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PART I._-STATICS OF STRUCTURES.

CHAPTER 1.
FRAMEWORK LOADED AT THE JOINTS.

113 Preliminary Explanations and Definitions.—A frame is a structure
composed of bars, united at their extremities by joints, which offer
no resistance to rotation. In the first instance we may suppose the
centre lines of the bars all in one plane, and in that case the joints
may consist simply of smooth pins passing through holes at the ends
“of the bars, which are to be imagined forked, if necessary, so as
to allow the centre lines to meet in a point. A large and important
class of structures, known to engineers as ‘“trusses,” approach so
closely to frames that calculations respecting them may be conducted
hy treating them as if they were frames. The differences between
@ truss and a frame will appear as we proceed.

The frame may be acted on by forces applied at points in one or
!Tlore of its bars, or at the joints which unite the bars together. An
Important simplification, however, is effected by supposing, in the
first instance, that the joints only are loaded, an assumption which
will be made throughout this chapter, except in a few simple
examples. It will be shown hereafter that all other cases may
1?0 derived from. this by means of a preliminary reduction (see
Chapter Iv.).

Assuming, then, that the frame is acted on by forces at the joints,

due either to weights or other external causes, or to the reaction of
P A
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supports on which the frame rests, the problem to he solved is to
find the forces called into play on each of the hars of which it is
constructed. These forces are caused by the pressure of the pins on
the sides of the holes through which they pass, and it at once follows,
since no other forces act on the bar, that for each bar these pressures
must be equal and opposite, their common line of action heing the line

joining the centres of the holes.

Figs.1a,1b, There are two possible cases shown
¢ pip —p 1o Eigacla by ?;he first the bar
= %@’ is acted on hy a pair of equal and
- pap! p  Opposite forces tending to length?n
= et Moy &< it, and in the second to shorten it.

The pairs of forces are called a Pull
and a Thrust respectively, while
the bars subjected to their action are called Ties or Struts re-
spectively. Between a pull and a thrust there is no statical differ-
ence but that of sign; the constructive difference, however, between
a tie and a strut is great. The first may theoretically he a rope or
chain, and the second may he made up of pieces simply butting
against one another without fastening, while a rigid bar will serve
either purpose, though its powers of resistance are generally entirely
different in the two cases.

It often happens that it is unknown whether a har be a strut or a
tie, and the pair of forces are then called a STRESS on the bar. This
word “stress” was introduced by Rankine to denote the mutual
action between any two bodies, or parts of a body, and here means,
in the first instance, the mutual action between the parts of the
frame united by the bar we are considering.  If, however, we imagine
the bar cut into two parts, 4 and B, by any transverse section, as
shown in Figs. 1a, 1b, those parts are held together in the case of a
pull, or thrust away from each other in the case of a thrust, by in-
ternal molecular forces called into play at each point of the transverse
section, and acting one way on A and the other way on B. As 4
and B must both be in equilibrium, it is obvious that these internal
forces must be exactly equal to the original forces, and thus it appears
that the stress on the bar may also be regarded as the internal
molecular action between any two parts into which it may he
imagined to be divided. Stress, regarded in this way, will be fully
considered in a subsequent division of this work ; it will be here
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sufficient to say that its intensity is measured by dividing the tot‘al
amount by the sectional area of the bar, and is limited to a certa.x_n
amount, clepending on the nature of the material of which the bar is
Constructed,

It is further manifest from what has been said, that the stress on a
bar may likewise he regarded as a mutual action between the bar and
either of the pins at its ends which are pulled towards the middle of
the bar in the case of a pull, or thrust away from it in the case of a
thrust ; each pin is therefore acted on, in addition to any load which
may be suspended from it, by forces, the directions of which ave the
lines joining the centres of the pins, from which it follows at once that
every joint may be regarded as a point kept in equilibrium by the load af that
Joint and by forces of which the bars of the frame ave the lines of applica-
tion. This principle enables us to find the stress on each bar of a
frame loaded at the joints, whenever such stress can be determined
by statical considerations alone, without reference to the material or
mode of construction, that is to say, in all cases which properly belong
to the present division of our work.

Forces are measured in pounds-weight or, when large, in tons of
2240 1bs, They are often distributed over an area or along a line,
and are then reckoned per square foot or per “running” foot, the
last expression being commonly abbreviated to “foot-run.”

The bars need not be connected by simple pin joints as has been
Supposed for clearness, provided that their centre lines if prolonged
meet in a point through which passes the line of action of the load
on the joint, This point may be called the centre of the joint, and
We may replace the actual joint by a simple pin, or, if the bars are
ot in one plane, by a ball and socket which has the same centre.
We shall return to this hereafter, but now pass on to consider
various kinds of frames, commencing with the simplest.

SECTION I.—TRIANGULAR FRAMES.
2. Diagram of Forces Jor a Simple Triangular Frame.—The simplest
kind of frame ig a triangle,

In Fig. 2a ACB is such a triangle ; it is supported at 4B so that
4B is horizontal, and loaded at ¢ with a weight . Then evidently
the effect of the weight is to compress AC, BC, and to stretch 45,
which is conveniently indicated by drawing A¢, BC in double lines,
and 4B in 4 single line. Also the weight produces certain vertical
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pressures on the supports 4, B, which will be balanced by correspond-
ing reactions P and Q.

To find the magnitude of the thrust on AC BC, the pull on 45,
and the reactions, the diagram of forces Fig. 25 is drawn: ab is a
vertical line representing ¥ on any convenient scale, while a0, b0 are
lines drawn through a, b respectively, parallel to 4C, BC, to meet in
0, and finally On is drawn parallel to 4 B, or, what is the same thing,
perpendicular to ab. Now, applying the fundamental principle laid
down above, we observe that (' is a point kept in equilibrium by
three forces, the load at C, namely W, the thrust of 4C' which we
will call 8, and the thrust of BC which we will call B. In the
second figure the triangle Oab has its sides parallel to these forces,
and hence it follows that Oa, Ob represent S, £ on the same scale
that ab represents IW. Again 4 is aspoint kept in equilibrium
by three forces, the thrust of AC, the pull of the tie 4B, which we
will call /, and the upward reaction 2 of the support 4. But referring
to the figure 25, On, an, are respectively parallel to the two last forees,
so that, by the triangle of forces, they represent H, P on the same scale
that Oa represents S. The same reasoning applies to the point B,
and therefore ba represents the other supporting force @, as is also
obvious from the consideration that P+ @ = W. We thus see that
all the forces acting upon and within the triangular frame ACB are
represented by corresponding lines in Fig. 25, which is thence called

8.

the *“diagram of forces” for the triangular frame.  Such a diagram
can be drawn for any frame, however complicated, and its construction
to scale is the best method of actually determining the stresses on
the several parts of the frame.

The force I requires special notice: it is called the «#hrust” or
the frame. 1In the present case the thrust is taken by the tension
of the third side of the triangle, but this may be omitted, and
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the supports A and B must then be solid and stable abutments
capable of resisting a horizontal force H. In many structures
such a horizontal thrust exists; and its amount and the mode of
providing against it are among the first things to be considered
in designing the structure. Besides the graphical representation
just given, which enables us to obtain the thrust of a triangular frame
by constructing a simple diagram, it may also be calculated by a
formula which is often convenient. Let AC be denoted by b and
BC by a, as is usual in works on trigonometry, and let AN, BN
their projections on 4B be called &, «, and let the height of the
triangle be % and its span /, then by similar triangles,

P an (,'JY _h
H On AN Vv’
Q_ lnb s Q_{\I A__ll.'
H On BN o

Therefore, by addition,

Wb L]

O 0h.. A &
a't’
or ][:IVH.

In practical questions it often happens that «, &, & are known by
the nature of the question, whence H is readily determined. The
case when the load bisects the span may be specially noticed ;
then o’'=# =3/ and
Wi

H = %
When the height of the frame is small compared with the span, this
caleulation is to be preferred to the diagram, which cannot then be
constructed with sufficient accuracy.

The simple frame here considered may be inverted, in which case
the diagram of forces and the numerical results are unaltered, the
only change being that the two struts have become ties and the tie
a strut.

3. Triangular Trusses.—Triangular frames are common in practice,
and the rest of this section will be devoted te some of the commonest
forms in which they appear.
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Fig. 3a shows a simple triangular truss consisting of a beam,
4 B, supported by a strut at the centre, the lower extremity of which
is carried by tie rods, AC, BC, attached to the ends of the beams. If

Pigieh, now a weight, W, be placed
a w] B at the centre, immediately

= “ over the strut, it does not
bend the beam (sensibly) as it

c

(o}

would do if there were no

strut, but is transmitted by

the strut to the joint C, so

that the truss is equivalent

to the simple triangular

Aahl bl l“’z Tl 1&3 frame of the last article.

This, however, supposes that

the strut has exactly the proper length to prevent any bend-

ing of the beam; if it be too short or too long the load on the

frame will be less or greater than 1, a point which will be further

considered presently. It should be noticed that D) is not ne-
cessarily at the centre.

Fig. 3b shows the same construction inverted. €7 isa tie by which
D is suspended from C'; we will suppose this rod to pass through 4B
and a nut applied below, by means of which ) may be raised or
lowered. Let 4B now be uniformly loaded with a given weight, then
the bending of 4B is resisted by €1, which supports it and carries
a part of the load, which may be made greater or less by
turning the nut. If, however, we imagine 4B, instead of being
continuous through 2, to be jointed at D, then the tie (D neces-
sarily carries half the weight of AD and half the weight of BD,
that is to say, half the whole load, whatever be its exact length.
This simple example illustrates very well the most important
difference hetween a truss and a mathematical frame ; namely, that
in the truss one or more of the bars is very often continuous
through a joint. Such cases can only be dealt with on the principles
of the present division of our work, by making the supposition
that the bar in question, instead of being continuous, is jointed like
the rest. The error of such a supposition will be considered
hereafter ; it is sufficient now to say that in order that it may
be exact in the particular case we are considering, the nut must
be somewhat slackened out so that D may be below the straight

Fig.3b.
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line 4B, and that being dependent on accuracy of construction,
tempera,ture, and other varying circumstances, such errors cannot
be precisely stated, but must be allowed for in designing the
stracture by the use of a factor of safety. The supposition is
one which is usual in practical calculations, and will be made
thl‘oughout this division of our work.

The foregoing is one of the simplest cases where, as is very
tommon in practice, the bars of the frame are loaded and not
the joints alone. When such bars are horizontal and uniformly
loaded, the effect is evidently the same as if half the load on each
division of the loaded bar were carried at each of the joints
through which it passes. This is also true if the loaded bars
be not horizontal, but the question then requires a much more
full discussion, which is reserved for a later chapter (see Ch. IV.).

When one of the joints of the loaded bar is a point of
Support, like 4 in Fig. 3, the supporting force is due partly to
the half weight of one or more divisions of the loaded bar, and
Partly to the downward pull or thrust of other bars meeting there :
the first of these causes does not affect the stress on the different
barts of the truss, and the calculations are therefore made without
any regard to it. The explanations given in this article should be
carefully considered, as they apply to many of the examples sub-
sequently given.

The triangular truss in both the forms given in this article
is frequently employed in roofs and bridges of small spans, as
well as for other purposes.

4. Cranes.—The arrangements adopted for raising and moving
weights furnish many inter-
esting examples of triangu-
lar frames.  Fig, 4a shows
one of the forms of the com-
mon crane, a machine the
essential members of which
are the jih, B(, supported
by a stay, C'F, attached to
the crane-post, BE, which
18 vertical. In cranes pro- g
per this third member rotates, carrying BC and (' with it, but in
the sailors’ demick a fixed mast plays the part of a crane-post,
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and the stay, CE, is a lashing of rope frequently capable of
being lengthened and shortened by suitable tackle, so as to raise
and lower the jib, a motion very common in cranes and hence called
a derrick motion. The weight is generally also capable of being
raised and lowered directly by blocks and tackle, but for the
present will be supposed directly suspended from ('

The diagram of forces now assumes the form shown in Fig. 4b,
in which the lettering is the same as in F ig. 2D, page 4, the only
difference in the diagrams being that
in the present case AC, which is
now a tie, is divided into two parts,
A% and EC, inclined at an angle.
The stress on AZ is therefore not
the same as on ZC, but is got by
drawing a third line, Oa’, parallel to
AE.  The perpendicular On gives us
in this instance not only the stress
on 4B and the horizontal thrust
of UB at B, but also the horizontal pull of CE at E—we may
call this // as before. There is an upsetting moment on the
structure as a whole which is equal to the product of the weight
W by its horizontal distance from 2 (often called the radius of
the crane) and also to the force M, multiplied by the length of
the crane-post, BE. One principal difference between different
types of cranes lies in the way in which this upsetting moment is
provided against.

(a.) In portable cranes, such as shown in Fig. 4a, there is a
horizontal platform, .45, supported by a stay, 4%, and carrying a
counterbalance weight, P, sometimes capable of being moved in and
out so as to provide for different loads. The right magnitude of
counterbalance weight and the pull on the stay 4% are shown by
the diagram P corresponding to the supporting force at 4 in the
previous case.

(B.) In the pit crane, the post is prolonged below into a well and
the lower end revolves in a footstep, the upper bearing being
immediately below B. In this instance the post has to be made
strong enough to resist a bending action at 5, equal to the upsetting
moment, and the bearings have to resist a horizontal force equal
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to 4 multiplied by the ratio of the length of the crane-post, BE, to
that of its prolongation below the ground.

() The upper end of the crane-post may revolve in a headpiece,
Which is supported by a pair of stays anchored to fixed points in the
ground. The upright mast of a derrick frequently requiring support
in the same way, this arrangement is known as a derrick-crane. It
is shown in Fig. 5, £D, EI
being the stays. To find the
stress on the stays it is neces-
sary to prolong the vertical
Plane through EC, to intersect
the line DD, joining the feet
of the stays in the point 4, and
Imagine the two stays, £D,
D, veplaced by a single stay
L4 : then a diagram of forces,
drawn as in the previous case,
determines ', the pull on this stay. But it is clear that S must
be the resultant pull on the two original stays, and may be con-
sidered as a foree applied at Z in the direction of 4 # to the simple
triangular frame DEI'. A second diagram of forces therefore will
determine the pull on each stay, just as in the next following case.

50

S. Sheer Legs and Tripods.—Instead of employing an upright post
to give the necessary lateral stahility to the triangle, one of its
members may be separated
mto two. Thusin moving
very heavy weights sheer
legs arc used, the name
being said to be derived
from their resemblance to
a gigantic pair of scissors
(shears) partly opened and
Standing on their points.
In Fig. 6, CD, CIY are
Spars, or tubular struts,
often of great length, resting on the ground at DD’ and united
a6 C, 50 as to he capable of turning together about DD’ as an axis.
The load is carried at ¢ and the legs are supported by a stay, ('d,
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which is sometimes replaced by a rope and tackle, capable of being
lengthened or shortened so as to raise or lower the sheers, Drawing
AB to the middle point of DD’, the pair of legs are to be imagined
replaced by a single one, ('B, then the diagram of forces may be
constructed just as in Fig. 4b, and we shall obtain the tension of the
rope S and the resultant thrust on the pair of legs £. Now draw
the triangle C'DD’, as in Fig. 7a,
e s and imagine it loaded at C' with a
5 Fig.7a,7b. weight, I, then drawing the dia-
) -=ne-ed gram of forces, Fig. 7, we get &’
. the thrust on each leg. The hori-
! zontal force, H’, in this second
é n——o0 diagram represents the tendency
of the feet of the legs to spread
outwards laterally, while the force,
77777 /! H, of the original diagram repre-
sents their tendency to move in-
wards perpendicular to 22'. In some cases the guy rope and
tackle C'4 are replaced by a third leg called the back leg, and the
sheers are then raised and lowered by moving 4 by a large screw ;
the force H is then also the force to be overcome in turning the
SCTew.

Instead of having only two legs, as in sheers, we may have three
forming a tripod. This arrangement is frequently used to obtain
a fixed point of attachment for the tackle required to raise a weight,
and is sometimes called a “gin,” or as military engineers prefer to
spell the word, a “gyn.” The thrust on each leg and the tendency
of the legs to move outwards can be obtained by a process so
similar to that in the preceding examples that we need not further
consider it.

6. Effect of the Tension of the Chain in Cranes.—In most cases the
load is not simply suspended from €' as has been hitherto supposed,
but is carried by a chain passing over pullies and led to a chain
barrel, generally placed somewhere on the crane-post. The tension
of the chain in this case is ///n, where 2 is a number depending on
the nature of the tackle, and this tension is to be considered as an
additional force applied at ' to be compounded with the load /7, the
effect of which has been previously considered. Fig. 8 shows the
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form the diagram of forces assumes in this case. Drawing be as
before to represent /7, and aa’ parallel to the direction in which the
chain is led off from the pulley at € and equal to the tension /7/n, the
third side of the triangle, ba’ must
be the resultant force at (' due to
both forces, whence drawing @0 par-
allel to the stay and 60 parallel to
the jib, and reasoning as before as
to the equilibrium of the forces ab
C, we see that these lines must be
the tension of the stay and the
thrust on the jib. The effect of the tension of the chain is generally
to diminish the pull on the stay and increase the thrust on the jib,
sometimes very considerably, as for example in certain older types of
crane still used for light loads under the name of “whip” cranes.
In these cranes the chain passes over a single fixed pulley at the end
of the jib, and is attached directly to the weight, so that the tension
of the chain is equal to the weight. The other end of the chain is
led off along a horizontal stay to a wheel and axle at the top of the
crane post, a chain from the wheel of which passes to a windlass below.
This arrangement, the double windlass of which facilitates changes in
the lifting power corresponding to the load to be raised, is a develop-
ment of the primitive machine in which the wheel was a tread wheel
Wlorked by men or animal power. In this case the pull on the stay is
diminished by the whole weight lifted, and is thus reduced very
much, Where a crane has to be constructed of timber only, this is a
?onsicleral)le advantage, from the difficulty of making a strong tension
Joint in this material.

EXAMPLES

: 1. The slopes of a simple triangular roof truss are each 30°. Find the thrust of
he roof and the stress on each rafter when loaded with 250 1bs. at the apex.
Thrust of roof =2165 lbs.
Stress on raftecs =250
2. A beam 15 feet long is trussed with iron tension rods, forming a simple tri-
‘“}glﬂar truss 2 feet deep. Find the stress on each part of the frame when loaded
With 2 tons in the middle.
Thrust on strut =2 tons.
Pull of tension rods = 3:88 ,,
Thrust on beam =375 ,,
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3. The platform of a foot bridge is 20 feet span, and 6 feet broad, and carries
a load of 100 Ibs, per sq. ft. of platform. It is supported by a pair of triangular
trusses each 3 feet deep, one on each side of the bridge. Find the stress on each part
of one of the trusses.

The whole load of 12,000 lbs. rests equally on the two trusses, there is therefore
6,000 Ibs. distributed uniformly along the horizontal beam of each truss.

Thrust on strut = 3,000 1bs,
Tension of tie rods =5,220 ,,
Thrust on horizontal beam - 5,000 -

4. The slopes of a simple triangular roof truss are 30° and 45° and span 10 feet.
The rafters are spaced 2§ feet apart along the length of the wall, and the weight of
the roofing material is 20 bs. per sq. ft. Find by graphical construction the thrust
of the roof,

Each rafter carries a strip of roof 2% feet wide, the load on rafter = 50 Ibs. per foot
length of rafter. Find the lengths by construction or otherwise. The virtual load
at apex =4 weight on the two rafters = 311 Ibs.

Thrust of roof =198 1bs.

5. The jib AC of a ten-ton crane is inclined at 45° to the vertical, and the tension
rod B¢ at an angle of 60°. Find the thrust of the jib, and the pull of the tie rod
when fully loaded, the tension of the chain being neglected. If a back stay BD
be added inclined at 45° and attached to the end of a horizontal strut 4D, find
the counterbalance weight required at D to balance the load on the crane, and find
also the tension of the back stay.

Thrust on jib 4 ¢ =335 tons,
Tension of tie rod =075
Counterbalance weight =235 ,,
Tension of back stay =835 ,,

6. A pair of sheer legs are 40 feot high when standing upright, the lower
extremities rest on the ground 20 feet apart, the legs stand 12 feet out of the per-
pendicular, and are supported by a guy rope attached to a point 60 feet distant from
the middle point of the feet. Find the thrust on each leg, and the tension of the
guy rope under a load of 30 tons,

Thrust on each leg =195 tons.
Tension of guy rope = 12'8 o

7. In example 5 the tension of the chain is half the loud, and the chain barrel is so
placed that the chain bisects the crane Post AB. Find the stress on the jib
and tie rod.

Thrust of jib =36 tons,
Pull of tie rod = 25 o

8. In a derrick crane the projections of the stays on the ground form a right-
angled triangle, each of the equal sides of which is equal to the crane post. The jib
is inclined at 45° and the stay at 60° to the vertical. Find the stress on all the parts
(1) when the plane of the jib bisects the angle between the stays; (2) when it is
moved through 90° from its first position. Load 3 ‘ons,

9. A load of 7 tons is suspended from a tripod, the legs of which are of equal
length and inclined at 60° to the horizontal. Find the thrust on each leg. If a
horizontal force of 5 tons be applied at the summit of the tripod in such a way as to
produce the greatest possible thrust on one leg, find that thrust and determine the
stress on the other two legs.
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SectioN II.—INCOMPLETE FRAMES.

7. Preliminary Remarks.—A frame may have just enough bars and
no more to enable it to preserve its shape under all circumstances,
or the number of bars may be insufficient or there may be redundant
bars. The distinction between these three classes of frames is very
important : in the first the structure will support any load consistent
with strength, and the stress on each bar bears a certain definite relation
to the load, so that it can be calculated without any reference to
the material or mode of construction; in the second, the frame
assumes different forms according to the distribution of the load,
but the stress on each bar can still be calculated by reference to
statical considerations alone; in the third, where the frame has
redundant bars, the stress on some or all of the bars depends on
the relative yielding of the several bars of the frame. It is to the
second class, which may be called incomplete frames, that the
Present section will be devoted.

In incomplete frames the structure changes its form for every
distribution of the load, and, strictly speaking, therefore such
constructions cannot be employed in practice, because the distribu-
tion of the load is always variable to a greater or less extent. But
when the greater part of the load is distributed in some definite
way the principal part of the structure may consist of an incomplete
frame, designed for the particular distribution in question, and
subsequent moderate variations of distribution may be provided for
either by stiffening the joints or by subsidiary bracing. Such cases
are common in practice, and investigations relating to incomplete
frames are therefore of much importance.

8. Simple Trapezoidal or Queen Truss—We will first consider a
frame which is composed of four bars. The most common case

b
c D e i
Fig.oa. I i Fig.9h.

o)

i
i
® @ =5

a

18 that in which two of the bars are horizontal and the other two

€qual to one another, thus forming a trapezoid. The structure is
called a trapezoidal frame,
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It is suitable for carrying weights applied at the joints (D), either
directly or by transmission through vertical suspending rods from
the beam AB. From the symmetry of the figure it is evidently
necessary for stability that the loads at ¢ and D should be equal.
This fact will also appear from the investigation. Consider first
the joint C, and draw the triangle of forces, Oan, for that point;
an being taken to represent /7, a0 will represent the thrust on AC
and On that along CD. The triangle Obn will represent the forces
at the joint D, Ob representing the thrust of B2 ; bn will represent
the load at D, and from the symmetry of the figure must equal an,
and hence weight at D must for equilibrium equal that at C. Now
let us proceed to joint 4, where there are also three forces acting,
one along AC is now known and represented hy a0, thus On will
represent the tension of 4B, and nb will be the necessary supporting
force at 4 equal to /7, as might be expected. The tension of 4B
is equal to the thrust on ¢'D. We observe that the diagram of
forces is the same as that of a triangular frame, carrying 2 at the
vertex and of span equal to the difference between 4B and CD,

Trapezoidal frames are employed in practice for various purposes.

(a.) A beam, AB (Fig. 10a), loaded throughout its length may
be strengthened by suspending pieces, OV, OM, transmitting a part

S0 Fig. 10b

of the weight to the arch of bars AC, €D, BD, an arrangement
common in small bridges.

(B.) As a truss for roofs, in which case there will be a direct
load at ¢' and D due to the weight of the roofing material, while
vertical members serve partly as suspending rods by which part
of the weight of tie heam and ceiling (if any) is transmitted to
CD, and partly to enable the structure to resist distortion under
an unequal load. When made of wood this is the old form of
roof called by carpenters a “Queen Truss,” CN, DM, being the
“queen posts” (see Section IIL of this chapter). This name is
constantly used for all forms of trapezoidal truss erect or inverted
which include the vertical * queens.”
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(y.) Not less common is the inverted form, Fig. 10b, applied to
the beams carrying a traversing crane, the cross girders which rest on
the main girders of a railway bridge and carry the roadway, and
many other purposes. The bars 4C, CD, BD are now iron tie
rods. In this case also if the two halves of the beam are unequally
loaded there will be a tendency to distortion, to resist which
completely, diagonal braces, C'M, DN, must be provided, as shown
in the figure hy dotted lines. Such diagonal bars occur continually
in framework, and their function will be fully considered in the
next chapter. But in the present case they are quite as often
omitted, the heavy half of the beam then hends downwards and
the light half bends upwards (see Ex. 4, p. 97), but the resistance
of the beam to bending is found to give sufficient stiffness.

9. General case of a Funicular Polygon wnder a Vertical Load.
Ezample of Mansard Roof.—We next take a general case. In Fig. 11a

Fig.11b,

Fig.11a.

W, Wa

012 3...6is a rope or chain attached to fixed points at its ends and
loaded with weights W, W,... suspended from the points 1, 2, ete.
The figure shows 5 weights, but there may be any number. The rope

angs in a polygon the form of which depends on the proportions be-
tween the weights, It is often called a “funicular polygon” and
Possesses very important properties. We shall find it convenient to
distinguish the sides of this polygon by letters a, b, ¢, etc. We are
about to determine the proportions between the weights when the
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rope hangs in a given form, and, conversely, the form of the rope
when the weights are given. In Fig. 11bdraw ab vertical to represent
W,, the load suspended at the angle of the polygon where the sides
@ and b meet, then draw a0, b0 parallel to a, b respectively to meet
in 0, thus forming a triangle Oab, which we distinguish by the number
1, which represents the forces acting on the point 1, so that the
tensions of the sides @, b are thus determined. Now draw Oc parallel
to the side ¢ to meet the vertical in ¢; we thus obtain a triangle dis-
tinguished by the number 2, which represents the forces acting at that
point, and as 0b is already known to be the tension of 4 it follows
that bc must be the weight W, and Oc the tension of the side c.
Proceeding in this way we get as many triangles as there are weights,
and the sides of these triangles must represent the weights and the
tensions of the parts of the rope to which they are respectively parallel.
Thus, if the form of the rope is known and one of the weights,
all the rest can be determined. Conversely, to find the form of the
funicular polygon when the weights are given in magnitude and line
of action, we have only to set downwards on a vertical line the
weights in succession and join the points @ b...,which will now be
known, to any given point O, then the funicular polygon must have
its angles on the lines of action of the weights and its sides parallel
to the radiating lines Oa, 0b, Oc, etc., so that the sides can be drawn
in succession, starting from any point we please.

In the diagram of forces, Fig. 11b, if O be drawn horizontal to
meet the vertical a, b, c... in &, this line must represent the horizontal
tension of the rope.

The rope may be replaced by a chain of bars which may be inverted,
thus forming an arch resting on fixed points of support, the diagram
of forces will be unaltered, and ON will represent the thrust of the
arch. As an elementary example of an arch of bars we will consider a
truss used for supporting a roof of double slope called a Mansard roof.
We will take the usual case in which the truss is symmetrical about
the centre. Suppose it is loaded at the joints. There is one propor-
tion of load which the truss is able to carry without any bracing bars
being added.

From symmetry the weights at 2 and 2" (See Fig. 12a) must be
equal. To find the proportion between the weights at 1, and at 2,
9, together with the stresses on the bars of the frame, in Fig. 12b set
down aa’ to represent W at 1, and draw a0 and «’0 parallel to @ and



CH.T. arr. 10.] FRAMEWORK LOADED AT THE JOINTS. 17

_“", the thrusts along these bars will be determined. Then, consider
Ing the equilibrium of either 2 or 2’, say 2, one of the three forces
acting at the joint, namely a0, along the bar @ being known, the

\ Fig.12Db.

other two forces may be determined by drawing ab and Ob parallel to
thefn, ba parallel to /7, and Ob to the bar b. If ON be drawn
hOHZOntaIIy it will give the amount of the horizontal thrust of the
r0of or the tension of a tie har 3 3/, if there is such a bar. If the
Proportion of 777, to JV, is greater than ab to aa' the structure will
81ve way by collapsing, 2 and 2’ coming together; and if the propor-
tion is less, the structure will give way by 2 and 2" moving outwards
and 1 falling down between. In practice it is impossible to
Secure the necessary proportion of loads, on account of varia-
tlon of wind pressure and other forces, and therefore stiffening of
some kind is always needed. If bracing bars be placed as shown by
the dOtt;ed lines 2 37, 2’3, 2 2/, the structure will stand whatever be the
E;OPOIT}DD between the loads. The truss may be partially braced by
: ; hc.)rlzonta.l bar 2 2° only. Then the proportion between the loads
b 1a1d 777, may be anything we please, but the loads at 2 and 2’ must
D¢ equal, at least theoretically, but in practice the stiffness of the
domts will generally be sufficient for stability, especially if vertical

Pleces be added conmecting these points to the tie heam as in a
queen truss,

golo?l- tSuspen‘sion Chains. ; Avrches.  Bowstring Girders.—We now
= barso cons1d¢?r another 1mpo.rtant example, in which the number
s e composing t'he fra..me is very much increased, as found in
mon suspension bridge.
B
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Let 4B (Fig. 13a) be the platform of a bridge of some consider-
able span, which has little strength to resist bending. Suppose
it divided into a number of equal parts, an odd number for
convenience, say nine, and each point suspended by a vertical rod
from a chain of bars secured at the ends to fixed points, D and E,
in a horizontal line. In the figure only half the structure
is shown.  Suppose the platform loaded with a uniformly

w w

distributed weight; we require to know the stress on each bar
and the form in which the chain will hang. Equal weights on
each division of the platform will produce equal tensions in the
vertical suspending rods, and if we neglect the differences of weight
of the rods and bars themselves, the load at each joint of the chain
of bars will be the same. (Compare Art. 11.) Let 7/ = load at
each joint. Now the centre link, KK, since there is an odd number
and the chain is symmetrical, will be horizontal. Let us consider
the equilibrium of the half chain between € and I. The four
weights, 77, hanging at K, L, M, N, are sustained in equilibrium by
the tensions of the bars KK’ and N.D,

The resultant of the four W’s will act at the middle of the third
division from the left end, and since this resultant load together
with the tensions of the middle and extreme links maintain the half
chain in equilibrium, the three forces must meet in a point, the point
Z shown in the figure. Thus the direction of the extreme link DN
may be drawn. The direction and position of the other links may
be found also. Considering the portion of the chain NC" carrying
three weights, the resultant of which is in the line through Z, the
link N/ must be in such a direction as to pass through the point
where this resultant cuts KK’ produced. Having drawn NM, ML
may be drawn in a similar way, and then LK. Returning to the
consideration of the half chain, the three forces which keep it in
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equilibrinm may be represented by the three sides of a triangle. Set
down gz (Fig. 13b) to represent 477, and draw a0 and n0 parallel to
DZ and Z¢'; a0 will be the tension of DN and n0 of KK'. If an be
divided into 4 equal parts, and the points b, ¢, d, joined to 0, these
lines wil] represent the tensions of links N, ML, and LK. It may
be easily shown that they will be parallel to those links. We see
that the tension increases as we pass from link to link, from the
tentre to the ends.

In many cases in practice, the number of vertical suspending rods
and links in the chain is very great. ~We may then, in what
follows, without sensible error, regard the chain as forming a
continuous curve, In such a case, C, the lowest point of the chain

Tig.14a.

(Fig. 14q), is over the middle of the platform. The tangent at C,
Which is horizontal, will meet the tangent to the chain at D, in a
Point Z, which will be over the middle of the

h‘a.lf platform, for that will be a point in the
line of action of the resultant load on the p
half chain. We can now draw a triangle of
fO.l'Ges an@, for the half chain as before; On "
Will represent the tension of the chain at
th_e lowest point, or the horizontal component

of the tension of the chain at any point. We
Cﬂ'fl easily obtain a convenient expression for
this horizontal tension thus:—Let I = span of "
the bridge, and w = load per foot run.  Then }wl = weight on

:ﬁe half chain represented by an. Let H = horizontal tension,
en

H On
Tul T an’

But if we drop & perpendicular from D to cut the horizontal tangent
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in a point 7 (not shown in the figure), D¥ will be the dip of the
chain d, and comparing the triangles D77, aOn,
s o
i FER D dis o
S Bl
which, since @l = total load on chain, may be written

ol ;. 8pan
H = g load on chain ° i

3

This is the same as the horizontal thrust of a triangular frame of the
same height which carries a uniformly distributed load of the same
intensity.

Having found the magnitude of the horizontal tension of the chain
we can calculate the tension at D, the highest point of the chain.
Let S be this greatest tension, represented in the diagram of forces
by 20, then since a0 = an’® +n0®

@:(%2+H%

The tension at any point P of the chain may be found hy drawing
from O a line op parallel to the tangent to the chain at 2. Tt will
cut an in a point p such that np : na :: length of platform below
PC : § span.

Since Op® = np® + On®

):m

Tension at P = \/ (np w

na 2
The loaded platform, instead of being suspended from the chain of
bars, may rest by means of struts on an arch of bars as in the figure.

7
7

N v

/?7'

\ i
\\\\ Fig.15,

In this case all the bars will be in compression instead of tension, as
in the previous case. If the form of the arch is similar to that in
which the chain hung, it will have no tendency to change its form under



CH. L ART. 10.] FRAMEWORK LOADED AT THE JOINTS. 21

the load. There will be simple thrust of varying amount at different
Parts of the arch. The horizontal thrust at the top of the arch
is given by the same expression as for the horizontal tension of the
chain, and the thrust of any bar of the arch may be determined in a
Mmanner similar to that for finding the tension of any link of a chain.
We shall show presently that the proper form of the arch and chain
under a uniform load is a parabola. Hence, the structure just
described is called a Parabolic Arch. In iron bridges the platform is
Mot unfrequently carried by a number of ribs placed side by side.
Each rib is approximately parabolic in form, usually of I. section, of
depth from 7oth to g5th the span at the crown, increasing somewhat
towards the abutments. The roadway is supported sometimes by
simple vertical struts, as in the ideal case just considered, sometimes
Y spandrils of more complex form, chiefly for the sake of appearance.
en uniformly loaded, the stress on the ribs is nearly as found
above : for resistance to variation in the load reliance is placed on the
resistance to bending of the ribs and platform. The case of a stone
or brick arch is far more complex, and is not considered here.
here is yet another very common structure whose construction is
founded on the same principles as those just described. In this the

p—

Fig.16. ;/

Platform, instead of resting on an arch below it, is suspended from an
arch above it. In this case the thrust of the arch is taken by the
Platform, which serves as a tie, just as the string ties together the
ends of a bow. Hence it is called a Bowstring Girder. In this, like
tl.le O.bherS, the loading proper to the parabolic form is a uniformly
distributed one, and any variation of the loading will tend to distort
the F'OW- The structure may, however, be enabled to sustain a
varying load by the addition of bracing bars as shown by the
280nal lines. When the bridge is heavily loaded it will almost
aI}va,ys happen that the greater part of the weight is uniformly dis-
tmb"'_‘tEd: and is sustained by simple thrust of the arch, so that the
racing is only g subsidiary part of the structure.

7

R
N

&
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11. Suspension Chains (continued). Bowstring Suspension @irder.—In
describing the suspension bridge we spoke of the chain as being secured
at the ends to fixed points. In practice the securing of the ends
is effected thus. The chain is led to the top of a pier of cast-
iron or masonry, and instead of being simply attached to the top
of the pier, and thus producing an enormous tendency to overturn
the pier, the chain is secured to a saddle which rests on rollers
on the top of the pier, and on the other side the chain is prolonged
to the ground, passes through a tunnel for some little distance,
and is finally secured by means of anchors to a heavy block
of masonry. By this arrangement the only force acting on the
pier is a purely vertical one, and a comparatively slender pier will
be sufficient to sustain it. It is not necessary that the tension
of the chain should be the same on each side of the pier, or that
it should be inclined at the same angle. What is necessary
is that the horizontal component of the tension on each side
should be the same If an (Fig. 143, page 19) = half weight on
chain as before, and On = H, the horizontal tension (which may
either be calculated from the formula Jjust obtained, or found
by construction), then a0 will be the pull of the chain § at
the top of the pier. Then considering the equilibrium of the
saddle, the pull of the chain @ on the short side and the upward
reaction of the pier may be found by completing the triangle of
forces aOr; Or will be the pull on the anchor, and a» the total
vertical pressure on the pier.

In connection with this description of the method of securing the
ends of the suspension chain, we may mention a form of structure in
which the arch and chain are combined, a good example of which occurs
in the railway bridge at Saltash. The horizontal pull of the chain
is here balanced by the thrust of an arch, so that the combined effect is
to produce simply a vertical pressure on the piers. The suspending
rods are secured to the chains and prolonged to the arch above,
so that a portion of the load is carried by the arch, producing
a thrust, and a portion by the chain, causing a pull. To prevent any
tendency to overturn the piers, (this is insured by means of saddles
resting on rollers) the horizontal component of the thrust of the
arch must equal the horizontal component of the pull of the chain,
The proportion between the loads on arch and chain will depend on
the proportion between the rise of the arch and dip of the chain.
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If ¥, =load on arch, and 77, =1load on chain,
Jd, =rise of arch, and dy=dip of chain,

then . [f: EEE ) nrll{ a s Kl = dl b
R TR T
also ¥, + 7, = total load on bridge :

from’ which the stresses on the structure may be determined. It is
known as g Bowstring Suspension Girder (pp- 47, 79).

We shall next show that the form of the curve of a chain carrying
a uniformly loaded platform is a parabola. Referring to Fig. 14a,
let 2 be any point in the chain, drop a perpendicular PN to meet
tl}e tangent at €, and biseet CN in K. Then KP must be the
direction of the pull of the chain at P in order that the portion PC
may be kept in equilibrium. The triangle PNK has its sides
13&Tallel to the three forces which act on PC, and the sides are there-
f'ore proportional to the forces. Let CN =z so that the load hang-
mg on PC = [, also let PN =4.

Then H_NK_iv
we PN 3y
°oH : wi?
3 o, s . 0 R
A _.hw—J, or, since I S
2 = P_'y-
4d”’

therefore 42 is proportional to ¥.
: Now the curve whose co-ordinates have this relation one to another
18 called a parabola.

I‘f the load, instead of being uniformly distributed on a
I-1011.’4011‘53.1 platform, were simply due to the weight of the chain
itself, then the curve in which the chain would hang would deviate
.Somewhat from the parabola; for in that case, since the slope
increases as we approach the piers, the load also, per horizontal foot,
W.ould increase as we approach the piers, causing the chain near the
plers to sink and become more rounded, and at the centre to rise
fmd become more flattened. The curve in which the chain hangs by
its own weight is called the cafenary. In the catenary, as in the
Parahola, the tension increases as we approach the piers. This may
be ta.l.ken account of by proportioning the section of the chain to the
ten_smn ab the various points ; this would tend still more to make the
Wweight of chain, per horizontal foot, increase as we approach the piers,
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and cause the chain to deviate still further from the parabolic form.
Such a curve is called the catenary of uniform strength.

In an actual suspension bridge, where there is a uniformly loaded
platform, as well as a heavy chain, the true curve in which it hangs
will lie somewhere between the parabola and the catenary ; but since
in most cases the deviation from uniformity of the weight of chain
is small compared with the load it carries, the deviation from the
parabola is not great. The error involved in assuming the curve to
be parabolic is generally greatest in bridges of large span ; in such
cases a preliminary calculation of approximate weights may be
necessary so as to be able to apply the general process of
article 9.

EXAMPLES.

1. A trapezoidal truss is 16 feet span and 4 feet deep, the length of the upper bar
is 6 feet. Find the stress on each part when loaded with 2 tons at each joint.

Stress on sloping bars = 3'2 tons,
y» horizontal ,, =26 ,,

2. The platform of a bridge, 8 feet broad and 27 feet span, is loaded with 150
pounds per square foot, It is supported on each side by an inverted queen truss
placed below, the queen posts, each 3 feet deep, dividing the span into three equal
portions. Find the stress on each part.

Load on each truss = half whole load on platform = 162,000,

16,200 = 5,400 is the load at each of the two joints of one of the queen trusses,
Tension of sloping bars = 17,074 Ibs,

Tension and thrust of horizontal bars = 16,200,

3. The height of a mansard roof without bracing is 10 feet and span 14 feet, The
height of the triangular upper portion is 4 feet and span 8 feet. The load being 1 ton
at the ridge, find the necessary load at each intermediate joint and the thrust of the
roof.

By the construction described in the text, load at each intermediate joint = % ton,
and the thrust of the roof = § ton.

4. If the roof in the last question be partly braced by a bar joining the inter-
mediate joints, find the stress on the bar when the load at each intermediate joint
is 1 ton.

Thrust on bar = } ton.

5. The load on the platform of a suspension bridge, 600 feet spam, is 4 ton per foot
run, inclusive of chains and suspending roads. The dip is +th the span. Find the
greatest and least tensions of one of the chains,

Least tension = horizontal tension = 2433 tons.
Greatest tension = 255 tons.

6. The load on a simple parabolic arch, 200 feet span and 20 feet rise, is 360 tons,

determine the thrust and greatest stress on the arch.

Thrust = 450 tons ; greatest stress = 484 tons.
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7. The rise of a bowstring bridge is 15 feet and span 120 feet, find the thrust when
loaded with 2,000 Tbs. per foot run.

Thrust 240,000 1bs. = 1073} tons.

8. In example 5 the ends of the chain are attached to saddles resting on rollers on
the tops of piers 50 feet high, and prolonged to reach the ground at points 50 feet
distant from the hottoms of the piers, where they are anchored. Find the load on
the piers and the pull on the anchors.

Load on the pier = 6374 tons ;
Pull on each anchor = 344°6 tons.

9. A light suspension bridge is to be constructed to carry a path 8 feet broad over
4 channel 63 feet wide by means of 6 equidistant suspending rods, the dip to be 7
feet. Find the lengths of the successive links of the chain. Supposing a load of
L ewt. per square foot of platform, find the sectional areas of the links of the chain,
allowing a stress of 4 tons per square inch.

7 of the whole load is carried by the chains and the remaining portion by the piers
directly. Tension of each suspending rod =36 cwt.

| | ]
|- Links. |Tensions.| Areas. | Lengths, |

‘Ceutre 2777 | 347 9

o2nd | 280 3% 9:08 |
3rd | 287 36 | 93 i
ath | 208 | 372 | 966 I

10. Construct a parabolic arch, the thrust of which is half the total load.
Span = four times the rise.

ht of a uniformly loaded platform be suspended from a chain by
show that the corners of the funicular polygon lie on a parabola.

11. If the weig
Vertical rods,

SECTION IIT.—CoMPOUND FRAMES.

12. Compound Triangular Frames for Bridge Trusses. By a
‘ompound frame is meant a frame formed from two or more
:;nr;PIE frames by uniting two or more bars. Many frames of
it El_on occurrence in practice may conveniently be considered as

bmations of the simpler examples already described. They are
sgt??::auy' dealt With by use of what we may call the principle of
tol Position, w.hmh may be thus stated :—Z%e stress on any bar due

Wy tolal load is the algebraieal sum of the stresses due fo the several
baris of the load,

€ will now consider some

OB examples of compound frames, which
are used in bridge trusses,

In these structures the object is to carry
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a distributed load by means of a comparatively slender beam. A
prop in the centre may still leave the halves too weak to carry the
weight on them, and the beam may be strengthened by supporting it
in more than one point.

(1) Suppose the beam supported by a number of equidistant struts,
the lower ends of which are carried by tension rods attached to the
ends of the beam, we then have a structure called a Bollman truss.
There may be any number of struts —2, 3, 4, ov more ; the structure
has been used for bridges of comparatively large span. If the actual
load is distributed in some manner over the beam, we must first
reduce the case to that of a structure loaded at the joints only. The
loads on the struts are due to the weights resting on the adjacent
divisions of the beam, and may be determined by supposing the heam
broken or jointed at the points where the struts are applied.

l Fig.17. l
o'W Wo'p B

=i |

e

E E

ne

Let us suppose the beam has three divisions, and that the load
on the two struts are 7] and #7,. These loads will be transmitted
down the struts to the apices (Fig. 17) £ and F, and will be inde-
pendently supported, each by its own pair of tension rods. We may
thus separately determine the stress on each part of either of the
elementary triangular frames 4EB or AFB. AB will be in compres-
sion on account both of the load at % and also at F. On account of
W, using the formula previously obtained, the horizontal thrust

’

He =5 aéTl:, and on account of W, at F, H, = W, (;_'].bf.
b

Tension of 4E, T, = H,sec EAB, T,, = H,sec FBA;
5 EB, Ty = Hysec EBC, T,p= H.szeec FAD.

The actual tensions of the sloping rods are simply as written, but
since 4B is a part of both triangular frames, the total thrust along it
is found by summing the thrusts due to each ; so

=Tt e

This is an example of the principle of superposition stated above.
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(2) Suppose the beam which carries the distributed load to be
Supported by a central strut forming a simple triangular truss, and
further let the halves of the beam, not being strong enough to
tarry the load on them, each be subdivided and trussed by a
simple triangular truss, the tension rods from the bottom of the
Bubdividing struts proceeding only to the ends of each half beam. Tf
E’he‘ quarter gpans are still too great, they may each of them be trussed
0 & similar way, and so on.  Such a structure is called a Finck truss.

Suppose, for example, we have three struts. (Fig. 18.) We must
first determine the load at the joints—that is, in this case the load
o0 the struts due to the distributed load on the beam. Suppose that
Ol account of the weights on the adjacent subdivisions those loads
ave IV, W,, W, 1If the load is uniformly distributed over the beam
the 7775 are each of them equal to } total weight on beam.

A‘ lw; () w, lwa B

We may now separately consider the triangular frame AFC
carrying the load W, On account of it there will be a thrust
on A(C

AC A

H.= 7, L W‘éﬁ'

'Ijhe tensions of AF and FC are each=H,sec FAE. We get
wilar results from the triangle CHB. Just in the same way we
may consider the principal triangular frame A4DB, but in this case
the thrust down the strut CD, which is the load at D, is not simply
s but greater by the amount of the downward pull of the
tWo_tengion rods CF and CH. The vertical components of these
tensions are 3, and 17, so that the total thrust down the strut
=Wat§ (Wy+ W,). This is the load which must be taken to act at

In determining the stresses on the members of A DB. '

Thus 17, = (7, + YW+ L) lflh’ and the tensions of 40D and DB

are each = I, sec DAR.

- It will be geen that the thrust on the central strut and tensions of
e longer rods are the same as if the secondary trusses had not been

si
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introduced. For example, if the /#’s each = 4 whole load on beam,
then the virtual load at D=} weight on beam. The mere
strengthening of each half the beam by trussing it can no more
relieve the central strut of the load it has to carry, than the fact of
strengthening a structure of any kind can relieve the two points of
support from the duty each must have of bearing its own proper
share of the weight. In stating the thrust on the beam we must
divide it into two portions 4C' and C'B. The portion AC is subjected
to the thrust of the triangles 4#C and ADB; .. H,,=H,+ H,, and
(B being a portion of the triangles C.HB and A DB, H,,=H, + H,,.
When 77, is not equal to /7, the thrusts on the two portions will be
different.  This is quite possible although the beam AB may be
a continuous one.

Both these simple forms of truss have been used for bridges
of considerable span.  As an example of the first may be mentioned
the bridge at Harper’s Ferry, U.S., destroyed during the war. Tt
was 124 feet span in 7 divisions. The great length of the tension rods
and their inequality appears objectionable. The second in 8 or 16
divisions has been much used in America; but in England other
forms mentioned in a later chapter are much more common.

13. RBoof Trusses in Timber—In roofs of small span, 10 or 12 feet
only, the roofing material, slates or tiles, rests on a number of laths
set lengthways to the roof, and these laths rest on sloping rafters
spaced 1 or 2 feet apart, with their feet resting on the walls of the
building ; the stability of the walls being depended on for taking
the thrust.

When we come to larger and more important roofs we find
additional members added for strength and security. The closely
spaced rafters just mentioned are called common rafters. These
being too long and slender to carry the weight of the roofing
material and transmit it to the walls, are supported, not only at the
ends by the walls and ridge piece, but also at the middle by a longi-
tudinal beam of wood called a purlin, and the purlin is supported at
intervals of its length by principal rafters. The principal rafters
again are supported by struts at their central points, immediately
below the purlins. To carry the lower ends of the struts, a vertical
tension piece is introduced, by which they are suspended from the
apex of the principals, while the thrust is taken by a tie heam
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connecting the feet of the rafters. In such a roof, a ceiling or floor
may frequently be required to be supported by the tie beam, and to
Prevent it from sagging under the weight an additional tension will
come on the vertical suspending rod. This rod is then a very
Important member of the structure, and is called the king post, and
’_ﬂhe whole structure, consisting of the principal rafters, king post, &e.,
18 called a Ling post truss. This truss is often constructed entirely of
Wood.  The sloping struts then for constructive reasons (Ch. xv.) butt
On an enlarged part at the bottom of the king post above the point
where the horizontal tie beam is attached, but for caleculation

%“I'Imses may be regarded as meeting at that point as shown in
ig. 19,

S D
By means of the purling and the ridge piece the weight of the roof-
mnga,terial will produce loads at the joints ECF = W W, W, suppose.
Now treat the structure as made up of three simple triangular frames
4ED, DFB, and ACB. First consider AZD with the load J7, st

vextex Z. The horizontal thrust of this frame /7 = WIQ where

: 4h
h is the height of point & above 4D. Also the thrust along 4E
and ED due to the load at £ = H,sec EAD. 1In an exactly similar
ll;ﬂanner We may consider the triangle DFB ; the results for this will
© to those.for AED in the proportion of 7, to /7,. Next as to the
t’;l:‘;ary triangle 4CB. There is at €' a direct load of W, due
Kin 16 weight between L and C, and F' and €. But besides this, the
C':gﬁ?OSt pU!ls the point ' downwards, so that the total load at
5 theg +_1;f>11510.n of king post. In addition to a portion of the weight
Bt celf 1ng (if any) the post has to support D against the downward
i Oth the two struts ED and FD. The vertical components
S e rus_ts are L7, and 177, therefore, neglecting the weight of
g, the virtual load at (' = Wot 3(W, + W,). Let us call the

total load 77, then H, the horizontal thrust of ACB = ¥ ﬁ% and
the thrusts along 4C and CB due to load at ¢ — H, sec A.



30 STATICS OF STRUCTURES. [PART 1.

Now in the complete structure, since 4D is a member both of the
triangular frame 4 £D and ACB, the total tension of 4D = Hy+ H,.
For the same reason tension of DB = H, + H,,
and thrust of AE = (Hy + H,) sec 4,

% ¥ FB = (Hy + H,) sec A.
The other members of the structure are portions of one elementary
frame only, and the stress is due only to the load at the apex of
-that frame.

The king post truss serves for roofs of spans under 30 feet, but for
spans greater than this trusses of more complicated construction are
requived. If the span is from 30 to 50 feet, then instead of support-
ing the common rafters by a purlin at the centre of its length only,
as in the king post truss, two supporting purlins may be used, divid-
ing the length of the rafter into three equal portions. These purlins
may be carried by a queen truss, the sloping members of which are
supported in the middle by struts, as shown in the figure (Fig. 20).

C
Fig.0.

D F
E G
A B

&\ N K \

The vertical queen posts DN and FK serve to sustain the down-
ward thrust of the struts £V and G'K, and also to support the weight
of a ceiling, if there is one. Supposing the weight of the ceiling
omitted, let 77 be the weight of roofing material on one side for a
length of roof equal to the spacing of the trusses, then {77 will,
through the common rafters and purlins, act at &, and } at D ; and
similarly for the other side. At the ridge ' there will also be 4777
acting ; but this will be distributed equally amongst the common
rafters which are carried by the truss, and will produce compression
in those rafters without directly affecting the truss. The part of the
thrust of the roof arising from this will, however, generally, like the
rest, ultimately come on the principal tie beams.

To find the stresses on the different members of the truss. Con-
sider first the small triangles AEZN and BGK, each carrying 77 at
the vertex. Wae then consider the trapezoidal truss ADFB. The
loads at D and F will be 377 + tension of queen post. Since the
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tension of the queen post DNV = the vertical component of the thrust
along EN it will equal }.3/7 = 377, and the total load at each
Joint of the trapezoidal truss will be £/ + J " = LIV, the same as
. Would have acted if there had heen no purlin at Z and no strut EZN.
After having determined the respective stresses due to the triangles
and trapezoid separately, we must add the results for any bar which
I8 & part of both. Were it not for the friction at the joints and the
Power of resistance of the continuous rafters 4, CB to bending,
this structure would be stable only under a symmetrical load. In

Practice, however, it is able to sustain an unsymmetrical load, such as
roofs are frequently subjected to.

14. Queen Truss for large Iron Roofs.—As the span of the roof
is still further increased we find other kinds of trusses employed
to support them. A common form in iron roofs is constructed,
as shown in Fig. 21. It is in reality a further development of

the wooden queen truss, and is known by the same name. AC
and CB are divided into a number of equal parts, and sloping
struts and vertical suspending rods are applied as shown. Sup-
Pose the load the same at each joint on one side of the roof, the
load on the right, however, not being necessarily equal to that on the
left. Tet the upward supporting force at 4 = P. P will be } total
weight if the loading is symmetrical, but in any other case it may
be found by taking moments of the loads about B. 'We might solve
the problem of finding the stress on each member of the structure
¥ treating separately each elementary triangle into which the struc-
ture may be divided, and summing the stresses for any bar which
may form a part of two or more triangular frames. But we will
describe another method.

First, to find the tension of the vertical suspending rods consider
A12 as an independent, triangle, carrying a load /¥ at its vertex.
The slope of 12 being the same as that of 41, the tension rod 22'
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must supply a supporting force to the joint 2° = 1W. Considering
next the triangle 423" and its equilibrium about the point 4. The
forces along 23 and 34" have no moment about .4, so that the
moment of the two weights //7 at 1 and 2 about .4 must be balanced
by the upward pull of the tension rod 33" .. tension of 33 = 7.
In a similar way we can see that the tension of 44’ = 27/, How-
ever many divisions of the roof there may be, the tensions of the
vertical suspending rods will increase in arithmetical progression,
with the same difference between each. The rod 11’ except so far
as may be due to the weight of the rod 42/, will have no tension
on it, Calling this the 1** tension rod, the tension of the n" =

ol ; 1 W. 'We must notice that the rod 55 is common to both sides

of the roof, and we must add the two tensions to get the total. Now
consider any joint, say 4’ in the tie bar 4B, and resolve vertically
and horizontally. If R = thrust of 34, 6 its inclination to the
horizontal, and 7" the pull on that division of 4B which is indicated
by the numerical suffix placed below it,

Rsin 0 = 377,

Beost@ = Ty — Ty

s Ty = Tyr = 3W cot .
But from figure “cot @ = £ cot A ;

Lgp — Tpr = W cot A.
Whichever joint we select we should find the same result—namely,
that the difference between the tensions of two consecutive portions
of the tie rod is a constant quantity = 17/ cot 4. So that these
tensions are in arithmetical progression diminishing towards the
centre.

If we call 42 the 1* division of tie rod, then for the joint between
the n— 1* and n** we have
Rsind =""1w

2

Reosf =T, - T, and cot § = ﬁl_l cot A ;
Gl o

L L= 1= W cotid.

If 41 is the 1** division of the rafter, then the thrust on the nt
division = 7, sec A.
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Now, the tension of the tie rod in the

1 division = P cot 4,
2, = (P -3}W)cotd,

nE e (T %T_l ) cot 4.

, — 1
The thrust on the n® division of rafter — (il 5 W) cosec 4.

The thrust on any strut may best be found by squaring and adding
e two equations of equilibrium of the lower joint of it. We get

Thrust of ath strut = g}: N2 4 cot 24,

th

15. Concluding Remarks—General Method of Constructing Diagrams
of Forces.—Cases of framework often occur which are much more com-
Plicated than those which we have hitherto considered, but if there are
10 redundant bars the stress on each part depends on statical prin-
ciples only, without reference to the relative yielding of the several
Parts of the structure. Such cases may always be treated by use of
the general principle stated in Art. 1, and we shall conclude this
chapter by explaining briefly a graphical method of applying that
Principle invented by the late Professor Clerk Maxwell. The forces
will be supposed all in one plane, and each of them will be supposed
known, that is to say, if there be any unknown reactions at points
of support they will be supposed previously found by a graphical or
other process, from the consideration that the whole must form a set
of forces in equilibrium. In Fig. 224 a frame is shown acted on by

own forces PQR..., an ideal example is chosen which is better
suited for the purpose of explaining the method than any case of
ommon occurrence in practice. First seek out a joint where only
tWo bars meet: there will usually be two such joints if there be
10 redundant bars in the frame, and in the present instance we will
choose the joint where P acts. Distinguish all the triangles, making
Up the frame by letters 4, B, 0, &c., and place numbers or letters
outside the frame, one for each bar. In Fig. 22b draw 18 parallel
to the force P and representing it in magnitude, 8¢ parallel to 8, la
Parallel to 1, to intersect in the point @; then, as in previous ex-
3mples, 84, 1a vepresent the stress on the two bars to which they are
Parallel. Pass now to the joint where @ acts: this joint is chosen
because only three bars meet there, on one of which we have just

determined the stress ; draw 12 parallel to @ and representing
C
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it, then ab parallel to the bar lying between the triangles .4
and B, and 2) parallel to the bar 2 ; we thus get a polygon 120a,
the sides of which are parallel to the four forces acting at
the joint where @ acts, while two of them represent two forces

already known, the other two, therefore, will represent the
remaining two forces. Proceed now to the joint where ¥ acts
and complete in the same way the polygon S8abe7, then to the
joint where 7 acts, and so on. We at length arrive at the
triangle 4/5, the third side of which, if we have performed the
construction accurately, and if the forces be really in equilibrium,
must be parallel to the last force 7. On examination of the diagram
of forces (Fig. 22b) it will be seen that to every joint of the frame
corresponds a polygon representing the forces at that joint, while
each line, such as ab or 7c, gives the stress on the bars separating
those letters or numbers in the frame-diagram. The polygon 12...8
is the polygon of external forces, each side representing the force to
which it is parallel.

The method here described is easy to understand in the general
case we have considered, and with a little practice the transforma-
tions the diagram of forces undergoes will offer no difficulty. Some
joints are usually unloaded, and the corresponding lines in the
polygon of external forces vanish; the forces may be parallel, in
which case the polygon becomes a straight line, while not unfre-
quently the sides of two of the polygons representing the forces at
the joints coincide. The figure, however, always possesses the same
properties. X
In Mr. Bow's excellent work referred to at the end of this chapter
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over 200 examples will be found of the application of this method,
neluding almost all known forms of bridge and roof trusses.

EXAMPLES.

1. A Bollman truss of three divisions is 21 feet span, and is loaded uniformly with
ton per foot. The depth of the truss is 3} feet. Find the stress on each part.
Load on each strut =7 tons,

Tension of short rods =104 ,,

7 longer ,, = 96 ,,

3 Total thrust on beam = 183 ,,
being 91 due to each triangle.

2. A Finck truss of 4 divisions, 20 feet span and 3 feet deep, is loaded with 1 ton
ber foot, find the stress on each part.

il

Thrust on 26 and 48 -5 tons. | 2 a 4 5
T 2 37 OO
ensions of 16, 63, 38, and 85 - 4'86 ,, W
Th 33 17 and 75 =174 ,, G 7 8
Tust on 13 and 35 = 4% + 168 = 205 tons.

8. In the last question suppose one half the truss loaded with an additional 1 ton
Per foot. Find the stress on each part.

Suppose the additional load on the right-hand side.

Thrusts, Tensions.
On 26 = 5 tons. On 16 and 63 = 4'86 tons.
s S0 =15 ,, 5 98 5 85=972
» 48=10 R 0 B

w 18=4% +'55 - 201,
» 85 =8%+25 =335
4. A roof 28 feet span, height 7 feet, rests on king-post trusses spaced 10 feet apart.
The ‘Weight of roof is 20 lbs. per square foot. Tind the stress on each part. Also
obtain results when an additional load of 40 Ibs. per square foot rests on one side.
Load at each joint, 1st case = 1566°6 1bs.

e

Btress in 1bs, L Stress.

Bars.

: |
Equal I.mdi Ao e

—_

Foniial Lam_‘ Additional

1| 5954 | grs6 || 17| 5254 | 12261
2 | 3503 7006 || 2’| 38503 7006
2 4700 7833 || 3’| 4700 | 10966
5

1752 1752 4 | 1752 52566
15666 | 3113

L= S Bl

5. A roof 48 feet span, 12 feet high, rests on queen trusses 8 feet high, spaced 10
feot apart, Find the stresses for a load of 20 1bs, per square foot.

5367
o
)

< 886

)

o
S 5
<

Yo,

7166 6387

ﬁ: An A roof, braced as in the figure, is 40 feet span, and 10 feet high; the
orizontal tie bar is 8 feet below the vertex. Find the stresses on each part

h
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when loaded with 2 tons at each joint by constructing a diagram of forces or
otherwise.

(=2 X= 30 LR o

7. In the last question suppose an accumulation of snow on one side equivalent to
an additional load of 2 tons at the middle of the rafter, and 1 ton at the ridge. Find
the stress on each part.

Bara, Stress. ” Bars, ’ Stress.
1 139 ik 173
2 12'6 2 157
3 12:8 3 154
4 55 4 86
5 18 L 36
6 75| i

8. SBuppose there are 11 suspending rods iniron roof shown in the figure, the height
of which is y;th the span. Find the stress on each part-—1Ist, when loaded with 4 ton
at each joint on both sides, and, 2nd, when loaded with an additional 4 ton at each
joint on one side, not including the ridge.

«@‘@ﬂﬂﬂygy’ Bars

165 168 4% 185 nF 135 16§ 185 208 238

Additional load is on right-hand side, and the figures on the diagram refer to
case 2.

9, The roadway of a bridge, 80 feet span, is carried by a pair of compound
trapezoidal trusses, each consisting of three simple trapezoids of the same height,
the six ““queens” of which arve equidistant, forming six divisions of length four
thirds the height of the truss. Find the stress on all the bars due to } ton per foot
run on the bridge.

10. Find the stress on each part of a * straight-link suspension” bridge formed by
inverting the truss of the last question, assuming the pull at the centre of the
platform zero.
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CHAPTER IL
STRAINING ACTIONS ON A LOADED STRUCTURE.

16. Preliminary Exzplanations.—In the preceding chapter we have
considered only those structures in which the parts are subject to
compression and tension alone, except by way of anticipation in a
fow special cases. But the parts of a structure are generally subject
o much more complex forces, and besides, although the forces acting
on each bar have heen determined, we should, if we stopped here,
have a most imperfect idea of the way in which the load affects the
structure as a whole.

If we imagine a structure to be made up of any two parts, 4 and B,
united by joints, or distinguished by an ideal surface cutting through
the structure in any direction, the whole of the forces acting on the
structure may be separated into two sets, one of which acts on 4, the
other on B. Since the structure is in equilibrium as a whole, the
two sets of forces must balance one another, and must therefore
Produce equal and opposite effects on 4 and B, effects which are
Counteracted by the union existing between the parts. The two sets
of forces taken together constitute a STRAINING ActioN of Which each
Set is an element, and the object of this and the next two chapters
18 to consider the straining actions to which loaded structures and
Parts of structures are subject.

Straining actions differ in kind, according to the nature of the
effects which they tend to produce. Four simple cases may be
diSﬁingujshed e

(1) The parts 4 and B may tend to move towards each other or
away from each other perpendicular to a given plane. This effect is
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called compression or extension, and the corresponding straining
action is a thrust or a pull.

(2) 4 and B may tend to slide past each other parallel to a given
plane. This effect is called shearing.

(3) 4 and B may tend to rotate relatively to each other about an
axis lying in a given plane. This is called bending,

(4) 4 and B may tend to rotate relatively to each other
about an axis perpendicular to a given plane. This is called
twisting.

In the first two cases the straining action reduces to two equal and
opposite forces, and in the second two to two equal and opposite
couples. In general, straining actions are compound, consisting
of two or more simple straining actions combined. The given plane
with reference to which the straining actions are reckoned may
always be considered as an ideal section separating 4 and B even
when the actual dividing surface is different. We shall commence
by considering the straining actions on a beam of small transverse
section.

SECTION I.—BEAMS.

17. Straining Actions on @ Beam.—The action of a simple thrust or
pull on a bar has already been sufficiently considered in chapter I.
They are usually considered as separate cases, and the simple
straining actions on a bar are therefore reckoned as five in number.
The other three are (1) shearing, (2) bending, and (3) twisting,

- of which the last rarely occurs, except in
A Figas. machines, and will, therefore, be considered
in a later division of this work, under that
head.

Shearing and bending are due to the action of
forces, the directions of which are at right angles
to the bar: in structures, the forces usually lie in
one plane passing through the axis of the bar.
A bar loaded in this way is called a beam.

Simple shearing is due to a pair of equal and
opposite forces, #' (Fig. 23), applied to points
very near together, tending to cause the two parts
4 and B to slide past one another, as shown in the figure (Figs. 234,
230). Either element is called the shearing force, and is a measure of

T
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the magnitude of the shearing action, but in considering the sign we
must consider both together. In this work, if the right-hand portion,
4, tends to move upwards, and B downwards, as in Fig. 23,
the shearing action will usually be reckoned negative, while in the
converse case (Fig. 23a) it will be reckoned positive.

Simple bending is due to a pair of equal and opposite couples
applied to the bar, one acting on 4, the other on B, as in Fig. 24,
& Fig.2s. P
M M

B lp JP A

te_nding to make 4 and B rotate in opposite directions. The mag-
nitude of the bending is measured by the moment of either couple
Which is called the bending moment. In this work bending moments
W%H usually be reckoned positive when the left-hand half, B, rotates
With the hands of a watch, and the right-hand half in the opposité
direction, That is to say, when the beam tends to become convex
downwards, as in the ordinary case of a loaded beam supported at
the ends. 1In loaded beams shearing and bending generally exist

toge?her, and vary from point to point of the beam. We shall now
consider various special cases.

18. Ezample of a Balanced Lever.  General Rules for caleulating S.F.
and B.M —First take the case of a beam, 4B, supported at C
(Fig. 25), and loaded with weights, P@), at its ends.

If the weights are such that P.4C = Q.BC the beam will be in
equilibrium, but the two parts, AC,

B_U, tend to turn about C in opposite S st

directions, there is therefore a bending G 3
action at O, of which the equal and l o ‘,
Opposite moments P.AC, Q.BC are the © "

elements. Rither of these is the bending moment usually denoted
by 2, so that we write

M, = P.AC = Q.BC.

Not only is there a bending action at €, but if we take any point,
K, and consider the forces acting on AK, BK separately, we see
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that 4K tends to turn about X under the action of the force ok
while BK tends to turn about K under the action of the forces
P+@Qab ¢ and @ at B. The first tendency is immediately seen to be
simply the moment P.4K, while the second is Q.BK — (P + Q)CK.
The last quantity reduces to Q.BC' — P.CK, or, remembering that
Q.BC = PAC to PAK The two moments then, as before, are
equal and opposite, and constitute a bending action at K, measured
by the bending moment
My = PAK.

This example will sufficiently explain the general rule for cal-
culating the bending moment at any point, K, of a beam. Divide
the forces into two sets, one acting to the right and the other to the left
of K, and estimate the moment of either set about K, then the result will
be the bending moment at K. The example shows that the calculation
of one of the two moments will generally be more simple than that
of the other, and cases constantly occur, as where a beam is fixed
at one end in a wall, where nothing is known about one set of
forces except that they balance the other set. In each case the
simplest calculation is of course to be preferred.

Moments are measured numerically by unit weight acting at unit
leverage, as, for example, 1 ton acting at a leverage of 1 foot, for
which the expression “foot-ton” is commonly employed.  This
phrase, however, is used also for a wholly different quantity, namely,
the unit of mechanical work, and for this reason it would be pre-
ferable to call the unit of moment a ton-foot for the sake of dis-
tinction.

The peculiar action called shearing will be better understood
when we come to consider the action of forces on a framework
girder in the next section; it will here be sufficient to say that
if the sum of the forces acting on AKX, BK are not separately
equal to zero, they must tend to cause 4K, BK to move past
each other in the vertical direction, thus constituting a shearing
action measured by the magnitude of the shearing force, which
may be thus calculated for any point K.  Divide the Jorces into two
sets, one acling to the right of K and the other to the left of K, the
algebraical sum of either set is the shearing force at K. As before,
either set may be chosen, whichever gives the result most simply.
In the example just given the shearing force at any point of A¢ is
P; and at any point of BC, Q.
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19. Beam Supported at the Ends and Loaded af an Infermediale
Loint.—We will next consider the case of a beam supported at

Fig.26.

PA $ 4Q
i K To} iK' '
Al ' 4B
= ; T
! *w E

[ 1
; i :
i 1 ?N‘ i
: i

/

the ends and loaded at some intermediate point. Before we can
apply the rules previously enunciated, to find the shearing force and
!Jendmg moment at any point, we must first determine the support-
ng forces at the two ends. We find the force P acting at 4, Fig.
26, by taking moments about B, thus,
Wb
2 = = 5 p = —_—
Pa + b) = Wb; .. F i
and similgr] = Wa_,
% g @+ b
Fl.l‘st. as to the shearing force. Taking any point K in A4C, and
‘onsidering the forces acting on 4K, of which there is only one,

Cll a1
R e

At any point K’ between € and B we have
iy
e e

It v?*ill be noticed that at K the tendency is for the left-hand
Portion to slide upwards relatively to the right, whereas at K’
the tendency is for the right-hand portion to slide upwards
relatively to the left. Tt is advantageous to distinguish between
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these two tendencies, as previously stated, by calling the one
positive and the other negative.

We may draw a diagram to represent the shearing force at any
point thus. Let A'B’ be drawn parallel to and below 4B to repre-
sent the length of the beam, and let C'C’L be the line of action of the
weight. If we set up an ordinate 4'F = P, and downwards an
ordinate B'M = @), and draw FE and ML parallel to 4'B' to meet
the vertical ZC'L; the shearing force at any point will be repre-
sented by the ordinates of the shaded figure 4'FELM B, measured
from the base line 4’B. Not only will the magnitude of the
shearing force be represented, but also the direction of the sliding
tendency. This is why on one side of (' the ordinate was set
downwards.

In this example the supporting forces may be found by construc-
tion, and thus the whole operation of determining and representing
the shearing force performed graphically. For, set down B'K = W,
join A’ and where the vertical through €' cuts 4'K, draw LM
horizontal, then B'M = @ and MK = P. Then set up 4'F = MK,
and draw FZ horizontal.

Next as to the bending moment at any point. Take any point &

in AC distant 2 from 4, then
W

Mol eiic = 5
xe Y
and similarly at X' in CB distant 2’ from B,
M= e = - i i
@ + b

so for either side of C, the bending moment is greater the greater
the distance of the point from the end of the beam. Thus the
greatest bending moment is at C.

If in the value of M, we put @ = q,

or o Migaae s wli=rl),
we get the same result, viz., that
M= Q—IT% = greatest bending moment.

The graphical representation of the hending moment at any point
is very useful and instructive. We may construct the diagram

thus :—d4'B’ representing the length of the beam set up from ¢,

C'N the bending moment at (' = ;?% on some convenient scale,
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on such a scale for instance as 1 inch = 20 ft.-lbs. Then joining
A'N and B'N, the ordinate of the figure 4'VB', measured from the
base line 4'B, will express on the scale chosen the bending
moment at any point of the beam. If @ = b = % span, so that the
load is applied at the centre of the beam, then

M, = 1W x span = greatest bending moment.

20. Beam Supported af the End and Loaded Uniformly.—The
next example for consideration is that of a beam supported .
at the ends and loaded unmiformly throughout its length with w

Fig.27.

ll?s. per foot. (Fig. 27.) Let the span = 2¢. Take any point, K,
distant 2’ from the centre 0. The load on AK is wAK, and there-

f?l‘e the shearing force at K, reckoning the forces on the left-hand
side, must be

Fe = wa — wAK = wa — w (e — &) = wi.

That is, the shearing force is proportional to the distance of the point
from the centre of the heam. At the end 4 where z = a,

. =
and at B where 2 = — q,
Iy = — wa.

If from 4'B’, below 4B in the diagram, we get up and down ordinates
at 4" and B' = wa on some scale, and join LM, the ordinates of the
sloping line will represent the shearing force at any point. The
shearing force at the centre of the beam is zero.
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In finding the bending moment at K, reckoning still from the
left-hand side, we must clearly take account not only of the sup-
porting force at 4, but also of the effect of the load which rests on
the portion of the beam AK. The moment of this load about X is
the same as if it were all collected at its centre of gravity, namely
at the centre of AK. Thus

M, = wn. AK — wdK.AE
= YAK (% — AK) = % AKKB.

That is to say, the bending moment at any point is proportional to the
product of the segments into which the beam is divided by the point.
Putting 4K=a -« and BK=a+,

My =Fw(a? —a?),
which is greater the less # is. At the centre z=0, and we have the

maximum bending moment
M, = }wa?.
If we put 2wa = #7, the total load on the beam
My=%W x span.
This is only one half the bending moment due to the same load
when concentrated at the centre of the beam.

Tf ordinates be set up from 4’B’=}w (a® —2?), at all points, the
extremities of the ordinates will lie on a curve which may easily be
seen to be a parabola with its axis vertical and vertex above the
middle point of the beam. For

SZ=8K - K7 =%uwa® — Jw(a® — 2% = Jwa?,
So that SZ is proportional to SN2, showing that the curve is a
parabola.

921. Beam Loaded at the Ends and Supported at Intermediate Points.—
Next, suppose a beam (Fig. 28) supported at 4, B, and loaded
with weights P, @, at the ends C, D, which overhang the sup-
ports. If AC, AB, BD are denoted by a, I, b respectively, the
supporting force S at 4 (by taking moments about B) is given by

: Si=P(a +1) - Qb.
Similarly B, the supporting force at B, is given by
Rl=Q(b+1)- Pa.
Take now a point K distant « from 4 ; then
Po-Qb M,—M,

Fp=§-P=207 0T
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where J,, M, are the bending moments at 4, B.
Also for the bending moment at K,

M, - M,

M= -8z +Pla+a)= - 7 8o M,

Or, as we may write it,

] BL;-
: :‘ Fig.28
v .
g i Kl =
! : &= b
{elian e Wa
(o] ;A * K LK i B D
a o E R 2 - S

These formulae show that the shearing force is constant while the
bending moment varies uniformly. In the diagram this is indicated
by setting up ordinates Aa, Bb, to represent the bending moments at
4, B, and joining a, b ; the ordinate K of this line corresponding to
an intermediate point K, will represent the bending moment there.
The moments are in this example reckoned positive for upward
bending,

An important special case is when M, = f,; then the bending
Mmoment is constant, and the shearing force zero. 'We have then no
shearing but only hending. Simple bending is unusual in practice,
but an instance occurs in the axle of a carriage.

The ordinates of the straight lines Ca, Db, represent the bending
oment at any point of the overhanging parts of the beam.

; 22. Application of the Method of Superposition.—When a beam
18 acted on by several loads, the principle of superposition
already stated in Chap. I is often very useful in drawing dia-
grams and writing down formulae for the straining action ab
any point. Thus, for example, in the preceding case, if there be
many weights on the overhanging end of a beam, the bending
moment and shearing force at each point must be the sum of that
due to each taken separately ; and hence it follows that, whatever be
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the forces acting on a beam, if there be a part 4B under the action
of no load, and the bending moments at the ends of that part be
My, My, the straining actions at any intermediate point K will
always be given by the formulae just written down. And, further,
it there be a load of any kind on 4B, and m be the bending moment,
on the supposition that the beam simply rests on supports at 4, B,
then the actual bending moment must always he given by

M=M,. ]_ZE M,

5
a general formula of great importance. The result is shown graphie-
ally in the diagram, where the curve represents the bending moment
m, and the straight line ab the effect of the bending moments at the
ends, supposed, as is frequently the case, to be in the opposite direc-
tion to m; then the intercept between the curve and the straight line
represents the actual bending moment.

If several weights act on a beam, triangles may readily be con-
structed showing the bending moment due to each weight ; then
adding the ordinates of all the triangles at the points of application
of the weights, and joining the extremities by straight lines, a poly-
gon is obtained which is the polygon of bending moments for the
whole load. This process may also be applied to shearing forces.
It is simple, but somewhat tedious when there are many weights, and
other methods of construction will be explained hereafter.

EXAMPLES,

1. A beam, 4B, 10 feet long is fixed horizontally at 4, and loaded with 10 tons
distributed uniformly, and also with 1 ton at B.  Find the bending moment in inch
tons at 4, and also at the middle of the beam,

M =720 inch-tons at A4,
=210 ., at the centre
2. In the last question find the shearing force at the two points mentioned,
£'=11 tons at A.
=16, 4 at the centre.

3. A beam, 4B, 10 feet long is supported at 4 and B, and loaded with 5 tons at a
point distant 2 feet from 4. Find the shearing force in tons, and the bending
moment in inch-tons at the centre of the beam. Find also the greatest bending

nt.
e F at the centre =1 ton.

M at the centre = 60 inch-tons,
Maximum bending moment =96  ,,
4. In the last question suppose an additional load of 5 tons to he uniformly
distributed. TFind the shearing force and bending moment at the centre of the beam,
1" at centre =1 ton as before.
M at centre = 11} foot-tons = 135 inch-tons,
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5. A beam, AB, 20 feet long is supported at € and D, two points distant 5 feet from
4 and 6 feet from B respectively. A load of 5 tons is placed at each extremity.
Find the bending moment at the middle of ¢ in inch-tons.

Moment = 330 inch-tons.

6. In the examples just given draw the diagrams of shearing force and bending
moment at each point of the beam,

7. A foundry crane has a horizontal jib, A€, 21 feet long attached to the top of a
crane post 14 feet high, which turns on pivots at 4 and B. The crane carries 15 tons,
which may be considered as suspended at the extremity of the jib. The jib is
supported by a strut attached to a point in it 7 feet from 4, and resting on the crane
Post at B. TFind the stress on crane post and strut, and the shearing force and hend-
ing moment at any point of the jib.

Tension of crane post = 30 tons.
Thrust on strut =50 ,,

8. A rectangular block of wood 20 feet long floats in water; it is required to draw
the curves of shearing force and bending moment when loaded (1) with 1 cwt. in the
middle ; (2) with 4 cwt. at each end, and (3) 4 ewt. placed at two points equidistant
from the middle and each end.

9. A beam, 4B, 20 feet long is supported at the ends, and loaded at two points
distant 6 feet and 11 feet respectively from one end with weights of & tons and
12 tons : employ the method of superposition to construct the polygons of shearing
force and bending moment. Find the maximum bending moment in inch-tons.

Maximum moment = 972 inch-tons.

10. A beam is supported at the ends and loaded uniformly throughout a part of
its length : show that the diagram of moments for the part of the beam outside the
load is the same as if the load had been concentrated at the centre of the loaded
Part, and for the remainder is a parabolic are. Construct this arc.

SECTION IL.—FRAMEWORK GIRDERS WITH BoOMS PARALLEL, AND
WEB A SINGLE TRIANGULATION.

23. Preliminary Explanations.—Hitherto we have only considered
beams of small transverse section, but the part of a beam may be played
by a framework or other structure under the action of transverse
forces. Such a structure, when employed as a beam, is called a Girder,
and consists essentially of an upper and a lower member called the
Booms of the girder, connected together by a set of diagonally placed
bars, called collectively the Web. The web consists sometimes of
several triangulations of bars crossing each other, and may even be
continuous. In the present section the hooms will be supposed
straight and parallel, and the web a single triangulation. The
action of a load on such a girder furnishes the simplest and best
illustration of the nature of the straining actions we have just been
considering.

Suppose, in the first place, we have a rectangular beam of consider-
able transverse dimensions, which has one end fixed horizontally, and
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the other end loaded with a weight /7. Now let a part of the length,
CD (see Fig. 29), be cut away, and replaced by three bars, CD, EF,
DE, jointed at their ends to the two parts of the beam—CD, EF
forming a rectangle, of which DF is a diagonal. With this construc-
tion the load /7 will be sustained, as well as by the original beam,
but the three bars will be subject to stresses which we shall now
determine. To do this, suppose each of the three bars (in succession)
removed, and examine the effect on the structure—an artifice which
often enables us to see very clearly the nature of the stress on a
given part of a structure.

In the first place, suppose CD removed ; then the portion EB will
turn about the joint Z, as shown in the lower part of the diagram,
so that the function of the bar €D must be to prevent this turning,
which is exactly what we have previously described as bending. The
tendency to turn round £—that is, the bending moment at F—is in

this case simply = 7/~ x C'B. But if there
TaBi: l is a system of loads, the bending moment
W at £ may be found by methods previously

\\\§\\\\ described. -
. Now let H = stress on CD. It may

“\§\\
i \
. ; ;
readily be seen to be a tensile stress,

DR

5/7/\// //\b
.

. E 4 because, on the removal of the bar, the
a9 ends €' and 1) separate from one another.
/f \X\\Q ey LSl e’ Also, leb & = CE or DF, the depth of the
/\\\\o \\\}\\ beam. The power of ¢'D to prevent EB
. £ g\\\ from turning about Z is measured by the

moment about % of the force /7 which acts
‘ C along it. Therefore
N\ ,/3\\ B Hh=M,
< And dividing the bending moment at &
F S by the depth of the beam, we obtain the
magnitude of the tension of ¢,

Next, let the bar EF be removed. The structure will yield by
turning round the joint D), the point # approaching Z. Thus the
bar EF is in compression, and by its thrust, = H' say, towards 7, it
prevents #5 from turning round [

The tendency to turn round D, due to the action of the external
forces = M, will be equal to the resisting moment 77%.

Hh=1,.

SRR
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Therefore if we divide the bending moment for the joint D opposite
to the bar, by the depth of the beam 7%, we obtain the magnitude
of the compressive force H'.

Lastly, let us suppose the diagonal bar ED to be removed, the
effect is quite different from the two former cases ; for instead of
the overhanging portion of the beam turning about some point,
1t now gives way by sliding downwards (as shown in the centre
of the diagram), remaining horizontal all the time. €D and EF
turn about (' and Z, remaining parallel to one another. The
rectangle CDFE becomes distorted by the shortening of the diagonal
LD and the lengthening of C#. In the structure then the function
of the diagonal bar ED is to prevent the sliding, by resisting the
tendency to shorten. Thus the bar ED must be in compression,
and by its thrust upon the point D it maintains FB from sliding
downwards. Let § = thrust along ED and 0 = angle it makes
with the vertical. The force S may be resolved into two com-
Ponents, a horizontal one, Ssin 6, and a vertical one, Scos 6. Tt is
the vertical component alone which resists the sliding action, and
aintains J) in its proper position. Now the tendency to slide
1s 10 other thing than the shearing force on the structure, which we
have previously been investigating. In this example the shearing
force is simply 77 for all sections between 4 and B. But in other
¢ases of loading the shearing force may be estimated by previously
given methods. Since the downward tendency of the shearing force
Is balanced by the upward thrust of the vertical component of S
along ED we have

Scos@ = F.

Instead of the points # and D being joined there might have been
a bar C'F, which, by the resistance to lengthening which it would
offer, would have sustained the portion FB from sliding downwards.
Such a bar would be in tension just as the bar £D is in compression,
and in finding the stress on it we should use exactly the same equation.
Now instead of having 8 bars only, the whole structure may be
built up of horizontal and diagonal bars. The same principles will
apply.  On removing any one of the horizontal bars, we see that the
Structure yields by turning round a joint opposite: so we say the
function of the horizontal bars is to resist bending. This is ex-

Pressed by the equation HA = M. On the other hand, the function
D
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of the diagonal bars being to resist the shearing tendency, we have
always Scos 6 = F.

24. Warren Girders under various Loads.—Fig. 30 shows a Warren
Girder, so called from the name of the inventor, Captain Warren, a
type of girder much used for bridges since its first introduction about
the year 1850. It consists of a pair of straight parallel booms connected

VAVAVAVAVAVAN
I 7

together by a triangulation of bars inclined to each other, generally
at 60°, so that the triangles formed are equilateral. The booms in
the actual structure are generally continuous through the junctions
with the diagonal bars, but, if well constructed, there is no sensible
error in regarding the structure as a true frame, in which the several
divisions are all united by perfectly smooth joints. Any three bars
forming a parallelogram and its diagonal may be considered as
playing the same part as regards the rest of the structure as in
the case just considered.

When a Warren girder is used, it is generally supported at the
ends, and the loads are applied at one or more joints in the lower
boom. We will examine some examples.

(1) Suppose there is a single load applied at a joint in the centre
of the span.

First as to the diagonal bars. It was shown above that the duty
of these bars was to prevent the structure yielding under the action
of the shearing force; the vertical component of the stress on either
of the diagonal bars being equal to the shearing force for the interval
of the length of the girder within which the diagonal bar lies. This
is expressed by the equation

Scosf = F.

Now in the example which we are considering with the load in
the centre, the shearing force will be the same at all sections
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to the right and left, namely = § /7. Therefore the stress on all the
diagonal bars is of the same magnitude,

R

2 cos 30° N3

If we consider the effect of removing either of the bars, we shall
find that commencing from one end they prevent alternately the
shortening and lengthening of the diagonals which they join, so that,
commencing with one end, the bars are alternately in compression
and tension. The compression bars are shown in double lines.

Next as to the several portions of the length of the top and
bottem booms. As was shown above, the stress on any division
of the horizontal bars has the effect of preventing a bending round
the joint opposite ; so that the moment of the stress about the joint
is equal to the bending moment at the joint, due to the external
forces. This is expressed by the equation

Hpi= 3.

Let @ = length of a division.
~ Then, since the supporting force at the joint 0 is 377, the bend-
Ing moments at the joints numbered 1, 2, 3, &e., are

7 Wa  Wa
M s
i 5l

w3 3 a,
ﬂfa=fg-2-a.= i

and so on, the bending moments increasing in arithmetical
Progression.
_ Since the depth of the girder / is the same at all parts of the length ;
if we divide the M’s each of them by %, we obtain the magnitude of
the stress on the bars opposite the respective joints, Thus
_ Wa i Wa _ 3Wa

05— '&:ﬁ': 18475 ?]{J 24 T Ta“
We see, then, that the stress on the several divisions increases in
arithmetical progression as we proceed from the ends towards the
‘entre. By observing the effect of removing either of the bars,
We see that all the divisions of the upper boom are in compression.
This is expressed by drawing them with double lines in the figure.
All the divisions of the lower boom are in tension.

, and so on.
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(2) Next suppose the load is applied at some other joint not in the
centre—the joint 4 for example. We must first calculate the sup-
porting forces. Suppose they are P at 0 and @ at 12. For the
portion of the girder to the left of 4 the shearing force will be the
same at all sections and be equal to P. So the stress on all the
diagonals between 0 and 4 will be equal to P sec 30°.

To the right of joint 4 the shearing force = @, and the stress on
all the diagonal bars from 4 to 12 will be @ sec 30°.

Proceeding from either end towards the joint where the load is
applied, we observe that the diagonal bars are alternately in compres-
sion and tension—so that the bar 56 is now in compression, whilst
the bar 54 is in tension. On these bars the nature of the stresses is
Just opposite to that to which they were exposed when the load was
at the centre joint. Thus by varying the position of the load we not
only vary the magnitude of the stress, but we may in some cases change
the character of the stress, requiring a diagonal bar to act sometimes
as a strut and sometimes as a tie.

For the divisions of the horizontal booms on the left of ¥ the
stresses are

}ll' ,2,15’“ ?& &e

e R e
in arithmetical progression up to the bar opposite the joint to which
the load is applied ; and to the right of 77,

Qa 2Qa 3Qa

w 2% 0 ¥
in arithmetical progression also up to the bar opposite the load. The
upper bars are all in compression and the lower in tension as before.

When there are a number of loads placed arbitrarily at the
different joints, the simplest way of determining the stresses is often
to find the stress on the bars due to each load taken separately, and
then apply the principle of superposition. In applying the principle
due regard must be paid to the nature of the stress. A compressive
stress must be considered as being of opposite sign to a tensile stress,
and, in compounding, the algebraical sum of the stresses for each load
will be the total stress on the bars. '

(3) There is one particular case, that in which the girder is
uniformly loaded, which it is advisable to examine separately.

In general, the load on the platform of the bridge is by means
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of transverse beams or girders transferred to the joints of the
lower hoom. The transverse beams may be the same number
as the joints in the lower boom. In that case the girder will
be loaded with equal weights at all the bottom joints. If the
transverse beams are more numerous their ends will rest on the
bottom booms, and tend to produce a local bending action in
each division, in addition to the tensile stress which, as the bottom
member of the girder, it will have to bear. In some cases, to lessen
or get rid of this bending action, vertical suspending rods are intro-
duced, by which means the middle points of the lower divisions are
supported, and the loads transmitted to the upper joints of the
girder. In such a case we may take all the joints both in the upper
and lower booms to be uniformly loaded.

We will, however, suppose equal weights applied to the joints
of the lower hoom only.  First as to the shearing forces. Between
the end and the 1st weight the shearing force = the supporting
force, = half the total load = P say. In the next division the
shearing force is less by the amount of the load at the 1st lower joint
= P~ 7. In the third division of the lower boom from the end
the shearing force = P — 2W, and so on. The stresses on the
diagonals can now be found by multiplying the shearing force in the
division within which any one diagonal lies by the secant of the
angle which the diagonal makes with the vertical. The stresses will
diminish in arithmetical progression as we pass inwards from the
ends towards the centre. It will be observed that on the first and
Second diagonals from the end the stress is of the same magnitude.

. On the third and fourth it is alike also, and so on. The stresses are
alternately compression and tension, commencing with compression
on the first bar,

To find the stresses on the booms we must determine the bending
Inoments at all the joints.

P P,
M, = 50 M= 2Ja
M, = L34 _ g, M= fj’m S
= S(BP-). = S(4P -27).
M, = g(sf - 37). M, = g(ﬁp — 47P).
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Division of the 3’s by 7, the depth of the girder, will give the
several horizontal stresses, They will be found to increase as we
pass from the ends towards the centre.

25. N Trusses.—The web of the girder, instead of consisting of bars
sloping both ways, forming a series of equilateral triangles, may be
constructed of bars placed alternately vertical and sloping at
an angle, so forming a series of right-angled triangles, looking like
a succession of capital letters N. (See Fig. 31.) For this reason
it is sometimes called an N girder. The ordinary practice is to
divide the girder into a number of squares by means of the
vertical bars, so that the diagonals slope at an angle of 45°. Tt is

Fig.s1.

|
INAN o

advantageous to place the diagonals so as to be in tension, For a
load in the centre, or a uniformly distributed load, they should slope
upwards from the centre towards the ends, The vertical bars will
then be in compression. A short bar is better able to resist compres-
sion than a long one, whereas a tension bar is of the same strength
whether short or long ; so it is manifestly economical of material, and
a saving of weight, to place the long bars, that is the sloping bars, so
as to be in tension. The same methods will apply to find the stresses
on the bars, since as hefore the web resists the shearing action, and
the booms the bending.

The simple queen truss, considered in Chapter I., Section I, is
another example of a web consisting of alternate vertical and diagonal,
bars, but the diagonal is not usually inclined at 45° to the vertical.

EXAMPLES,

1. A trapezoidal truss is 24 feet span and 3 feet deep. The central part is 8 feet
long and is braced by a diagonal stay so placed as to be in tension,  Find the stress
on each part when loaded with 4 tons at one joint and 5 tons at the other,

Stress on diagonal stay = ‘935 tons,

2. A bridge is constructed of a pair of Warren girders, with the platform rest-
ing on the lower booms, each of which is in 6 divisions, The bridge is loaded with
20 tons in the middle. Find the stress on each part.
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3. In example 2 obtain the result when the load is supported at either of the
other joints.

4. From the results of examples 2 and 3 deduce the stress on each part of the
girder when the bridge is loaded with 60 tons, divided equally between the three
pairs of joints from one end to the centre.

Results for questions 2, 3, 4, the bars being numbered as in Fig. 30.

1 ”th'es-a. on Booms. | .Stt-u;_nugngulmls.

A et : e et ‘ e

{ |toadate.| sta | atz |0 ot o | Lond at u.[ st dl et hlanit e j‘

S0 sl Bt A nt s A gt et | SEAE S | 7 ke O

| 02 \ 288 | 985| 48 | 1158 01 | -576|-77 |-96 |-23:06

| 18 | -576|-77 |-9% |-2306 ‘ 12 | 576| 77 | 96 | 2306
24 | 864 1155| 864 | 28831 28 |-596|-77 | 1:92|-11:54

| 3D | -1152 | -15'36 | — 7'68 | -34'56 || 34 | 576 T | =192 1164

| 46 | 144 | 13-44| 672 | 3456 45 | -576| 385| 192 ‘ 0

| BT | -17'28 [ -11'562 | — 5'76 | -34'56 || 56 [ 576 (-38 | —1902| 0

| 68 | 14+4 96 | 48 288 | 67 | 576 3857 |- 1192 | 11b4
79 | <1152 | - 768 | - 384 | 2304 | 78 | - 576 | - 385 | - 192 | -11°54
?,10 | 864 576 288 | 1728 | 89 | 576 385 | 192 i 1154
9,11 | - 5'76 - 384 192 | -1162 || 9,10 | - 5°76 | - 3'85 | - 1'92 | -11'564

|10,12 | 2:88 j 192 96 | 566 (110,11 | 576 385 | 192 | 1164
LA A 12| - 576 | - 885 | - 192 | 1154

5. A bridge 80 feet span is constructed of a pair of N girders in 10 divisions,
the platform resting on the lower booms, and the diagonals so arranged as to be all
in tension. A load of 80 tons is uniformly distributed over the platform. Find the
stress on each bar.

SECTION IIL.—GIRDERS WITH REDUNDANT BARS.

28. Preliminary Explanations.—Again, returning to the (p. 48) beam
out of which a portion has been cut and replaced by bars, let us suppose
that instead of one diagonal bar only, there are two. We require to
find the stresses on the bars. First, on the diagonal bars. In this
case also the stress on these bars will be due to the shearing force.
Together they prevent the structure yielding under the shearing
action, but the amount each one bears is indeterminate until we
know how the diagonals are constructed and attached to the rest of
the structure. Suppose, for example, the diagonals are simple struts
placed across the corners of the rectangle, but not secured at the
ends The struts will be incapable of taking tension; and the
diagonal ED, which slopes in the direction, to be subject to compres-
sion will have to bear the whole shearing force. The other diagonal
is ineffective. Secondly, suppose the diagonals to be simple ties, such
as a chain or slender rod, and so incapable of withstanding compres-
sion. Then the bar CF will carry the whole shearing force. We may
have any number of intermediate cases between these extreme ones
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according to the material of the diagonals and the method of attach-
ment. In all cases one diagonal tends to lengthen, and the other
to shorten, and according to their powers of resistance to these ten-
dencies they offer resistance to the shearing. If S, and S, be stresses
on the two bars, then in all cases

() +8,)cos 0 =17
If the diagonals are exactly similar rigid pieces similarly secured at
the ends, equal changes of length will produce the same stress whether
in compression or tension, so that each will bear an equal share of
the shearing force. We shall then have

Si=8=1Fsec .

The foregoing is one of the simplest examples of a frame with re-
dundant bars, and shows clearly why, in such cases, the stress on
each bar cannot he determined by statical considerations alone, but
depends upon the materials and mode of construction. In structures
such as those considered in Chap. I., Sect. IL., in which the principal
part is an incomplete frame, stiffened by bracing or other means to
provide against variations of the load, the bracing is usually redun-
dant, and the stress on it cannot be calculated with certainty.
Allowance has to be made for this in designing the structure by
the use of a larger factor of safety. Redundant material is often no
addition at all to the strength of the structure, and may even he a
source of weakness, as will appear hereafter.

When framework girders were first introduced, it was objected by
eminent engineers that failure of a single part would destroy the
structure. ~ Experience appears to have shown that risks of this
kind are not serious, and the tendency of modern engineering design
appears to be rather towards the employment of structures with as
few parts as possible.

Next, as to the horizontal bars. These still sustain the bending
moment, but not precisely in the same way as when there is only one
diagonal. To find the magnitude of the forces, we employ a method
similar to that used before, but instead of removing a bar we suppose
the girder cut through one or more bars at any place convenient to
our purpose ; then the principle which we make use of is, that the
action of each of the two halves on the other must be in equilibrium
with the external forces which are applied to either half. In Figure
32 let us take a vertical section through the point of intersection of
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the diagonals, 4 bars are cut by the section, and through the medium
of these 4 bars the structure to the left will act on the portion of the
structure to the right of the section, and sustain it against the action
of the external loads which rest on it.

First, there is the force H, pulling at K, and the force H,
thrusting at Z, and at O there are the two
forces S, and S, on the two diagonals. Fig.32.
Now, if we consider the tendency for the
external forces to bend the right-hand
portion round O, we see that the diagonal
bars offer no resistance to this bending ?
action, and must so far be left out of
account. The whole resistance to bending
is due to the bars ('D and EF along which
the forces I7, and H, act, so that if M/, be the bending moment at 0,
due to the external forces,

(H, + )" = L,
This will be true whatever be the proportion between S, and S,
and H, and H, Instead, therefore, of taking the bending moment
about a joint, as we did previously, we have in this case to take the
moment about the point where the two diagonals cross.

But besides the balancing of the bending moment, there are other
conditions to which the forces are subject, in order that the right-
hand portion may be in equilibrium. One is, that all the forces
which act on this portion must balance horizontally. There are no
external forces which have any horizontal action, so that it is only
the four internal forces which act along the bars cut, of which we
have to take any account, and these must, on the whole, have no
resultant horizontal action. The two thrusts must equal the two
pulls ; that is,

H, + S;8in 8 = H, + 8 sin 6.
H, — H, = (S, — S,)sin 6.

This also is true whatever be the distribution of the shearing force
between the two diagonals.

If, now, we suppose S,= |, then H,= I, = H,say. And the above
formula becomes Hi = M, the same as we had before ; but it must
be applied a little differently, the moment now being taken about
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the point of intersection of the diagonals. If S is not equal S, then
H will be the mean of H, and H..

27. Lattice Girders, Flanged Beams. — Constructions with a
double set of diagonals are common in practice. If, for example,
in the IV girder (Fig. 31) we place in each division two diagonals
instead of one only, the construction is called a laftice or irellis
girder. 'When employed for heavy loads, the diagonals are generally
inclined at an angle of 45° to the vertical. In light structures,
or when used for giving stiffness, they are often inclined at a
much greater angle.

To determine the stresses, it will be necessary to make an
assumption for the distribution of the shearing force between
the two diagonals for each division of the girder, and it will generally
be sufficiently correct to suppose each to carry half, and to write
S = }Fsec 0, and Hh = M for the points where the diagonals
intersect.

In lattice girders we more frequently find the double set of sloping
bars introduced, but the vertical bars omitted. In this case it will
not be true that the two diagonals in any one division are exposed
to the same stress. We can determine the stresses otherwise. The
structure may be divided into two elementary girders, each with its
own system of diagonal bracing, and each with its own set of loads.
Suppose, for simplicity, the number of divisions in the complete
girder even, and each half girder loaded with equal weights applied

Fig.8s.
| 1 2 3 i 5 6 7 8

R )

P Q P

to all the lower joints. Then if we make the simple, and in most
cases safe, assumption that the thrusts on the two end vertical
bars are equal, the forces on all the hars of the structure will be
determinate. In the example shown in Fig. 33 the thrusts on
the vertical end bars will be 2P.

After we have calculated the stresses on each bar in each elemen-
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tary girder, then, for any bar which is a portion of both, we must
compound to obtain the total stress.

We may further increase the number of diagonal bars and obtain
a girder, the web of which is a network of bars. In this case
it will not be exactly, but will be very nearly, true that the
horizontal bars take the bending, and the sloping bars the shearing
action, the shearing force being regarded as equally distributed
between all the diagonals cut by any one vertical section.

We may go on adding diagonal bracing bars until the space
between the booms is practically filled up, and even then assume
that the bending is taken by the horizontal bars and the shearing
by the web. The numerous bracing bars may then be replaced by
a vertical plate, which will form a continuous web to the girder.
Such a construction is a very common one in practice, the
horizontal members are called the top and bottom flanges of what
is still a girder, and often called so, but more often a flanged or
I beam. In the smallest class of these beams, they are rolled or
cast in one piece; but for large spans they are built up of plates
and angle irons rivetted together. For figures showing the trans-
verse sections of such beams see Part IV. In taking the depth of
such a girder, to make use of in the equation Hl = M, we ought
to measure the vertical distance between the centres of gravity
of the parts which we consider to he the flanges of the beam
or girder. In the simple rolled or cast beam this will be the
distance from centre to centre of depth of flanges. In the built-up
beam account must be taken of the effect of the angle irons.

Tt must be remembered that this method of determining the
strength of an I beam is only approximate. Its strength will
be determined in a more exact way hereafter, when it will be found
that the web itself assists in resisting the bending moment, but,
area for area, to the extent only of about one-sixth that borne
by the flange. On the other hand, the effective depth is less than
the distance from centre to centre of the flanges. In rough prelim-
inary caleulations we may often neglect this, and employ the same
formula as for lattice girders.

Girders are often of variable depths, so that the booms are not
parallel ; when this is the case the booms assist in resisting the
shearing action of the load, as will be seen hereafter.
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EXAMPLES.

1. A beam of I section is 24 feet span, and 16 inches deep ; the weight of the beam
is 1,380 1bs. Tt is loaded in the centre with 5 tons. Assuming the resistance to
bending te be wholly due to the flanges, find the maximum total stress on each flange
and the sectional area of each—the resistance to compression being taken to be 8 tons
and to tension 4 tons per square inch.

Maximum total stress = 53,505 1bs. = 2388 tons.
Sectional area of upper flange = 8 square in.
5 530 ybokbom & e

2. A trellis girder, 24 feet span and 3 feet deep, in three divisions, separated by
vertical bars, with two diagonals in each division, is supported at the ends and loaded
(1) with 20 tons symmetrically distributed over the middle division of the top
flange, (2) with 20 tons placed over one of the verfical bars. Find the stress on
each part of the girder, assuming each diagonal to carry half the corresponding
shearing force.

Stress on diagonals—Case 1. 14:2 0 142
Cage 2. 188 9% 9%

Remark.—These results show the unsuitability of this construction for carrying a
heavy load on account of the great inclination of the diagonals to the vertical.

3. A water tank, 20 feet square and G feet deep, is wholly supported on four
beams, each carrying an equal share of the load. The beams are ordinary flanged
ones, 2 feet deep. Find approximately the maximum stress on each flange, assuming
that the weight of the tank is one-fourth the weight of water it contains,

187,500
-

Distributed load on one beam = = 46,875 Ibs.

Hmax. = 58,693 1bs. = 26°1 tons.

4. The Conway tubular bridge is 412 feet span. Each tube is 25 feet deep outside
and 21 inside. The weight of tube is 1,150 tons, and the rolling load is estimated at
£ ton per foot run. Find approximately the sectional areas of the upper and lower
parts of the tube, the stress per square inch being limited to 4 tons.

Hmax, = 3,267 tons.
Area =817 square in.

REFERENCES,

For details of construction of girders the reader is referred to
Girder Making . . . in Wrought Iron. E. HUTCHINSON. Spon, 1879,



CHAPTER IIL
STRAINING ACTIONS DUE TO ANY VERTICAL LOAD.

28. Preliminary Remarks.—The preliminary discussion in the pre-
ceding chapter of the straining actions to which loaded beams and
framework girders are subject will have given some idea of the im-
portance of the effect of shearing and bending on structures, and we
shall now go on to consider the question somewhat more generally.

Let us suppose any body or structure possessing, as it usually
will, a longitudinal vertical plane of symmetry, to be acted on
by a set of parallel forces in equilibrium symmetrically disposed
with respect to this plane, as, for example, gravity combined with
suitable vertical supporting forces. ~Then these forces will be
equivalent to a set of parallel forces in the plane of symmetry in
question. Let the structure now be divided into two parts,
A and B, by an ideal plane section, parallel to the forces
and perpendicular to their plane. Then the forces acting on
A4 may be reduced to a single force ¥ lying very near the section
considered and a couple 3, while the forces acting on B may
be reduced to an equal and opposite force /' lying very near the
section and an equal and opposite couple M. The pair of forces are
the elements of the shearing action on the section, and the pair of
couples are the elements of the bending action on the section. As
the nature of the structure is immaterial, we may consider these
straining actions for a given vertical section quite independently of
any particular structure, and describe them as the Shearing Force
and Bending Moment due to the given Vertical Load. We shall
first consider the connection which exists between the two kinds of

straining action and the method of determining them for any possible
load.
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C'ONNECTION BETWEEN SHEARING AND BENDING.

29. Relation between the Shearing Force and the Bending Moment.—
Figure 34 shows the lines of action of weights 77, IV, &e., placed
at the successive intervals a,, a,, &c.

1 1 H 1 Eﬂ
. Fig.s4. : ' ‘ _.frg'
: : e
: : 35' : "Eil-' j
Leife w2 %, 05 woxaE
w, : ; : ;
E w, e
| ; S
L e
In the first division the shearing force is
Fy= 3
in the second Fo=W,+ W,=F, + W,
e el =S
in the third e — et PV W= Tt W
B, — =Wy

and so on for all the d1v1510ns, 50 tha.t in the 2™ division
F,-F =W,
We express this in words by saying that the difference between the
shearing forces on two consecutive intervals is equal to the load applied at
the point between the two infervals; or it may be written
AF = W.
By setting down ordinates to a horizontal base line we obtain the
stepped figure as the graphical representation of the shearing force at
any point of the beam. Itis drawn by first setting downwards at 1 an
ordinate for the shearing force on the st interval, and then passing
along the beam to the other end, on meeting the lines of action of
the successive weights the length of the ordinates is increased by
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the amount of the weights. In so doing we make use of the proposi-
tion which has just been proved.

This is called the Polygon of Shearing Force, or more generally,
when the loads are continuous, the Cwrve of Shearing Force.

Next as to the bending moment. At the first point where 7/, is

applied M, =0,
at the second point M, = Wi, = Fia;;
» third My = Wilay + as) + Watts = Way + (W + Wo)as

= M, + Fsay,
My - My = Fao;
,,  fourth point My = IFy(ay + ag+ as) + Wolay + ag) + Waay,
= Wi(aq + as) + Wyas+ (W + Ve + Wi)as,

= M+ Fyay,
My— M; = Fa,;
and generally, o, — M, , = F,_1a,_;.

We may express this in words by saying that the difference between the
bending moments al the two ends of an interval is equal to the shearing
force, multiplied by the length of the interval. Or the result may be
written
AM = Fa.

We will now take a numerical example and see how we may
make use of this property to determine a series of bending moments.

Let 4B be a beam fixed at one end, and loaded with weights
of 2, 3, 5, 11, 13, 7 tons, placed at intervals of 3, 2, 3, 5, 4, 6 feet,

\
w. F. i . Fa, M,
2 0 ‘
9 5 6
3 il
5 2 10 1
5 16
10 3 30 1
11 46
21 5 105 ‘
13 151 |
34 4 136
B | 287
41 6 246
533 |

commencing from the free end. We adopt a tabular method of
carrying out the work of calculation.
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First set down a column of weights applied, as shown by the figures
in the column headed /7. In the mext column write the shearing
forces. Since the shearing forces are uniform over the intervals be-
tweenjthe weights, it will be best to write the /s opposite the spaces
between the weights. Any F is found by adding to the # above it
the adjacent //. In the third column we set down the lengths of the
intervals. Then multiplying the #’s and corresponding &’s together,
set the results in column 4. Lastly, we can write down the column of
bending moments by the repeated addition of the Fa’s—the bending
moment at any point being found by adding to the bending moment
at the point above the value of Z'z between the points.

If instead of all the forces acting one way some of them act
upwards, a minus sign should be set opposite, and all the operations
performed algebraically.

The method is equally applicable however the beam is supported.

For example, let a beam 23 feet long be supported at the ends and
loaded with 3, 2, 7, 8, 9 tons, placed at intervals of 2, 2, 3, 4, 5, 7
feet, reckoning from one end.

Tlirst calculate one supporting force, say at the left-hand end

Ww. 1‘ v ‘ @ Fa, M.
16:17 1 0
1617 | 2 | 3234
-3 i ? 32:34
1317 | 2 | 2634
-2 ' ' 5868
1117 | 3 3351
= | 9219
L17 | 4 1668
—=8 ; 10887
~3:83 | 5 -1915
=9 . 8072
-12:83 | 7 — 8981
1283 ‘ 5 0

|

by taking moments about the other end. 1In the column of /#7’s
set this for the first force, and since all the loads act in the contrary
direction, put negative signs opposite them, and in writing down
the next column of F’s add algebraically. We shall at the bottom
of the column determine the supporting force at the right hand
end. At the bottom of the column of s, that is at the point
where the right hand supporting force acts, we ought to get a
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zero moment. The obtaining of this will be a test of the accuracy
of the work. In this example the small difference between 89-72
and 89-81 is due to our having taken the supporting force only to
two places of decimals.

Observation of the process of caleulation leads us to a very
important proposition, viz., where the shearing force changes sign, the
bending moment is at that point @ maximum. This will be true for all
important practical cases, but exceptional cases may be imagined in
which, where the shearing force changes sign, the bending moment
is a minimum. Since AM = Fa, then, so long as I is positive, M
will be an increasing quantity as we pass from point to point. But
where /' changes to negative there 3/ commences to diminish.

We will now explain the construction of a diagram of bending
moment for a system of loads: and first let us consider how
the moment of a force about any point or succession of points may
be graphically expressed.

Let 77 be a force and D any point, and suppose the numerical mag-
nitude of the moment of 77 about D known. Draw a line through D
parallel to the force at a distance «
(Fig. 35), and anywhere in this line
take a length BC to represent on some
convenient scale the moment, M, =
Wa, of W about D. The scale must
be so many inch-tons, foot-lbs., or
similar units to the inch. Then choose
any point 4 in the line of action of the
force, join 4B and A(, and produce
these lines indefinitely. The moment
of J7 about any point whatever is
represented by the intercept by the
radiating lines 4B, AC of a line drawn through the point parallel to
the force. For example, the moment about K = My = J/z, where =
is the perpendicular distance of K from the line of action of /7.

Mo Wi

M, Wa a
By similar triangles the intercepts are to one another in the ratio
Z : @, 50 that they correctly represent the moments.
We will first draw the diagram of bending moments for a beam

fixed at one end and loaded at intervals along its length.
B
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Returning to Fig. 34, take a line representing the length of the
beam as base line. Produce upwards the lines of action of the
loads. Commence by setting up at the point where W, acts a line
to represent the moment of J¥, about that point, that is, take
22 to represent e, If 12' be joined and produced, then the
intercept between this line and base line 15 will represent on
the same scale the moment of 77, about any point in the beam.
Next at the point 3/, where 12’ cuts /3 2’ 3, set up 3’ 3" to represent
W, join 2" 3” and produce it. The intercept between 2 3" and 2” 3"
will represent the moment of 7/, about any point in the beam.
Then at the point 4/, where 2" 3" cuts /', set up 4’ 4" to represent
W, Join 3" 47, produce it, and so on with all the weights. The
polygon 1, 27,°3", 4", 5” ... will be obtained, the ordinates of which
measured from the base line 4B will represent the bending moment
at any point, due to all the weights on the beam. This is called
the Polygon of Bending Moment. In the case of a continuous distri-
bution of load it is called the curve of bending moment.

There is a very important relation between the polygons of
shearing force and bending moment which have been drawn in all
cases of loading.

The bending moment at the point 2 = W  Now referring to
the shearing force diagram, we observe standing underneath the
interval @, a rectangle whose area = //ja,. Next, for the point 3,

M, = Wit + @) + W,

This is represented on the diagram of bending moment by the ordi-
nate 33”. In the shearing force diagram we notice that the area
under the portion of the beam from 1 to 3 consists of two rectangles,
Wila, + @) + Wiy So that ab this point also the bending moment
is represented by the area of the polygon of shearing force, reckoned
from the end up to the point 3. And so on for every point. This
important deduction may be stated generally thus :—The ordinate of
the curve of bending moment at any point is proportional to the area of
the curve of shearing force reckoned Srom one end of the beam wp to that
point.

30. Application to the case of a Louded Beam.—We will next take
the case of a heam supported at the two ends. ‘

First, calculate the supporting force P, set it up at the end of
the base line as an ordinate, and draw the stepped polygon by continu-
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ally subtracting the 7/’s. At some point in the beam we shall cross
the base line. At that point the shearing force changes sign, and
there the bending moment is a maximum. The shearing force on
the last interval will give the magnitude of the supporting force @.
The polygon thus drawn will be the polygon of shearing force.

The polygon of bending moment may be drawn without previously
determining the supporting force at either end thus :—

PA i Fig.38.

Commencing at O (Fig. 36), the point of application of P, draw any
sloping 11f11e 012 cutting 7, in 1, and /7, in 2. Then set up

2’ 2 to represent /7, join 1 2, produce it to cut /7 in 3'.

3 - Wty v 23, 5 W, in 4.

44 o Wy o 34, 4 W in 5, and so on.
7T will represent 7y,

Now join 7 with the point 0, where 012’ cuts the line of action of
P. This is called the Closing Line of the polygon of moments. Any
vertical intercept of this polygon will represent the bending moment
at the corresponding point of the beam. The proof of this may be
stated shortly thus :—If we produce 01 to meet the line of action of
@ in I, then L7 will, from what has been said before, represent the
sum of the moments of all the weights /7 about the end of the
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beam where Q acts. And from the conditions of equilibrium this
must equal the moment of P about that end.  Accordingly, if we
take any point K, the vertical intercept M7 below it will represent
the moment of P about K. This is an upward moment. The four
weights which lie to the left of K will together have a downward
moment about K represented by MN. Therefore, the difference NT'
will represent the actual bending moment at the point K.

Tt sometimes happens that we want the moment of the forces not
about K, the section which separates the two parts of the structure,
but about some other point, say X, in the figure. We can obtain
this moment also with equal facility ; for if we prolong the line 4 5
of the polygon to meet the vertical through X in the point S, we
find, reasoning in the same way, that SZ, the intercept between the
side so prolonged and the closing line, is the moment required.
Polygons of moments and shearing forces may also be constructed
by making use of the fundamental relations shown above to exist
between them and the load, as will be seen presently, while a third
purely graphical method is explained farther on, based on a most
important property which they possess.

31. Application to the case of a Vessel floating in the Water.—We
sometimes meet with cases in which the beam or structure is loaded
not at intervals, but continuously, the distribution of the load not
being uniform, but varied in some given way. In such a case, the
diagrams of shearing force and bending moment become continuous
w curves. The most convenient way
of expressing how the load is dis-
tributed is by means of a curve,
the ordinate of which at any point
: represents the intensity of the load

" : at that point. Such a curve is

M A called a curve of loads. Tt may be

A K regarded as the profile of the

upper surface of a mass of earth

or other material resting on the
beam.

We will consider, first, the case of a beam fixed at one end and
loaded continuously throughout, in a manner expressed by a curve of
loads LL. (Fig. 36a.) The total arca inclosed by the curve of loads

Fig.86a,
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will represent the total load on the beam, and between the two ordi-
nates of any two points will be the load on the beam between the
two points. Now, the area of the curve of loads, reckoned from the
end 4 up to any point, K say, since it represents the total load to
the left of K, will be the shearing force at K. If at K we erect an
ordinate, KF, to represent on some convenient scale the area 4 LK,
and do this for many points of the beam, we shall obtain a second
curve FF, the curve of shearing force. Having done this, we may
repeat the process on the curve #7, and obtain the curve of bending
moment. For we have previously proved that if the load on the
beam is concentrated at given points, then the ordinate of the curve
of bending moments is at any point proportional to the area enclosed
by the curve of shearing force for the portion of the beam between
the end and that point. The truth of this is not affected by suppos-
ing the points of application of the load to be indefinitely close to
one another, in which case the load becomes continuous. Accord-
ingly, if we set up at K an ordinate, KM, to represent on some con-
venient scale the area A #X of the shearing force curve, and repeat
this for many points, we obtain the curve of bending moment, MM,
Thus the three curves form a series, each being the graphical integral
of the one preceding.

This process has an important application in the determination of
the bending moment to which a ship is subjected on account of the
unequal distribution of her weight and buoyancy along the length of
the ship. On the whole, the upward pressure of the water, called
the buoyancy, must be equal to the downward weight of the ship ;
and the lines of action of these two equal and opposite forces must
be in the same vertical. But for any portion of the length, the up-
ward pressure and the downward weight will not, in general, balance
one another ; so, on account of the difference, shearing and bending
of the ship will be induced. In the case of a rectangular block of
wood floating in water, the upward pressure of the water will, for
every portion of its length, equal the downward weight, and there
will be no shearing and bending action on it. But, in actual ships,
the disposition of weight and buoyancy is not so simple. Taking any
small portion of the length of the ship, the difference between the
Weight of that portion of the ship and the weight of the water dis-
Placed by that portion of the ship, will be a force which acts on the
Vessel sometimes upwards and sometimes downwards, according to
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which is the greater, just in the same way as forces act on a loaded
beam producing shearing and bending. In the construction of the
vessel, strength must be provided to resist these straining actions,
and it is a matter of great practical importance to determine accu-
rately the magnitude of them for all points of the length of the ship.
We will select an example of very frequent occurrence, that in which
at the ends of the ship the weight exceeds the buoyancy, whilst at
the centre the buoyancy exceeds the weight. If the ship were very
bluff ended, and carried a cargo of very heavy material in the centre
hold, the distribution of weight and buoyancy would probably be the

reverse of this.
B

A
Z

~ In the example the ship is supposed to be divided into any num-
ber of equal parts, and the weight of water displaced by each of
those parts determined ; ordinates are set up to represent those
weights, and so, what is called a curve of buoyancy BBB (Fig. 37) is
drawn. The whole area enclosed by the curve will represent the
total buoyancy or displacement of the vessel, and is the same thing
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as the total weight of the vessel. Next we suppose that the weights
of the different portions of the ship are estimated, and ordinates set
up to represent these weights, then what is called a curve of weight,
WWIV,is obtained. In the figure it is set up from the same base
line. The total area enclosed by this curve will also be the total
weight of the ship, and must therefore equal the area enclosed by
the curve of buoyancy. Thus the sum of the two areas marked 1
and 2 must equal the area marked 3. Not only must this be true,
but also the centres of gravity must lie on the same ordinate.
The difference at any point between the ordinates of the two
curves will express by how much at the ends the weight exceeds
the buoyancy, and in the middle portion by how much the buoyancy
exceeds the weight, representing, in the first case, the intensity of
the downward force, and, in the second, the intensity of the upward
force. Where the curves cross one another and the ordinates are
the same height, as at K, and K, the seclions are swid to be water-
borne. If now we set off from the base line ordinates equal to
the difference between the ordinates of the two curves BBB
and W, we obtain the curve of loads LLL; some portions
where the weight is in excess will lie below the base line, and the
rest, where the buoyancy exceeds the weight, will lie above the base
line. From what has been said before, the area above the base line
must equal the area below. Having obtained the curve of loads, the
curve of shearing force is to be obtained from it in the manner pre-
viously described, by setting up, at any point, an ordinate to repre-
sent the area of the curve ZLL between the end of the ship and that
point. In performing the operation, due regard must be paid to the

fact that the loads on different parts of the ship act in different;
directions, and for one direction they must be treated as negative,
and the corresponding area of the curve as a negative area.

Having thus determined the curve of shearing force FFF, the same
operation must be repeated on that curve to determine the curve of
bending moment. In drawing the curve of shearing force it will be
found that at the further end of the ship we return again to the base
line from which we started at first, for the shearing force at the end
must be zero. Also the bending moment at the end must be zero.
This gives us tests of the accuracy of our work.

In this example the bending is wholly in one direction, tending to
make the ends of the ship droop or the ship to “hog” in the tech-
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nical language of the naval architect, but in some examples the
direction of bending changes once or more times. Curves of shear-
ing force and bending moment were first explained in relation to a
vessel floating in the water by the late Professor Rankine in his
work on shipbuilding. It does not, however, appear that any such
curves were ever constructed in any actual example until 1869, when
some were drawn for vessels of war by direction of Mr. (now Sir E.)
Reed, at that time chief constructor of the Navy. The results ob-
tained by him are described in a paper read hefore the Royal Society
(Phil. Trans. for 1871, part 2). They now form part of the ordinary
caleulations of a vessel.

Since the water exerts on the vessel not only vertical but also
horizontal forces, the straining actions upon her do not consist solely
of shearing and bending, but include also a thrust. The horizontal
pressure also produces bending in a manner which we shall hereafter
explain.

39, Mawimam Straining Actions.— The set of forces we are con-
sidering are in equilibrium, and must therefore be partly upwards
and partly downwards. The downward force is the total weight /7,
and is generally more or less distributed, the upward force is of
equal magnitude, and is usually concentrated near two or more
points. In the case of the vessel, however, the upward force is dis-
tributed like the weight, though not according to the same law.
In any case the greatest shearing force must be some fraction of the
weight, and the greatest bending moment must be some fraction of
the weight multiplied by the length 7 over which the weight is
distributed. We may therefore express the maximum straining
actions by the formulae

Fy=k.W; My=m. W1,

where %, m are numerical quantities depending on the distribution of
the load and the mode of support. Thus for a uniformly loaded
beam supported at-the ends & = 4, m=4. The greatest value m can
have in a beam resting on supports without attachment is }; this
occurs when the beam is supported at the ends and the load concen-
trated in the middle or conversely. In vessels where the supporting
force is distributed m is much less ; its maximum value is estimated
by Mr. White at 45 in ordinary merchant steamers.
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EXAMPLES.

1. A Warren girder with 12 divisions in the lower boom is supported at the ends
and loaded with 250 tons, which may be supposed to be equally distributed among
all the 25 joints. Find the stress on each bar by calenlating the series of shearing
force and bending moments.

. RESULTS ¥oR LEFT-HAND HALF OF GIRDER. }
| F %115 lis | o5 |85 |75 |65 s a5 las (25 |15 |5 | 5
} [ | {5 | =
S 132'2.120'7i109'2\97'7:8{5‘2 74‘?i63'2:51'7140'.2:28'7' 17:2 E'T‘i
.M!’1'=Ir‘w‘713 661 | 603 | 54'6i48'8:43'1 37'3i31'6|25'8i20'1114'3 S'6i2‘8%
| | | ‘

1264 229'8 3102 367°6 402 4134
6671 181 2729 3418 3877 4106

H

9. The buoyancy of a vessel is 0 at the ends and increases uniformly to the centre,
while the weight is 0 at the centre and increases uniformly to the ends. Draw the
curves of shearing force and bending moment, and find the maximum values of these
quantities in terms of the displacement and length of the vessel.

Answer—k=%; m=+g

3. A beam, 48 feet span, is supported at the ends and loaded with weights of 6, 9,
10, 13, 5, and 7 tons, placed at intervals of 4, 5, 9, 7, 13, and 8 feet respectively,
commencing at one end. Caleulate the shearing force in each interval and the series
of bending moments.

4. In the last question construct the polygons of shearing force and bending
moment.

5. In the case of a uniformly loaded beam supported at the ends, verify the
principle that the area of the curve of shearing force is proportional to the ordinate
of the curve of bending moment.

6. When a beam is supported at the ends and loaded in any way, show that an
ordinate at the point of maximum moment divides the area of the curve of loads into
parts, which are equal to the supporting forces. Further, if a b are the distances of
the centres of gravity of these parts from the ends of the beam, and { the span, show
that the maximum moment is i W1 where

1

L= 4
e @

TRAVELLING LOADS.

33. We have hitherto been investigating the effect of a per-
manent fixed load on a structure in producing straining actions
on it. We next examine the effect of a load which is not per-
manent, but which at different times takes up different positions
on the structure, and we require to know what position of the load
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will produce the greatest straining action at any particular part of the
structure, and also the amount of that maximum straining action.
This question arises principally in the design of bridges across
which a #ravelling load, such as a train, may proceed. We will take
. Fig.3s. first the simple case of a beam
- . of span {, supported at the
ends and suppose a single con-
centrated load /# to travel
across it in the direction of
----------- the arrow. Let us consider
any point K (Fig. 38) in the
. beam, distant ¢ and b from
B the ends. As the load tra-
verses the beam, each position of the load will produce a certain
shearing force and bending moment at the point K. To find their
greatest value let z = distance of /7 from 4, then the supporting force

I
*®
f
i
i
o 2

——— g
5 '

e el e long as the weight lies between 4 and K

!
the shearing force at K will be simply 2.
Fy = W;f,

consequently the shearing force will increase as @ increases, until the
load reaches the point K. So long as the weight lies to the left of
K, the tendency will be for the portion KB to slide upwards rela-
tively to the portion 4K. This we will call a positive shearing
force. Therefore, putting z = q,

Max. positive shearing force at K = ¥ % :

Now, supposing the weight to move onward, it will in the next
instant have passed to the other side of K, and the shearing force
will have undergone a sudden change. It will now be equal to the
supporting force at the end 2,

b
_ !
G-

But not only is the magnitude of the shearing force suddenly changed,
but the tendency to slide is now in the other direction, and the
shearing force is negative. As the weight moves farther to the right
of K the shearing force diminishes, thus

Max. negative shearing force at X = W/ %}
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Wherever we take the point K it will always be true that the maxi-
mum positive shearing force will occur when the weight lies imme-
diately to the left of K, and the maximum negative when the weight
lies immediately to the right. The maximum positive shearing force
for every point in the beam may be represented by the ordinates of a
sloping line 4 B below the beam, the length BB’ being taken to repre-
sent /7. And similarly the maximum negative shearing force at any
point by the ordinates of the sloping line A'B above, A4’ also being
taken to represent /.

Next as to the bending moment. When the weight lies to the
left of K, and is at a distance from equal to —, the bending

moment at K is given by
b

P — 1 7
This goes on increasing as @ increases until the weight reaches the
point K. After having passed K the bending moment at K must be
differently expressed, being then

w(l - )

—=—a,
which becomes smaller as z increases ; so that the greatest bending
moment at K occurs when the load is immediately over X, and

then the
Max. bending Moment at K = _Jf;‘gaib_
If the point X is taken in the centre of the beam,
Max. Moment at centre = 11/ as before.

If ordinates be set up at all points to represent the maximum bending
moments at these points, a parabola (4CB) will be obtained. For
the expression for the maximum bending moment is just twice that
previously obtained for the same weight distributed uniformly.

If there are more weights, /7, 7, &c., on the beam, and /#; lie
to the right of K, the shearing force at K = P — W, where P is the
right-hand supporting force. Now, suppose we shift W to the left
of K, we shall diminish the supporting force to £ say, and this will
be the new shearing force at K. The difference between P and P’
will be less than 77, and the shearing force will be increased by
passing /7, to the left of K. 1f we were to remove 77, altogether
the diminution of P will be less than the whole of W,, and so
the shearing force at K will be increased by so doing. We obtain
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the greatest positive shearing force at K when all the weights
are to the left of K, but as near to K as possible. The greatest
negative shearing force will occur when all the weights lie to the
right of K, as near to K as possible.

The maximum bending moment at K will occur when the weights
are as near K as possible, whether to the right or left. Any addition to
the load, on whichever side of K it is placed, will cause an addition
to the bending moment.

There is another important case, that in which we have a con-
tinuous load of uniform intensity passing over the beam,  as
when a long train passes on to a bridge. We observe that as the
train approaches K, the supporting force at B, and therefore
the shearing force at K, increases. When any portion of the
weight lies to the right of K, the supporting force will be increased
by a part of the weight lying to the right of & ; but when we have
subtracted the whole of that weight, the difference, which will be
the shearing force at K, will be less than before; thus the maximum
positive shearing force at K will occur when the portion 4K is fully
loaded, and no part of the load is on KB. To find its value we have
only to determine the supporting force at B, by taking moments
about it ; then

that is, the magnitude is proportional to the square of the distance
of the point from the end 4. Tt will be graphically represented
by the ordinates of a parabola which has its vertex at 4 and axis
vertical, cutting the vertical through B in a point B’ such that
BB' = }wl, that is, half the weight on the beam when fully loaded.
As the load travels onward the shearing force diminishes at last to
zero, and then changes sign, becoming negative, the numerical magni-
tude increasing as the rear of the load approaches £. The maximum
negative shearing force will occur when the portion KB only is
loaded. The ordinates of a parabola set below the line of the heam
having its vertex at B and axis vertical, will represent the maxi-
mum negative shearing force.

The question of maximum bending moment is more simple, Tt
will occur at any point when the beam is fully loaded ; for at any
point the bending moment is the sum of the bending moments due
to all the small portions into which the load may be divided, and
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the removal of any one of them will cause a diminution of bending
action throughout the whole length of the beam. A parabola, with
its highest ordinate at the centre = jwl, will represent it at any
point.

34. Counter Bracing of Girders.—In the design of a framework
girder it is very important to take account of the maximum positive
and negative shearing forces due to a travelling load.

In such a structure the shearing force is resisted by the diagonal
bars, and in general these bars are so placed as to be in tension, for
the bar may then be made lighter than if subject to a compressive
force of the same amount. Suppose the diagonal bars so arranged
as to be all in tension when the girder is fully loaded, or when there
is only the dead weight of the girder itself to be taken account of.
There may be ample provision made for withstanding the tensile
forces, and yet it will be important to examine if there may not
be some disposition of the travelling load which would cause a
thrust on some of the diagonals. If so, the maximum amount
of this must be calculated, and the structure made capable of
withstanding it. If the shearing force at any section of the girder
is what we have called a positive shearing force, that in which the
right-hand portion tends to slide upwards relatively to the left, then,
in order that it may be withstood by the tension of a diagonal bar,
the bar must slope upwards to the right. If the bar so slopes, and
by the movement of the travelling load the shearing force becomes
negative, then the bar will be subjected to compression. Now, it
will frequently happen that in the central divisions of a girder the
positive or negative shearing forces due to the dead load are less
than the negative or positive shearing forces due to the travelling
load, so that if those bars are arranged to be in tension under the
dead load, then, on the passage of the travelling load, the stress will
be changed to compression. In some cases the bars are slender and
not suited to sustain compression ; the shearing force is then pro-
vided for by the addition of a second diagonal, sloping in the opposite
direction, which, by its tension, will perform the duty the first bar
would otherwise have to perform by compression. Such a bar is
called a counter-brace. We frequently see such additional bars fitted
to the middle divisions of framework girders.

Again, the powers of resistance of a piece of material to a given
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maximum load are greater the smaller the fluctuation in the stress to
which it is exposed ; and therefore, in determining its dimensions, it
is important to know not only the maximum but also the minimum
stress to which it is exposed. This can be done on the principles
which have just been explained.

EXAMPLES.

1. A single load of 50 tons traverses a bridge of 100 feet span. Draw the curves of
maximum shearing force and bending moment, and give the values of these quanti-
ties for the quarter and half span.

9, A train weighing one ton per foot run, and more than 100 feet long, traverses a
bridge 100 feet span. Draw the curves of maximum shearing force and bending
moment, and give the values of these quantities at the quarter and half span.

8. In the last question, suppose the permanent load fths ton per foot run. Find
within what limits counterbracing will be required.

4, In Ex. b, page 55, the maximum rolling load is estimated at 1 ton per foot run,
Determine which of the diagonals will be in compression, and the amount of that
compression, assuming a complete number of divisions to be loaded.

The two centre diagonals are the only ones which can be in compression, the maxi-
mum amount of which will be = (3:2 — 2)v/2 = 1°7. It will oceur when the rolling
load occupies 4 divisions only of the bridge.

5. In the last question, suppose a single load of 20 tons to traverse the bridge.
Find the maximum stress, both tension and compression, on each part of the girder.

Divisions. 1 i 2 i 3 : 4 ‘ b
Max. tension, bottom boom, - O 4| 48 63 { 72
Max. compression, upper boom, - 27 48 63 72 75
Max. tension of diagonals, - - 381 L 311 24 17 98
Max. compression of diagonals, - = | L i 0 28

6. In the two preceding questions, find the fluctuation of stress on each part of
the girder.

METHOD OF SECTIONS.

35. Method of Sections applied to Incomplete Frames.  Culmann's
Theorem.—The straining actions due to a vertical load may either be
wholly resisted by internal forces called into play within the structure
itself, or also in part by the horizontal reaction of fixed abutments :
the supporting forces being in the first case vertical, and in the
second having a horizontal component. The distinction is one of the
greatest importance in the theory of structures, which are thus
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divided into two classes, Girders and Arches, including under the last
head also chains. It is the first class alone which we consider in this
chapter.

The general consideration of internal forces is outside the limits of
this part of our work, and we shall here merely consider some cases
of framework structures, commencing with that of an incomplete
frame.

Incomplete frames are in general, as in Chapter I, structures of the
arch and chain class, but by a slight modification we can readily
convert such a frame into a girder and thus obtain very interesting
results.

Fig.39a.

>0

Fig. 39a shows a funicular polygon such as that in Fig. 11, page 15,
except that the supports are removed and replaced by a strut 06.
By this addition the polygon becomes a closed figure, and 06 is
therefore called its “closing line.” The structure is carried by sus-
pending rods at the joints 06, and loaded as shown. The construc-
tion of the diagram of forces, Fig. 395, has been sufficiently explained
in the article referred to, and it only remains to observe that the
supporting forces P@) are immediately derived from the diagram by
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drawing OF parallel to the closing line, which is not necessarily
horizontal. The horizontal thrust of the strut and tension of the
rope is found as before by drawing ON horizontal.

This strueture may now be regarded as a girder, the load on which,
together with the vertical supporting forces, produce definite strain-
ing actions M and F on any section. Let the section be KK in the
figure cutting one of the parts of the rope and the strut as
shown in the figure: let the intercept be 7. Consider the forces
acting at the section on the left-hand half of the girder, the
horizontal components of these forces are equal and opposite, acting
as shown in the figure, each being H or ON in the diagram of forces.
The vertical components are balanced by the shearing force, and the
horizontal components by the bending moment, which last fact we
express by the equation

Hy = M,

that is to say, the funicular polygon corresponding to a given load is
also a polygon of bending moments, the intercept between the
polygon and its closing line multiplied by the horizontal force is
equal to the bending moment due to the load. Hence, by a purely
graphical process, we can construct a polygon of moments, for we
have only to construct a funicular polygon corresponding to the load
as shown in the article already cited, and complete it by drawing
its closing line. This is one of the fundamental theorems of
graphical statics, a subject which of late has become almost a new
seience. The construction is intimately connected with the process
of Art. 29 as the reader should show for himself. In its com-
plete form it is due to Culmann and is generally known by his name,
having been given in his work on graphical statics.

36. Method of Sections in general.  Ritter's Method.—In frames
which are complete the number of bars cut by the section, instead of
being two only, as in the preceding case, is in general three at least.

In Fig. 40 let KK' be the section cutting the three bars in
three points which may be considered as the points of application of
three forces PQR due to the reaction of the bars, which balance the
shearing and bending actions to which the section is subject.
Resolving horizontally and vertically, and taking moments, we should
—remembering that the load being wholly vertical the sum of the
horizontal components must be zero—obtain three equations which
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would determine P, @, B. It is, however, simpler to employ a method
introduced by Ritter which enables us to obtain the value of each
force at once. Let the lines of action of P, () intersect in the
point 1, @ and R in 2, P and R in 3, and let the perpendicular

K
]

Fig.40. /
H

dropped from each intersection on to the line of action of the third
force be #, p, ¢, respectively : by measurement on the drawing of the
framework structure we are considering it is always easy to determine
these perpendiculars. Then taking moments about the three points
Wwe get i

Rr=1L; Pp=1L; Qg =L,

where I,, L., L, are the moments of the forces acting on the left-
hand half of the structure about the points 1, 2, 3, respectively. At
page 68 it was shown how to get these moments graphically from the
polygon of moments, but they also may be obtained by direct
caleulation.

We may write down a general formula for this method, thus—

S =i,

where H is the stress on any bar, & its perpendicular distance from
the intersection of the two others cut by a section, and L is the
moment of the forces about that intersection. The special case
in which the intersection lies on the section considered so that the
moment L becomes the bending moment (J/) on the section, has
already been considered in Chapter IL.  'When the stress on a single
bar is required as a verification of results obtained by graphical
methods, or where the maximum stress due to a travelling load has
to be determined, this method is often serviceable, but as a
general method it is inconvenient from the amount of arithmetical

labour involved,
i
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The shearing action on the section is resisted by the components
parallel to the section of the stress on the several bars. In the
case of the incomplete frame of Fig. 39, p. 79, these components
are given at once by the diagram of forces. In general, however,
three bars, and only three, must be cut by the section if the frame
be neither incomplete nor redundant; when two of these are
perpendicular to the section the case is that considered in Chap.
TIL of a framework girder with booms parallel, in which the
diagonal bars alone resist the shearing. When one bar only
is perpendicular to the section, the other two collectively resist
the shearing action: this case is common in bowstring and other
girders of variable depth. The upper hoom together with the web here
resists the shearing,

When more than three bars are cut by the section, the stress
in each is generally indeterminate on account of the number of
bars being redundant. On this question it will be sufficient for
the present to refer to Chapter IL, Section IL.

EXAMPLES.

1. In example 3, page 73, construct the polygon of bending moments by Culmann’s
method.

9. In example 6, page 36, find the stress on each part of the roof by Ritter's
method.

3. In example 7, page 36, find the stress on each bar by Ritter’s method.

4. If a parabolic bowstring girder be subject to a uniform travelling load, repre-
gented by the application of equal weights to some or all of the verticals, show that
the horizontal component of the maximum stress on each diagonal is the same for all.
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CHAPTER IV.
FRAMEWORK IN GENERAL.

37. Straining Actions on the Bars of a Frame. General Method
of Reduction.—When the bars of a frame are not straight, or when
they carry loads at some intermediate points, the straining action
on them is not generally a simple thrust or pull, but includes a
shearing and bending action. The present and two following articles
will be devoted to some cases of this kind.

First suppose the bars straight, but let one or more be loaded
in any way, and in the first instance consider any one bar 4B
(Fig. 41) apart from the vest of the frame, and suspended by

Strings in an inclined position. Let any weights act on it as
SI{OWn in the figure, then the temsions of the vertical strings
Will be just the same as in a beam, 4B, supported horizontally
at the ends and loaded at the same points with the same weights.
Resolve the forces into two sets, one along the bar, the other
!iransverse to the bar. The first set produce shearing and bending
Just as if applied to a beam in a horizontal position, while the
second set produce a longitudinal stress, which will be different
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in each division of the bar. Let 6 be the inclination of the bar
to the vertical, then the pulls on the successive divisions are

the last being a thrust equal to @ . cos 6, so that the stress varies from
Q.cosOto — P.cosf. Now ohserve that we can apply to 4B at its
ends, in the direction of its length, a thrust, H,, of any magnitude we
please without altering 2 and @, but that we cannot apply a force in
any other direction, whence it follows that when 4B forms one
of the bars of a frame, its reaction on the joint 4 must be a
downward force, P, and a force, H;, which must have the direction
BA, while the reaction on B in like manner consists of a downward
force, @, and an equal force, H, in the direction 4B. The
downward forces P, @, are described as the part of the load on
AB carried at the joints 4, B, and it is now clear that if these
quantities be estimated for each bar and added to the load directly
suspended there, we must be able to determine the forces H, by
exactly the same process as that by which we find the stress
on each bar of a frame loaded at the joints. The actual thrust
on AB evidently varies between Hy, — P.cos6 at the top, to
H, + Q.cos at the bottom, so that I, may he described as the
mean thrust on the bar, while the shearing and bending depend
solely on the load on the bar itself, and not on the nature of
the framework structure of which it forms part, or on the load
on that structure. In the particular case where the load on the bar
is uniformly distributed, the forces PQ are each half the weight of
the bar, and the thrust 7, is the actual thrust at the middle point
of the bar.

This question may also be treated by the graphical method of
Art. 35 with great advantage. Through 4 and B draw a funicular
polygon corresponding to the load on 4 B, the line OV in the diagram
of forces will be parallel to 4B and may be taken to represent . This
funicular polygon will be the curve of bending moment for the bar,and
the other straining actions at every point are immediately deducible.
Tt will be seen presently that the bar need not be straight.

For simplicity it has been supposed that the forces acting on
the bar are parallel: if they be not, the reduction is not quite so
gsimple. It will then be mnecessary to resolve the forces into
components along the bar and transverse to the bar, the second -
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set can be treated as above, while the total amount of the first
set must be considered as part of the force applied to the joints
either at 4 or B. Such cases, however, do not often occur,
and it is therefore unnecessary to dwell on them.

The joints have been supposed simple pin joints or their equi-
valents, but the method used for frames loaded at the joints wil
apply even if the real or ideal centres of rotation of the bars are not
coincident, provided only the centre lines prolonged pass through
the point where the load is applied. The method of reduction just
explained then requires modification. Such cases are of frequent
occurrence, and the next article will be devoted to them.

38. Hinged Girders. Virtual Joints.—The case of a loaded beam,
the ends of which overhang the supports on which it rests, has
already been considered in Art. 21, where it was shown that the
straining actions at any point might be expressed in terms of the
bending moments at the points of support, which of course will be
determined by the load on the overhanging part. If the over-
hanging parts be supported, as in the case of a beam continuous over
several spans, or with the ends fixed in a wall, the same formula
will serve to express the straining actions at any point in terms of
the bending moments at the points of support, but those bending
moments will not be known unless the material of the beam and
the mode of support are fully known. Hence the full consideration
of such cases forms part of a later division of our work. Certain
general conclusions can be drawn, however, which are of practical
Interest,

The graphic construction for the bending moment at any point
?f a beam, (', which is not free at the points of support, is given
 Fig. 28, p. 45. The figure refers to the case where the bending
action at €' and D is in the opposite direction to the bending action
Near the centre, as it is easily seen must be the case in general.
The points of intersection of the moment line with the curve
of moments drawn, as explained in the article cited, on the sup-
Position of the ends being free, show where the negative bending
at the ends passes into the positive bending at the centre. Here
!:here is no bending at all, and the central part of the beam (EF
In figure) is exactly in the position of a beam supported but otherwise
free at its ends. We may therefore treat the case as if £ and F were
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joints, the position of which will be known if the bending moments
at the ends are known, and conversely. In some cases there may
be actual joints in given positions, while in others there will be
“virtual joints,” the position of which may be supposed known
for the purposes of the investigation.

Fig.42,

% L VAN WM & C W
% C D

Fig. 42 shows a beam 4B continuous over three spans, the
moment curves for which will be known when the load resting
on each span is known. It is evident from what has been said
that the moment line must be the broken line AedB, cutting
the moment curve of the centre gpan in two points, and the moment
curves of the end spans each in one point, the others being the
ends of the beam. Thus there are four virtual joints, of which
two must be supposed known in order to find the straining actions
at any point. Their position will depend (1) on whether the
supports are on the same level or not, (2) on the material and
mode of construction of the beam, (3) on the load. Such a beam
is in a condition analogous to that of a frame with redundant
bars, considered in Chapter II. Section IIL; the straining actions
are indeterminate by purely statical considerations, for the same
reason as before. We can, however, see that the bending action at
each point is in general less than if the beam were not continuous.

In one particular case the position of the virtual joints can
be foreseen. Suppose a perfectly straight beam, of uniform trans- -
verse section, to be continuous over an indefinite number of equal
spans : let the weight of the beam he negligible, and let equal
weights be placed at the centre of each span. Then since the
pressure on each support must be equal to the weight, the heam
is acted on by equal forces at equal distances alternately upwards
and downwards, and there being perfect symmetry in the action
of the upward and downward forces, the virtual joints must be
midway between the centre and the points of support of each span.
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In the special case where the beam is uniformly loaded we
can further see that the load resting on the supports is not one
half the weight of the parts of the beam resting there, as it would
be if the beam were not continuous, but must in general be greater
for the centre supports and less for the end supports. For if the
virtual joints be LNML, as in the figure, it is easily seen that
4 carries half the weight of AL, not of A4C, while (' carries half
the weight of 4L and N, together with the whole weight of CL and
CN. This observation shows that in trussed bheams where, as is
usually the case, the loaded heam is continuous through certain
joints, the effect of the continuity is generally to transfer a part of
the weight from the joints where the ends are free to the joints
where the beam is continuous. We shall return to this point
hereafter,

The principle of continuity is frequently taken advantage of in the
construction of girders of uniform depth by making them continuous
over several spans. The virtual joints, then, vary in position for each
Position of the travelling load, rendering it a complicated matter to
determine the maximum straining actions, while there is always an
element of uncertainty about the results, for reasons already referred
to and afterwards to be stated more fully.

In some structures, however, the joints have a definite position.

A Bl_“'l

/ Fig.43. %
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Figure 43 shows a cantilever bowstring girder, consisting of a
central bowstring girder N, the ends of which rest on parts
4CN, BDH, projecting from the piers, technically described as
cantilevers. The joints here are at N and M. In structures of
gteat span, in which the weight of the structure is the principal ele-
ment, so that the variations in distribution are small, this type of
girder is economical in weight. In a bridge over the Forth now
M process of execution (1883), the central portion for each of two
Principal openings consists of a bowstring suspension girder 350 feet
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span, while the cantilevers are each no less than 675 feet in length,
making a total span of 1700 feet. These cantilevers are of great
depth near the piers, and, to provide against wind pressure, they are
there likewise greatly increased in breadth, and solidly united to
them. For a description of this design, which, from its gigantic
dimensions and other unusual features, deserves attentive study, the
reader is referred to Engineering for September, 1882.

39. Hinged Arches—In the second section of Chapter I. certain
forms of arches were considered which are simply inverted chains,
and require for equilibrium a load of a certain definite intensity at
each point. We shall now take the case of an arched rib capable of
sustaining a load distributed in any way. We shall suppose the load
vertical, and, to take the thrust of the arch, we shall imagine a tie
rod introduced so as to convert it into a bowstring girder. If the
straining actions at each point of the rib are to be determinate with-
out reference to the relative flexibility of the several parts of the rib,
and other eircumstances, we must have, as in the case of the continu-
ous beam, joints in some given position. The necessary joints are in
this instance three in number, and, we shall suppose, are at the
crown C (Fig. 44), and one at each springing 4 and B.

=z

X 5 i

Taking a vertical section KK' through the rib and tie, let the
bending moment due to the vertical load and supporting forces be
M. This bending moment is resisted, firsf, by the horizontal forces
called into play ; that is to say, the pull of the tie rod H at K, and
the equal and opposite horizontal thrust of the rib at K ; secondly, by
the resistance to bending of the rib itself, the moment of which we
will call . Hence if 7 be the ordinate of the point considered, we

must have
M= Hy + p
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To determine H we have only to notice that at the crown where
y = h there is a joint, that is, p = 0,

M, = HI,

where 2/, is the bending moment due to the load for the central sec-
tion. Thus, to determine z« we have the equation

Sy M
el h

The graphic representation of p is very simple. Let us imagine
the curve of moments drawn for the given vertical load, and let it be
so drawn as to pass through 4, B, and C, which is evidently always
possible. Then, if ¥ be the ordinate of the curve,

=1
Therefore, by substitution,
e L=
So that the bending moment at each point of the rib is represented
graphically by the vertical intercept between the rib and the curve
of moments. In the figure, the dotted curve 4ZCB is the curve of
moments, and K7 is the intercept in question.

Arched ribs in practice are rarely, if ever, hinged, and the strain-
ing actions on them occasioned by a distribution of the load not
corresponding to their form depend, therefore, upon the relative
flexibility of the several parts of the rib, and other complicated cir-
cumstances. If the position of the virtual joints be known, or the
bending moments at any three points, the graphical construction just
given can be applied.

Instead of a rigid arch, from which a flexible platform is sus-
pended, we may have a stiff platform suspended from a chain. This
is the case where a suspension bridge is adapted to a variable load

by means of a stiffening girder. For this case it will be sufficient to
refer to Ex. 3, page 97.

40. Structures of Uniform Strength—In any framework structure
without redundant bars, the stress on each bar may be determined
as in Chapter L, by drawing a diagram of forces for any given load,
W, and expressed by the formula

H = ¥,
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where [ is a co-efficient depending on the distribution of the load.
If 4 be the sectional area of the bar we find by division the stress
per sq. inch, which must not exceed a certain limit, depending on
the nature of the material as explained in Part IV. of this work.
When the structure is completely adapted to the load which it has
to carry, the stress per sq. inch is the same for all the bars, and it is
then said to be of Uniform Strength. Uniformity of strength cannot
be reached exactly in practice, but it is a theoretical condition which
is carried out as far as possible in the design of the structure.
Other things being equal, the weight of a structure of uniform
strength is less than that of any other. Such a structure js
therefore less costly, for weight is to a great extent a measure
of cost. :

Whenever the load is known, the weight of a structure of
given type and of uniform strength ean be caleulated thus. Suppose
A the sectional area of a piece, H, the stress on it, £, a co-efficient
of strength, then

IFLE 2 i
Next let u, be the weight of a unit of volume, usually a cubic
inch, and assume

then A is a certain length, being in fact the length of a bar of the
material which will just carry its own weight. Its value for various
materials is given in Chapter XVIIL Then, assuming the piece
prismatic and of length s, its weight is

Hs

A, 2

and therefore the weight of the whole structure must be for the
same value of A,

wyds =

it
the summation extending to all the pieces in the structure, and
being performed by integration in a continuous arch op chain.
It will be observed that s is the length of any line in the frame-
diagram, and /7 that of the corresponding line in the diagram
of forces; we have only then to take the sum of the products of
these lines and divide by A, the result will be the weight of the
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structure. It is however generally necessary to find the weights,
W, W, of the parts in compression and in tension separately,
because the value of A is generally different in the two cases.

A remarkable connection was shown by the late Prof. Clerk Maxwell to exist
between Wy and W, Let us take a structure of the girder class and suppose the
total load upon it ¢, and the height of the centre of gravity of that load above the
points of support % Imagine this structure to become gradually smaller without
altering either its proportions or the magnitude and distribution of the load &, then
G descends and does work during the descent in overcoming the resistance (I') of
the bars in compression to diminution of length, while at the same time the bars in
tension (P) do work during contraction, The values of Z’and P do not alter, for the
diagram of forces remains the same, and therefore if we conceive the process to
continue till the structure has shrunk to a point,

Gh=32Ts-ZPs=MW, - W,
In particular, if the centre of gravity of the load lies on the line of support, and if
the co-efficients be the same, the weights of the parts in compression and tension
will be equal. A corresponding formula may be obtained for structures of the
arch-class by taking into account the thrust.

The weight of an actual structure is always greater than that
found by this method. First, an addition must be made to allow
for joints and fastenings. Thus, for example, in ordinary pin
joints the eye of the bar weighs more than the corresponding
fraction of the length of the bar, and in addition there is the
weight of the pin. Secondly, in all structures there is more or
less redundant material necessary to provide against accidental
strains not comprehended in the useful load. Thirdly, there are
local straining actions in the pieces occasioned by their own weight
and other causes.

41, Stress due to the Weight of o Structure.—The total load on
any structure consists partly of external forces applied to it at
various points, and partly of its own weight : the total stress on
any member is therefore the sum of that due to the external
load and of that due to the weight of the structure itself. As
that stress cannot exceed a certain limit, depending on the strength
of the material, it necessarily follows that the stress due to the
weight is so much deducted from the strength. Thus the consideration
of the weight of a structure is an essential part of the subject,
even if we disregard the question of cost.

The weight of each member is of course distributed over its
whole length, and so also may be a part or the whole of the
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external load. Applying the general method of reduction explained
in Art. 37, we suppose an equivalent load applied at each joint,
and drawing a diagram of forces we determine the mean stress, H, on
the member. If the unsupported length of the bars be not too
great, a matter to be considered presently, this stress will be the
principal part of the straining action on the bar, and the bending
may be neglected as in the preceding article.

Now consider two structures similar in form and loaded with
the same total weight, distributed in the same way, so that the
only difference in the structures is in size: then the stress on
corresponding bars must be the same, for the structures have the
same diagram of forces. That is to say, in the formula

=
the coefficient /: depends on the type of structure and the distribu-
tion of the load upon it, but not on its dimensions. Dividing by the
sectional area the intensity of the stress is
w
p==F 5
Next let 7/, be the weight of the structure itself, and suppose the
relative sectional areas of the several pieces the same, then
Hy =y cal
where ¢ is a coefficient depending on the type of strueture, and
I a length depending on the linear dimensions of the structure.
For example, in roofs and bridges ! may conveniently be taken
as the span. Then if %, be the value of %, which corresponds to
the distribution of the weight of the structure, which will be the
same whether the structure be large or small,
W

Po = Ky T" = Wkl

will be the stress due to the weight of the structure. In other
words, the stress due to the weight of similar structures varies
as their linear dimensions.

Since p, cannot exceed f it follows at once that there must
be a limit to the size of each particular type of structure, beyond
which it will not carry its own weight. If L be that limit given by

Fi

3
ke
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the stress due to the weight of any similar structure of smaller
dimensions will be simply

l
Do =f‘ 'L’

and f, =f"1’n=f' L}:-I

is the strength which may be allowed in calculations made irre-
spectively of weight. If the structure be of uniform strength
throughout under its own weight, the value of p, will be the same
for each member, but this is not necessarily the case, and there may
be a different value of f' for each member. The actual limiting
dimensions of the structure will of course be the least of the various
values corresponding to the various members.

The conclusion here arrived at is obviously of the greatest
importance, for it immediately follows that in designing a roof,
bridge, or other structure of great size, the weight of the structure
is the principal thing to be considered in estimating the straining
actions upon it, while a certain limiting span can never be exceeded.
On the other hand, in small structures the straining actions due to
the weight are unimportant; it is the magnitude and variations of
the external load which have the greatest influence. This remark
also applies to the local straining actions which produce bending
in the pieces, their relative importance increases with the size of
the structure, and it is necessary to provide against them by
additional trussing. A large structure is therefore generally of more
complex construction than a small one, as is illustrated by the
various types of roof-trusses considered in Chapter I.

The difference of type of large structures and small ones, as well
as the circumstances mentioned at the close of the last article,
render tentative processes gemerally necessary in caleulations re-
specting weight. If the type of structure and the distribution
of the total load, 77, be supposed known, the value of the co-
efficients % and ¢ will be known for some given member. By
assuming the stress on that member equal to the co-efficient of
strength £, we find

. 1
Hi= W.ck.;,{,

a formula which gives the weight of the structure in terms of
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the load, but the co-efficients will generally vary according to
the span. Among the circumstances on which they depend the
ratio of the vertical to the horizontal dimensions of the structure
is most important. For a given span / diminishes when the depth is
increased, while on the other hand ¢ generally increases, so that for
a certain ratio of depth to span the weight of the structure is least.
In ideal cases ¢ may remain the same (Ex.10,p.97), but in actual struc-
tures the redundant weight of material necessary to give stiffness and
lateral stability increases, so that the most economical ratio of depth to
span is generally much less than would be found by neglecting such
considerations. These points are illustrated by examples at the end
of this Chapter and Chapter XIL, where the question is again
considered briefly ; but for detailed applications to actual structures
the reader is referred to works on bridges, in the design of which
it is of the greatest importance.

49, Straining Actions on o Loaded Structure in General—The
results obtained in the last chapter for the case of parallel forces
acting on a structure possessing a plane of symmetry in which the
forces lie, may be readily extended to structures which have an
axis of symmetry acted on by any forces passing through that axis
and perpendicular to it. This is the case, for example, of a beam
acted on by a vertical load, and also by some horizontal forces
arising say from the thrust of a roof or from wind pressure. We have
then only to consider the vertical and horizontal forces separately.
Fach will produce shearing and bending in its own plane, which
may be represented by polygons as before. The total straining
action will be simply shearing and bending, and will be as before
independent of the particular structure on which the forces operate.
The magnitude of the straining action, whether shearing or bending,
will be the square root of the sum of the squares of its components,
and may therefore be readily found by construction and exhibited
graphically by curves. In shafts such cases are common, and some
examples will be given hereafter.

Another entirely different kind of straining action sometimes
oceurs in structures proper (roofs, bridges, etc.), and in machines
is one of the principal things to be considered. Imagine a structure
of any kind to be divided by an ideal plane section into parts
A and B, and to be acted on by forces parallel to that plane.
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Let the forces acting on A reduce to a couple the axis of which
is perpendicular to the section, the forces on B are equal and
opposite, and the two equal and opposite couples tend to cause
A4 and B to rotate relatively to each other. As already stated in
Art. 16 this effect is called Twisting, and the magnitude of the
twisting action is measured by the magnitude of either of the couples
which form its elements.

Simple twisting sometimes occurs in practice, for example, when
a capstan is rotated by equal forces applied to all the bars, but
it is generally combined with shearing and bending. Tt is then
necessary to know about what axis the twisting moment should be
reckoned, which will depend on the nature of the structure. In
shafts and other cases to be considered hereafter the geometrical
axis is an axis of symmetry which at once determines this.

When twisting exists the shearing and bending are determined
by the same method as before, for they are independent of the
axis of reference. Should however the structure be subject to
a thrust or a pull (Art 16), the axis about which the bending
moment should be reckoned must be known, for it will depend
on the nature of the structure.

These general observations will be illustrated hereafter, and are
only introduced here to show how far straining actions can be
regarded as depending solely on the external forces operating on
the structure without reference to any other circumstances.

43. Framework with Redundant Parts.—In a complete frame, with-
out redundant bars (pp. 13, 56), suppose a link applied to any two
b_&I‘S, one end attached to each. Let the link be provided with a
right and left handed screw or other means of altering its length at
Pleasure, then by screwing up the link a pull may be produced in
th_e link of any magnitude we please, while a corresponding stress
Will be produced in each bar of the frame which will bear a given
Tatio to the pull. Such a link may be called a straining link, and by
1ts 'a.ddition We obtain a frame with one redundant bar. The stress-
Tatio on the parts of a frame of this kind is completely definite, but
the magnitude of the stress may be anything we please. Instead of
o stra.ir}ing link we may have any number, and if the stress on each
of these links be given, the same thing will be true. Thus it appears
that a frame with redundant parts may be in a state of stress even
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though no external forces act upon it. This is of practical import-
ance on account of the effect of changes of temperature. If all the
bars of a frame with redundant parts are equally heated or cooled,
the frame expands or contracts as a whole, but no other effect is
produced ; any inequality, however, causes a stress which may, under
certain circumstances, be very great. This (at least theoretically)
is one of the reasons why redundant parts are a source of weakness.
The necessity of providing against expansion and contraction is well
known in large structures resting on supports. The ground connect-
ing the supports suffers little change of temperature, and the
structure, therefore, cannot be attached to the supports, but must be
enabled to move horizontally by the intervention of rollers. The
magnitude of the stress produced when changes of length are forcibly
prevented will be considered hereafter (Chapter XIL).

There is no essential difference between a frame the stress on the
parts of which is due to the action of straining links, and a frame
acted on by external forces ; for every force arises from the mutual
action between two bodies, and may therefore be represented by a
straining link connecting the bodies. Even gravity may be regarded
as a number of such links connecting each particle of the heavy
body with the earth. Accordingly, if we include in the structure we
are considering, the supports and solid ground on which it rests, we
may regard it as a frame under no external forces, but including a
number of straining links screwed up to a given stress. If the
original frame be incomplete, its parts will be capable of motion, and
it becomes a machine, ag will be explained in Part III. of this work.

44. Concluding Iemarks—Various other questions relating to
framework remain to be considered, especially with reference to the
joints by which the parts are connected, but these, involving other
than purely statical considerations, do not come within the present
division of our work, but are referred to at a later period.

EXAMPLES,

1. In Ex. 4, page 12, if the weight be supposed uniformly distributed, find the
thrust, shearing force, and bending moment at each point of each rafter, and
exhibit the results graphically by drawing curves.

Diagrams of shearing force will be sloping lines crossing each rafter at the centre.

Max. shearing for short rafter = 91 lbs.

» 31 long ” = 1583 ,,

Diagrams of bending moment will be parabolas.
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Max. moment at centre of short rafter = 117 ft.-bs.
3 » kmg »” = 290 3

2. A triangular frame A BC, supported at 4 and €, with A€ horizontal, is con-
structed of uniform bars weighing 10 lbs. per foot, the lengths being—AB = 3 feet,
B( = 4 feet, and A =5 feet. Suppose, further, that 4B and B each carry 50 lbs.
in the centre. Draw eurves of thrust, shearing force, and bending moment for each
bar.

3. The platform of a suspension bridge is stiffened by girders hinged at the centre
and at the piers. The chains hang in a parabola, and the weight of the platform,
chains and suspending rods may be regarded as uniformly distributed. Find the
bending moment at any point of the stiffening girder, and exhibit it graphically by
a curve when a single load W is placed (1) at the centre of the bridge, and (2) at
quarter span. 5

First case. On account of W each half of the girder will tend to turn downwards
about the ends, and will be supported by the uniform upward pull of the suspending
rods. ., total upward pull for each % girder = W, because the centre of action is at
1 span. Thus each  girder will be in the state of a heam londed uniformly with W,
and supported at the ends. Max, moment at middle of each half

= W x half span.

Second case. The upward pull of the suspending rods will still be uniform, but
for each half girder will now be only 4 W, found by assuming an equal action and
reaction af the centre joint, and taking moments of each half about the ends. For
the half girder which carries the weight the bending moment will be the difference
between that due to W concentrated in the centre and 4 ¥ distributed uniformly.

Max, = % W x half span.

On the other half it will be due simply to a distributed load of 4W. Max.
= 1'% W x half span. :

: 4 A timber beam 24 feet span is trussed by a pair of struts 8’ apart, resting on
ron tension rods forming a simple queen truss 3’ deep without a diagonal brace.
T!JE beam is loaded with 5 tons placed immediately over one of the vertical struts.
:_E'\.nd the shearing force and bending moment at any point of the beam, supposing it
Jointed at the centre and the centre only.

The thrust on each strut must be 24 tons; therefore, curves of shearing force
and bending moment for each half of the beam are the same as those for a beam 12
feet long loaded at a point 4 feet from one end with 2} tons.

The problem should also be treated by the method of sections. Results should
a.lsuo be obtained for the case where one half the beam is uniformly loaded.

2 A beam uniformly loaded is fixed horizontally at the two ends, and jointed at
:;V © given points. Draw the diagrams of shearing force and bending moment. Show
: 4% the beam will be strongest when the distance of each point from centre is rather
€58 than 8 span.

G . Th‘f D}ﬂ.tform of a bowstring bridge of span 2a is suspended from parabelic
*ched ribs hinged at crown and springing. One half the platform only is lozded
“.lnfom]y with a0 1bs, per foot run. Show that the greatest bending moment on the
Tibg ig Lpeal,
W,il In the last question, if a weight of W tons travel over the bridge, how great
1L be the maximum bending moment produced ?
G
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8. A girder is continuous over three equal spans, and is hinged at points in the
centre span midway between centre and piers. Find the virtual joints in the end
spans when uniformly loaded throughout.

9, The weight of the chains, platform and suspension rods of a suspension bridge
may be treated as a uniform load per foot-run, which at the centre of the bridge is
double the weight of the chain. The dip of the chain is /;th the span. The weight
of iron being 480 1bs, per cubic foot, and the safe load per square inch of sectional
area of chain being 5 tons, find the limiting span, and deduce the sectional area of
chains for a load of % ton per foot-run on a similar bridge 300 feet span.

If A = seetional area of chains at centre in sq. ins., then 20 4 = weight of bridge
per foot-run in lbs.

Horizontal tension = 4P AL =5 x 2240. 4.
% L =1034 feet.
If A’ = area of one chain of the bridge 300 feet span,
‘Whole load on chain = (%04’ + 2240) 300,
Horizontal tension =3 (%04’ + “:0) 300 x 13 = b x 22404,
.5 A" =344 sq. in. each chain.

Remark.— By the use of steel wire ropes and by lightening ‘the platform and other
parts of the skructure as much as possible, the limiting span of suspension bridges is
much increased, there being several examples of a span of 1250 feet and upwards.

10. In a girder with booms parallel and of uniform transverse section the weight
of the web is equal to the weight of the booms. Assuming a co-efficient of strength
of 9000 1bs per sq. inch, and the weight of a cubic inch %th of a Ib., show that the
limiting span in feet is

L = 5400,

where AV is the ratio of depth to span.
11, The weight of a rib of parabolic form, span 7, rise nl, with transverse section
varying for uniform strength under a uniformly distributed load W, is

1 (!
Wo- (ot +§n)WX.

e V3 i
This is least when n = e *433, then Wy ="577T W X

The formula fails if Wo be nearly equal to W, for the external load would then have
to be partly acting upwards to secure uniform distribution of the total load.



