

Werk

Verlag: Izd. Kazanskogo universiteta; Совет казанского университета

Ort: Kazan

Kollektion: RusDML; Mathematica **Werk Id:** PPN509860087 0017

PURL: http://resolver.sub.uni-goettingen.de/purl?PID=PPN509860087_0017 | LOG_0030

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions. Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de Труды семинара по краевым задачам

УЛК 532.546

ОБ ОДНОМ СЛУЧАЕ РЕШЕНИЯ ЗАДАЧ НЕЛИНЕЙНОЙ ФИЛЬТРАЦИИ С НАЧАЛЬНЫМ ГРАДИЕНТОМ

Е. Г. Шешуков

В работе [1] введен специальный закон фильтрации, позволяющий сводить исходные задачи нелинейной фильтрации с начальным градиентом к краевым задачам для аналитической функции. Автор [1] ищет решение соответствующей краевой задачи методом разложения в бесконечные ряды. В настоящей работе на примере решения задачи фильтрации к системе стоков показывается, как можно в таких случаях строить решение методом краевых задач. Исследуется влияние физических параметров на форму границ застойных зон.

1. Постановка задачи. В горизонтальном однородном или водоносном пласте постоянной нефтяном мошности имеются две галереи нагнетательных скважин, расположенных вдоль осей $x = -L_1$ и $x = L_2$. Система координат x, у находится в горизонтальном сечении пласта. Интенсивность галерей обозначена соответственно через q_1 и q_2 (дебиты единицы длины). Пласт эксплуатируется при x = 0 равномерной батареей эксплуатационных скважин, дебиты которых 2Q, где $Q = (q_1 + q_2) T$, 2T - расстояние между центрами соседних скважин батареи. Пусть $L_i \gg T$, $i = 1, 2, r \ll T$, где r -радиус эксплуатационной скважины. При таких условиях математическое исследование фильтрации достаточно проводить, забатарею эксплуатационных скважин равномерной системой стоков и считая нагнетательные галереи расположенными на бесконечности, т. е. r = 0, L_1 и $L_2 = \infty$. Характерным элементом такого течения является полоса ширины T(рис. 1). Здесь сток расположен в точке Е, в бесконечно удаленных точках A и D скорости фильтрации соответственно равны $v_A = q_1, v_D = q_2.$

Фильтрация в пласте подчиняется нелинейному закону [1]

$$f(v) = |\operatorname{grad} h| = \sqrt{\lambda_0^2 + (v/\lambda_1)^2},$$
(1.1)

где h — напор, v — скорость фильтрации, λ_0 — начальный

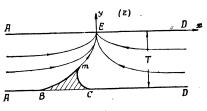


Рис. 1.

градиент напора, λ_1 — постоянная размерности скорости. При $|\operatorname{grad} h| \leqslant \lambda_0$ в плоскости течения образуются застойные зоны (см. BmCB на рис. 1), которые требуется определить.

Заметим, что при $Q_1=Q_2$ и при $Q_1=0$ (или $Q_2=0$) исходная задача превращается в детально рассмотренные ранее

задачи для закона фильтрации $f = \lambda_0 + v/\lambda_1$ [2].

2. Основные уравнения. Сведение к краевой задаче. Плоская устновившаяся фильтрация несжимаемой жидкости, не следующая закону Дарси, описывается системой уравнений [3]

grad
$$h = -\frac{f(v)}{v}\vec{v}$$
, div $\vec{v} = 0$. (2.1)

После перехода к безразмерным переменным: $u=v/\lambda_0\lambda_1$, $\varphi=-h/\lambda_0T$, $\psi=\psi_0/\lambda_0\lambda_1T$, $\mu=x/T$, $\nu=y/T$, ψ_0 — функция тока, система (2.1) при законе (1.1) запишется в виде

$$\frac{\partial \varphi}{\partial \mu} = \frac{\sqrt{1 + u^2}}{u} \frac{\partial \psi}{\partial \nu}, \quad \frac{\partial \varphi}{\partial \nu} = -\frac{\sqrt{1 + u^2}}{u} \frac{\partial \psi}{\partial \mu}. \tag{2.2}$$

С помощью преобразования видоизмененного годографа скорости уравнения (2.2) линеаризуются

$$\frac{\partial \varphi}{\partial \theta} = \coth^2 s \frac{\partial \psi}{\partial s}, \quad \frac{\partial \varphi}{\partial s} = -\coth^2 s \frac{\partial \psi}{\partial \theta}, \quad (2.3)$$

где $s = \operatorname{Arsh} u$, $\theta - \operatorname{аргумент}$ вектора скорости.

Каноническая система (2.3) всесторонне исследована Г. А. Домбровским [4]. Ее решениями являются функции

$$\varphi = -\Psi (\theta, s) + \coth s \frac{\partial \Phi}{\partial s},$$

$$\psi = -\Psi (\theta, s) + \ln s \frac{\partial \Psi}{\partial s},$$
(2.4)

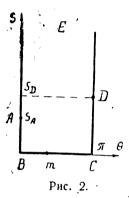
где Φ (0, s) и Ψ (0, s) — сопряженно гармонические функции. Области течения G_{σ} ($\sigma = \mu + i\nu$) в плоскости видоизмененного годографа скорости соответствует полуполоса G_{χ} ($\chi = \theta + is$) шириной π (рис. 2). Параметры $s_A = \operatorname{Arsh} Q_1$,

 $s_D={
m Arsh}\,Q_2$, 'где $Q_1=q_1/\lambda_0\lambda_1$, $Q_2=q_2/\lambda_0\lambda_1$. Будем считать $\psi=0$ на границе ABmCD. Тогда на AE функция $\psi=Q_1$ на DE $\psi=-Q_2$.

В области G_X ищется аналитическая функция $W(X) = \Phi(\theta, s) + i\Psi(\theta, s)$ по значению ее мнимой части на границе,

вытекающему из второго соотношения (2.4):

$$\begin{split} \Psi &= 0 & \text{при } 0 \leqslant \theta \leqslant \pi, \ s = 0, \\ \Psi &= R_1 \sh s & \text{при } \theta = 0 & 0 \leqslant s \leqslant s_A, \\ \Psi &= -Q_1 & \text{при } \theta = 0, \quad s_A \leqslant s \leqslant \infty, \\ \Psi &= R_2 \sh s & \text{при } \theta = \pi, \quad 0 \leqslant s \leqslant s_D, \\ \Psi &= Q_2 & \text{при } \theta = \pi, \quad s_D \leqslant s \leqslant \infty, \end{split} \tag{2.5}$$



где R_1 и R_2 — постоянные интегрирования, определяемые ниже из физических соображений.

Связь области годографа G_{7} с физической областью течения G_{σ} осуществля-

ется по формуле

$$d\sigma = \frac{e^{i\theta}}{u} \left[\frac{ud\varphi}{V \cdot 1 + u^2} + id\psi \right]$$

или после интегрирования, следуя [4],

$$\sigma = \sigma_0 - e^{i\theta} \left[\frac{1}{\sinh s} \operatorname{Im} W'(X) - \frac{i}{\cosh s} \operatorname{Re} W'(X) \right].$$

(2.6**)**

Таким образом, для решения задачи необходимо построить аналитическую функцию $W(X) = \Phi(\theta, s) + i\Psi(\theta, s)$. Ниже для ее определения применяется метод краевых задач, позволяющий находить аналитическое решение в простой форме.

3. Решение краевой задачи. Аналитическая функция W(X) ищется в параметрической форме $W=W(\zeta)$, $X=X(\zeta)$.

Для этого с помощью функции

$$\chi(\zeta) = \pi/2 + \arcsin \zeta = \pi + i \ln (\zeta + \sqrt{\zeta^2 - 1})$$
 (3.1)

область годографа конформно отображается на вспомогательную полуплоскость G_{ζ} переменного $\zeta=\xi+i\eta$ (рис. 3). Точкам A и D в полуплоскости ζ соответствуют координаты $\zeta=-a$ и $\zeta=d$, где $a=\cosh s_A=\sqrt{1+Q_1^2},\, d=\cosh s_D=\sqrt{1+Q_2^2}.$

Далее записывается $W(\zeta) = W_1(\zeta) + W_2(\zeta)$, где аналитические функции $W_1(\zeta) = \Phi_1(\xi, \eta) + i\Psi_1(\xi, \eta)$ и $W_2(\zeta) = \Phi_2(\xi, \eta) + i\Psi_2(\xi, \eta)$ определяются в G_{ζ} по условиям на оси $\eta = 0$:

$$Ψ_1 = 0$$
 πρи $-a < \xi < d$, $Ψ_1 =$
 $= -Q_1$ πρи $-\infty < \xi < -a$, $Ψ_1 = Q_2$
πρυ $d < \xi < \infty$ и $Ψ_2 = 0$ - πρυ $\frac{E}{2}$ $\frac{A}{2}$ $\frac{B}{2}$ $\frac{C}{2}$ $\frac{D}{2}$ $\frac{E}{2}$ $\frac{C}{2}$ $\frac{$

 $\Psi_2 = R_2 \text{ sh } s(\xi) = R_2 \sqrt{\xi^2 - 1}$ при $1 < \xi < d$. Легко заметить, что $\Psi = \Psi_1 + \Psi_2$ будет удовлетворять условиям (2.5).

Функция $W_1(\zeta)$ строится методом особых точек [5], если поместить в точки $\xi = -a$, $\eta = 0$ и, $\xi = d$, $\eta = 0$ стоки обильности $2Q_1$ и $2Q_2$,

$$W_1(\zeta) = -\frac{Q_1}{\pi} \ln(\zeta + a) - \frac{Q_2}{\pi} \ln(\zeta - d) + iQ_2.$$
 (3.2)

Применяя интеграл Шварца для полуплоскости [6], восстанавливаем функцию $W_2(\zeta)$

$$W_{2}(\zeta) = \frac{R_{1}}{\pi} \int_{-a}^{\zeta-1} \frac{\sqrt{t^{2}-1} dt}{t-\zeta} + \frac{R_{2}}{\pi} \int_{1}^{d} \frac{\sqrt{t^{2}-1} dt}{t-\zeta} + \text{const.}$$

После вычисления интегралов получаем

$$W_{2}(\zeta) = \frac{R_{1}}{\pi} \left[\zeta N(a) + \sqrt{\zeta^{2} - 1} M(\zeta, a) \right] + \frac{R_{2}}{\pi} \left[\zeta N(d) - \sqrt{\zeta^{2} - 1} M(\zeta, d) \right] + \text{const},$$
(3.3)

где

$$N(p) = \ln(p + \sqrt{p^2 - 1}), M(\zeta, q) = \ln\left(\frac{\zeta q \mp \sqrt{(\zeta^2 - 1)(q^2 - 1)} \pm 1}{\zeta \pm q}\right)$$

при q=a берутся верхние знаки, при q=d — нижние знаки. Формулы (2.6), (3.1) — (3.3) позволяют найти решение исходной задачи.

4. Определение границы застойной зоны. Обсуждение результатов расчета. Постоянная σ_0 определяется из условия, что сток расположен в начале координат. Устремляя ζ к бесконечности $(s \to \infty)$, из (2.6) получим $\sigma \to \sigma_0$. Следовательно, $\sigma_0 = 0$.

Для нахождения границы застойной зоны следует воспользоваться формулой (2.6). Так как на границе застойной зоны $\psi = 0$, s = 0, а также $\frac{\partial \Psi}{\partial \theta} = 0$, то, раскрывая неопределенность в (2.6), получим формулу

$$\sigma = ie^{i\theta} \left(\frac{\partial \Psi}{\partial s} + i \frac{\partial^2 \Psi}{\partial \theta \partial s} \right)_{s=0}. \tag{4.1}$$

По формулам (3.1) — (3.3) определяется функция

$$\frac{dW}{d\lambda} = \frac{dW}{d\zeta} / \frac{d\zeta}{d\zeta};$$

$$\frac{dW}{d\lambda} = \frac{iV\zeta^2 - 1}{\pi} \left[\frac{Q_1(1 + R_1)}{\zeta + a} + \frac{Q_2(1 - R_2)}{\zeta - d} - R_1 s_A - R_2 s_D \right] - \frac{i\zeta}{\pi} \left[R_1 \ln \frac{1 + a\zeta + V(\zeta^2 - 1)(a^2 - 1)}{\zeta + a} - R_2 \ln \frac{d\zeta - 1 + V(\zeta^2 - 1)(d^2 - 1)}{\zeta - d} \right],$$

из которой

$$\frac{\partial \Psi}{\partial s}\Big|_{s=0} = -\frac{V\overline{1-\xi^2}}{\pi} \left[\frac{Q_1(1+R_1)}{\xi+a} + \frac{Q_2(1-R_2)}{\xi-d} - R_1 s_A - R_2 s_D \right] - \frac{R_1 \xi}{\pi} \left(\operatorname{arctg} \frac{Q_1 V\overline{1-\xi^2}}{1+a\xi} + \alpha \right) + \frac{R_2 \xi}{\pi} \left(\operatorname{arctg} \frac{Q_2 V\overline{1-\xi^2}}{1-\xi d} + \beta \right), (4.2)$$

где $-1 < \xi = -\cos\theta < 1$; $\alpha = 0$ при $1 + a\xi > 0$; $\alpha = \pi$ при $1 + a\xi < 0$; $\beta = 0$ при $1 - \xi d > 0$; $\beta = \pi$ при $1 - \xi d < 0$.

Смешанная производная $\frac{\partial^2 \Psi}{\partial \theta \partial s}$ при s=0 вычисляется по формуле

$$\frac{\partial^{2}\Psi}{\partial\theta\partial s}\Big|_{s=0} = \frac{d\xi}{d\theta} \frac{d}{d\xi} \left(\frac{\partial\Psi}{\partial s} \Big|_{s=0} \right) = \sin\theta \frac{d}{d\xi} \left(\frac{\partial\Psi}{\partial s} \Big|_{s=0} \right). \tag{4.3}$$

Входящие в решение постоянные R_1 и R_2 определяются из условий, что при обходах точек A и D в области годографа G_X функция $\nu(\theta, s)$ получает приращение, равное 1, т. е.

$$v_{AE} - v_{AB} = 1, \ v_{DE} - v_{CD} = 1.$$
 (4.4)

Тогда, на основании формул (2.6) с учетом (2.5), из соотношений (4.4) имеем $R_1 = -1$, $R_2 = 1$.

Параметрические уравнения границы застойной зоны, как следует из (4.1) и (4.3), записываются в виде

$$\mu = -\sin\theta \frac{\partial \Psi}{\partial s} \Big|_{s=0} - \sin\theta \cos\theta \frac{d}{d\xi} \left(\frac{\partial \Psi}{\partial s} \Big|_{s=0} \right),$$

$$\nu = \cos\theta \frac{\partial \Psi}{\partial s} \Big|_{s=0} - \sin^2\theta \frac{d}{d\xi} \left(\frac{\partial \Psi}{\partial s} \Big|_{s=0} \right),$$

 $\xi = -\cos\theta, \ 0 \leqslant \theta \leqslant \pi.$ Учитывая (4.2), получаем простые формулы, не имеющие квадратур;

$$\mu = \frac{1}{\pi} \ln \frac{Q_1 + a}{Q_2 + d} - \frac{\cos^2 \theta}{\pi} \left(\frac{Q_1}{a - \cos \theta} - \frac{Q_2}{d + \cos \theta} \right),$$

$$\nu = -\frac{1}{\pi} \left(\operatorname{arctg} \frac{Q_1 \sin \theta}{1 - a \cos \theta} + \operatorname{arctg} \frac{Q_2 \sin \theta}{1 + d \cos \theta} + \alpha + \beta \right) - \frac{\sin \theta \cos \theta}{\pi} \left(\frac{Q_1}{a - \cos \theta} - \frac{Q_2}{d + \cos \theta} \right),$$
(4.5)
$$rge \ a = \sqrt{1 + Q_1^2}, \ d = \sqrt{1 + Q_2^2}, \ 0 \leqslant \theta \leqslant \pi.$$

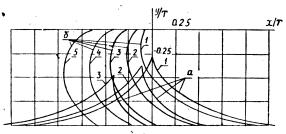


Рис. 4.

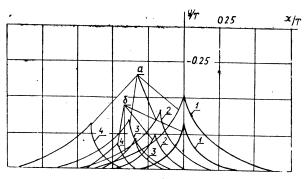
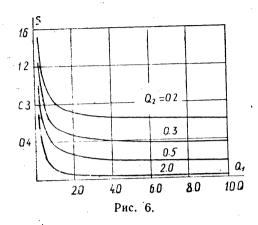


Рис. 5.

Для иллюстрации влияния параметров Q_1 и Q_2 на форму границы застойной зоны проведены по формулам (4.5) расчеты для следующих вариантов: 1. $Q_2=Q_1=0,5.$ 2. $Q_2=2Q_1=1,$ 3. $Q_2=6Q_1=3$ (кривые "а" рис. 4); 1. $Q_1=0,$ $Q_2=0,5,$ 2. $Q_1=0,$ $Q_2=1,$ 3. $Q_1=0,$ $Q_2=2,$ 4. $Q_1=0,$ $Q_2=4,$ 5. $Q_1=0,$ $Q_2=10$ (кривые "б" на рис. 4); 1. $Q_2=Q_1=1,$ 2. $Q_2=2Q_1=2,$ 3. $Q_2=4Q_1=4,$ 4. $Q_2=10$ $Q_1=10$ (кривые "а" на рис. 5); 1. $Q_2=Q_1=2,$ 2. 2. $Q_2=2Q_1=4,$ 3. $Q_2=3Q_1=6,$ 4. $Q_2=5Q_1=10$ (кривые "б" на рис. 5). На рис. 6 приведены зависимости площади застойной зоны BmCB (см. рис. 1) от параметров Q_1 и Q_2 . Расчеты проводились по формуле

$s = \int (1 + v) \mu'(\theta) d\theta,$

где $\mu(\theta)$, $\nu(\theta)$, $(0 \le \theta \le \pi)$ — параметрические уравнения границы застойной зоны.



Результаты расчетов показывают, что увеличение Q_2 ведет:

 $Q_1 = Q_2$ при к уменьшению симметричной застойной зоны,

 $Q_2 > Q_1$ при к уменьшению застойной зоны и ee смещению в сторону потока с мень-

шим дебитом,

3) $Q_2 < Q_1$ при к уменьшению застойной ее смещению в сторону потока с большим дебитом до симметричного положения при $Q_2 = Q_1$:

ЛИТЕРАТУРА

1. Панько С. В. О некоторых задачах фильтрации с предельным градиентом. — Изв. АН СССР, МЖГ, 1973, № 4, с. 177—181.
2. Бернадинер М. Г., Ентов В. М. Гидродинамическая тео-

рия фильтрации аномальных жидкостей. М., "Наука", 1975.

3. Христианович С. А. Движение грунтовых вод, не следующее закону Дарси. — ПММ, 1940, т. 4, вып. 1, с. 33—52.

4. Домбровский Г. А. Метод аппроксимации адиабаты в теории

плоских течений газа. М., "Наука", 1964. Теория струй идеальной жидкости. 5. Гуревич М. И.

ГИФМЛ, 1961.

6. Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. М., "Наука", 1973.

Доложено на семинаре 26 января 1978 г.