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Explicit complete solution in integers of a class
of equations (az? - b)(ay?-b) =22-c

Kenji Kashihara

Dedicated to Dr. Taro Morishima

In this paper we will study the equation for arbitrary integers a # 0, ¢ and
b= =1, £2 or 4. When b = 44, we suppose c is divisible by 4. The paper will
provide one with a method for finding algorithmically all integral non-trivial
solutions of the title equations, where an explicit unit of (.12(\/ain7 — ab) plays
an important role.

Introduction

In (2], L.J.Mordell commented on the quartic equation given by

2
Z ars2"y’ = dz?, (1)

r,s=0

where a’s and d are integers. His comment is that when one integer solution
(2o, Yo, z0) of (1) is known, an infinity can be found under certain condi-
tions, and that this leads to solutions (zg, y1, 21), (21, ¥1, 22), (21, Y2, 23),
(z2, y2, za), etc. ..., where from a Pellian equation, y;, 1, y2, €2, ... may
each have an infinity of values.

We will further consider this fact for the following special type :

(az? = b)(ay? = b) = 2% — ¢, (2)

where a,c € Z, a # 0, b = %1, +2, £4. When b = 14, we suppose ¢ =
0 (mod 4). In [3], we have investigated the equation for the case @ = 1 and
b = 1. In this paper, we will show that this equation can be dealt with generally
in the same method.

If we fix £ = n, equation (2) is written as

22 — (a®n? — ab)y® = —abn? + b% +c. 3)
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We can solve equation (3) by the theory of binary quadratic forms as presented
in [4] or [5]. We will show a permutation group on all integral solutions of
equation (2), which will be denoted by G. And we will prove the possibility of
computing algorithmically a minimal finite set of integral solutions of the title
equation, such that the G-orbits of this set exhaust all integral solutions.

Here we introduce the notion of the trivial solution. When (az? — b)
(ay? — b)(—abz? + b? + c)(—aby? + b2 + ¢) = 0, the solution can be trivially
computed. If ¢ = 0, then (z, £z, £(az? — b)) are trivially integral solutions.
Thus a trivial solution is defined as an integral solution such that

(az? — b)(ay® — b)(—abz? + b% + c)(—aby® + b2 +¢) = 0,

or (only if ¢ = 0) 2% = y2%.

The cases b = 1, 2 or 4, will be discussed in detail and for the other cases we
will state the results and give only the proofs different from the previous ones.
Up to the end of section 3 we suppose b = 1, 2, or 4. Since (—az?—b)(—ay?—b) =
z? — ¢ is equivalent to (az? + b)(ay® + b) = z2 — ¢, we may suppose a > 0.

Notations.

F?, : the set of all real solutions of equation (2).
S?. : the set of all integral solutions of equation (2).
C, : intersection of F?, and the plane z = n.

T?. : the set of all trivial solutions of equation (2).

C;}¥, C;}? and C;} are the following branches of C,:
er-y = {(I, Y, Z)ECn !y > 0},
C';i—z = {(I, Y, Z) €Cn l z 2 0},
Cn+ = {(.’L‘, Y, z) € Cn | y2>20 z> 0}

o, T, p1, pz and pg are the following permutations on F?, or S®,:

2 _ 2,2 _ 2 _
o(z, y, 7) = (m, (2az b)y+2mz, 2z(az? — ab)y + (2az b)z) ,
b b
T(mi y’ z) = (y, x’ z),
Pl(z, Y, Z) = (—.’L‘, Y, Z),
pg(l’, Y, Z) = (33, =Y Z),
pa(x, y, 2) = (z, 9, —2).
G is the following permutation group and Gi, G2, H and H; are the following
~ subgroups of G:

G =<0, 1, p1, p2, P3 >,
G1 =<0, p1, p2, P3 >,
Gy :=<0>,

H =<1, p, p2, ps>,
Hy =< p1, p2, p3> .
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Let P and Q be points on F?, (or S3,). If @ = gP for some g € G, then P
and @ are called G-equivalent, otherwise G-independent. These relations are
denoted by P ~ @ and P # Q, respectively.

The following function is used:

o(z,y,2) = 2* + 4.

1. The structure of G

As already noted, we assume b = 1,2 or 4. If we fix z = n(> 0), equation (2) is
written as
2% — (a®n? — ab)y? = —abn? + b% 4 c. 3)

or equivalently
N (z+yM) = —abn? + 4% + ¢, (4)
where N denotes the norm from Q(\/az_nr—_—az) to @. Here we put
6 = 2an? — b+ 2:\/m'

Since |b] € {1, 2, 4}, it is straightforward to check that €, is a unit in the ring
of integers of the above quadratic field with norm equal to +1; moreover, it is
useful to note that £;! = e_,. Let (yo, z0) be one of the solutions of (4). Then

N {(zo + yova?n? — abd) 5,,} = —abn? + b% + c.

Therefore putting
721+ y1va?n? —ab = (2 + yovVa?n? — ab) en,

we have a new solution (y;, 21). From this fact, if we define o as above, o is a
permutation on Cy, and we may replace C, with F?, or S2,. In the cases b =1
or 2, €, lies in the coefficient ring of the Z-module {1, Va?n2? — ab}. Consider
the case b = 4. Let (z, y, z) lies in S%,, and put (z, n, {) = o(z, y, 2). Then
from (3) and ¢ = 0 (mod 4),

(z + azy)(z — azy) = —4ay® —4az’ + 16+ c=0 (mod 4).
And so z+azy =z —azy =0 (mod 2). Hence

2z(azy + 2) — 4y 2az%(azy + z) — 8azy — 42
n= 2 = 4 €

Therefore (z, 7, ¢) € S2,, and so o is a permutation on S?.. From the symme-
tries of equation (2), we can obtain the other generators of G.

Z.

€z, ¢

Lemma 1. G is a permutation group on FY, or S?,.
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By easy calculation we have the following lemma.

Lemma 2. Permutations o, 7, p1, p2, p3 satisfy the following relations,

pi=1, pipPj = Pipi, r?=1,
Tp1 = paT, Tp2 = 1T, TPs = p3T,
opi = pic”1, (ror)pi = pi(tar) ™,

or = 1(roT), o~ lr = r(ror)7!,

where 1,7 = 1,2,3.

Corollary 1. Let A= {0, 07}, 7or, (ro7)"!}, H =<1, p1, p2, p3 >, then
AH = HA.

Corollary 2. Any element of G has a representation in the form,
pipdos ot (ror)h o 0 (ram),

where a,b,e,d=0or1 ande;, f; € Z.

Proof. Let g be an arbitrary element of G. Using Corollary 1 several times, g
takes the form ho®(ro7)/1 ... 0% (ro1)/*, where h € H. By the relations p’s
and 7, h takes the form pfplpsTe. a

2. The permutation o

We continue to assume that b = 1,2 or 4. In this section, we fix £ = n(> 0) and
regard o as a permutation on C,. Sometimes, for a point P = (n,y,2) € Cy,
we will simply write P = (y, z). The curve C, varies as follows. In the case
an? —b < 0, —abn? 4+ b% 4+ ¢ > 0, Cy, is an ellipse or a single point. (See Fig.
1.) In the case an? —b =0, ¢ > 0, it degenerates to one or two lines. In the
case an? —b >0, —abn? 4+ b2 4 ¢ > 0, it is a hyperbola with focuses on the z
axis. In the case an? —b >0, —abn? 4 b% + ¢ = 0, it degenerates to two lines.
And finally in the case an®?—b> 0, —abn? 4 b% + ¢ < 0, it is a hyperbola with
focuses on the y axis. (See Fig. 2.) We have the following lemma.

Lemma 3. Let n > 0, ezcept for the case (i). For a point Py on C,, put
Py = 0Py, and let PyP, be an arc of Cy,, in which P; is contained and Py is not.
(i) If n =0 then o = paps.

(ii) Ifan?—b< 0 and —abn®+b%+c >0, let Py = (—yo, 20) be a point on Cy
such that o Py = p2Po, yo > 0,290 > 0. Then

r
Cn = U O'iPopl,

1=0
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where r =2, 3 or 5.

(iii) If an? =b >0, —abn?+b2+c >0, let Py = (—yo, 20) be a point on C,}*
such that 0Py = p2 Py, yo > 0. Then

cH =o' PoPy.
i€Z
(iv) Ifan? —b > 0 and —abn? + b2 + ¢ < 0, let Py = (yo, —20) be a point on
CY such that Py = p3Py, z9 > 0. Then

C:y = U O'iP(;-\Pl.

i€EZ

The proof of case (i) is clear from the definition of o.
Proof of case (ii). See Fig. 1. From an? — b < 0 and n > 0, we have (a,b,n) =
(1,2,1), (1,4,1),(2,4,1) or (3,4,1). o can be expressed by the following matrix
respectively:

0 1 1/-1 1 1/0 1 1/1 1

A= (—1 o) y Ar=3 (—3 -1)  As=3 (-4 0) » Aa=3 (—3 1) '
It is obvious that Af = I, A} =1, A§ =1, A = I and that such P exists.
Here we put P; = 0* Py (i = 1,2, ,6). Then it holds that Ps = Py, P4 = P, or
Ps = Py. By linearity of o, P;41 P42 = 0 P;P;4;. Therefore C, = U:=0 PPy, =
Ui—o o' PoPy, where r = 2, 3 or 5.

Proof of case (iii). First we note that the relation o Py = p3 P, is by the definition
of o and py, equivalent to zp = nayy and now it is clear that such a point P,

exists on Cp,. Next let (y, z) € C;}* and put (7, ¢) = o(y, z). First we show
(n, ¢) € C,;F*. From the definition of o,

_ 2n(a®n? — ab)y + (2an? — b)z

¢ v )
From (3) and the assumption —abn? + b2 + ¢ > 0, we have
z2— (a?n? — ab)y? > 0. (6)

Therefore
(2an? — b)?2% — 4n%(a’n? — ab)?y?
> (a%n? — ab)(2an? — b)%y? — 4n%(a’n? — ab)%y?
= b*(a®n? — ab)y? > 0.
Hence
(2an? — b)z > £2n(a’n? - ab)y. (7N
Combining (5) with (7), we have ¢ > 0. And so (9, {) € C,;}*.
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Next we show 5 > y. From the definition of o, we have
2
n=y+3{(an’® - by + nz}. ®)
From (6),
n?2% — (an? — b)%y? > n%(a®n? — ab)y? — (an® - b)%y?
= b(an2 - b)y2 2> 01

which implies
nz > £(an? - b)y. (9)

Combining (8) with (9), we have n > y. Now we put Py, = oF;, P =
0c~1P; and P; = (yi, ) for all i € Z. Then, by (8) and (9) yi4+1 > yi + 2/b for
all 1 € Z. Therefore y; — 400 as i — £00. So we have

cr = J PPir
i€Z
By linearity of o, P,-?’,-_H = aP.-ilP,- = U‘P;Pl. The result follows.

Case (iv) is proved similarly. a

Remark 1. Sometimes we suppose an arc POA P, contains both Py and P;. Then
Lemma 3 still holds.

Lemma 4. Let n > 0 and let (a,b,n) # (1,4,1).

I
(1) The case —abn?+b2+c > 0: Define

2 2
Bt s )

Then C,=G2E™ ifan®-b<0, and C;* = G2E? otherwise.
(i) The case an?—b>0 and —abn? +b%+c < 0: Define

Eﬁ? = {(n»y:z) € Cr;l-z

EZ’: = {(n) y,Z) E Cﬂ+y a2n2__ ab - y - n abn2— b2

n‘—b —c< < abn®—1b% —c}

Then C,;tY = G,Eb™.
I1 If P is any point in E!* and 0P, 0~ P do not belong to H P, then

¢(aP) > p(P), (™' P) > ¢(P),

respectively. Moreover, if an? — b > 0 and P is any point in E'", while

Q = (n,y, z) any point not belonging to E", then, unless Q € H P
o(Q) > ¢(P).
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Proof of case (1). From oPy = p3 Py, we see that

—(2an? — b)yo + 2nzo
Yo = b ’

hence 2o = anyo and now, since Py € Cp, n? + y2 = (b% + c)/ab. Therefore,
Py = (n)—yov 20)1 Pl =0cP = (n,yo, 20)1 with Yo = \/—Tl2 + (62 + C)/ab and if

we choose the arc Py P, on Cy,, which lies in the half plane z > 0 then, obviously,

PyP, = E'". Since, by the previous lemma, Cj,(resp. C;¥*) is a union of arcs
o* PyPy with i € Z, we may conclude that Cy,(resp. C;#) is equal to G, E™.
Proof of case (ii). From o Py = p3 Py we see that

(2an? — b)yp — 2nzy
b )

Yo =

hence nzo = (an? — b)yo and now, since Py € C;}¥,y2 = n?(abn? — b? — ¢)
/(abn? — b%). Thus, Py = (n,y0,~20), P = oPy = (n,yo,20), With yo =

ny/(abn? — b2 — c)/(abn? — b?) and the projection of the arc PyP; on the y-
axis is the interval

\/abn"’—bz—c o abn? — b2 - ¢
a?n? —ab ' abn? — b?

As y runs through the values of this interval, the point (n,y, z) runs through

En. therefore PyP, = E'. By the previous lemma, C}¥ = Uiez PPy
= G2EL;

Proof of part I1. In the proof of part I, we saw that E'? = PoAPl;hence PecElY

means, in case an® — b > 0, that P is a point on the arc P0P1 of one of the

hyperbolas in Fig.2. Then, oP € P1 P; and 0~!P € PoP._l, from which it is
clear that, unless P = Py or P;, the y-coordinate of P is strictly less than
the y coordinate of oP(resp. of 0~ P). Thus in view of the definition of ¢,
unless 0P, 0"'P € H;P, we have p(P) < ¢(cP), ¢(c™!P). In the case
an? — b < 0 we are in one of the four cases explicitly stated at the begining of
the proof of the previous lemma and we check every case separately. Consider
for example, the case (a,b,n) = (3,4, 1); then, for P = (1,y,2z) € C; we have
oP = (1,(y + 2)/2, (—3y + 2)/2) and the relation ¢(P) < ¢(oP) is equivalent
to y?> < (y+2)%/4 and this, in turn, means —1/3 < y/z < 1. The last relation
is seen to be true as follows. By (1,y,z) € E$! it follows that y?> < (4 +c¢)/12
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and since (1,y,z) is a solution to the title equation, 22 = 4 + ¢ — 3y% >
(12+3c)/4, hence (y/z)? < 1/9; consequently —1/3 < y/z < 1 and it is easy
to see that we can have equality only if |y| = /(4 +¢)/12, z = /(12 + 3¢)/4,
in which case P € H;P. We deal with the other cases analogously. The proof
of the last statement is obvious from Fig. 2. 0

In the case of (a,b) = (1,4), part II of this lemma does not hold, because the
order of A is equal to 3; however instead of this lemma we have the following.

Lemma 5.

I Define

Efcl = {(Ly’z) € CiH

Then Cl GlEﬁ

II If P is any point in Ef! and o P dose not coincide with p3P, then

¢(aP) > ¢(P), ¢(c7'P) > p(P).

Proof. As we saw, in this case, o is expressed by the matrix

1/-1 1
A2’§<—3 —1)’

the order of which is equal to 3. Let P;’s be the same points that are de-
fined in the proof of the previous lemma. We consider a point Qo € C;* such
that 0Qo = p3Qo and put Q; = 0'Qo (i = 1,2). Next we consider a point
Ry = (1,0,2,) € C{* and put R; = ¢*Ry (i = 1,2). (See Fig.1.) Then from

0Py = pa Py and 0Qg = p3Qo, we have P, = <\/12: c, \/12: c) and @ =

\/12 te \/36+ 3¢ , and it is clear that R; = p3P;, R; = poR; and that

both the y-coordinate of P2 and the z—coordmate of Q2 are equal to 0. From
- Fig.1, it is obvious that Q0P1 =0 1Qng =0~ paQoRo and PQR() p2ROP1
By case (ii) of Lemma 3, C; = U =00 POPI, therefore C; = GIROQO = GlE‘f,}
Next we cons1der a point P € RoQo From Fig.1 we can see that oP € R1Q1
ando~1P ¢ R2Q2 This proves part II of the lemma. 0
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z P, 2 P2
ReM Qe P2
Po | P
Ped P
P
Q2
o y o y
Pe
R R
P, Qi P
Fig.1. C & Ef! Fig.2. C, & E"

3. The Main Results in the Cases b=1, 2, 4

In section 2, we have investigated ¢ as a permutation on C,. Now we consider
the permutation group G on S¢,.

G=< o, T, P1, P2, P3 > .

Theorem 1. Let b = 1, 2, 4, (a,b) # (1,4) and let T®, be the set of integral
trivial solutions of equation (2). Define

m={w%46$c

b2
0<sgy, P+ < I a2 0},

and if ¢ < 0,

R, = {(:c,y,z)e Szc

b abz? —b% —¢
vg<”5y3x Tﬁﬁfﬁ‘zzo}

(i) Put R, =Ry UT?, if ¢>0 and R}, = RyURyUT?, if ¢ < 0. Then the
set of all integral solutions of (2) coincides with GR?,.

(i) If (z,y,2) € Ry then

b2 +c r << b +c

2ab
If (z,y,2) € Ra(c < 0) then, either z # y, in which case
b —c+Ve? + 16ab® abz® - b2 —¢
\/;<:c< 4ab ) EL<Yse abz? — b2 °

orz =y and \/b/a < x < \/(b—c)/a. In particular, Ry, Ry are at most
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finite and algorithmically computable.

Proof. Let P = (z,y, z) be a non-trivial solution of (2), so that —abz?+b%+c #
0. Since in the Hi-orbit of P there is a point with all its three coordinates non-
negative, it suffices to consider only the case in which z, y and z are non-negative.

Consider a point Py = (o, Yo, 20) in the G-orbit of P, such that ¢(Pp) is
minimal and o, Yo, 20 are non-negative. We will show that P € GRS,. Indeed,
if Py € T2, then P is already in R%,, so we may suppose that P is not a trivial
solution. Suppose first that —abz+5%+c > 0 or —abyd +b2+c¢ > 0. If the first
of these inequalities holds and zo = 0, then, by (3) (with n = ), P, is already
in Ry, therefore we may suppose that x5 > 0. Similarly, if the second inequality
holds, then we may suppose yo > 0. By case (i) of Lemma 4 , Py or TP,
respectively, belongs to the Ga-orbit of some point P; = (n,y1,21) € E? (where

2

s c’ by the definition of EX? in this

case. If n < y;, the point Py, is already in R;, otherwise 7Py, p2 P, or Tp2 Py
belongs to R;. Thus, P is in the G-orbit of P, € R;.

Next, let —abz@ + b? + ¢ < 0 and —abyd + b% + ¢ < 0, so that by (3) (with

n = zo) az¢ — b > 0 and ay? — b > 0. Suppose that Py ¢ E’%0. By case (ii) of

Lemma 4,P is in the Gp-orbit of some point P, € E*2° and then, by part II

of the same lemma, p(Py) > ¢(Py). But P; is also in the G-orbit of P, hence,

the last inequality contradicts the minimality of ¢(P,). Thus, Py € E¥%°. Since

o(TPy) = ¢(P), we can prove, in exactly the same way, that 7Py € Eb°. If

¢ > 0 we will be led to a contradiction. Indeed, by the definition of the sets E4%°

and E¥°, we must have

[abzd — b2 — ¢ abyg —b? —¢
< —_—— < —_—
0<yo <o Py & 0<zo<Lyo aby? — 7 (10)

If ¢ = 0, it follows that xg = yo, which contradicts our assumption that P, is
not trivial. Next let ¢ > 0. Multiplication and squaring of the last two relations
gives(as we previously saw, nominators and denominators are positive)

n = Zg or Yo, respectively) and p(P;) <

(abed — B2 - c)(abyd — B2 — ) > (abed — B)(abyd —8%),  (11)

ie. ¢ > ab(zd + yd) — 26%. However, if we add the relations —abzd + b2 +¢c <0
and —abyd + b2 + ¢ < 0 we get ab(z@ + y&) — 26> > 2¢ > ¢, arriving at a
contradiction. If ¢ < 0 we put P; = Py if ¢ < yo and P; = 7Py otherwise. If we
put P, = (21,¥1,21), then 0 < z; < 3, z; > 0 and P, € E%1, hence, by the
definition of this set in the case under condition(—abz?+b%+c < 0, az?-b > 0),
we see that P, € Ry and P is in GRy.

Now we prove part (ii). If (z,y,2) € R; then both z? and y? must be <
2 2
bte and the minimum of these two, i.e. ? cannot exceed it 1 (z,y,2) €
a
R; and z = y,then (az?—b)? = 22—¢ > —c hence (az? —b+z)(az?—b—2) = —c
and it follows that az? —b < —¢, as claimed. Finally, if (z,y,2) € Ry and z < y,
then, from the inequalities in the definition of R, it follows that




Kashihara 383

abz? —b? —¢
Vo o F2h (12)

from which,

—cz? > (2z + 1)(abz? — b?) > 2z(abz? — b?) (13)
and, consequently, 2abz? + cz — 2b% < 0, hence z is strictly less than the larger
root of the left-hand side. This completes the proof. a

Remark 2. Note that the G-orbit of a trivial solution contains both trivial and
non-trivial solutions. Example: (a,b,¢) = (1,1,9); a trivial solution is (1,2,3)
and o7o(1,2,3) = (8,175, 1389) which is not trivial.

For the case (a,b) = (1,4) we have the following analogous theorem.

Theorem 2. Let (a,b) = (1,4) and let T}, be the set of integral trivial solutions
of equation (2). Define

R = {(r,y,z)e st

e#1,y#1,0<z<y, 2 +y* < 164+c,z20},

y2S12+c 220},

"o 4
Rl - {(lyyvz)eslc 12 ’

and if ¢ < 0,

Ry = {(w,y, Z)E Sfc

4z - 16 —¢
Sy<a\———7%2 .
2<z<y<cz 12716 ,z_O}

(i) Pt R{, = RIURJUTY, ifc>0and R}, = R{UR{ UR, UTY}, ifc < 0.
Then the set of all integral solutions of (2) coincides with GR},.

(i) If (z,y,2) € R} then

0<z< /16;-c,msyS /16;—6'

If (z,y,2) € Ra(c < 0) then, either z # y, in which case
~c+ V2 +1024 4z - 16 —c
< y ELYS B\ 7
16 4z2 — 16

orz =y and 2 < & < /4 —c. In paticular, R}, R{ and Ry are at most
finite and algorithmically computable.

2<z

Proof. Let P be a non-trivial solution of (2). Consider a point Py = (%o, Yo, 20)
in the G-orbit of P, such that ¢(Pp) is minimal and 2o, yo, 2o are non-negative.
If 2o # 1 and yo # 1 then we can prove P € GR{, in exactly the same way as
in the general case. We may suppose zo = 1, indeed if yo = 1 we can replace
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Py with 7P. Then by Lemma 5, Py belongs to the G-orbit of some point P} =
(1,y1,21) € E}! and by the definition of Efl, we have y; < (12+¢)/12, z; > 0,
so that P, € R” Therefore P is in the G-orbit of P; € R{. This proves part (i)
of the theorem. Part (ii) is proved in exactly the same way as in Theorem 1. O
Theorem 1 and 2 give us a criterion for solvability of equation (2) with
= 1,2 or 4. It is solvable if and only if RY, is not empty. Moreover we can
derive effectively all solutions by GR?,. Next we will show that RE, \ T?, is
a minimal set of integral solutions of equation (2) such that the G-orbits of
this set exhaust all non-trivial integral solutions except for that derived from a
trivial solution.

Proposition 1. Let b = 1, 2, 4. For any points A, B belonging to R}, \ TC,,
it holds thatif A ~ B then A= B.

Proof. Let B = gA , g € G then by Corollary 2 of Lemma 2, we have a
representation

9= phpsTé 0" (rar) ot (ram),
where k is some non-negative integer, e;, f; € Z (i=1,2,...k), @, b, ¢, d = 0 or 1.
We can show g € H by reduction to absurdity. Suppose g ¢ H and
A=Po-—il—>P1 £>P2—>"‘—* n-1£’Pn"h"’ n+1=By

where g; € {0, 071, 701, T0" 7}, hE H, n = ZLl(e; + fi). By Corollary
1 of Lemma 2 we may suppose P; ¢ HP; (i < j < n). Consider a point Pp, in
these P; (i=1,2,...,n+1), such that ¢(P) is maximal.

First we show m # 0, n, n+ 1. By Lemma 4 and 5,

p(0Po) > p(Po), p(c™ Po) > ¢(Po),

where we may replace ¢ with ro7. So we have m # 0. Similarly we have also
m # n,n+ 1. Now we may suppose

¢(Prn-1) < ¢(Pm), ©(Pmt1) < ¢(Pm)- (14)

Let @m = (£, n, ) be a point such that Q, € HPy, &, 1, ¢ >0, n > €.
By Corollary 1 of Lemma 2,

Pr-1, Pny1 € H(oQm) U H(tr"lQm) UH(TotQm) U H(ra'ler).
By the definition of 7 and o,

2_ 2¢2_ ab 2_p
an.—:(g, (2= byn 366 2E2E° ol (Gaf" =0,

s-1Q (2a€2 b)n 2«5( —2¢(a%¢?— ab)y + (206>~ b)C)
m = b )

— ( (2an*- b)E +am¢ 27(an® — ab)é + (2an*— b)¢ ) ,

b

(2an®— b)E 2n¢ . —2n(a’n® — ab)é + (2an*— b)C )
1 M b .
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First we consider the case:

Sa(a_lQm) < ‘P(Qm): ‘P(TU_ITQm) < ‘P(Qm)' (15)
From the first inequality, we obtain —bn < 2aé%n — bn — 26¢ < by , hence
0 < é(aén —¢) < bn. (16)

Similarly from the second,

0 < natn —¢) < be. (17)

In view of (16), n > 0, hence multiplication of (16) and (17) gives
0 < én(aén —¢)? < b*¢n, from which

0 < (aén—¢)? < b2 (18)

In the case b = 1, this is a contradiction. Consider the case b = 2. From (18)
atn—~(¢ =1 Herewe put S=0"1Q,,, T =710"'7Q,,. Then

S=( &—n ak(n—-€)+1), T=(-€+n 7 an€—n)+1).

By easy calculation, we have
S = p1papstaT or equivalently T = p1p2p37(ToT)S. (19)

It follows that Py, 41 = h*g* Py,—1 withsome h* € H, ¢* € {0,07}, 707,707 17}.
By Corollary 1 of Lemma 2, we have a representation

n n
h IT e =#® ] o,
i=m+42 i=m+2

with some h' € H, g} € {0, 07}, 701, T6~17} (i=m+2,..,n). So we obtain a new
sequence of points from A to B, where the number of P;’s decreases by one.
In the case b = 4, from (18) and (? — a?¢2p? = 0 (mod 4), we have aén—( = 2,
hence we obtain the relation (19) and the same result.

In the case

‘P(UQm) < ‘P(Qm), SO(T‘TTQm) < So(Qm);
we have £,7 > 0, aé? — b < 0, an? — b < 0, hence £ = 5y = 1. Therefore
0Qm = p37 (T07Qm),

which contradicts the assumption P41 € HPp_y.
Next we consider the case

P(071Qm) < p(Qm),  @(To7Qm) < ¢(Qm). (20)

From these inequalities we have

0< T, 0< af’l - C) f(afﬂ - C) < b"a (21)
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0<¢ 0<aén+(, n(an+() < bE. (22)
Combining these, we have
0< a%? — (% < b2,

In the case b = 1, this is a contradiction. Consider the cases b = 2 or 4. From
(22), €&(an? —b)+ n¢ < 0, which implies n = 1. Therefore from (21), (22), we
have

O<€) 0<a£—C) f(af—()<b

Hence é = 1, because af — ( = 0 (mod 2) in the case b = 4. From (20), we
have 0=1Qm = (1,0,¢'), 707Qm = (0,1,¢"). Therefore P41 € H Ppy—1, which
contradicts the assumption. Similarly

P(0Qm) < ¢(Qm),  P(ro7'7Qm) < (Qm),

leads to a contradiction.
Finally we consider the case:

P(0Qm) < p(@m),  ¢(67'Qm) < ¢(Qm).

From this assumption we have £,7 > 0, aé? — b < 0. After consideration of
Ppni1 ¢ HPp_1, Pn-1, Pmy1 & HP,, only one case remains, that is (a, ,£) =
(1,4,1). In this case, the order of ¢ as a permutation on Cj is 3, hence 0~1Q,, =
0(0Qm). Therefore we come to the same result. Similarly

P(10TQm) < 9(@m), (107 '7Qm) < 9(Qm),

leads also to the same result.
Now the assumption leads us to a contradiction or a new sequence of points
from A to B, where the number of P;’s decreases by one. And if n = 1, either

¢(B) > ¢(4) or ¢(A4) > ¢(B),
which contradicts A, B € R%,. Consequently g € H, which implies A= B. O
Remark 3. In the case b%+c < 0, the proof becomes simple. We consider a point
Qm as in the proof. From (3) with —ab¢? + b% + ¢ < 0, we have a£? — b > 0,
similarly we have an? — b > 0. From the first we have (2a¢” — b)n + 26¢ -
p = 2a€ = b)n +2¢ (20€? — b)n + 26¢

~ we have p(0Qm) > ¢(Qm). Likewise, from the second we have p(107Qm) >
©(Qm). From these relations it is clear that it suffices to consider only the case

P(07'Qm) < ¢(Qm), ‘P(T”—l"Qm) < o(Qm).

> 0, consequently > 1, from which
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4. The Cases b= -1, -2 or —4

In this section, we examine the cases b = —1, —2 or —4. We state the results
and give the proof only at the points in which the proof differs essentially from
the previous one. We preserve the notations for the case b > 0, except for the
permutation o and T?,.

In the case n = 0, we can solve equation (3) by the theory of binary quadratic
forms (see [4] or [5]), the integral solutions of which are algorithmically com-
putable. Thus we define a trivial solution of equation (2) as an integral solution
such that zy(—abz? + b2 + c)(—aby® + b2 + ¢) = 0 or (only if ¢ = 0) 2% = y2.
(Note that it always holds that (az? — b)(ay? — b) # 0 in this case.) !

We define o as

o(z, y, 2) = (:c

(2az? — b)y + 222 2z(a%z? — ab)y + (2az? — b)z)
—b ’ -b '

Since

. = 2an? — b+ 2nva2n? — ab
n — —b )

is a unit with norm +1 in the ring of integers of @(v/a?n2? — ab), o is a permu-
tation on S8, , F?, or C, and satisfies lemmas and corollaries in Sec.1. We can
prove the following in the same way as in Lemma 3.

Lemma 6. Let n > 0. For a point Py on C,, put P, = 0Py, and let Py P, be an
arc of Cy, in which P; is contained and Py 1s not .

(i) If —abn? + b2 + ¢ < 0, let Py = (w0, —20) be a point on C}Y such that
oPy = p3Py, z9 > 0. Then
Cn+y = U UiP;PI.
i€Z
(i) If —abn? + b2 + ¢ > 0, let Py = (—yo, z0) be a point on C}* such that
O’PO = szo, Yo _>_ 0. Then

Cn+z = U O'iP(’)\Pl.
i€Z

Also we can prove the following in the same way as in Lemma 4.

Lemma 7. Let n > 0.
I
(i) If —abn® + b2 + ¢ < 0, define

! Finding all trivial solutions with £ = 0 or y = 0 amounts to solving a Pell equation
and, in that sense, these solutions are not trivial in a strict sense.
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Eg = {(n,y,Z) € Gl

abn®—b*—¢ b2+ ¢
= "< —n2 .
a?n?—ab s " }
Then CjtY = G,E'".
(ii) If —abn? 4+ b2 + ¢ > 0, define EX* as

—abn? + b2 + ¢ < —abn?+ b2 +¢ }

+z | _ —_—
{(n,y, 2 €C —abn? + b2 SYE™ T g + b2

Then Cjt* = GoEb™.
I1 If P is any point in E*" and 0P, 0~ P do not belong to H\ P, then
¢(cP) > ¢(P), ¢(c7'P)> p(P),

respectively. Moreover, if P is any point in ES7, while Q = (n,y,z) any
point not belonging to E?, then, unless Q € H, P

e(Q) > ¢(P).

Theorem 3. Let b = —1, -2, —4 and let TP, be the set of integral trivial
solutions of equation (2). Define

b 2,2 Pte
Ri=1(z,y,2)€S;. |0<z<y,2°+y" < ab 2200,

and if ¢ > 0,

/-—abx2+b§+c
<y< —_— .
0<z<y<z —aba? 1 57 ,zZO}

(i) Pt R, = Ry UT?, ifc >0 and R%, = RyUT?, ifc < 0. Then the set of
all integral solutions of (2) coincides with GRE,.

(i) If(z,y,2) € R, then

[62 +¢ [b2+ ¢
0<zs 2ab »TSYS ab

If (z,y,2) € Ra(c > 0) then, either z # y, in which case

¢+ /2 + 16ab3 —abz? +b2 +¢
L ———rr———- < yL 2\ ———),
—4ab —abz? + b2

orz =y and < \/(b+c)/a. In paticular, Ry, Ry are at most finite and
algorithmically computable.

Ry = {(x)yaz)e Szc

O<z
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Replacing the case “—abz? + b2 4 ¢ > 0 or —abyl + b% + ¢ > 0” in the proof
of Theorem I with “—abz? + b2 + ¢ < 0 or —aby? + b% + ¢ < 0” and the case
“—abzd +b% + ¢ < 0 and —abyd + b2 + ¢ < 0” with “—abz? + b% + ¢ > 0 and
—abyd + 4% + ¢ > 0”, and using Lemma 7 instead of Lemma 4, we can prove
this in the same way as in Theorem 1.

Proposition 2. Let b = —1, —2, —4. For any points A, B belonging to R, \T®
it holds thatif A ~ B then A= B.

c)

Proof. The proof is similar to that of Proposition I and we give only a sketch
of it. We preserve the definitions and notations in the proof of Proposition 1. For
a point P = (z,y,z) € R, \ T}, with 2,y > 0,2 > 0, unless cP,7o07P € HP,
we have

p(oP) > (P),  ¢(roTP) > o(P).

Consequently if P, is a point such that ¢(P,,) is maximal in the sequence of
points from A to B, then we may assume

0(67 Pn) < ¢(Pm),  ¢(r0™'7Pn) < ¢(Pm).
From these inequalities we obtain
0<¢—aén< —b. (23)

If b = —1 this is a contradiction. If b = —2 we have ( — afn = 1, hence
S=(&n-¢&a€(€-n)+1), T=(-nn,an(n- &)+ 1), from which we have

S = paroT  or equivalently T = pyr(roT)S, (24)

hence, there is a new sequence of points from A to B where the number of P’s
decreases by one. In the case b = —4, from (23) and ¢ — a?¢2n? = 0(mod 4) we
have ( —a€n = 2, hence we obtain the relation (24) and come to the same result.
And if n = 1 we are led to a contradiction in the same way as in the proof of
Proposition 1. Thus if we suppose g € H then we are led to a contradiction.
Consequently ¢ € H, hence we arrive at A = B. 0

5. Examples

In Table I and 2, we show RY, for the casesa = 2, b= %1, —85 < ¢ < 85, ¢ # 0,
which we have obtained by using UBASIC.

Theorem 5. Leta > 2, b= 1, ¢ = —1. Then equation (2) has only one solution
(0,0, 0).

Proof. 1t is obvious that T}_; = {(0,0,0)} and Ry = {(0,0,0)}, hence we
have RL_, = {(0,0,0)}. Therefore by Theorem 1 we obtain S; _; = GR; _, =
{(0,0,0)}. o
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, c#0

<c<85

Table 1. R3. of (227 —1)(2y> —1)=2® —¢, for —85
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y z

Yy z
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3 2

-64 3 315
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<« 10
o m
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(=23 N
N ™
N O

33

1410
028
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1

2
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4 430
-56 2 621

3 006 71
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1

o
©
o

4 2
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6 4

1
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©
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035
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1

O NODO—wO
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2
2
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3
5
7
8
9

1O NN

3 528
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7
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-49
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004
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Yy z

, c#0
45
46

<c<85
¥4
1
022
2
0
1
0

4
1

1
1
1

1
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Yy z
051
4 7

1
2311

065

of (222 +1)(2¢y% +1) = 2% — ¢, for -85
-50

-1
2c

7T 4

4 4

4 540

82 099

-81

0
1

Table 2. R
-85

)
S A ST

o
(=]

oo}
<t

0
0

-48

33

1

2 624

D
<

- 00

05 2
226
053

-47

O~

01
00 2
0

-45

0 HF AN ™
S oM

<t
[T

-42

AN o0 N

N O N

3
4

1
2
1

3 4
2 416
066

2 -41 1

22

NI = O~ N O N
OM =N OO

1
o

7

1 612
075
1

-75

1
003
6
4
004
025
1

-37
45 3 318 8
05 4

-74

=]
o

~
0

2

1

-35

O -
O O 0
SO - AN

-73
-72

1311
2 419
0 610
4 434
5
413
2 523
0 612
029
1515
2 627
119
210
009
3 321
0310
4 542
2316
0109

64
67
70
71
72
73
78
80
81
85
82

(20 + ¥V2)(3 + 2V2)F,

6

7
048
0

5
7
5
9
8

1

1
036
2 210
01
12
00
13
2 314
026
2 418
11
03

1
006
12
1 310

13
15
16
17
19
22
24
25
27
30
31
33
35
37
43

8
1
3 5
2
1
3
2
6
1
3
4
8
1

4
040
0 4
1

7
042
120
2 312
055
12
0 4
12
13
030

3
12
0 4
2 2
03 2
0 2

1
2

-33
-32
-29
-27
-26
-24
-23
-21
-19
-18
-17
-15

6 2
8 8

4
4 6
30
31
25

3 530
2

0

2
2 520

06 4
1

1

4 432
2

223
3 317
2 310
0

063
076
1

-69
-65
-64
-63
-59
-87
-56

-71
Note. The solution (0, 5, ¢) such that ¢ + 7v/2

k>0, k € Z is expressed by (0, yo, 20).
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By Theorem 3 we can prove the following analogously.

Theorem 6. Letb = —1, ¢ = —1, and let a be not a square. Then equation (2)
has only one solution (0, 0, 0).
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