq k$ ann nicht durch < ersetzt werden.

Es liegt nahe, zu fragen, ob man dieselbe oder eine bessere Schranke erhält, wenn man statt der Zahlen 1,...,n irgendwelche anderen n ganzen Zahlen zuläßt. Wegen $||k\alpha|| = ||-k\alpha||$ genügt es, sich auf n-Tupel $k = (k_1,...,k_n) \in \mathbb{N}^n$ zu beschränken. Offenbar erhält man dieselbe Schranke, wenn man statt (1,...,n) mit einem $c \in \mathbb{N}$ das n-Tupel (1c,...,nc) nimmt. Neben diesen trivialen Beispielen gibt es auch nichttriviale, z. B. für n = 5: (1,3,4,5,9) und für n = 7: (1,2,3,4,5,7,12) nach einer Bemerkung von P. Flor (s. [2], S. 262).

Die Frage nach allen n-Tupeln aus \mathbb{N}^n , die die Schranke 1/(n+1) liefern, ist offen. Ebenso ist noch offen, ob es überhaupt n-Tupel aus \mathbb{N}^n gibt, die eine kleinere Schranke als 1/(n+1) liefern.

Zur Untersuchung dieser letzten Frage schreiben wir den Satz von Dirichlet in der Form $\max_{\alpha \in \mathbb{R}} \min_{1 \le i \le n} ||i\alpha|| = 1/(n+1).$

Dann lautet die Frage: Sei

 $\lambda(n) = \inf_{k \in \mathbb{N}^n} \max_{\alpha \in \mathbb{R}} \min_{1 \leq i \leq n} ||k_i \alpha||.$

Ist dann $\lambda(n) = 1/(n+1)$ oder $\lambda(n) < 1/(n+1)$?

Dieses Problem der eindimensionalen diophantischen Approximation ist, wie schon in [2], S. 259—260 gezeigt wurde, äquivalent

zu folgendem Problem der simultanen diophantischen Approximation:

Sei

$$\varkappa(n) = \inf_{\alpha \in I^n} \sup_{q \in \mathbb{Z}} \min_{1 \leq i \leq n} || q \alpha_i || \qquad [\alpha = (\alpha_1, ..., \alpha_n)].$$

Ist dann
$$\kappa(n) = 1/(n+1)$$
 oder $\kappa(n) < 1/(n+1)$?

Im folgenden Lemma wird die Äquivalenz der beiden Probleme kurz wiederholt. Weiter wird der Zusammenhang mit der Lösung simultaner Kongruenzen gezeigt. Außer der Querverbindung hat das den Vorteil, eine Lösungsmethode anzudeuten. Der anschließende Satz bringt dann die Lösung für die Fälle n=2,3 (n=1 ist trivial).

Lemma.

- 1) $\varkappa(n) = \lambda(n) \leq 1/(n+1) \text{ für } n \in \mathbb{N}.$
- 2) Für die folgenden drei Aussagen gilt: $A \Leftrightarrow B \Leftarrow C$.

$$A: \lambda(n) = 1/(n+1).$$

B: Zu jedem $k = (k_1, ..., k_n) \in \mathbb{N}^n$ mit $(k_1, ..., k_n) = 1$ (größter gem. T.) gibt es ein $x \in \mathbb{R}$ mit

$$1 \leq k_i(n+1)x \leq n \mod (n+1) \ (i=1,..,n).$$
 (1)

C: Zu jedem $k = (k_1, ..., k_n) \in \mathbb{N}^n$ mit $k_i < k_n = c$ (i = 1, ..., n-1), $(k_1, ..., k_{n-1}, c) = 1$ gibt es ein $g \in \mathbb{Z}$ mit

$$c \le k_i [1 + (n+1)g] \le nc \mod (n+1)c \quad (i = 1, ..., n-1).$$
 (2)
Beweis.

1) Nach [2], S. 258—260 genügt es, sich bei der Berechnung von $\kappa(n)$ auf die Fälle $\alpha_i = k_i \alpha$ mit $k = (k_1, ..., k_n) \in \mathbb{N}^n$ und einem $\alpha \in I$ zu beschränken. Also

$$\varkappa(n) = \inf_{k \in \mathbb{N}^n} \inf_{\alpha \in I} \sup_{q \in \mathbb{Z}} \min_{1 < i < n} || k_i \alpha ||.$$

Da für jedes $\alpha \in I$ die Menge $\{q\alpha | q \in \mathbb{Z}\}\$ dicht mod 1 liegt, ist

$$\varkappa(n) = \inf_{k \in \mathbb{N}^n} \sup_{x \in \mathbb{R}} \min_{1 < i < n} ||k_i x||.$$

Zu jedem $k \in \mathbb{N}^n$ ist die Funktion f mit $f(x) = \min_{1 < i < n} ||k_i x||$ stetig.

Außerdem ist f(x+1) = f(x). Also $\varkappa(n) = \inf \max_{k \in \mathbb{N}^n} \min_{x \in \mathbb{R}} ||k_i x||$, d. h.

 $\varkappa(n) = \lambda(n)$. Mit dem Satz von Dirichlet folgt $\lambda(n) \leq 1/(n+1)$.

2) Sei $\lambda(n) = 1/(n+1)$. Dann gibt es zu jedem $k \in \mathbb{N}^n$ ein $x \in \mathbb{R}$ mit $\min_{1 \le i \le n} ||k_i x|| \ge 1/(n+1)$ oder $1/(n+1) \le k_i x \le n/(n+1)$ mod 1

(i=1,...,n) oder (1). Also gilt $A\Rightarrow B$. Wegen der Umkehrbarkeit ist auch $B\Rightarrow A$. Wegen $x\in\mathbb{R}$ kann angenommen werden: $(k_1,...,k_n)$ = 1. Weiter kann angenommen werden, daß die k_i paarweise verschieden sind und $k_i < k_n$, i=1,...,n-1. Sei $k_n=c$.

Es gelte jetzt die Aussage C. Dann gibt es ein $g \in \mathbb{Z}$ mit (2). Sei x = (1/c) (1/(n+1) + g), dann ist mit $k_n = c : k_n (n+1) x = 1 + (n+1)g$, also die n-te Ungleichung in (1) erfüllt. Multiplikation der anderen mit $k_n = c$ liefert (2). Also gilt (1) und damit B.

Satz. Für
$$n = 1, 2, 3$$
 gilt $\kappa(n) = \lambda(n) = 1/(n+1)$.

Beweis. n=1 ist nach dem Lemma trivial.

n=2. Für beliebige k_1 , c mit $0 < k_1 < c$ und $(k_1,c)=1$ ist

$$c \leqslant k_1[1+3g] \leqslant 2c \mod 3c$$

in einem $g \in [1, c]$ lösbar.

n=3. Zu zeigen: Zu jedem $(k_1,k_2,c)\in\mathbb{N}^3$ mit $k_1< c,\ k_2< c,\ (k_1,k_2,c)=1$ gibt es ein $g\in\mathbb{Z}$ mit

$$c \leq k_t[1+4g] \leq 3c \mod 4c \quad (i=1,2).$$
 (3)

Sei $(k_1,c)=d_1$ und $(k_2,c)=d_2$. Wegen $(k_1,k_2,c)=1$ ist $(d_1,d_2)=1$. Mit $c=c_1d_1=c_2d_2$, $k_1=a_1d_1$, $k_2=a_2d_2$ wird (3) zu

$$c_i \leq a_i [1+4g] \leq 3c_i \mod 4c_i \quad (i=1,2).$$
 (4)

Sei $d_1 \neq d_2$, also $c_1 \neq c_2$, d. h. $c_1 = b_1 d$, $c_2 = b_2 d$ mit $(b_1, b_2) = 1$ und o. E. $b_1 > 1$. Die 2. Ungleichung in (4) gilt sicher in einem $g = g_0$. Sie gilt dann auch in $g = g_0 + jb_2 d$ mit $j \in \mathbb{Z}$.

Wegen $(b_1,b_2)=1$ gilt die 1. Ungleichung in (4) für mindestens einen der b_1 Werte g_0+jb_2d , $j=0,1,...,b_1-1$.

Damit kann man annehmen: $d_1 = d_2$, also wegen $(d_1, d_2) = 1$: $d_1 = d_2 = 1$ oder $(k_1, c) = (k_2, c) = 1$.

Durchläuft g die Werte 0,1,...,c-1, so durchläuft $k_i(1+4g)$ wegen $(k_i,c)=1$ die c verschiedenen Werte $k_i+4g \mod 4c$, g=0,1,...,c-1, die alle aus derselben Restklasse mod 4 sind.

Jede der beiden gilt also für mindestens [c/2] Werte $g \in [0, c-1]$. Wegen $k_i < c$ gelten beide nicht für g = 0.

Ist c gerade, also $\lfloor c/2 \rfloor = c/2$, so muß unter den c-1 Zahlen g=1,...,c-1 wenigstens eine sein, für die beide Ungleichungen

zugleich gelten. Wir können also annehmen: c ungerade. Dann ist von den Zahlen c und 3c genau eine $\equiv 1 \mod 4$ und eine $\equiv 3 \mod 4$.

Wir unterscheiden 3 Fälle:

1) Eines der k_i ist ungerade. O. E. sei k_1 ungerade. Dann gibt es ein $g_0 \in [1, c-1]$ mit $k_1(1+4g_0) \equiv c$ oder $\equiv 3c \mod 4c$.

Also gibt es [c/2]+1=(c+1)/2 Werte $g\in[1,c-1]$ mit $c\leqslant k_1(1+4g)\leqslant 3c \mod 4c$ und damit mindestens ein $g\in[1,c-1]$ so, daß (3) gilt.

- 2) Eines der $k_t \equiv 2 \mod 4$, das andere $\equiv 0 \mod 4$. Dann ist wegen c ungerade eine der Ungleichungen in (3) für (c-1)/2, die andere für (c+1)/2 Werte $g \in [1, c-1]$ erfüllt; d. h. es gibt mindestens ein $g \in [1, c-1]$ so, daß (3) gilt.
- 3) $k_1 \equiv k_2 \mod 4$. Wegen (4,c) = 1 gibt es ein $g_0 \in [1,c-1]$ mit $1 + 4g_0 \equiv 0 \mod c$. Also gilt wegen $k_1 k_2 \equiv 0 \mod 4$ auch

$$(k_1-k_2)(1+4g_0)\equiv 0 \mod 4c$$

oder

$$k_1(1+4g_0) \equiv k_2(1+4g_0) \mod 4c$$
.

Damit sind in (3) für $g=g_0$ entweder beide Ungleichungen erfüllt oder beide nicht erfüllt. Im letzten Fall gibt es unter den c-2 Werten $g \in [1,c-1] \setminus \{g_0\}$ mindestens einen so, daß (3) gilt. Damit ist der Satz bewiesen.

Wie aus dem Beweis hervorgeht, ist die Methode nicht auf $n \ge 4$ übertragbar.

Literatur

- [1] Cassels, J. W. S.: An introduction to diophantine approximation. Cambridge University Press 1965.
- [2] Wills, J. M.: Zur simultanen homogenen diophantischen Approximation I. Monatsn. Math. 72, 254—263 (1968).

Anschrift der Verfasser:

U. Betke und Prof. Dr. J. M. Wills
Fachbereich Mathematik
Technische Universität Berlin
Straße des 17. Juni 135
D-1 Berlin 12, Deutschland