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NILPOTENT ELEMENTS IN GROUP RINGS

Sudarshan K. Sehgal

The main theorem gives necessary and sufficient conditions
for the rational group algebra QG to be without (non-
zero) nilpotent elements if G is a nilpotent or TF<C
group. For finite groups G , a characterisation of

group rings RG over a commutative ring with the same
property is given. As an application those nilpotent or
F*C groups are characterised which have the group of
units U(KG) solvable for certain fields K .

1. Introduction

Let RG be the group ring of a group G over a
commutative ring R with identity. We investigate the
conditions under which RG has no (nonzero) nilpotent
elements. First we give a complete answer for finite
groups G when R 1is the rational number field Q or
a commutative ring of characteristic n > 0 . Our proof

depends on the following result of Claude Moser.

This work has been supported by N.R.C. Grant No. A-5300.
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2 SEHGAL

THEOREM 1.1 [6]. Let Qm = Q(Em) be a cyclotomic field
where E;m is a primitive m-th root of unity, m is odd and
m > 3 . Then the equation, -1 = x2 + y2 , has a solution

X,y € Qm if and only if the multiplicative order of 2

modulo m 1is even.

Next we describe (Theorem 4.8) nilpotent or FeC
groups G such that QG has no nilpotent elements. The
finite case of this theorem was announced by Berman [3]
but he had a different proof in mind. It should be
remarked that the question of absence of nilpotent elements
in QG 1is related with the well known conjecture about
the absence of zero divisors in 0G if G is torsion
free. As a matter of fact, if G 1is torsion free, 0G
has no nilpotent elements if and only if QG has no zero

divisors [8].

We use our results to give a characterisation of these
nilpotent or F*C groups G which have the property that
the unit group, U(KG) , is solvable when R = Q or Zp= z/pz
if G has no element of order p . The case of finite
groups has been settled by Bateman [2] and related results
are given in [5]. We should mention that a complete
characterisation of groups G such that U(KG) is
solvable is dependent on the resolution of the well known
conjecture that every unit of KG is trivial if G 1is

torsion free.

We are indebted to I.B.S. Passi for giving us the

reference [7].
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SEHGAL 3

2. Elementary facts and notations

2.1. Every idempotent e of a ring S without nilpotent

elements is central.
. 2 2
Proof. Since (eS(l-e)) = ((1-e)Se) = 0 , we have

es = ese = se for all s € S .

& @
2.2. (IR (G) = JR.G .
= = ®
2.3. R(G1XG2) (RGl)G2 = RG1 RG2
2.4, If a commutative ring R has characteristic n >0

and RG has no nilpotent elements then n = PPy P,
P

a product of distinct primes. We can write R = ZRi where
Ri has characteristic Py - Then RG has no nilpotent
elements if and only if each RiG has no nilpotent

elements.

2.5. Let G be a finite group. Suppose that
Y = Zy(g)g € RG is nilpotent. Then (G:1)y(l) 1is a

nilpotent element of R .

Proof. Let P be a prime ideal of R . Look at vy in
(R/P)G . Considering the regular representation matrix of

Y and taking trace we get that
(G:1)Y(1) = 0 (mod P)

and hence (G:1)Y(l) € n P , which is nilpotent.
P
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4 SEHGAL

2.6. Let K be a field. If KG has no nilpotent
elements then every finite subgroup of G 1is normal in
G and hence the torsion elements form a subgroup T(G)

of G .

Proof. If Char K=p > 0 , then G has no element of
order p as (g—l)p =0 . Let H be a finite subgroup
of G , then

Dy Z h” - @D 2 h

is a central idempotent by (2.1) and hence H is normal

in G . As a corollary we have,

2.7. Let K be a field and G be finite. 1If KG has
no nilpotent elements then G 1is abelian or Hamiltonian.

We recall,
2.8. A group G 1is Hamiltonian if and only if

= X X
G A E K8

where A 1is an abelian group in which every element has

odd order, E is an elementary abelian 2-group and K8

is the quaternion group of order 8 .

By a crossed product K(G,p h’ag) we understand the

set of finite sums, {Zk g. lk, €K, g € G} where E; is
a symbol corresponding to 8 and p: G X G~ k , where

K is the multiplicative group of the division ring K ,
is a factor system and ag is an automorphism of K for
each g e¢ G . Equality and addition are defined component

L]

wise. And, for g,h e G, k € K
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SEHGAL 5

a9 |
[ ]

=|
|

where p and O are required to satisfy the necessary
conditions for K(G,pg h’ag) to be a ring. For details
b

we refer you to [4].

As a special case, if we have ag =1 for all ge G,
Kt(G) the twisted group ring
1 for all g,h e G, we call

we call K(G’og,h’I)
(See [9]). 1If pg,h
K(G,l,ag) = Ka(G) the skew group ring. The following

is easy to prove

2.9. If G is ordered and K is a division ring then

the crossed product K(G,p,a) has no nilpotent elements.

For a normal subgroup N of G we shall denote by
AR(G,N) the kernel of the natural homomorphism
RG - R(G/N) . We shall write Char R for the character-

istic of R .

3. Finite groups.

We first consider the case when R has characteristic

n>0.

PROPOSITION 3.1. The group algebra ZPG of a finite

group G over the field Zp of p-elements is without

nilpotent elements if and only if G 1is abelian and »p

does not divide (G:1) .
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6 SEHGAL

Proof. Suppose that ZPG has no nilpotent elements.

Since g’ =1, g ¢ G implies (g-1) = 0 in Z6, ©

has no elements of order p . Thus by Wedderburn theorem

&
ZPG - z(Di)ni i

a direct sum of full matrix rings over division rings Di'

Since each Di is a finite dimensional algebra over Zp
it is cummutative. Also each n, = 1, due to (2.1).
Hence ZpG is commutative. The converse also follows

from the Wedderburn theorem.

PROPOSITION 3.2. Let G be finite and let R have

characteristic n > 0 . Then RG has no nilpotent

elements if and only if R has no nilpotent elements,

(G:1) 1is not a zero divisor in R and G is abelian.

Proof. We first prove the necessity of the conditioms.
Suppose that (G:1l)r = 0 for some r € R . Then

2
(r z g) = 0 and therefore r = 0 . Obviously since
geG
R > Zn , the ring of integers modulo n , it follows by

(2.4) and Proposition 3.1 that G is abelian.

In order to prove the converse, suppose

0#vy-= 2y(g)g € RG 1is nilpotent. We may suppose, by

g -
considering vYg 1 if necessary for some g , that

Y1) # 0 . It follows by (2.5) that (G:1)y(1l) is
nilpotent and therefore by hypothesis (G:1)y(1l) = 0 .
Hence 7Y(1) = 0 which is a contradiction, proving the

proposition.

70
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SEHGAL 7

COROLLARY 3.3. Let G be an arbitrary abelian group.

Suppose R has characteristic n > 0 . Then, RG has

no nilpotent elements <=> R has no nilpotent elements

and O0(g) is not a zero divisor for any g € T(G) , the

torsion subgroup of G .

Proof. We only need to prove the sufficiency of the
conditions. We may suppose that G 1is finitely generated

and so

G=T X <xl> X oa. X <xm>, (T:1) < o, O(Xi) =%,

and RG = (RT)<xl,...,xm> has no nilpotent elements as

RT has none.

2 2
Let Kg = <i,j/12 =i =t,t =1, ji-= ijt> be the
quaternion group of order 8 . We need to know when R(KS)

can have nilpotent elements.

PROPOSITION 3.4. Let R be a commutative ring which has

no nilpotent elements. Suppose 2 1is not a zero divisor.

Then R(K8) has no nilpotent elements if and only if the

equation

x2 + y2 + 22 =0, X,y,z € R

has no nonzero solution.

]
o

Proof. Let Y = Zy(g)g € R(K8) be such that Y2
Since G/<t> is abelian,by the last result, we have
Y € AR(K8,<t>) . Also by 2.5 we can conclude that
Y(1) = 0 . Thus Yy 1is of the form
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8 SEHGAL

Y = (ai+bj+cij) (1-t), a,b,c € R .

2

Then, Yz = 2(a2+b +c2)(t—1) =0 if and only if

a2 + b2 + c2 = 0 , completing the proof.

THEOREM 3.5. The rational group algebra QG of a finite

group G has no nilpotent elements if and only if one of

the following is satisfied

3.6. G 1is abelian

3.7. G is Hamiltonian of order 2mt, t odd, such that

the multiplicative order of 2 modulo t is odd.

Proof. Suppose that G 1is a non abelian group without

nilpotent elements in QG . Then by (2.7)

G=AXEXK

8

&
QG = (QE) (AxKg) = (]Q) (AXKg)

& @
JQ(Axkg) = J(QA)Kg -

It is enough to consider (QA)K8 . But we know [1] that

@
QA = n.Q. ,
d}edd

where nde denotes n copies of Q(Ed) and e 1is the

d
exponent of A .

(Q4) (Rg) = % nQ,(Kg) -
dle
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SEHGAL 9

Now (3.7) follows by Proposition 3.4 and Theorem 1.1.
The same argument together with Theorem 1.1 and

Proposition 3.4 gives the converse.

4. Nilpotent or F*C groups.

In this section unless otherwise stated G will be

assumed to be nilpotent or an F<¢C group. We have

PROPOSITION 4.1. Let G be a nilpotent or F-C group.

Suppose K is a prime field of Char K=p > 0 . Then
KG has no nilpotent elements if and only

4.1. T(G) has no element of order p (if p > 0)

4.2, Every idempotent of ¥G 1is central in KG and one

of the following holds
4.3. T(G) 1is abelian

4.4, T(G) 1is Hamiltonian, K = Q and modulo every odd
n such that T(G) has an element of order n , the

multiplicative order of 2 1is odd.

Proof (a). Let us suppose that KG has no nilpotent
elements. Then (4.1) is obvious and (4.2) follows from
(2.1). And if T(G) is not abelian then it is

Hamiltonian by (2.6). Now, (4.4) follows by (3.1) and 3.5).

). We assume (4.1), (4.2) and (4.3) or (4.4). Let
Y € KG be an element such that YZ = 0 . We may suppose
that G 1is finitely generated. Then T(G) is finite

abelian or Hamiltonian satisfying (4.4). Consequently,

73



10 SEHGAL

®
R(T(G)) = } D,
i

a direct sum of division rings. Since G/T(G) is torsion
free nilpotent (abelian if G is F+C [10]), it is

ordered. We have
KG = K(T(G))(G/T(G),p,0)
a crossed product of G/T(G) over KT(G) . Due to (4.2)

we have
;3

KG = JD. (G/T(G),p,a,)
which is free of nilpotent elements by (2.9).

PROPOSITION 4.5. Let G be a nilpotent or F<C group.

Suppose K 1is a field of characteristic p >0, p # 2,3.

If G has no element of order p (if p > 0), then

(4.2) and (4.3) <> U(KG) 1is solvable.

Proof. Assume (4.2) and (4.3). Suppose H is finitely
generated subgroup of G . Then T(H) 4is finite and

&
KT(H) = ) F,
i 1

a direct sum of fields and due to (4.2)

®
KH = ) F, (H/T(H),p,,0,)
U(KH) = ﬁ FiH/T(H) (as H/T(H) is ordered)
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SEHGAL 11

which is solvable of degree < m + 1 where G is
solvable of degree m . Conversely, assume that U(KG)
is solvable then (4.2) follows from lemma 5 of Lanski [6]
and commutativity of T(G) follows from the finite case
using the fact that a full matrix ring over a division
ring has a solvable unit group if and only if it is a

field or a 2x2 matrix ring over a field of 2 or 3 elements.

We investigate the absence of nilpotent elements fur-
ther and replace condition (4.2) by a group theoretical

condition.

In QG it follows from (4.2) that every finite
subgroup is normal in G . And T(G) is abelian or

T(G)=A><E><K8

where A 1is an abelian group in which every element has

odd order, E is elementary abelian 2-group and K, is

8
the quaternion group of order 8 . The formulae in [1]
indicate that if every finite subgroup of an abelian
group B 1is normal in G then all idempotents of QB

are central in QG .

4.6. Let B be a finite abelian subgroup of G . Then
every subgroup of B is normal in G if and only if

every X € G , induces the automorphism
-1 i . .
B> b > xbx =b where i = i(x) .

We claim now

75



12 SEHGAL

4.7. Every subgroup of K8 is normal in G if and
only if conjugation by x € G induces the identity

automorphism on the group K8/<t> = Z2 ® Z2 .

Proof. Considering the subgroups {1,i,t,it}, {1,j,t,jt}
and {1,ij,t,ijt} it is clear that the only automorphisms

keeping these groups invariant are
0) 6,:i->14i, jF >3, 1ij ~> ij
1) 6,: i-»1i, j - jt, ij - ijt
2) 6,: 1i~-»>1it, j - jt, ij »> ij

3) 6,:1i~it, j > j, ij - ijt .

THEOREM 4. 8. Let G be a nilpotent or F°C group.

Then QG has no nilpotent elements if and only if one

of the following conditions is satisfied

4.9. T(G) is an abelian group, and for x ¢ G , we

have locally on T(G)
xtx = = t* for all t € T(G), i = i(x)

i.e. for a finite subgroup B of T(G) we have xyx_l =

y1 for all y € B and i depends on B and x .

4.10. T(G) = A X E X K where A 1is an abelian group

8 b
in which every element has odd order, E 1is an elementary

abelian 2-group and K_, 1is the quaternion group of eight

8
elements such that (4.4) holds. Moreover,

1) K8 is normal in G
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SEHGAL 13

conJugatlon by x € G induces the identity on

K/<>

3) conjugation by x € G acts as in (4.9) on A X E .

Proof. Because of (4.2), (4.6) and (4.7) we have only
to prove the sufficiency of (4.9) and (4.10) separately.
We may suppose that G 1is finitely generated. Then
(4.9) implies that every subgroup of T(G) = T is
normal in G and hence by the formulae in [1], every

idempotent of QT is central in 0OG . We have
(<3
= Z Fy s

a direct sum of fields; and

QG = (QT) (G/T,p,a)
@

(JF,) (G/T,p,0)
[

L F;(6/T,p,,0.)

which is by (2.9) free of nilpotent elements as G/T is

ordered.

In order to prove the sufficiency of (4.10) we write

=AXE and T(G) =T =A, X K, . Then

Ay 1 Kg

&
A, = ) F., a direct sum of fields .
i

Also every idempotent of QA1 is central in QG due to
(3) of (4.10). 1It is known that
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14 SEHGAL

QKg) =Q®Q®QeQes,

where S 1is the skew field of rational quaternions. If
we pick an x € G, x 4 T then it can be checked directly

that Q<K8,x> has no nilpotent elements by using the fact

that x induces one of the automorphisms 60 = 1,61 62,9
on K, . Thus for example if we have a Y ¢ QQK , x>

8 9 8
such that Y = 0 . Then since <K8,x> B K > <t>

and T(H/<t>) is abelian, 7Y € A(H, <t>) Thus Y is
of the form

n . ..
Y= X (a0+a11+a23+a313)(l—t) + ...

n . .
where x is the highest degree nonzero term in x ,
appearing in the support of <Y . Let us suppose, for

n
instance, that x acts like 61 on K8 . Then

2

Y = (a0+a 1+a23t+a313t)(a +c11+a23+a31)(l—t) + ...
= <+, + + + + P . _
ZQhkaO a,ta, a t 2a1a01 2a azj+a 31J+a1a3_'|t)(l t)
+ ...
= 0.

It is easy to see that Y = 0 . It works the same way if

n .
X acts like 92 or 93 .

We can conclude by (2.1) that every idempotent of
Q(K8) commutes with x i.e. every idprotent of Q(K8)
is central in QG , in particular xSx = § for all
x € G . Now we have

(A

Kg) = §F16Q+ZF1@Q+ZF1®Q+ZF1®Q+ZF1®S
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SEHGAL 15

and each Fi ® S being a simple ring, is a division ring
Si due to 4.4 and Theorem 3.5. Also x—lsix = Si . Thus
we can write

L Dy

o~ P

Q(AXKg) =

.

a direct sum of division rings with the corresponding

idempotents central in QG . Now,

R

QG = (QT)(G/T,p,0)

3

)
(2 D)6 T,p,0)
1

®
A Di(G/T,Di,Gi)

R

has no nilpotent elements due to (2.9). This completes

the proof.
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