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PART I._-STATICS OF STRUCTURES.

CHAPTER 1.
FRAMEWORK LOADED AT THE JOINTS.

113 Preliminary Explanations and Definitions.—A frame is a structure
composed of bars, united at their extremities by joints, which offer
no resistance to rotation. In the first instance we may suppose the
centre lines of the bars all in one plane, and in that case the joints
may consist simply of smooth pins passing through holes at the ends
“of the bars, which are to be imagined forked, if necessary, so as
to allow the centre lines to meet in a point. A large and important
class of structures, known to engineers as ‘“trusses,” approach so
closely to frames that calculations respecting them may be conducted
hy treating them as if they were frames. The differences between
@ truss and a frame will appear as we proceed.

The frame may be acted on by forces applied at points in one or
!Tlore of its bars, or at the joints which unite the bars together. An
Important simplification, however, is effected by supposing, in the
first instance, that the joints only are loaded, an assumption which
will be made throughout this chapter, except in a few simple
examples. It will be shown hereafter that all other cases may
1?0 derived from. this by means of a preliminary reduction (see
Chapter Iv.).

Assuming, then, that the frame is acted on by forces at the joints,

due either to weights or other external causes, or to the reaction of
P A
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supports on which the frame rests, the problem to he solved is to
find the forces called into play on each of the hars of which it is
constructed. These forces are caused by the pressure of the pins on
the sides of the holes through which they pass, and it at once follows,
since no other forces act on the bar, that for each bar these pressures
must be equal and opposite, their common line of action heing the line

joining the centres of the holes.

Figs.1a,1b, There are two possible cases shown
¢ pip —p 1o Eigacla by ?;he first the bar
= %@’ is acted on hy a pair of equal and
- pap! p  Opposite forces tending to length?n
= et Moy &< it, and in the second to shorten it.

The pairs of forces are called a Pull
and a Thrust respectively, while
the bars subjected to their action are called Ties or Struts re-
spectively. Between a pull and a thrust there is no statical differ-
ence but that of sign; the constructive difference, however, between
a tie and a strut is great. The first may theoretically he a rope or
chain, and the second may he made up of pieces simply butting
against one another without fastening, while a rigid bar will serve
either purpose, though its powers of resistance are generally entirely
different in the two cases.

It often happens that it is unknown whether a har be a strut or a
tie, and the pair of forces are then called a STRESS on the bar. This
word “stress” was introduced by Rankine to denote the mutual
action between any two bodies, or parts of a body, and here means,
in the first instance, the mutual action between the parts of the
frame united by the bar we are considering.  If, however, we imagine
the bar cut into two parts, 4 and B, by any transverse section, as
shown in Figs. 1a, 1b, those parts are held together in the case of a
pull, or thrust away from each other in the case of a thrust, by in-
ternal molecular forces called into play at each point of the transverse
section, and acting one way on A and the other way on B. As 4
and B must both be in equilibrium, it is obvious that these internal
forces must be exactly equal to the original forces, and thus it appears
that the stress on the bar may also be regarded as the internal
molecular action between any two parts into which it may he
imagined to be divided. Stress, regarded in this way, will be fully
considered in a subsequent division of this work ; it will be here
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sufficient to say that its intensity is measured by dividing the tot‘al
amount by the sectional area of the bar, and is limited to a certa.x_n
amount, clepending on the nature of the material of which the bar is
Constructed,

It is further manifest from what has been said, that the stress on a
bar may likewise he regarded as a mutual action between the bar and
either of the pins at its ends which are pulled towards the middle of
the bar in the case of a pull, or thrust away from it in the case of a
thrust ; each pin is therefore acted on, in addition to any load which
may be suspended from it, by forces, the directions of which ave the
lines joining the centres of the pins, from which it follows at once that
every joint may be regarded as a point kept in equilibrium by the load af that
Joint and by forces of which the bars of the frame ave the lines of applica-
tion. This principle enables us to find the stress on each bar of a
frame loaded at the joints, whenever such stress can be determined
by statical considerations alone, without reference to the material or
mode of construction, that is to say, in all cases which properly belong
to the present division of our work.

Forces are measured in pounds-weight or, when large, in tons of
2240 1bs, They are often distributed over an area or along a line,
and are then reckoned per square foot or per “running” foot, the
last expression being commonly abbreviated to “foot-run.”

The bars need not be connected by simple pin joints as has been
Supposed for clearness, provided that their centre lines if prolonged
meet in a point through which passes the line of action of the load
on the joint, This point may be called the centre of the joint, and
We may replace the actual joint by a simple pin, or, if the bars are
ot in one plane, by a ball and socket which has the same centre.
We shall return to this hereafter, but now pass on to consider
various kinds of frames, commencing with the simplest.

SECTION I.—TRIANGULAR FRAMES.
2. Diagram of Forces Jor a Simple Triangular Frame.—The simplest
kind of frame ig a triangle,

In Fig. 2a ACB is such a triangle ; it is supported at 4B so that
4B is horizontal, and loaded at ¢ with a weight . Then evidently
the effect of the weight is to compress AC, BC, and to stretch 45,
which is conveniently indicated by drawing A¢, BC in double lines,
and 4B in 4 single line. Also the weight produces certain vertical
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pressures on the supports 4, B, which will be balanced by correspond-
ing reactions P and Q.

To find the magnitude of the thrust on AC BC, the pull on 45,
and the reactions, the diagram of forces Fig. 25 is drawn: ab is a
vertical line representing ¥ on any convenient scale, while a0, b0 are
lines drawn through a, b respectively, parallel to 4C, BC, to meet in
0, and finally On is drawn parallel to 4 B, or, what is the same thing,
perpendicular to ab. Now, applying the fundamental principle laid
down above, we observe that (' is a point kept in equilibrium by
three forces, the load at C, namely W, the thrust of 4C' which we
will call 8, and the thrust of BC which we will call B. In the
second figure the triangle Oab has its sides parallel to these forces,
and hence it follows that Oa, Ob represent S, £ on the same scale
that ab represents IW. Again 4 is aspoint kept in equilibrium
by three forces, the thrust of AC, the pull of the tie 4B, which we
will call /, and the upward reaction 2 of the support 4. But referring
to the figure 25, On, an, are respectively parallel to the two last forees,
so that, by the triangle of forces, they represent H, P on the same scale
that Oa represents S. The same reasoning applies to the point B,
and therefore ba represents the other supporting force @, as is also
obvious from the consideration that P+ @ = W. We thus see that
all the forces acting upon and within the triangular frame ACB are
represented by corresponding lines in Fig. 25, which is thence called

8.

the *“diagram of forces” for the triangular frame.  Such a diagram
can be drawn for any frame, however complicated, and its construction
to scale is the best method of actually determining the stresses on
the several parts of the frame.

The force I requires special notice: it is called the «#hrust” or
the frame. 1In the present case the thrust is taken by the tension
of the third side of the triangle, but this may be omitted, and
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the supports A and B must then be solid and stable abutments
capable of resisting a horizontal force H. In many structures
such a horizontal thrust exists; and its amount and the mode of
providing against it are among the first things to be considered
in designing the structure. Besides the graphical representation
just given, which enables us to obtain the thrust of a triangular frame
by constructing a simple diagram, it may also be calculated by a
formula which is often convenient. Let AC be denoted by b and
BC by a, as is usual in works on trigonometry, and let AN, BN
their projections on 4B be called &, «, and let the height of the
triangle be % and its span /, then by similar triangles,

P an (,'JY _h
H On AN Vv’
Q_ lnb s Q_{\I A__ll.'
H On BN o

Therefore, by addition,

Wb L]

O 0h.. A &
a't’
or ][:IVH.

In practical questions it often happens that «, &, & are known by
the nature of the question, whence H is readily determined. The
case when the load bisects the span may be specially noticed ;
then o’'=# =3/ and
Wi

H = %
When the height of the frame is small compared with the span, this
caleulation is to be preferred to the diagram, which cannot then be
constructed with sufficient accuracy.

The simple frame here considered may be inverted, in which case
the diagram of forces and the numerical results are unaltered, the
only change being that the two struts have become ties and the tie
a strut.

3. Triangular Trusses.—Triangular frames are common in practice,
and the rest of this section will be devoted te some of the commonest
forms in which they appear.
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Fig. 3a shows a simple triangular truss consisting of a beam,
4 B, supported by a strut at the centre, the lower extremity of which
is carried by tie rods, AC, BC, attached to the ends of the beams. If

Pigieh, now a weight, W, be placed
a w] B at the centre, immediately

= “ over the strut, it does not
bend the beam (sensibly) as it

c

(o}

would do if there were no

strut, but is transmitted by

the strut to the joint C, so

that the truss is equivalent

to the simple triangular

Aahl bl l“’z Tl 1&3 frame of the last article.

This, however, supposes that

the strut has exactly the proper length to prevent any bend-

ing of the beam; if it be too short or too long the load on the

frame will be less or greater than 1, a point which will be further

considered presently. It should be noticed that D) is not ne-
cessarily at the centre.

Fig. 3b shows the same construction inverted. €7 isa tie by which
D is suspended from C'; we will suppose this rod to pass through 4B
and a nut applied below, by means of which ) may be raised or
lowered. Let 4B now be uniformly loaded with a given weight, then
the bending of 4B is resisted by €1, which supports it and carries
a part of the load, which may be made greater or less by
turning the nut. If, however, we imagine 4B, instead of being
continuous through 2, to be jointed at D, then the tie (D neces-
sarily carries half the weight of AD and half the weight of BD,
that is to say, half the whole load, whatever be its exact length.
This simple example illustrates very well the most important
difference hetween a truss and a mathematical frame ; namely, that
in the truss one or more of the bars is very often continuous
through a joint. Such cases can only be dealt with on the principles
of the present division of our work, by making the supposition
that the bar in question, instead of being continuous, is jointed like
the rest. The error of such a supposition will be considered
hereafter ; it is sufficient now to say that in order that it may
be exact in the particular case we are considering, the nut must
be somewhat slackened out so that D may be below the straight

Fig.3b.
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line 4B, and that being dependent on accuracy of construction,
tempera,ture, and other varying circumstances, such errors cannot
be precisely stated, but must be allowed for in designing the
stracture by the use of a factor of safety. The supposition is
one which is usual in practical calculations, and will be made
thl‘oughout this division of our work.

The foregoing is one of the simplest cases where, as is very
tommon in practice, the bars of the frame are loaded and not
the joints alone. When such bars are horizontal and uniformly
loaded, the effect is evidently the same as if half the load on each
division of the loaded bar were carried at each of the joints
through which it passes. This is also true if the loaded bars
be not horizontal, but the question then requires a much more
full discussion, which is reserved for a later chapter (see Ch. IV.).

When one of the joints of the loaded bar is a point of
Support, like 4 in Fig. 3, the supporting force is due partly to
the half weight of one or more divisions of the loaded bar, and
Partly to the downward pull or thrust of other bars meeting there :
the first of these causes does not affect the stress on the different
barts of the truss, and the calculations are therefore made without
any regard to it. The explanations given in this article should be
carefully considered, as they apply to many of the examples sub-
sequently given.

The triangular truss in both the forms given in this article
is frequently employed in roofs and bridges of small spans, as
well as for other purposes.

4. Cranes.—The arrangements adopted for raising and moving
weights furnish many inter-
esting examples of triangu-
lar frames.  Fig, 4a shows
one of the forms of the com-
mon crane, a machine the
essential members of which
are the jih, B(, supported
by a stay, C'F, attached to
the crane-post, BE, which
18 vertical. In cranes pro- g
per this third member rotates, carrying BC and (' with it, but in
the sailors’ demick a fixed mast plays the part of a crane-post,
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and the stay, CE, is a lashing of rope frequently capable of
being lengthened and shortened by suitable tackle, so as to raise
and lower the jib, a motion very common in cranes and hence called
a derrick motion. The weight is generally also capable of being
raised and lowered directly by blocks and tackle, but for the
present will be supposed directly suspended from ('

The diagram of forces now assumes the form shown in Fig. 4b,
in which the lettering is the same as in F ig. 2D, page 4, the only
difference in the diagrams being that
in the present case AC, which is
now a tie, is divided into two parts,
A% and EC, inclined at an angle.
The stress on AZ is therefore not
the same as on ZC, but is got by
drawing a third line, Oa’, parallel to
AE.  The perpendicular On gives us
in this instance not only the stress
on 4B and the horizontal thrust
of UB at B, but also the horizontal pull of CE at E—we may
call this // as before. There is an upsetting moment on the
structure as a whole which is equal to the product of the weight
W by its horizontal distance from 2 (often called the radius of
the crane) and also to the force M, multiplied by the length of
the crane-post, BE. One principal difference between different
types of cranes lies in the way in which this upsetting moment is
provided against.

(a.) In portable cranes, such as shown in Fig. 4a, there is a
horizontal platform, .45, supported by a stay, 4%, and carrying a
counterbalance weight, P, sometimes capable of being moved in and
out so as to provide for different loads. The right magnitude of
counterbalance weight and the pull on the stay 4% are shown by
the diagram P corresponding to the supporting force at 4 in the
previous case.

(B.) In the pit crane, the post is prolonged below into a well and
the lower end revolves in a footstep, the upper bearing being
immediately below B. In this instance the post has to be made
strong enough to resist a bending action at 5, equal to the upsetting
moment, and the bearings have to resist a horizontal force equal
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to 4 multiplied by the ratio of the length of the crane-post, BE, to
that of its prolongation below the ground.

() The upper end of the crane-post may revolve in a headpiece,
Which is supported by a pair of stays anchored to fixed points in the
ground. The upright mast of a derrick frequently requiring support
in the same way, this arrangement is known as a derrick-crane. It
is shown in Fig. 5, £D, EI
being the stays. To find the
stress on the stays it is neces-
sary to prolong the vertical
Plane through EC, to intersect
the line DD, joining the feet
of the stays in the point 4, and
Imagine the two stays, £D,
D, veplaced by a single stay
L4 : then a diagram of forces,
drawn as in the previous case,
determines ', the pull on this stay. But it is clear that S must
be the resultant pull on the two original stays, and may be con-
sidered as a foree applied at Z in the direction of 4 # to the simple
triangular frame DEI'. A second diagram of forces therefore will
determine the pull on each stay, just as in the next following case.

50

S. Sheer Legs and Tripods.—Instead of employing an upright post
to give the necessary lateral stahility to the triangle, one of its
members may be separated
mto two. Thusin moving
very heavy weights sheer
legs arc used, the name
being said to be derived
from their resemblance to
a gigantic pair of scissors
(shears) partly opened and
Standing on their points.
In Fig. 6, CD, CIY are
Spars, or tubular struts,
often of great length, resting on the ground at DD’ and united
a6 C, 50 as to he capable of turning together about DD’ as an axis.
The load is carried at ¢ and the legs are supported by a stay, ('d,
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which is sometimes replaced by a rope and tackle, capable of being
lengthened or shortened so as to raise or lower the sheers, Drawing
AB to the middle point of DD’, the pair of legs are to be imagined
replaced by a single one, ('B, then the diagram of forces may be
constructed just as in Fig. 4b, and we shall obtain the tension of the
rope S and the resultant thrust on the pair of legs £. Now draw
the triangle C'DD’, as in Fig. 7a,
e s and imagine it loaded at C' with a
5 Fig.7a,7b. weight, I, then drawing the dia-
) -=ne-ed gram of forces, Fig. 7, we get &’
. the thrust on each leg. The hori-
! zontal force, H’, in this second
é n——o0 diagram represents the tendency
of the feet of the legs to spread
outwards laterally, while the force,
77777 /! H, of the original diagram repre-
sents their tendency to move in-
wards perpendicular to 22'. In some cases the guy rope and
tackle C'4 are replaced by a third leg called the back leg, and the
sheers are then raised and lowered by moving 4 by a large screw ;
the force H is then also the force to be overcome in turning the
SCTew.

Instead of having only two legs, as in sheers, we may have three
forming a tripod. This arrangement is frequently used to obtain
a fixed point of attachment for the tackle required to raise a weight,
and is sometimes called a “gin,” or as military engineers prefer to
spell the word, a “gyn.” The thrust on each leg and the tendency
of the legs to move outwards can be obtained by a process so
similar to that in the preceding examples that we need not further
consider it.

6. Effect of the Tension of the Chain in Cranes.—In most cases the
load is not simply suspended from €' as has been hitherto supposed,
but is carried by a chain passing over pullies and led to a chain
barrel, generally placed somewhere on the crane-post. The tension
of the chain in this case is ///n, where 2 is a number depending on
the nature of the tackle, and this tension is to be considered as an
additional force applied at ' to be compounded with the load /7, the
effect of which has been previously considered. Fig. 8 shows the
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form the diagram of forces assumes in this case. Drawing be as
before to represent /7, and aa’ parallel to the direction in which the
chain is led off from the pulley at € and equal to the tension /7/n, the
third side of the triangle, ba’ must
be the resultant force at (' due to
both forces, whence drawing @0 par-
allel to the stay and 60 parallel to
the jib, and reasoning as before as
to the equilibrium of the forces ab
C, we see that these lines must be
the tension of the stay and the
thrust on the jib. The effect of the tension of the chain is generally
to diminish the pull on the stay and increase the thrust on the jib,
sometimes very considerably, as for example in certain older types of
crane still used for light loads under the name of “whip” cranes.
In these cranes the chain passes over a single fixed pulley at the end
of the jib, and is attached directly to the weight, so that the tension
of the chain is equal to the weight. The other end of the chain is
led off along a horizontal stay to a wheel and axle at the top of the
crane post, a chain from the wheel of which passes to a windlass below.
This arrangement, the double windlass of which facilitates changes in
the lifting power corresponding to the load to be raised, is a develop-
ment of the primitive machine in which the wheel was a tread wheel
Wlorked by men or animal power. In this case the pull on the stay is
diminished by the whole weight lifted, and is thus reduced very
much, Where a crane has to be constructed of timber only, this is a
?onsicleral)le advantage, from the difficulty of making a strong tension
Joint in this material.

EXAMPLES

: 1. The slopes of a simple triangular roof truss are each 30°. Find the thrust of
he roof and the stress on each rafter when loaded with 250 1bs. at the apex.
Thrust of roof =2165 lbs.
Stress on raftecs =250
2. A beam 15 feet long is trussed with iron tension rods, forming a simple tri-
‘“}glﬂar truss 2 feet deep. Find the stress on each part of the frame when loaded
With 2 tons in the middle.
Thrust on strut =2 tons.
Pull of tension rods = 3:88 ,,
Thrust on beam =375 ,,
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3. The platform of a foot bridge is 20 feet span, and 6 feet broad, and carries
a load of 100 Ibs, per sq. ft. of platform. It is supported by a pair of triangular
trusses each 3 feet deep, one on each side of the bridge. Find the stress on each part
of one of the trusses.

The whole load of 12,000 lbs. rests equally on the two trusses, there is therefore
6,000 Ibs. distributed uniformly along the horizontal beam of each truss.

Thrust on strut = 3,000 1bs,
Tension of tie rods =5,220 ,,
Thrust on horizontal beam - 5,000 -

4. The slopes of a simple triangular roof truss are 30° and 45° and span 10 feet.
The rafters are spaced 2§ feet apart along the length of the wall, and the weight of
the roofing material is 20 bs. per sq. ft. Find by graphical construction the thrust
of the roof,

Each rafter carries a strip of roof 2% feet wide, the load on rafter = 50 Ibs. per foot
length of rafter. Find the lengths by construction or otherwise. The virtual load
at apex =4 weight on the two rafters = 311 Ibs.

Thrust of roof =198 1bs.

5. The jib AC of a ten-ton crane is inclined at 45° to the vertical, and the tension
rod B¢ at an angle of 60°. Find the thrust of the jib, and the pull of the tie rod
when fully loaded, the tension of the chain being neglected. If a back stay BD
be added inclined at 45° and attached to the end of a horizontal strut 4D, find
the counterbalance weight required at D to balance the load on the crane, and find
also the tension of the back stay.

Thrust on jib 4 ¢ =335 tons,
Tension of tie rod =075
Counterbalance weight =235 ,,
Tension of back stay =835 ,,

6. A pair of sheer legs are 40 feot high when standing upright, the lower
extremities rest on the ground 20 feet apart, the legs stand 12 feet out of the per-
pendicular, and are supported by a guy rope attached to a point 60 feet distant from
the middle point of the feet. Find the thrust on each leg, and the tension of the
guy rope under a load of 30 tons,

Thrust on each leg =195 tons.
Tension of guy rope = 12'8 o

7. In example 5 the tension of the chain is half the loud, and the chain barrel is so
placed that the chain bisects the crane Post AB. Find the stress on the jib
and tie rod.

Thrust of jib =36 tons,
Pull of tie rod = 25 o

8. In a derrick crane the projections of the stays on the ground form a right-
angled triangle, each of the equal sides of which is equal to the crane post. The jib
is inclined at 45° and the stay at 60° to the vertical. Find the stress on all the parts
(1) when the plane of the jib bisects the angle between the stays; (2) when it is
moved through 90° from its first position. Load 3 ‘ons,

9. A load of 7 tons is suspended from a tripod, the legs of which are of equal
length and inclined at 60° to the horizontal. Find the thrust on each leg. If a
horizontal force of 5 tons be applied at the summit of the tripod in such a way as to
produce the greatest possible thrust on one leg, find that thrust and determine the
stress on the other two legs.
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SectioN II.—INCOMPLETE FRAMES.

7. Preliminary Remarks.—A frame may have just enough bars and
no more to enable it to preserve its shape under all circumstances,
or the number of bars may be insufficient or there may be redundant
bars. The distinction between these three classes of frames is very
important : in the first the structure will support any load consistent
with strength, and the stress on each bar bears a certain definite relation
to the load, so that it can be calculated without any reference to
the material or mode of construction; in the second, the frame
assumes different forms according to the distribution of the load,
but the stress on each bar can still be calculated by reference to
statical considerations alone; in the third, where the frame has
redundant bars, the stress on some or all of the bars depends on
the relative yielding of the several bars of the frame. It is to the
second class, which may be called incomplete frames, that the
Present section will be devoted.

In incomplete frames the structure changes its form for every
distribution of the load, and, strictly speaking, therefore such
constructions cannot be employed in practice, because the distribu-
tion of the load is always variable to a greater or less extent. But
when the greater part of the load is distributed in some definite
way the principal part of the structure may consist of an incomplete
frame, designed for the particular distribution in question, and
subsequent moderate variations of distribution may be provided for
either by stiffening the joints or by subsidiary bracing. Such cases
are common in practice, and investigations relating to incomplete
frames are therefore of much importance.

8. Simple Trapezoidal or Queen Truss—We will first consider a
frame which is composed of four bars. The most common case

b
c D e i
Fig.oa. I i Fig.9h.

o)

i
i
® @ =5

a

18 that in which two of the bars are horizontal and the other two

€qual to one another, thus forming a trapezoid. The structure is
called a trapezoidal frame,
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It is suitable for carrying weights applied at the joints (D), either
directly or by transmission through vertical suspending rods from
the beam AB. From the symmetry of the figure it is evidently
necessary for stability that the loads at ¢ and D should be equal.
This fact will also appear from the investigation. Consider first
the joint C, and draw the triangle of forces, Oan, for that point;
an being taken to represent /7, a0 will represent the thrust on AC
and On that along CD. The triangle Obn will represent the forces
at the joint D, Ob representing the thrust of B2 ; bn will represent
the load at D, and from the symmetry of the figure must equal an,
and hence weight at D must for equilibrium equal that at C. Now
let us proceed to joint 4, where there are also three forces acting,
one along AC is now known and represented hy a0, thus On will
represent the tension of 4B, and nb will be the necessary supporting
force at 4 equal to /7, as might be expected. The tension of 4B
is equal to the thrust on ¢'D. We observe that the diagram of
forces is the same as that of a triangular frame, carrying 2 at the
vertex and of span equal to the difference between 4B and CD,

Trapezoidal frames are employed in practice for various purposes.

(a.) A beam, AB (Fig. 10a), loaded throughout its length may
be strengthened by suspending pieces, OV, OM, transmitting a part

S0 Fig. 10b

of the weight to the arch of bars AC, €D, BD, an arrangement
common in small bridges.

(B.) As a truss for roofs, in which case there will be a direct
load at ¢' and D due to the weight of the roofing material, while
vertical members serve partly as suspending rods by which part
of the weight of tie heam and ceiling (if any) is transmitted to
CD, and partly to enable the structure to resist distortion under
an unequal load. When made of wood this is the old form of
roof called by carpenters a “Queen Truss,” CN, DM, being the
“queen posts” (see Section IIL of this chapter). This name is
constantly used for all forms of trapezoidal truss erect or inverted
which include the vertical * queens.”
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(y.) Not less common is the inverted form, Fig. 10b, applied to
the beams carrying a traversing crane, the cross girders which rest on
the main girders of a railway bridge and carry the roadway, and
many other purposes. The bars 4C, CD, BD are now iron tie
rods. In this case also if the two halves of the beam are unequally
loaded there will be a tendency to distortion, to resist which
completely, diagonal braces, C'M, DN, must be provided, as shown
in the figure hy dotted lines. Such diagonal bars occur continually
in framework, and their function will be fully considered in the
next chapter. But in the present case they are quite as often
omitted, the heavy half of the beam then hends downwards and
the light half bends upwards (see Ex. 4, p. 97), but the resistance
of the beam to bending is found to give sufficient stiffness.

9. General case of a Funicular Polygon wnder a Vertical Load.
Ezample of Mansard Roof.—We next take a general case. In Fig. 11a

Fig.11b,

Fig.11a.

W, Wa

012 3...6is a rope or chain attached to fixed points at its ends and
loaded with weights W, W,... suspended from the points 1, 2, ete.
The figure shows 5 weights, but there may be any number. The rope

angs in a polygon the form of which depends on the proportions be-
tween the weights, It is often called a “funicular polygon” and
Possesses very important properties. We shall find it convenient to
distinguish the sides of this polygon by letters a, b, ¢, etc. We are
about to determine the proportions between the weights when the
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rope hangs in a given form, and, conversely, the form of the rope
when the weights are given. In Fig. 11bdraw ab vertical to represent
W,, the load suspended at the angle of the polygon where the sides
@ and b meet, then draw a0, b0 parallel to a, b respectively to meet
in 0, thus forming a triangle Oab, which we distinguish by the number
1, which represents the forces acting on the point 1, so that the
tensions of the sides @, b are thus determined. Now draw Oc parallel
to the side ¢ to meet the vertical in ¢; we thus obtain a triangle dis-
tinguished by the number 2, which represents the forces acting at that
point, and as 0b is already known to be the tension of 4 it follows
that bc must be the weight W, and Oc the tension of the side c.
Proceeding in this way we get as many triangles as there are weights,
and the sides of these triangles must represent the weights and the
tensions of the parts of the rope to which they are respectively parallel.
Thus, if the form of the rope is known and one of the weights,
all the rest can be determined. Conversely, to find the form of the
funicular polygon when the weights are given in magnitude and line
of action, we have only to set downwards on a vertical line the
weights in succession and join the points @ b...,which will now be
known, to any given point O, then the funicular polygon must have
its angles on the lines of action of the weights and its sides parallel
to the radiating lines Oa, 0b, Oc, etc., so that the sides can be drawn
in succession, starting from any point we please.

In the diagram of forces, Fig. 11b, if O be drawn horizontal to
meet the vertical a, b, c... in &, this line must represent the horizontal
tension of the rope.

The rope may be replaced by a chain of bars which may be inverted,
thus forming an arch resting on fixed points of support, the diagram
of forces will be unaltered, and ON will represent the thrust of the
arch. As an elementary example of an arch of bars we will consider a
truss used for supporting a roof of double slope called a Mansard roof.
We will take the usual case in which the truss is symmetrical about
the centre. Suppose it is loaded at the joints. There is one propor-
tion of load which the truss is able to carry without any bracing bars
being added.

From symmetry the weights at 2 and 2" (See Fig. 12a) must be
equal. To find the proportion between the weights at 1, and at 2,
9, together with the stresses on the bars of the frame, in Fig. 12b set
down aa’ to represent W at 1, and draw a0 and «’0 parallel to @ and
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_“", the thrusts along these bars will be determined. Then, consider
Ing the equilibrium of either 2 or 2’, say 2, one of the three forces
acting at the joint, namely a0, along the bar @ being known, the

\ Fig.12Db.

other two forces may be determined by drawing ab and Ob parallel to
thefn, ba parallel to /7, and Ob to the bar b. If ON be drawn
hOHZOntaIIy it will give the amount of the horizontal thrust of the
r0of or the tension of a tie har 3 3/, if there is such a bar. If the
Proportion of 777, to JV, is greater than ab to aa' the structure will
81ve way by collapsing, 2 and 2’ coming together; and if the propor-
tion is less, the structure will give way by 2 and 2" moving outwards
and 1 falling down between. In practice it is impossible to
Secure the necessary proportion of loads, on account of varia-
tlon of wind pressure and other forces, and therefore stiffening of
some kind is always needed. If bracing bars be placed as shown by
the dOtt;ed lines 2 37, 2’3, 2 2/, the structure will stand whatever be the
E;OPOIT}DD between the loads. The truss may be partially braced by
: ; hc.)rlzonta.l bar 2 2° only. Then the proportion between the loads
b 1a1d 777, may be anything we please, but the loads at 2 and 2’ must
D¢ equal, at least theoretically, but in practice the stiffness of the
domts will generally be sufficient for stability, especially if vertical

Pleces be added conmecting these points to the tie heam as in a
queen truss,

golo?l- tSuspen‘sion Chains. ; Avrches.  Bowstring Girders.—We now
= barso cons1d¢?r another 1mpo.rtant example, in which the number
s e composing t'he fra..me is very much increased, as found in
mon suspension bridge.
B
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Let 4B (Fig. 13a) be the platform of a bridge of some consider-
able span, which has little strength to resist bending. Suppose
it divided into a number of equal parts, an odd number for
convenience, say nine, and each point suspended by a vertical rod
from a chain of bars secured at the ends to fixed points, D and E,
in a horizontal line. In the figure only half the structure
is shown.  Suppose the platform loaded with a uniformly

w w

distributed weight; we require to know the stress on each bar
and the form in which the chain will hang. Equal weights on
each division of the platform will produce equal tensions in the
vertical suspending rods, and if we neglect the differences of weight
of the rods and bars themselves, the load at each joint of the chain
of bars will be the same. (Compare Art. 11.) Let 7/ = load at
each joint. Now the centre link, KK, since there is an odd number
and the chain is symmetrical, will be horizontal. Let us consider
the equilibrium of the half chain between € and I. The four
weights, 77, hanging at K, L, M, N, are sustained in equilibrium by
the tensions of the bars KK’ and N.D,

The resultant of the four W’s will act at the middle of the third
division from the left end, and since this resultant load together
with the tensions of the middle and extreme links maintain the half
chain in equilibrium, the three forces must meet in a point, the point
Z shown in the figure. Thus the direction of the extreme link DN
may be drawn. The direction and position of the other links may
be found also. Considering the portion of the chain NC" carrying
three weights, the resultant of which is in the line through Z, the
link N/ must be in such a direction as to pass through the point
where this resultant cuts KK’ produced. Having drawn NM, ML
may be drawn in a similar way, and then LK. Returning to the
consideration of the half chain, the three forces which keep it in
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equilibrinm may be represented by the three sides of a triangle. Set
down gz (Fig. 13b) to represent 477, and draw a0 and n0 parallel to
DZ and Z¢'; a0 will be the tension of DN and n0 of KK'. If an be
divided into 4 equal parts, and the points b, ¢, d, joined to 0, these
lines wil] represent the tensions of links N, ML, and LK. It may
be easily shown that they will be parallel to those links. We see
that the tension increases as we pass from link to link, from the
tentre to the ends.

In many cases in practice, the number of vertical suspending rods
and links in the chain is very great. ~We may then, in what
follows, without sensible error, regard the chain as forming a
continuous curve, In such a case, C, the lowest point of the chain

Tig.14a.

(Fig. 14q), is over the middle of the platform. The tangent at C,
Which is horizontal, will meet the tangent to the chain at D, in a
Point Z, which will be over the middle of the

h‘a.lf platform, for that will be a point in the
line of action of the resultant load on the p
half chain. We can now draw a triangle of
fO.l'Ges an@, for the half chain as before; On "
Will represent the tension of the chain at
th_e lowest point, or the horizontal component

of the tension of the chain at any point. We
Cﬂ'fl easily obtain a convenient expression for
this horizontal tension thus:—Let I = span of "
the bridge, and w = load per foot run.  Then }wl = weight on

:ﬁe half chain represented by an. Let H = horizontal tension,
en

H On
Tul T an’

But if we drop & perpendicular from D to cut the horizontal tangent
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in a point 7 (not shown in the figure), D¥ will be the dip of the
chain d, and comparing the triangles D77, aOn,
s o
i FER D dis o
S Bl
which, since @l = total load on chain, may be written

ol ;. 8pan
H = g load on chain ° i

3

This is the same as the horizontal thrust of a triangular frame of the
same height which carries a uniformly distributed load of the same
intensity.

Having found the magnitude of the horizontal tension of the chain
we can calculate the tension at D, the highest point of the chain.
Let S be this greatest tension, represented in the diagram of forces
by 20, then since a0 = an’® +n0®

@:(%2+H%

The tension at any point P of the chain may be found hy drawing
from O a line op parallel to the tangent to the chain at 2. Tt will
cut an in a point p such that np : na :: length of platform below
PC : § span.

Since Op® = np® + On®

):m

Tension at P = \/ (np w

na 2
The loaded platform, instead of being suspended from the chain of
bars, may rest by means of struts on an arch of bars as in the figure.

7
7

N v

/?7'

\ i
\\\\ Fig.15,

In this case all the bars will be in compression instead of tension, as
in the previous case. If the form of the arch is similar to that in
which the chain hung, it will have no tendency to change its form under
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the load. There will be simple thrust of varying amount at different
Parts of the arch. The horizontal thrust at the top of the arch
is given by the same expression as for the horizontal tension of the
chain, and the thrust of any bar of the arch may be determined in a
Mmanner similar to that for finding the tension of any link of a chain.
We shall show presently that the proper form of the arch and chain
under a uniform load is a parabola. Hence, the structure just
described is called a Parabolic Arch. In iron bridges the platform is
Mot unfrequently carried by a number of ribs placed side by side.
Each rib is approximately parabolic in form, usually of I. section, of
depth from 7oth to g5th the span at the crown, increasing somewhat
towards the abutments. The roadway is supported sometimes by
simple vertical struts, as in the ideal case just considered, sometimes
Y spandrils of more complex form, chiefly for the sake of appearance.
en uniformly loaded, the stress on the ribs is nearly as found
above : for resistance to variation in the load reliance is placed on the
resistance to bending of the ribs and platform. The case of a stone
or brick arch is far more complex, and is not considered here.
here is yet another very common structure whose construction is
founded on the same principles as those just described. In this the

p—

Fig.16. ;/

Platform, instead of resting on an arch below it, is suspended from an
arch above it. In this case the thrust of the arch is taken by the
Platform, which serves as a tie, just as the string ties together the
ends of a bow. Hence it is called a Bowstring Girder. In this, like
tl.le O.bherS, the loading proper to the parabolic form is a uniformly
distributed one, and any variation of the loading will tend to distort
the F'OW- The structure may, however, be enabled to sustain a
varying load by the addition of bracing bars as shown by the
280nal lines. When the bridge is heavily loaded it will almost
aI}va,ys happen that the greater part of the weight is uniformly dis-
tmb"'_‘tEd: and is sustained by simple thrust of the arch, so that the
racing is only g subsidiary part of the structure.

7

R
N

&
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11. Suspension Chains (continued). Bowstring Suspension @irder.—In
describing the suspension bridge we spoke of the chain as being secured
at the ends to fixed points. In practice the securing of the ends
is effected thus. The chain is led to the top of a pier of cast-
iron or masonry, and instead of being simply attached to the top
of the pier, and thus producing an enormous tendency to overturn
the pier, the chain is secured to a saddle which rests on rollers
on the top of the pier, and on the other side the chain is prolonged
to the ground, passes through a tunnel for some little distance,
and is finally secured by means of anchors to a heavy block
of masonry. By this arrangement the only force acting on the
pier is a purely vertical one, and a comparatively slender pier will
be sufficient to sustain it. It is not necessary that the tension
of the chain should be the same on each side of the pier, or that
it should be inclined at the same angle. What is necessary
is that the horizontal component of the tension on each side
should be the same If an (Fig. 143, page 19) = half weight on
chain as before, and On = H, the horizontal tension (which may
either be calculated from the formula Jjust obtained, or found
by construction), then a0 will be the pull of the chain § at
the top of the pier. Then considering the equilibrium of the
saddle, the pull of the chain @ on the short side and the upward
reaction of the pier may be found by completing the triangle of
forces aOr; Or will be the pull on the anchor, and a» the total
vertical pressure on the pier.

In connection with this description of the method of securing the
ends of the suspension chain, we may mention a form of structure in
which the arch and chain are combined, a good example of which occurs
in the railway bridge at Saltash. The horizontal pull of the chain
is here balanced by the thrust of an arch, so that the combined effect is
to produce simply a vertical pressure on the piers. The suspending
rods are secured to the chains and prolonged to the arch above,
so that a portion of the load is carried by the arch, producing
a thrust, and a portion by the chain, causing a pull. To prevent any
tendency to overturn the piers, (this is insured by means of saddles
resting on rollers) the horizontal component of the thrust of the
arch must equal the horizontal component of the pull of the chain,
The proportion between the loads on arch and chain will depend on
the proportion between the rise of the arch and dip of the chain.
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If ¥, =load on arch, and 77, =1load on chain,
Jd, =rise of arch, and dy=dip of chain,

then . [f: EEE ) nrll{ a s Kl = dl b
R TR T
also ¥, + 7, = total load on bridge :

from’ which the stresses on the structure may be determined. It is
known as g Bowstring Suspension Girder (pp- 47, 79).

We shall next show that the form of the curve of a chain carrying
a uniformly loaded platform is a parabola. Referring to Fig. 14a,
let 2 be any point in the chain, drop a perpendicular PN to meet
tl}e tangent at €, and biseet CN in K. Then KP must be the
direction of the pull of the chain at P in order that the portion PC
may be kept in equilibrium. The triangle PNK has its sides
13&Tallel to the three forces which act on PC, and the sides are there-
f'ore proportional to the forces. Let CN =z so that the load hang-
mg on PC = [, also let PN =4.

Then H_NK_iv
we PN 3y
°oH : wi?
3 o, s . 0 R
A _.hw—J, or, since I S
2 = P_'y-
4d”’

therefore 42 is proportional to ¥.
: Now the curve whose co-ordinates have this relation one to another
18 called a parabola.

I‘f the load, instead of being uniformly distributed on a
I-1011.’4011‘53.1 platform, were simply due to the weight of the chain
itself, then the curve in which the chain would hang would deviate
.Somewhat from the parabola; for in that case, since the slope
increases as we approach the piers, the load also, per horizontal foot,
W.ould increase as we approach the piers, causing the chain near the
plers to sink and become more rounded, and at the centre to rise
fmd become more flattened. The curve in which the chain hangs by
its own weight is called the cafenary. In the catenary, as in the
Parahola, the tension increases as we approach the piers. This may
be ta.l.ken account of by proportioning the section of the chain to the
ten_smn ab the various points ; this would tend still more to make the
Wweight of chain, per horizontal foot, increase as we approach the piers,
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and cause the chain to deviate still further from the parabolic form.
Such a curve is called the catenary of uniform strength.

In an actual suspension bridge, where there is a uniformly loaded
platform, as well as a heavy chain, the true curve in which it hangs
will lie somewhere between the parabola and the catenary ; but since
in most cases the deviation from uniformity of the weight of chain
is small compared with the load it carries, the deviation from the
parabola is not great. The error involved in assuming the curve to
be parabolic is generally greatest in bridges of large span ; in such
cases a preliminary calculation of approximate weights may be
necessary so as to be able to apply the general process of
article 9.

EXAMPLES.

1. A trapezoidal truss is 16 feet span and 4 feet deep, the length of the upper bar
is 6 feet. Find the stress on each part when loaded with 2 tons at each joint.

Stress on sloping bars = 3'2 tons,
y» horizontal ,, =26 ,,

2. The platform of a bridge, 8 feet broad and 27 feet span, is loaded with 150
pounds per square foot, It is supported on each side by an inverted queen truss
placed below, the queen posts, each 3 feet deep, dividing the span into three equal
portions. Find the stress on each part.

Load on each truss = half whole load on platform = 162,000,

16,200 = 5,400 is the load at each of the two joints of one of the queen trusses,
Tension of sloping bars = 17,074 Ibs,

Tension and thrust of horizontal bars = 16,200,

3. The height of a mansard roof without bracing is 10 feet and span 14 feet, The
height of the triangular upper portion is 4 feet and span 8 feet. The load being 1 ton
at the ridge, find the necessary load at each intermediate joint and the thrust of the
roof.

By the construction described in the text, load at each intermediate joint = % ton,
and the thrust of the roof = § ton.

4. If the roof in the last question be partly braced by a bar joining the inter-
mediate joints, find the stress on the bar when the load at each intermediate joint
is 1 ton.

Thrust on bar = } ton.

5. The load on the platform of a suspension bridge, 600 feet spam, is 4 ton per foot
run, inclusive of chains and suspending roads. The dip is +th the span. Find the
greatest and least tensions of one of the chains,

Least tension = horizontal tension = 2433 tons.
Greatest tension = 255 tons.

6. The load on a simple parabolic arch, 200 feet span and 20 feet rise, is 360 tons,

determine the thrust and greatest stress on the arch.

Thrust = 450 tons ; greatest stress = 484 tons.
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7. The rise of a bowstring bridge is 15 feet and span 120 feet, find the thrust when
loaded with 2,000 Tbs. per foot run.

Thrust 240,000 1bs. = 1073} tons.

8. In example 5 the ends of the chain are attached to saddles resting on rollers on
the tops of piers 50 feet high, and prolonged to reach the ground at points 50 feet
distant from the hottoms of the piers, where they are anchored. Find the load on
the piers and the pull on the anchors.

Load on the pier = 6374 tons ;
Pull on each anchor = 344°6 tons.

9. A light suspension bridge is to be constructed to carry a path 8 feet broad over
4 channel 63 feet wide by means of 6 equidistant suspending rods, the dip to be 7
feet. Find the lengths of the successive links of the chain. Supposing a load of
L ewt. per square foot of platform, find the sectional areas of the links of the chain,
allowing a stress of 4 tons per square inch.

7 of the whole load is carried by the chains and the remaining portion by the piers
directly. Tension of each suspending rod =36 cwt.

| | ]
|- Links. |Tensions.| Areas. | Lengths, |

‘Ceutre 2777 | 347 9

o2nd | 280 3% 9:08 |
3rd | 287 36 | 93 i
ath | 208 | 372 | 966 I

10. Construct a parabolic arch, the thrust of which is half the total load.
Span = four times the rise.

ht of a uniformly loaded platform be suspended from a chain by
show that the corners of the funicular polygon lie on a parabola.

11. If the weig
Vertical rods,

SECTION IIT.—CoMPOUND FRAMES.

12. Compound Triangular Frames for Bridge Trusses. By a
‘ompound frame is meant a frame formed from two or more
:;nr;PIE frames by uniting two or more bars. Many frames of
it El_on occurrence in practice may conveniently be considered as

bmations of the simpler examples already described. They are
sgt??::auy' dealt With by use of what we may call the principle of
tol Position, w.hmh may be thus stated :—Z%e stress on any bar due

Wy tolal load is the algebraieal sum of the stresses due fo the several
baris of the load,

€ will now consider some

OB examples of compound frames, which
are used in bridge trusses,

In these structures the object is to carry
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a distributed load by means of a comparatively slender beam. A
prop in the centre may still leave the halves too weak to carry the
weight on them, and the beam may be strengthened by supporting it
in more than one point.

(1) Suppose the beam supported by a number of equidistant struts,
the lower ends of which are carried by tension rods attached to the
ends of the beam, we then have a structure called a Bollman truss.
There may be any number of struts —2, 3, 4, ov more ; the structure
has been used for bridges of comparatively large span. If the actual
load is distributed in some manner over the beam, we must first
reduce the case to that of a structure loaded at the joints only. The
loads on the struts are due to the weights resting on the adjacent
divisions of the beam, and may be determined by supposing the heam
broken or jointed at the points where the struts are applied.

l Fig.17. l
o'W Wo'p B

=i |

e

E E

ne

Let us suppose the beam has three divisions, and that the load
on the two struts are 7] and #7,. These loads will be transmitted
down the struts to the apices (Fig. 17) £ and F, and will be inde-
pendently supported, each by its own pair of tension rods. We may
thus separately determine the stress on each part of either of the
elementary triangular frames 4EB or AFB. AB will be in compres-
sion on account both of the load at % and also at F. On account of
W, using the formula previously obtained, the horizontal thrust

’

He =5 aéTl:, and on account of W, at F, H, = W, (;_'].bf.
b

Tension of 4E, T, = H,sec EAB, T,, = H,sec FBA;
5 EB, Ty = Hysec EBC, T,p= H.szeec FAD.

The actual tensions of the sloping rods are simply as written, but
since 4B is a part of both triangular frames, the total thrust along it
is found by summing the thrusts due to each ; so

=Tt e

This is an example of the principle of superposition stated above.
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(2) Suppose the beam which carries the distributed load to be
Supported by a central strut forming a simple triangular truss, and
further let the halves of the beam, not being strong enough to
tarry the load on them, each be subdivided and trussed by a
simple triangular truss, the tension rods from the bottom of the
Bubdividing struts proceeding only to the ends of each half beam. Tf
E’he‘ quarter gpans are still too great, they may each of them be trussed
0 & similar way, and so on.  Such a structure is called a Finck truss.

Suppose, for example, we have three struts. (Fig. 18.) We must
first determine the load at the joints—that is, in this case the load
o0 the struts due to the distributed load on the beam. Suppose that
Ol account of the weights on the adjacent subdivisions those loads
ave IV, W,, W, 1If the load is uniformly distributed over the beam
the 7775 are each of them equal to } total weight on beam.

A‘ lw; () w, lwa B

We may now separately consider the triangular frame AFC
carrying the load W, On account of it there will be a thrust
on A(C

AC A

H.= 7, L W‘éﬁ'

'Ijhe tensions of AF and FC are each=H,sec FAE. We get
wilar results from the triangle CHB. Just in the same way we
may consider the principal triangular frame A4DB, but in this case
the thrust down the strut CD, which is the load at D, is not simply
s but greater by the amount of the downward pull of the
tWo_tengion rods CF and CH. The vertical components of these
tensions are 3, and 17, so that the total thrust down the strut
=Wat§ (Wy+ W,). This is the load which must be taken to act at

In determining the stresses on the members of A DB. '

Thus 17, = (7, + YW+ L) lflh’ and the tensions of 40D and DB

are each = I, sec DAR.

- It will be geen that the thrust on the central strut and tensions of
e longer rods are the same as if the secondary trusses had not been

si
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introduced. For example, if the /#’s each = 4 whole load on beam,
then the virtual load at D=} weight on beam. The mere
strengthening of each half the beam by trussing it can no more
relieve the central strut of the load it has to carry, than the fact of
strengthening a structure of any kind can relieve the two points of
support from the duty each must have of bearing its own proper
share of the weight. In stating the thrust on the beam we must
divide it into two portions 4C' and C'B. The portion AC is subjected
to the thrust of the triangles 4#C and ADB; .. H,,=H,+ H,, and
(B being a portion of the triangles C.HB and A DB, H,,=H, + H,,.
When 77, is not equal to /7, the thrusts on the two portions will be
different.  This is quite possible although the beam AB may be
a continuous one.

Both these simple forms of truss have been used for bridges
of considerable span.  As an example of the first may be mentioned
the bridge at Harper’s Ferry, U.S., destroyed during the war. Tt
was 124 feet span in 7 divisions. The great length of the tension rods
and their inequality appears objectionable. The second in 8 or 16
divisions has been much used in America; but in England other
forms mentioned in a later chapter are much more common.

13. RBoof Trusses in Timber—In roofs of small span, 10 or 12 feet
only, the roofing material, slates or tiles, rests on a number of laths
set lengthways to the roof, and these laths rest on sloping rafters
spaced 1 or 2 feet apart, with their feet resting on the walls of the
building ; the stability of the walls being depended on for taking
the thrust.

When we come to larger and more important roofs we find
additional members added for strength and security. The closely
spaced rafters just mentioned are called common rafters. These
being too long and slender to carry the weight of the roofing
material and transmit it to the walls, are supported, not only at the
ends by the walls and ridge piece, but also at the middle by a longi-
tudinal beam of wood called a purlin, and the purlin is supported at
intervals of its length by principal rafters. The principal rafters
again are supported by struts at their central points, immediately
below the purlins. To carry the lower ends of the struts, a vertical
tension piece is introduced, by which they are suspended from the
apex of the principals, while the thrust is taken by a tie heam
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connecting the feet of the rafters. In such a roof, a ceiling or floor
may frequently be required to be supported by the tie beam, and to
Prevent it from sagging under the weight an additional tension will
come on the vertical suspending rod. This rod is then a very
Important member of the structure, and is called the king post, and
’_ﬂhe whole structure, consisting of the principal rafters, king post, &e.,
18 called a Ling post truss. This truss is often constructed entirely of
Wood.  The sloping struts then for constructive reasons (Ch. xv.) butt
On an enlarged part at the bottom of the king post above the point
where the horizontal tie beam is attached, but for caleculation

%“I'Imses may be regarded as meeting at that point as shown in
ig. 19,

S D
By means of the purling and the ridge piece the weight of the roof-
mnga,terial will produce loads at the joints ECF = W W, W, suppose.
Now treat the structure as made up of three simple triangular frames
4ED, DFB, and ACB. First consider AZD with the load J7, st

vextex Z. The horizontal thrust of this frame /7 = WIQ where

: 4h
h is the height of point & above 4D. Also the thrust along 4E
and ED due to the load at £ = H,sec EAD. 1In an exactly similar
ll;ﬂanner We may consider the triangle DFB ; the results for this will
© to those.for AED in the proportion of 7, to /7,. Next as to the
t’;l:‘;ary triangle 4CB. There is at €' a direct load of W, due
Kin 16 weight between L and C, and F' and €. But besides this, the
C':gﬁ?OSt pU!ls the point ' downwards, so that the total load at
5 theg +_1;f>11510.n of king post. In addition to a portion of the weight
Bt celf 1ng (if any) the post has to support D against the downward
i Oth the two struts ED and FD. The vertical components
S e rus_ts are L7, and 177, therefore, neglecting the weight of
g, the virtual load at (' = Wot 3(W, + W,). Let us call the

total load 77, then H, the horizontal thrust of ACB = ¥ ﬁ% and
the thrusts along 4C and CB due to load at ¢ — H, sec A.



30 STATICS OF STRUCTURES. [PART 1.

Now in the complete structure, since 4D is a member both of the
triangular frame 4 £D and ACB, the total tension of 4D = Hy+ H,.
For the same reason tension of DB = H, + H,,
and thrust of AE = (Hy + H,) sec 4,

% ¥ FB = (Hy + H,) sec A.
The other members of the structure are portions of one elementary
frame only, and the stress is due only to the load at the apex of
-that frame.

The king post truss serves for roofs of spans under 30 feet, but for
spans greater than this trusses of more complicated construction are
requived. If the span is from 30 to 50 feet, then instead of support-
ing the common rafters by a purlin at the centre of its length only,
as in the king post truss, two supporting purlins may be used, divid-
ing the length of the rafter into three equal portions. These purlins
may be carried by a queen truss, the sloping members of which are
supported in the middle by struts, as shown in the figure (Fig. 20).

C
Fig.0.

D F
E G
A B

&\ N K \

The vertical queen posts DN and FK serve to sustain the down-
ward thrust of the struts £V and G'K, and also to support the weight
of a ceiling, if there is one. Supposing the weight of the ceiling
omitted, let 77 be the weight of roofing material on one side for a
length of roof equal to the spacing of the trusses, then {77 will,
through the common rafters and purlins, act at &, and } at D ; and
similarly for the other side. At the ridge ' there will also be 4777
acting ; but this will be distributed equally amongst the common
rafters which are carried by the truss, and will produce compression
in those rafters without directly affecting the truss. The part of the
thrust of the roof arising from this will, however, generally, like the
rest, ultimately come on the principal tie beams.

To find the stresses on the different members of the truss. Con-
sider first the small triangles AEZN and BGK, each carrying 77 at
the vertex. Wae then consider the trapezoidal truss ADFB. The
loads at D and F will be 377 + tension of queen post. Since the




°H.1 ART. 14] FRAMEWORK LOADED AT THE JOINTS. 31

tension of the queen post DNV = the vertical component of the thrust
along EN it will equal }.3/7 = 377, and the total load at each
Joint of the trapezoidal truss will be £/ + J " = LIV, the same as
. Would have acted if there had heen no purlin at Z and no strut EZN.
After having determined the respective stresses due to the triangles
and trapezoid separately, we must add the results for any bar which
I8 & part of both. Were it not for the friction at the joints and the
Power of resistance of the continuous rafters 4, CB to bending,
this structure would be stable only under a symmetrical load. In

Practice, however, it is able to sustain an unsymmetrical load, such as
roofs are frequently subjected to.

14. Queen Truss for large Iron Roofs.—As the span of the roof
is still further increased we find other kinds of trusses employed
to support them. A common form in iron roofs is constructed,
as shown in Fig. 21. It is in reality a further development of

the wooden queen truss, and is known by the same name. AC
and CB are divided into a number of equal parts, and sloping
struts and vertical suspending rods are applied as shown. Sup-
Pose the load the same at each joint on one side of the roof, the
load on the right, however, not being necessarily equal to that on the
left. Tet the upward supporting force at 4 = P. P will be } total
weight if the loading is symmetrical, but in any other case it may
be found by taking moments of the loads about B. 'We might solve
the problem of finding the stress on each member of the structure
¥ treating separately each elementary triangle into which the struc-
ture may be divided, and summing the stresses for any bar which
may form a part of two or more triangular frames. But we will
describe another method.

First, to find the tension of the vertical suspending rods consider
A12 as an independent, triangle, carrying a load /¥ at its vertex.
The slope of 12 being the same as that of 41, the tension rod 22'
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must supply a supporting force to the joint 2° = 1W. Considering
next the triangle 423" and its equilibrium about the point 4. The
forces along 23 and 34" have no moment about .4, so that the
moment of the two weights //7 at 1 and 2 about .4 must be balanced
by the upward pull of the tension rod 33" .. tension of 33 = 7.
In a similar way we can see that the tension of 44’ = 27/, How-
ever many divisions of the roof there may be, the tensions of the
vertical suspending rods will increase in arithmetical progression,
with the same difference between each. The rod 11’ except so far
as may be due to the weight of the rod 42/, will have no tension
on it, Calling this the 1** tension rod, the tension of the n" =

ol ; 1 W. 'We must notice that the rod 55 is common to both sides

of the roof, and we must add the two tensions to get the total. Now
consider any joint, say 4’ in the tie bar 4B, and resolve vertically
and horizontally. If R = thrust of 34, 6 its inclination to the
horizontal, and 7" the pull on that division of 4B which is indicated
by the numerical suffix placed below it,

Rsin 0 = 377,

Beost@ = Ty — Ty

s Ty = Tyr = 3W cot .
But from figure “cot @ = £ cot A ;

Lgp — Tpr = W cot A.
Whichever joint we select we should find the same result—namely,
that the difference between the tensions of two consecutive portions
of the tie rod is a constant quantity = 17/ cot 4. So that these
tensions are in arithmetical progression diminishing towards the
centre.

If we call 42 the 1* division of tie rod, then for the joint between
the n— 1* and n** we have
Rsind =""1w

2

Reosf =T, - T, and cot § = ﬁl_l cot A ;
Gl o

L L= 1= W cotid.

If 41 is the 1** division of the rafter, then the thrust on the nt
division = 7, sec A.
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Now, the tension of the tie rod in the

1 division = P cot 4,
2, = (P -3}W)cotd,

nE e (T %T_l ) cot 4.

, — 1
The thrust on the n® division of rafter — (il 5 W) cosec 4.

The thrust on any strut may best be found by squaring and adding
e two equations of equilibrium of the lower joint of it. We get

Thrust of ath strut = g}: N2 4 cot 24,

th

15. Concluding Remarks—General Method of Constructing Diagrams
of Forces.—Cases of framework often occur which are much more com-
Plicated than those which we have hitherto considered, but if there are
10 redundant bars the stress on each part depends on statical prin-
ciples only, without reference to the relative yielding of the several
Parts of the structure. Such cases may always be treated by use of
the general principle stated in Art. 1, and we shall conclude this
chapter by explaining briefly a graphical method of applying that
Principle invented by the late Professor Clerk Maxwell. The forces
will be supposed all in one plane, and each of them will be supposed
known, that is to say, if there be any unknown reactions at points
of support they will be supposed previously found by a graphical or
other process, from the consideration that the whole must form a set
of forces in equilibrium. In Fig. 224 a frame is shown acted on by

own forces PQR..., an ideal example is chosen which is better
suited for the purpose of explaining the method than any case of
ommon occurrence in practice. First seek out a joint where only
tWo bars meet: there will usually be two such joints if there be
10 redundant bars in the frame, and in the present instance we will
choose the joint where P acts. Distinguish all the triangles, making
Up the frame by letters 4, B, 0, &c., and place numbers or letters
outside the frame, one for each bar. In Fig. 22b draw 18 parallel
to the force P and representing it in magnitude, 8¢ parallel to 8, la
Parallel to 1, to intersect in the point @; then, as in previous ex-
3mples, 84, 1a vepresent the stress on the two bars to which they are
Parallel. Pass now to the joint where @ acts: this joint is chosen
because only three bars meet there, on one of which we have just

determined the stress ; draw 12 parallel to @ and representing
C
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it, then ab parallel to the bar lying between the triangles .4
and B, and 2) parallel to the bar 2 ; we thus get a polygon 120a,
the sides of which are parallel to the four forces acting at
the joint where @ acts, while two of them represent two forces

already known, the other two, therefore, will represent the
remaining two forces. Proceed now to the joint where ¥ acts
and complete in the same way the polygon S8abe7, then to the
joint where 7 acts, and so on. We at length arrive at the
triangle 4/5, the third side of which, if we have performed the
construction accurately, and if the forces be really in equilibrium,
must be parallel to the last force 7. On examination of the diagram
of forces (Fig. 22b) it will be seen that to every joint of the frame
corresponds a polygon representing the forces at that joint, while
each line, such as ab or 7c, gives the stress on the bars separating
those letters or numbers in the frame-diagram. The polygon 12...8
is the polygon of external forces, each side representing the force to
which it is parallel.

The method here described is easy to understand in the general
case we have considered, and with a little practice the transforma-
tions the diagram of forces undergoes will offer no difficulty. Some
joints are usually unloaded, and the corresponding lines in the
polygon of external forces vanish; the forces may be parallel, in
which case the polygon becomes a straight line, while not unfre-
quently the sides of two of the polygons representing the forces at
the joints coincide. The figure, however, always possesses the same
properties. X
In Mr. Bow's excellent work referred to at the end of this chapter
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over 200 examples will be found of the application of this method,
neluding almost all known forms of bridge and roof trusses.

EXAMPLES.

1. A Bollman truss of three divisions is 21 feet span, and is loaded uniformly with
ton per foot. The depth of the truss is 3} feet. Find the stress on each part.
Load on each strut =7 tons,

Tension of short rods =104 ,,

7 longer ,, = 96 ,,

3 Total thrust on beam = 183 ,,
being 91 due to each triangle.

2. A Finck truss of 4 divisions, 20 feet span and 3 feet deep, is loaded with 1 ton
ber foot, find the stress on each part.

il

Thrust on 26 and 48 -5 tons. | 2 a 4 5
T 2 37 OO
ensions of 16, 63, 38, and 85 - 4'86 ,, W
Th 33 17 and 75 =174 ,, G 7 8
Tust on 13 and 35 = 4% + 168 = 205 tons.

8. In the last question suppose one half the truss loaded with an additional 1 ton
Per foot. Find the stress on each part.

Suppose the additional load on the right-hand side.

Thrusts, Tensions.
On 26 = 5 tons. On 16 and 63 = 4'86 tons.
s S0 =15 ,, 5 98 5 85=972
» 48=10 R 0 B

w 18=4% +'55 - 201,
» 85 =8%+25 =335
4. A roof 28 feet span, height 7 feet, rests on king-post trusses spaced 10 feet apart.
The ‘Weight of roof is 20 lbs. per square foot. Tind the stress on each part. Also
obtain results when an additional load of 40 Ibs. per square foot rests on one side.
Load at each joint, 1st case = 1566°6 1bs.

e

Btress in 1bs, L Stress.

Bars.

: |
Equal I.mdi Ao e

—_

Foniial Lam_‘ Additional

1| 5954 | grs6 || 17| 5254 | 12261
2 | 3503 7006 || 2’| 38503 7006
2 4700 7833 || 3’| 4700 | 10966
5

1752 1752 4 | 1752 52566
15666 | 3113

L= S Bl

5. A roof 48 feet span, 12 feet high, rests on queen trusses 8 feet high, spaced 10
feot apart, Find the stresses for a load of 20 1bs, per square foot.

5367
o
)

< 886

)

o
S 5
<

Yo,

7166 6387

ﬁ: An A roof, braced as in the figure, is 40 feet span, and 10 feet high; the
orizontal tie bar is 8 feet below the vertex. Find the stresses on each part

h
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when loaded with 2 tons at each joint by constructing a diagram of forces or
otherwise.

(=2 X= 30 LR o

7. In the last question suppose an accumulation of snow on one side equivalent to
an additional load of 2 tons at the middle of the rafter, and 1 ton at the ridge. Find
the stress on each part.

Bara, Stress. ” Bars, ’ Stress.
1 139 ik 173
2 12'6 2 157
3 12:8 3 154
4 55 4 86
5 18 L 36
6 75| i

8. SBuppose there are 11 suspending rods iniron roof shown in the figure, the height
of which is y;th the span. Find the stress on each part-—1Ist, when loaded with 4 ton
at each joint on both sides, and, 2nd, when loaded with an additional 4 ton at each
joint on one side, not including the ridge.

«@‘@ﬂﬂﬂygy’ Bars

165 168 4% 185 nF 135 16§ 185 208 238

Additional load is on right-hand side, and the figures on the diagram refer to
case 2.

9, The roadway of a bridge, 80 feet span, is carried by a pair of compound
trapezoidal trusses, each consisting of three simple trapezoids of the same height,
the six ““queens” of which arve equidistant, forming six divisions of length four
thirds the height of the truss. Find the stress on all the bars due to } ton per foot
run on the bridge.

10. Find the stress on each part of a * straight-link suspension” bridge formed by
inverting the truss of the last question, assuming the pull at the centre of the
platform zero.
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CHAPTER IL
STRAINING ACTIONS ON A LOADED STRUCTURE.

16. Preliminary Exzplanations.—In the preceding chapter we have
considered only those structures in which the parts are subject to
compression and tension alone, except by way of anticipation in a
fow special cases. But the parts of a structure are generally subject
o much more complex forces, and besides, although the forces acting
on each bar have heen determined, we should, if we stopped here,
have a most imperfect idea of the way in which the load affects the
structure as a whole.

If we imagine a structure to be made up of any two parts, 4 and B,
united by joints, or distinguished by an ideal surface cutting through
the structure in any direction, the whole of the forces acting on the
structure may be separated into two sets, one of which acts on 4, the
other on B. Since the structure is in equilibrium as a whole, the
two sets of forces must balance one another, and must therefore
Produce equal and opposite effects on 4 and B, effects which are
Counteracted by the union existing between the parts. The two sets
of forces taken together constitute a STRAINING ActioN of Which each
Set is an element, and the object of this and the next two chapters
18 to consider the straining actions to which loaded structures and
Parts of structures are subject.

Straining actions differ in kind, according to the nature of the
effects which they tend to produce. Four simple cases may be
diSﬁingujshed e

(1) The parts 4 and B may tend to move towards each other or
away from each other perpendicular to a given plane. This effect is



