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CHAPTER IL
STRAINING ACTIONS ON A LOADED STRUCTURE.

16. Preliminary Exzplanations.—In the preceding chapter we have
considered only those structures in which the parts are subject to
compression and tension alone, except by way of anticipation in a
fow special cases. But the parts of a structure are generally subject
o much more complex forces, and besides, although the forces acting
on each bar have heen determined, we should, if we stopped here,
have a most imperfect idea of the way in which the load affects the
structure as a whole.

If we imagine a structure to be made up of any two parts, 4 and B,
united by joints, or distinguished by an ideal surface cutting through
the structure in any direction, the whole of the forces acting on the
structure may be separated into two sets, one of which acts on 4, the
other on B. Since the structure is in equilibrium as a whole, the
two sets of forces must balance one another, and must therefore
Produce equal and opposite effects on 4 and B, effects which are
Counteracted by the union existing between the parts. The two sets
of forces taken together constitute a STRAINING ActioN of Which each
Set is an element, and the object of this and the next two chapters
18 to consider the straining actions to which loaded structures and
Parts of structures are subject.

Straining actions differ in kind, according to the nature of the
effects which they tend to produce. Four simple cases may be
diSﬁingujshed e

(1) The parts 4 and B may tend to move towards each other or
away from each other perpendicular to a given plane. This effect is
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called compression or extension, and the corresponding straining
action is a thrust or a pull.

(2) 4 and B may tend to slide past each other parallel to a given
plane. This effect is called shearing.

(3) 4 and B may tend to rotate relatively to each other about an
axis lying in a given plane. This is called bending,

(4) 4 and B may tend to rotate relatively to each other
about an axis perpendicular to a given plane. This is called
twisting.

In the first two cases the straining action reduces to two equal and
opposite forces, and in the second two to two equal and opposite
couples. In general, straining actions are compound, consisting
of two or more simple straining actions combined. The given plane
with reference to which the straining actions are reckoned may
always be considered as an ideal section separating 4 and B even
when the actual dividing surface is different. We shall commence
by considering the straining actions on a beam of small transverse
section.

SECTION I.—BEAMS.

17. Straining Actions on @ Beam.—The action of a simple thrust or
pull on a bar has already been sufficiently considered in chapter I.
They are usually considered as separate cases, and the simple
straining actions on a bar are therefore reckoned as five in number.
The other three are (1) shearing, (2) bending, and (3) twisting,

- of which the last rarely occurs, except in
A Figas. machines, and will, therefore, be considered
in a later division of this work, under that
head.

Shearing and bending are due to the action of
forces, the directions of which are at right angles
to the bar: in structures, the forces usually lie in
one plane passing through the axis of the bar.
A bar loaded in this way is called a beam.

Simple shearing is due to a pair of equal and
opposite forces, #' (Fig. 23), applied to points
very near together, tending to cause the two parts
4 and B to slide past one another, as shown in the figure (Figs. 234,
230). Either element is called the shearing force, and is a measure of

T
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the magnitude of the shearing action, but in considering the sign we
must consider both together. In this work, if the right-hand portion,
4, tends to move upwards, and B downwards, as in Fig. 23,
the shearing action will usually be reckoned negative, while in the
converse case (Fig. 23a) it will be reckoned positive.

Simple bending is due to a pair of equal and opposite couples
applied to the bar, one acting on 4, the other on B, as in Fig. 24,
& Fig.2s. P
M M

B lp JP A

te_nding to make 4 and B rotate in opposite directions. The mag-
nitude of the bending is measured by the moment of either couple
Which is called the bending moment. In this work bending moments
W%H usually be reckoned positive when the left-hand half, B, rotates
With the hands of a watch, and the right-hand half in the opposité
direction, That is to say, when the beam tends to become convex
downwards, as in the ordinary case of a loaded beam supported at
the ends. 1In loaded beams shearing and bending generally exist

toge?her, and vary from point to point of the beam. We shall now
consider various special cases.

18. Ezample of a Balanced Lever.  General Rules for caleulating S.F.
and B.M —First take the case of a beam, 4B, supported at C
(Fig. 25), and loaded with weights, P@), at its ends.

If the weights are such that P.4C = Q.BC the beam will be in
equilibrium, but the two parts, AC,

B_U, tend to turn about C in opposite S st

directions, there is therefore a bending G 3
action at O, of which the equal and l o ‘,
Opposite moments P.AC, Q.BC are the © "

elements. Rither of these is the bending moment usually denoted
by 2, so that we write

M, = P.AC = Q.BC.

Not only is there a bending action at €, but if we take any point,
K, and consider the forces acting on AK, BK separately, we see
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that 4K tends to turn about X under the action of the force ok
while BK tends to turn about K under the action of the forces
P+@Qab ¢ and @ at B. The first tendency is immediately seen to be
simply the moment P.4K, while the second is Q.BK — (P + Q)CK.
The last quantity reduces to Q.BC' — P.CK, or, remembering that
Q.BC = PAC to PAK The two moments then, as before, are
equal and opposite, and constitute a bending action at K, measured
by the bending moment
My = PAK.

This example will sufficiently explain the general rule for cal-
culating the bending moment at any point, K, of a beam. Divide
the forces into two sets, one acting to the right and the other to the left
of K, and estimate the moment of either set about K, then the result will
be the bending moment at K. The example shows that the calculation
of one of the two moments will generally be more simple than that
of the other, and cases constantly occur, as where a beam is fixed
at one end in a wall, where nothing is known about one set of
forces except that they balance the other set. In each case the
simplest calculation is of course to be preferred.

Moments are measured numerically by unit weight acting at unit
leverage, as, for example, 1 ton acting at a leverage of 1 foot, for
which the expression “foot-ton” is commonly employed.  This
phrase, however, is used also for a wholly different quantity, namely,
the unit of mechanical work, and for this reason it would be pre-
ferable to call the unit of moment a ton-foot for the sake of dis-
tinction.

The peculiar action called shearing will be better understood
when we come to consider the action of forces on a framework
girder in the next section; it will here be sufficient to say that
if the sum of the forces acting on AKX, BK are not separately
equal to zero, they must tend to cause 4K, BK to move past
each other in the vertical direction, thus constituting a shearing
action measured by the magnitude of the shearing force, which
may be thus calculated for any point K.  Divide the Jorces into two
sets, one acling to the right of K and the other to the left of K, the
algebraical sum of either set is the shearing force at K. As before,
either set may be chosen, whichever gives the result most simply.
In the example just given the shearing force at any point of A¢ is
P; and at any point of BC, Q.
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19. Beam Supported at the Ends and Loaded af an Infermediale
Loint.—We will next consider the case of a beam supported at

Fig.26.
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the ends and loaded at some intermediate point. Before we can
apply the rules previously enunciated, to find the shearing force and
!Jendmg moment at any point, we must first determine the support-
ng forces at the two ends. We find the force P acting at 4, Fig.
26, by taking moments about B, thus,
Wb
2 = = 5 p = —_—
Pa + b) = Wb; .. F i
and similgr] = Wa_,
% g @+ b
Fl.l‘st. as to the shearing force. Taking any point K in A4C, and
‘onsidering the forces acting on 4K, of which there is only one,

Cll a1
R e

At any point K’ between € and B we have
iy
e e

It v?*ill be noticed that at K the tendency is for the left-hand
Portion to slide upwards relatively to the right, whereas at K’
the tendency is for the right-hand portion to slide upwards
relatively to the left. Tt is advantageous to distinguish between
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these two tendencies, as previously stated, by calling the one
positive and the other negative.

We may draw a diagram to represent the shearing force at any
point thus. Let A'B’ be drawn parallel to and below 4B to repre-
sent the length of the beam, and let C'C’L be the line of action of the
weight. If we set up an ordinate 4'F = P, and downwards an
ordinate B'M = @), and draw FE and ML parallel to 4'B' to meet
the vertical ZC'L; the shearing force at any point will be repre-
sented by the ordinates of the shaded figure 4'FELM B, measured
from the base line 4’B. Not only will the magnitude of the
shearing force be represented, but also the direction of the sliding
tendency. This is why on one side of (' the ordinate was set
downwards.

In this example the supporting forces may be found by construc-
tion, and thus the whole operation of determining and representing
the shearing force performed graphically. For, set down B'K = W,
join A’ and where the vertical through €' cuts 4'K, draw LM
horizontal, then B'M = @ and MK = P. Then set up 4'F = MK,
and draw FZ horizontal.

Next as to the bending moment at any point. Take any point &

in AC distant 2 from 4, then
W

Mol eiic = 5
xe Y
and similarly at X' in CB distant 2’ from B,
M= e = - i i
@ + b

so for either side of C, the bending moment is greater the greater
the distance of the point from the end of the beam. Thus the
greatest bending moment is at C.

If in the value of M, we put @ = q,

or o Migaae s wli=rl),
we get the same result, viz., that
M= Q—IT% = greatest bending moment.

The graphical representation of the hending moment at any point
is very useful and instructive. We may construct the diagram

thus :—d4'B’ representing the length of the beam set up from ¢,

C'N the bending moment at (' = ;?% on some convenient scale,
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on such a scale for instance as 1 inch = 20 ft.-lbs. Then joining
A'N and B'N, the ordinate of the figure 4'VB', measured from the
base line 4'B, will express on the scale chosen the bending
moment at any point of the beam. If @ = b = % span, so that the
load is applied at the centre of the beam, then

M, = 1W x span = greatest bending moment.

20. Beam Supported af the End and Loaded Uniformly.—The
next example for consideration is that of a beam supported .
at the ends and loaded unmiformly throughout its length with w

Fig.27.

ll?s. per foot. (Fig. 27.) Let the span = 2¢. Take any point, K,
distant 2’ from the centre 0. The load on AK is wAK, and there-

f?l‘e the shearing force at K, reckoning the forces on the left-hand
side, must be

Fe = wa — wAK = wa — w (e — &) = wi.

That is, the shearing force is proportional to the distance of the point
from the centre of the heam. At the end 4 where z = a,

. =
and at B where 2 = — q,
Iy = — wa.

If from 4'B’, below 4B in the diagram, we get up and down ordinates
at 4" and B' = wa on some scale, and join LM, the ordinates of the
sloping line will represent the shearing force at any point. The
shearing force at the centre of the beam is zero.
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In finding the bending moment at K, reckoning still from the
left-hand side, we must clearly take account not only of the sup-
porting force at 4, but also of the effect of the load which rests on
the portion of the beam AK. The moment of this load about X is
the same as if it were all collected at its centre of gravity, namely
at the centre of AK. Thus

M, = wn. AK — wdK.AE
= YAK (% — AK) = % AKKB.

That is to say, the bending moment at any point is proportional to the
product of the segments into which the beam is divided by the point.
Putting 4K=a -« and BK=a+,

My =Fw(a? —a?),
which is greater the less # is. At the centre z=0, and we have the

maximum bending moment
M, = }wa?.
If we put 2wa = #7, the total load on the beam
My=%W x span.
This is only one half the bending moment due to the same load
when concentrated at the centre of the beam.

Tf ordinates be set up from 4’B’=}w (a® —2?), at all points, the
extremities of the ordinates will lie on a curve which may easily be
seen to be a parabola with its axis vertical and vertex above the
middle point of the beam. For

SZ=8K - K7 =%uwa® — Jw(a® — 2% = Jwa?,
So that SZ is proportional to SN2, showing that the curve is a
parabola.

921. Beam Loaded at the Ends and Supported at Intermediate Points.—
Next, suppose a beam (Fig. 28) supported at 4, B, and loaded
with weights P, @, at the ends C, D, which overhang the sup-
ports. If AC, AB, BD are denoted by a, I, b respectively, the
supporting force S at 4 (by taking moments about B) is given by

: Si=P(a +1) - Qb.
Similarly B, the supporting force at B, is given by
Rl=Q(b+1)- Pa.
Take now a point K distant « from 4 ; then
Po-Qb M,—M,

Fp=§-P=207 0T
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where J,, M, are the bending moments at 4, B.
Also for the bending moment at K,

M, - M,

M= -8z +Pla+a)= - 7 8o M,

Or, as we may write it,

] BL;-
: :‘ Fig.28
v .
g i Kl =
! : &= b
{elian e Wa
(o] ;A * K LK i B D
a o E R 2 - S

These formulae show that the shearing force is constant while the
bending moment varies uniformly. In the diagram this is indicated
by setting up ordinates Aa, Bb, to represent the bending moments at
4, B, and joining a, b ; the ordinate K of this line corresponding to
an intermediate point K, will represent the bending moment there.
The moments are in this example reckoned positive for upward
bending,

An important special case is when M, = f,; then the bending
Mmoment is constant, and the shearing force zero. 'We have then no
shearing but only hending. Simple bending is unusual in practice,
but an instance occurs in the axle of a carriage.

The ordinates of the straight lines Ca, Db, represent the bending
oment at any point of the overhanging parts of the beam.

; 22. Application of the Method of Superposition.—When a beam
18 acted on by several loads, the principle of superposition
already stated in Chap. I is often very useful in drawing dia-
grams and writing down formulae for the straining action ab
any point. Thus, for example, in the preceding case, if there be
many weights on the overhanging end of a beam, the bending
moment and shearing force at each point must be the sum of that
due to each taken separately ; and hence it follows that, whatever be
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the forces acting on a beam, if there be a part 4B under the action
of no load, and the bending moments at the ends of that part be
My, My, the straining actions at any intermediate point K will
always be given by the formulae just written down. And, further,
it there be a load of any kind on 4B, and m be the bending moment,
on the supposition that the beam simply rests on supports at 4, B,
then the actual bending moment must always he given by

M=M,. ]_ZE M,

5
a general formula of great importance. The result is shown graphie-
ally in the diagram, where the curve represents the bending moment
m, and the straight line ab the effect of the bending moments at the
ends, supposed, as is frequently the case, to be in the opposite direc-
tion to m; then the intercept between the curve and the straight line
represents the actual bending moment.

If several weights act on a beam, triangles may readily be con-
structed showing the bending moment due to each weight ; then
adding the ordinates of all the triangles at the points of application
of the weights, and joining the extremities by straight lines, a poly-
gon is obtained which is the polygon of bending moments for the
whole load. This process may also be applied to shearing forces.
It is simple, but somewhat tedious when there are many weights, and
other methods of construction will be explained hereafter.

EXAMPLES,

1. A beam, 4B, 10 feet long is fixed horizontally at 4, and loaded with 10 tons
distributed uniformly, and also with 1 ton at B.  Find the bending moment in inch
tons at 4, and also at the middle of the beam,

M =720 inch-tons at A4,
=210 ., at the centre
2. In the last question find the shearing force at the two points mentioned,
£'=11 tons at A.
=16, 4 at the centre.

3. A beam, 4B, 10 feet long is supported at 4 and B, and loaded with 5 tons at a
point distant 2 feet from 4. Find the shearing force in tons, and the bending
moment in inch-tons at the centre of the beam. Find also the greatest bending

nt.
e F at the centre =1 ton.

M at the centre = 60 inch-tons,
Maximum bending moment =96  ,,
4. In the last question suppose an additional load of 5 tons to he uniformly
distributed. TFind the shearing force and bending moment at the centre of the beam,
1" at centre =1 ton as before.
M at centre = 11} foot-tons = 135 inch-tons,
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5. A beam, AB, 20 feet long is supported at € and D, two points distant 5 feet from
4 and 6 feet from B respectively. A load of 5 tons is placed at each extremity.
Find the bending moment at the middle of ¢ in inch-tons.

Moment = 330 inch-tons.

6. In the examples just given draw the diagrams of shearing force and bending
moment at each point of the beam,

7. A foundry crane has a horizontal jib, A€, 21 feet long attached to the top of a
crane post 14 feet high, which turns on pivots at 4 and B. The crane carries 15 tons,
which may be considered as suspended at the extremity of the jib. The jib is
supported by a strut attached to a point in it 7 feet from 4, and resting on the crane
Post at B. TFind the stress on crane post and strut, and the shearing force and hend-
ing moment at any point of the jib.

Tension of crane post = 30 tons.
Thrust on strut =50 ,,

8. A rectangular block of wood 20 feet long floats in water; it is required to draw
the curves of shearing force and bending moment when loaded (1) with 1 cwt. in the
middle ; (2) with 4 cwt. at each end, and (3) 4 ewt. placed at two points equidistant
from the middle and each end.

9. A beam, 4B, 20 feet long is supported at the ends, and loaded at two points
distant 6 feet and 11 feet respectively from one end with weights of & tons and
12 tons : employ the method of superposition to construct the polygons of shearing
force and bending moment. Find the maximum bending moment in inch-tons.

Maximum moment = 972 inch-tons.

10. A beam is supported at the ends and loaded uniformly throughout a part of
its length : show that the diagram of moments for the part of the beam outside the
load is the same as if the load had been concentrated at the centre of the loaded
Part, and for the remainder is a parabolic are. Construct this arc.

SECTION IL.—FRAMEWORK GIRDERS WITH BoOMS PARALLEL, AND
WEB A SINGLE TRIANGULATION.

23. Preliminary Explanations.—Hitherto we have only considered
beams of small transverse section, but the part of a beam may be played
by a framework or other structure under the action of transverse
forces. Such a structure, when employed as a beam, is called a Girder,
and consists essentially of an upper and a lower member called the
Booms of the girder, connected together by a set of diagonally placed
bars, called collectively the Web. The web consists sometimes of
several triangulations of bars crossing each other, and may even be
continuous. In the present section the hooms will be supposed
straight and parallel, and the web a single triangulation. The
action of a load on such a girder furnishes the simplest and best
illustration of the nature of the straining actions we have just been
considering.

Suppose, in the first place, we have a rectangular beam of consider-
able transverse dimensions, which has one end fixed horizontally, and
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the other end loaded with a weight /7. Now let a part of the length,
CD (see Fig. 29), be cut away, and replaced by three bars, CD, EF,
DE, jointed at their ends to the two parts of the beam—CD, EF
forming a rectangle, of which DF is a diagonal. With this construc-
tion the load /7 will be sustained, as well as by the original beam,
but the three bars will be subject to stresses which we shall now
determine. To do this, suppose each of the three bars (in succession)
removed, and examine the effect on the structure—an artifice which
often enables us to see very clearly the nature of the stress on a
given part of a structure.

In the first place, suppose CD removed ; then the portion EB will
turn about the joint Z, as shown in the lower part of the diagram,
so that the function of the bar €D must be to prevent this turning,
which is exactly what we have previously described as bending. The
tendency to turn round £—that is, the bending moment at F—is in

this case simply = 7/~ x C'B. But if there
TaBi: l is a system of loads, the bending moment
W at £ may be found by methods previously

\\\§\\\\ described. -
. Now let H = stress on CD. It may

“\§\\
i \
. ; ;
readily be seen to be a tensile stress,

DR

5/7/\// //\b
.

. E 4 because, on the removal of the bar, the
a9 ends €' and 1) separate from one another.
/f \X\\Q ey LSl e’ Also, leb & = CE or DF, the depth of the
/\\\\o \\\}\\ beam. The power of ¢'D to prevent EB
. £ g\\\ from turning about Z is measured by the

moment about % of the force /7 which acts
‘ C along it. Therefore
N\ ,/3\\ B Hh=M,
< And dividing the bending moment at &
F S by the depth of the beam, we obtain the
magnitude of the tension of ¢,

Next, let the bar EF be removed. The structure will yield by
turning round the joint D), the point # approaching Z. Thus the
bar EF is in compression, and by its thrust, = H' say, towards 7, it
prevents #5 from turning round [

The tendency to turn round D, due to the action of the external
forces = M, will be equal to the resisting moment 77%.

Hh=1,.

SRR
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Therefore if we divide the bending moment for the joint D opposite
to the bar, by the depth of the beam 7%, we obtain the magnitude
of the compressive force H'.

Lastly, let us suppose the diagonal bar ED to be removed, the
effect is quite different from the two former cases ; for instead of
the overhanging portion of the beam turning about some point,
1t now gives way by sliding downwards (as shown in the centre
of the diagram), remaining horizontal all the time. €D and EF
turn about (' and Z, remaining parallel to one another. The
rectangle CDFE becomes distorted by the shortening of the diagonal
LD and the lengthening of C#. In the structure then the function
of the diagonal bar ED is to prevent the sliding, by resisting the
tendency to shorten. Thus the bar ED must be in compression,
and by its thrust upon the point D it maintains FB from sliding
downwards. Let § = thrust along ED and 0 = angle it makes
with the vertical. The force S may be resolved into two com-
Ponents, a horizontal one, Ssin 6, and a vertical one, Scos 6. Tt is
the vertical component alone which resists the sliding action, and
aintains J) in its proper position. Now the tendency to slide
1s 10 other thing than the shearing force on the structure, which we
have previously been investigating. In this example the shearing
force is simply 77 for all sections between 4 and B. But in other
¢ases of loading the shearing force may be estimated by previously
given methods. Since the downward tendency of the shearing force
Is balanced by the upward thrust of the vertical component of S
along ED we have

Scos@ = F.

Instead of the points # and D being joined there might have been
a bar C'F, which, by the resistance to lengthening which it would
offer, would have sustained the portion FB from sliding downwards.
Such a bar would be in tension just as the bar £D is in compression,
and in finding the stress on it we should use exactly the same equation.
Now instead of having 8 bars only, the whole structure may be
built up of horizontal and diagonal bars. The same principles will
apply.  On removing any one of the horizontal bars, we see that the
Structure yields by turning round a joint opposite: so we say the
function of the horizontal bars is to resist bending. This is ex-

Pressed by the equation HA = M. On the other hand, the function
D
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of the diagonal bars being to resist the shearing tendency, we have
always Scos 6 = F.

24. Warren Girders under various Loads.—Fig. 30 shows a Warren
Girder, so called from the name of the inventor, Captain Warren, a
type of girder much used for bridges since its first introduction about
the year 1850. It consists of a pair of straight parallel booms connected

VAVAVAVAVAVAN
I 7

together by a triangulation of bars inclined to each other, generally
at 60°, so that the triangles formed are equilateral. The booms in
the actual structure are generally continuous through the junctions
with the diagonal bars, but, if well constructed, there is no sensible
error in regarding the structure as a true frame, in which the several
divisions are all united by perfectly smooth joints. Any three bars
forming a parallelogram and its diagonal may be considered as
playing the same part as regards the rest of the structure as in
the case just considered.

When a Warren girder is used, it is generally supported at the
ends, and the loads are applied at one or more joints in the lower
boom. We will examine some examples.

(1) Suppose there is a single load applied at a joint in the centre
of the span.

First as to the diagonal bars. It was shown above that the duty
of these bars was to prevent the structure yielding under the action
of the shearing force; the vertical component of the stress on either
of the diagonal bars being equal to the shearing force for the interval
of the length of the girder within which the diagonal bar lies. This
is expressed by the equation

Scosf = F.

Now in the example which we are considering with the load in
the centre, the shearing force will be the same at all sections
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to the right and left, namely = § /7. Therefore the stress on all the
diagonal bars is of the same magnitude,

R

2 cos 30° N3

If we consider the effect of removing either of the bars, we shall
find that commencing from one end they prevent alternately the
shortening and lengthening of the diagonals which they join, so that,
commencing with one end, the bars are alternately in compression
and tension. The compression bars are shown in double lines.

Next as to the several portions of the length of the top and
bottem booms. As was shown above, the stress on any division
of the horizontal bars has the effect of preventing a bending round
the joint opposite ; so that the moment of the stress about the joint
is equal to the bending moment at the joint, due to the external
forces. This is expressed by the equation

Hpi= 3.

Let @ = length of a division.
~ Then, since the supporting force at the joint 0 is 377, the bend-
Ing moments at the joints numbered 1, 2, 3, &e., are

7 Wa  Wa
M s
i 5l

w3 3 a,
ﬂfa=fg-2-a.= i

and so on, the bending moments increasing in arithmetical
Progression.
_ Since the depth of the girder / is the same at all parts of the length ;
if we divide the M’s each of them by %, we obtain the magnitude of
the stress on the bars opposite the respective joints, Thus
_ Wa i Wa _ 3Wa

05— '&:ﬁ': 18475 ?]{J 24 T Ta“
We see, then, that the stress on the several divisions increases in
arithmetical progression as we proceed from the ends towards the
‘entre. By observing the effect of removing either of the bars,
We see that all the divisions of the upper boom are in compression.
This is expressed by drawing them with double lines in the figure.
All the divisions of the lower boom are in tension.

, and so on.
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(2) Next suppose the load is applied at some other joint not in the
centre—the joint 4 for example. We must first calculate the sup-
porting forces. Suppose they are P at 0 and @ at 12. For the
portion of the girder to the left of 4 the shearing force will be the
same at all sections and be equal to P. So the stress on all the
diagonals between 0 and 4 will be equal to P sec 30°.

To the right of joint 4 the shearing force = @, and the stress on
all the diagonal bars from 4 to 12 will be @ sec 30°.

Proceeding from either end towards the joint where the load is
applied, we observe that the diagonal bars are alternately in compres-
sion and tension—so that the bar 56 is now in compression, whilst
the bar 54 is in tension. On these bars the nature of the stresses is
Just opposite to that to which they were exposed when the load was
at the centre joint. Thus by varying the position of the load we not
only vary the magnitude of the stress, but we may in some cases change
the character of the stress, requiring a diagonal bar to act sometimes
as a strut and sometimes as a tie.

For the divisions of the horizontal booms on the left of ¥ the
stresses are

}ll' ,2,15’“ ?& &e

e R e
in arithmetical progression up to the bar opposite the joint to which
the load is applied ; and to the right of 77,

Qa 2Qa 3Qa

w 2% 0 ¥
in arithmetical progression also up to the bar opposite the load. The
upper bars are all in compression and the lower in tension as before.

When there are a number of loads placed arbitrarily at the
different joints, the simplest way of determining the stresses is often
to find the stress on the bars due to each load taken separately, and
then apply the principle of superposition. In applying the principle
due regard must be paid to the nature of the stress. A compressive
stress must be considered as being of opposite sign to a tensile stress,
and, in compounding, the algebraical sum of the stresses for each load
will be the total stress on the bars. '

(3) There is one particular case, that in which the girder is
uniformly loaded, which it is advisable to examine separately.

In general, the load on the platform of the bridge is by means
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of transverse beams or girders transferred to the joints of the
lower hoom. The transverse beams may be the same number
as the joints in the lower boom. In that case the girder will
be loaded with equal weights at all the bottom joints. If the
transverse beams are more numerous their ends will rest on the
bottom booms, and tend to produce a local bending action in
each division, in addition to the tensile stress which, as the bottom
member of the girder, it will have to bear. In some cases, to lessen
or get rid of this bending action, vertical suspending rods are intro-
duced, by which means the middle points of the lower divisions are
supported, and the loads transmitted to the upper joints of the
girder. In such a case we may take all the joints both in the upper
and lower booms to be uniformly loaded.

We will, however, suppose equal weights applied to the joints
of the lower hoom only.  First as to the shearing forces. Between
the end and the 1st weight the shearing force = the supporting
force, = half the total load = P say. In the next division the
shearing force is less by the amount of the load at the 1st lower joint
= P~ 7. In the third division of the lower boom from the end
the shearing force = P — 2W, and so on. The stresses on the
diagonals can now be found by multiplying the shearing force in the
division within which any one diagonal lies by the secant of the
angle which the diagonal makes with the vertical. The stresses will
diminish in arithmetical progression as we pass inwards from the
ends towards the centre. It will be observed that on the first and
Second diagonals from the end the stress is of the same magnitude.

. On the third and fourth it is alike also, and so on. The stresses are
alternately compression and tension, commencing with compression
on the first bar,

To find the stresses on the booms we must determine the bending
Inoments at all the joints.

P P,
M, = 50 M= 2Ja
M, = L34 _ g, M= fj’m S
= S(BP-). = S(4P -27).
M, = g(sf - 37). M, = g(ﬁp — 47P).
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Division of the 3’s by 7, the depth of the girder, will give the
several horizontal stresses, They will be found to increase as we
pass from the ends towards the centre.

25. N Trusses.—The web of the girder, instead of consisting of bars
sloping both ways, forming a series of equilateral triangles, may be
constructed of bars placed alternately vertical and sloping at
an angle, so forming a series of right-angled triangles, looking like
a succession of capital letters N. (See Fig. 31.) For this reason
it is sometimes called an N girder. The ordinary practice is to
divide the girder into a number of squares by means of the
vertical bars, so that the diagonals slope at an angle of 45°. Tt is

Fig.s1.

|
INAN o

advantageous to place the diagonals so as to be in tension, For a
load in the centre, or a uniformly distributed load, they should slope
upwards from the centre towards the ends, The vertical bars will
then be in compression. A short bar is better able to resist compres-
sion than a long one, whereas a tension bar is of the same strength
whether short or long ; so it is manifestly economical of material, and
a saving of weight, to place the long bars, that is the sloping bars, so
as to be in tension. The same methods will apply to find the stresses
on the bars, since as hefore the web resists the shearing action, and
the booms the bending.

The simple queen truss, considered in Chapter I., Section I, is
another example of a web consisting of alternate vertical and diagonal,
bars, but the diagonal is not usually inclined at 45° to the vertical.

EXAMPLES,

1. A trapezoidal truss is 24 feet span and 3 feet deep. The central part is 8 feet
long and is braced by a diagonal stay so placed as to be in tension,  Find the stress
on each part when loaded with 4 tons at one joint and 5 tons at the other,

Stress on diagonal stay = ‘935 tons,

2. A bridge is constructed of a pair of Warren girders, with the platform rest-
ing on the lower booms, each of which is in 6 divisions, The bridge is loaded with
20 tons in the middle. Find the stress on each part.
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3. In example 2 obtain the result when the load is supported at either of the
other joints.

4. From the results of examples 2 and 3 deduce the stress on each part of the
girder when the bridge is loaded with 60 tons, divided equally between the three
pairs of joints from one end to the centre.

Results for questions 2, 3, 4, the bars being numbered as in Fig. 30.

1 ”th'es-a. on Booms. | .Stt-u;_nugngulmls.

A et : e et ‘ e

{ |toadate.| sta | atz |0 ot o | Lond at u.[ st dl et hlanit e j‘

S0 sl Bt A nt s A gt et | SEAE S | 7 ke O

| 02 \ 288 | 985| 48 | 1158 01 | -576|-77 |-96 |-23:06

| 18 | -576|-77 |-9% |-2306 ‘ 12 | 576| 77 | 96 | 2306
24 | 864 1155| 864 | 28831 28 |-596|-77 | 1:92|-11:54

| 3D | -1152 | -15'36 | — 7'68 | -34'56 || 34 | 576 T | =192 1164

| 46 | 144 | 13-44| 672 | 3456 45 | -576| 385| 192 ‘ 0

| BT | -17'28 [ -11'562 | — 5'76 | -34'56 || 56 [ 576 (-38 | —1902| 0

| 68 | 14+4 96 | 48 288 | 67 | 576 3857 |- 1192 | 11b4
79 | <1152 | - 768 | - 384 | 2304 | 78 | - 576 | - 385 | - 192 | -11°54
?,10 | 864 576 288 | 1728 | 89 | 576 385 | 192 i 1154
9,11 | - 5'76 - 384 192 | -1162 || 9,10 | - 5°76 | - 3'85 | - 1'92 | -11'564

|10,12 | 2:88 j 192 96 | 566 (110,11 | 576 385 | 192 | 1164
LA A 12| - 576 | - 885 | - 192 | 1154

5. A bridge 80 feet span is constructed of a pair of N girders in 10 divisions,
the platform resting on the lower booms, and the diagonals so arranged as to be all
in tension. A load of 80 tons is uniformly distributed over the platform. Find the
stress on each bar.

SECTION IIL.—GIRDERS WITH REDUNDANT BARS.

28. Preliminary Explanations.—Again, returning to the (p. 48) beam
out of which a portion has been cut and replaced by bars, let us suppose
that instead of one diagonal bar only, there are two. We require to
find the stresses on the bars. First, on the diagonal bars. In this
case also the stress on these bars will be due to the shearing force.
Together they prevent the structure yielding under the shearing
action, but the amount each one bears is indeterminate until we
know how the diagonals are constructed and attached to the rest of
the structure. Suppose, for example, the diagonals are simple struts
placed across the corners of the rectangle, but not secured at the
ends The struts will be incapable of taking tension; and the
diagonal ED, which slopes in the direction, to be subject to compres-
sion will have to bear the whole shearing force. The other diagonal
is ineffective. Secondly, suppose the diagonals to be simple ties, such
as a chain or slender rod, and so incapable of withstanding compres-
sion. Then the bar CF will carry the whole shearing force. We may
have any number of intermediate cases between these extreme ones
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according to the material of the diagonals and the method of attach-
ment. In all cases one diagonal tends to lengthen, and the other
to shorten, and according to their powers of resistance to these ten-
dencies they offer resistance to the shearing. If S, and S, be stresses
on the two bars, then in all cases

() +8,)cos 0 =17
If the diagonals are exactly similar rigid pieces similarly secured at
the ends, equal changes of length will produce the same stress whether
in compression or tension, so that each will bear an equal share of
the shearing force. We shall then have

Si=8=1Fsec .

The foregoing is one of the simplest examples of a frame with re-
dundant bars, and shows clearly why, in such cases, the stress on
each bar cannot he determined by statical considerations alone, but
depends upon the materials and mode of construction. In structures
such as those considered in Chap. I., Sect. IL., in which the principal
part is an incomplete frame, stiffened by bracing or other means to
provide against variations of the load, the bracing is usually redun-
dant, and the stress on it cannot be calculated with certainty.
Allowance has to be made for this in designing the structure by
the use of a larger factor of safety. Redundant material is often no
addition at all to the strength of the structure, and may even he a
source of weakness, as will appear hereafter.

When framework girders were first introduced, it was objected by
eminent engineers that failure of a single part would destroy the
structure. ~ Experience appears to have shown that risks of this
kind are not serious, and the tendency of modern engineering design
appears to be rather towards the employment of structures with as
few parts as possible.

Next, as to the horizontal bars. These still sustain the bending
moment, but not precisely in the same way as when there is only one
diagonal. To find the magnitude of the forces, we employ a method
similar to that used before, but instead of removing a bar we suppose
the girder cut through one or more bars at any place convenient to
our purpose ; then the principle which we make use of is, that the
action of each of the two halves on the other must be in equilibrium
with the external forces which are applied to either half. In Figure
32 let us take a vertical section through the point of intersection of
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the diagonals, 4 bars are cut by the section, and through the medium
of these 4 bars the structure to the left will act on the portion of the
structure to the right of the section, and sustain it against the action
of the external loads which rest on it.

First, there is the force H, pulling at K, and the force H,
thrusting at Z, and at O there are the two
forces S, and S, on the two diagonals. Fig.32.
Now, if we consider the tendency for the
external forces to bend the right-hand
portion round O, we see that the diagonal
bars offer no resistance to this bending ?
action, and must so far be left out of
account. The whole resistance to bending
is due to the bars ('D and EF along which
the forces I7, and H, act, so that if M/, be the bending moment at 0,
due to the external forces,

(H, + )" = L,
This will be true whatever be the proportion between S, and S,
and H, and H, Instead, therefore, of taking the bending moment
about a joint, as we did previously, we have in this case to take the
moment about the point where the two diagonals cross.

But besides the balancing of the bending moment, there are other
conditions to which the forces are subject, in order that the right-
hand portion may be in equilibrium. One is, that all the forces
which act on this portion must balance horizontally. There are no
external forces which have any horizontal action, so that it is only
the four internal forces which act along the bars cut, of which we
have to take any account, and these must, on the whole, have no
resultant horizontal action. The two thrusts must equal the two
pulls ; that is,

H, + S;8in 8 = H, + 8 sin 6.
H, — H, = (S, — S,)sin 6.

This also is true whatever be the distribution of the shearing force
between the two diagonals.

If, now, we suppose S,= |, then H,= I, = H,say. And the above
formula becomes Hi = M, the same as we had before ; but it must
be applied a little differently, the moment now being taken about
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the point of intersection of the diagonals. If S is not equal S, then
H will be the mean of H, and H..

27. Lattice Girders, Flanged Beams. — Constructions with a
double set of diagonals are common in practice. If, for example,
in the IV girder (Fig. 31) we place in each division two diagonals
instead of one only, the construction is called a laftice or irellis
girder. 'When employed for heavy loads, the diagonals are generally
inclined at an angle of 45° to the vertical. In light structures,
or when used for giving stiffness, they are often inclined at a
much greater angle.

To determine the stresses, it will be necessary to make an
assumption for the distribution of the shearing force between
the two diagonals for each division of the girder, and it will generally
be sufficiently correct to suppose each to carry half, and to write
S = }Fsec 0, and Hh = M for the points where the diagonals
intersect.

In lattice girders we more frequently find the double set of sloping
bars introduced, but the vertical bars omitted. In this case it will
not be true that the two diagonals in any one division are exposed
to the same stress. We can determine the stresses otherwise. The
structure may be divided into two elementary girders, each with its
own system of diagonal bracing, and each with its own set of loads.
Suppose, for simplicity, the number of divisions in the complete
girder even, and each half girder loaded with equal weights applied

Fig.8s.
| 1 2 3 i 5 6 7 8

R )

P Q P

to all the lower joints. Then if we make the simple, and in most
cases safe, assumption that the thrusts on the two end vertical
bars are equal, the forces on all the hars of the structure will be
determinate. In the example shown in Fig. 33 the thrusts on
the vertical end bars will be 2P.

After we have calculated the stresses on each bar in each elemen-
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tary girder, then, for any bar which is a portion of both, we must
compound to obtain the total stress.

We may further increase the number of diagonal bars and obtain
a girder, the web of which is a network of bars. In this case
it will not be exactly, but will be very nearly, true that the
horizontal bars take the bending, and the sloping bars the shearing
action, the shearing force being regarded as equally distributed
between all the diagonals cut by any one vertical section.

We may go on adding diagonal bracing bars until the space
between the booms is practically filled up, and even then assume
that the bending is taken by the horizontal bars and the shearing
by the web. The numerous bracing bars may then be replaced by
a vertical plate, which will form a continuous web to the girder.
Such a construction is a very common one in practice, the
horizontal members are called the top and bottom flanges of what
is still a girder, and often called so, but more often a flanged or
I beam. In the smallest class of these beams, they are rolled or
cast in one piece; but for large spans they are built up of plates
and angle irons rivetted together. For figures showing the trans-
verse sections of such beams see Part IV. In taking the depth of
such a girder, to make use of in the equation Hl = M, we ought
to measure the vertical distance between the centres of gravity
of the parts which we consider to he the flanges of the beam
or girder. In the simple rolled or cast beam this will be the
distance from centre to centre of depth of flanges. In the built-up
beam account must be taken of the effect of the angle irons.

Tt must be remembered that this method of determining the
strength of an I beam is only approximate. Its strength will
be determined in a more exact way hereafter, when it will be found
that the web itself assists in resisting the bending moment, but,
area for area, to the extent only of about one-sixth that borne
by the flange. On the other hand, the effective depth is less than
the distance from centre to centre of the flanges. In rough prelim-
inary caleulations we may often neglect this, and employ the same
formula as for lattice girders.

Girders are often of variable depths, so that the booms are not
parallel ; when this is the case the booms assist in resisting the
shearing action of the load, as will be seen hereafter.
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EXAMPLES.

1. A beam of I section is 24 feet span, and 16 inches deep ; the weight of the beam
is 1,380 1bs. Tt is loaded in the centre with 5 tons. Assuming the resistance to
bending te be wholly due to the flanges, find the maximum total stress on each flange
and the sectional area of each—the resistance to compression being taken to be 8 tons
and to tension 4 tons per square inch.

Maximum total stress = 53,505 1bs. = 2388 tons.
Sectional area of upper flange = 8 square in.
5 530 ybokbom & e

2. A trellis girder, 24 feet span and 3 feet deep, in three divisions, separated by
vertical bars, with two diagonals in each division, is supported at the ends and loaded
(1) with 20 tons symmetrically distributed over the middle division of the top
flange, (2) with 20 tons placed over one of the verfical bars. Find the stress on
each part of the girder, assuming each diagonal to carry half the corresponding
shearing force.

Stress on diagonals—Case 1. 14:2 0 142
Cage 2. 188 9% 9%

Remark.—These results show the unsuitability of this construction for carrying a
heavy load on account of the great inclination of the diagonals to the vertical.

3. A water tank, 20 feet square and G feet deep, is wholly supported on four
beams, each carrying an equal share of the load. The beams are ordinary flanged
ones, 2 feet deep. Find approximately the maximum stress on each flange, assuming
that the weight of the tank is one-fourth the weight of water it contains,

187,500
-

Distributed load on one beam = = 46,875 Ibs.

Hmax. = 58,693 1bs. = 26°1 tons.

4. The Conway tubular bridge is 412 feet span. Each tube is 25 feet deep outside
and 21 inside. The weight of tube is 1,150 tons, and the rolling load is estimated at
£ ton per foot run. Find approximately the sectional areas of the upper and lower
parts of the tube, the stress per square inch being limited to 4 tons.

Hmax, = 3,267 tons.
Area =817 square in.

REFERENCES,

For details of construction of girders the reader is referred to
Girder Making . . . in Wrought Iron. E. HUTCHINSON. Spon, 1879,



