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CHAPTER IIL
STRAINING ACTIONS DUE TO ANY VERTICAL LOAD.

28. Preliminary Remarks.—The preliminary discussion in the pre-
ceding chapter of the straining actions to which loaded beams and
framework girders are subject will have given some idea of the im-
portance of the effect of shearing and bending on structures, and we
shall now go on to consider the question somewhat more generally.

Let us suppose any body or structure possessing, as it usually
will, a longitudinal vertical plane of symmetry, to be acted on
by a set of parallel forces in equilibrium symmetrically disposed
with respect to this plane, as, for example, gravity combined with
suitable vertical supporting forces. ~Then these forces will be
equivalent to a set of parallel forces in the plane of symmetry in
question. Let the structure now be divided into two parts,
A and B, by an ideal plane section, parallel to the forces
and perpendicular to their plane. Then the forces acting on
A4 may be reduced to a single force ¥ lying very near the section
considered and a couple 3, while the forces acting on B may
be reduced to an equal and opposite force /' lying very near the
section and an equal and opposite couple M. The pair of forces are
the elements of the shearing action on the section, and the pair of
couples are the elements of the bending action on the section. As
the nature of the structure is immaterial, we may consider these
straining actions for a given vertical section quite independently of
any particular structure, and describe them as the Shearing Force
and Bending Moment due to the given Vertical Load. We shall
first consider the connection which exists between the two kinds of

straining action and the method of determining them for any possible
load.
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C'ONNECTION BETWEEN SHEARING AND BENDING.

29. Relation between the Shearing Force and the Bending Moment.—
Figure 34 shows the lines of action of weights 77, IV, &e., placed
at the successive intervals a,, a,, &c.
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In the first division the shearing force is
Fy= 3
in the second Fo=W,+ W,=F, + W,
e el =S
in the third e — et PV W= Tt W
B, — =Wy

and so on for all the d1v1510ns, 50 tha.t in the 2™ division
F,-F =W,
We express this in words by saying that the difference between the
shearing forces on two consecutive intervals is equal to the load applied at
the point between the two infervals; or it may be written
AF = W.
By setting down ordinates to a horizontal base line we obtain the
stepped figure as the graphical representation of the shearing force at
any point of the beam. Itis drawn by first setting downwards at 1 an
ordinate for the shearing force on the st interval, and then passing
along the beam to the other end, on meeting the lines of action of
the successive weights the length of the ordinates is increased by



CH. 11, ART. 29.] STRAINING ACTIONS. 63

the amount of the weights. In so doing we make use of the proposi-
tion which has just been proved.

This is called the Polygon of Shearing Force, or more generally,
when the loads are continuous, the Cwrve of Shearing Force.

Next as to the bending moment. At the first point where 7/, is

applied M, =0,
at the second point M, = Wi, = Fia;;
» third My = Wilay + as) + Watts = Way + (W + Wo)as

= M, + Fsay,
My - My = Fao;
,,  fourth point My = IFy(ay + ag+ as) + Wolay + ag) + Waay,
= Wi(aq + as) + Wyas+ (W + Ve + Wi)as,

= M+ Fyay,
My— M; = Fa,;
and generally, o, — M, , = F,_1a,_;.

We may express this in words by saying that the difference between the
bending moments al the two ends of an interval is equal to the shearing
force, multiplied by the length of the interval. Or the result may be
written
AM = Fa.

We will now take a numerical example and see how we may
make use of this property to determine a series of bending moments.

Let 4B be a beam fixed at one end, and loaded with weights
of 2, 3, 5, 11, 13, 7 tons, placed at intervals of 3, 2, 3, 5, 4, 6 feet,

\
w. F. i . Fa, M,
2 0 ‘
9 5 6
3 il
5 2 10 1
5 16
10 3 30 1
11 46
21 5 105 ‘
13 151 |
34 4 136
B | 287
41 6 246
533 |

commencing from the free end. We adopt a tabular method of
carrying out the work of calculation.



64 STATICS OF STRUCTURES. [PART 1.

First set down a column of weights applied, as shown by the figures
in the column headed /7. In the mext column write the shearing
forces. Since the shearing forces are uniform over the intervals be-
tweenjthe weights, it will be best to write the /s opposite the spaces
between the weights. Any F is found by adding to the # above it
the adjacent //. In the third column we set down the lengths of the
intervals. Then multiplying the #’s and corresponding &’s together,
set the results in column 4. Lastly, we can write down the column of
bending moments by the repeated addition of the Fa’s—the bending
moment at any point being found by adding to the bending moment
at the point above the value of Z'z between the points.

If instead of all the forces acting one way some of them act
upwards, a minus sign should be set opposite, and all the operations
performed algebraically.

The method is equally applicable however the beam is supported.

For example, let a beam 23 feet long be supported at the ends and
loaded with 3, 2, 7, 8, 9 tons, placed at intervals of 2, 2, 3, 4, 5, 7
feet, reckoning from one end.

Tlirst calculate one supporting force, say at the left-hand end

Ww. 1‘ v ‘ @ Fa, M.
16:17 1 0
1617 | 2 | 3234
-3 i ? 32:34
1317 | 2 | 2634
-2 ' ' 5868
1117 | 3 3351
= | 9219
L17 | 4 1668
—=8 ; 10887
~3:83 | 5 -1915
=9 . 8072
-12:83 | 7 — 8981
1283 ‘ 5 0

|

by taking moments about the other end. 1In the column of /#7’s
set this for the first force, and since all the loads act in the contrary
direction, put negative signs opposite them, and in writing down
the next column of F’s add algebraically. We shall at the bottom
of the column determine the supporting force at the right hand
end. At the bottom of the column of s, that is at the point
where the right hand supporting force acts, we ought to get a
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zero moment. The obtaining of this will be a test of the accuracy
of the work. In this example the small difference between 89-72
and 89-81 is due to our having taken the supporting force only to
two places of decimals.

Observation of the process of caleulation leads us to a very
important proposition, viz., where the shearing force changes sign, the
bending moment is at that point @ maximum. This will be true for all
important practical cases, but exceptional cases may be imagined in
which, where the shearing force changes sign, the bending moment
is a minimum. Since AM = Fa, then, so long as I is positive, M
will be an increasing quantity as we pass from point to point. But
where /' changes to negative there 3/ commences to diminish.

We will now explain the construction of a diagram of bending
moment for a system of loads: and first let us consider how
the moment of a force about any point or succession of points may
be graphically expressed.

Let 77 be a force and D any point, and suppose the numerical mag-
nitude of the moment of 77 about D known. Draw a line through D
parallel to the force at a distance «
(Fig. 35), and anywhere in this line
take a length BC to represent on some
convenient scale the moment, M, =
Wa, of W about D. The scale must
be so many inch-tons, foot-lbs., or
similar units to the inch. Then choose
any point 4 in the line of action of the
force, join 4B and A(, and produce
these lines indefinitely. The moment
of J7 about any point whatever is
represented by the intercept by the
radiating lines 4B, AC of a line drawn through the point parallel to
the force. For example, the moment about K = My = J/z, where =
is the perpendicular distance of K from the line of action of /7.

Mo Wi

M, Wa a
By similar triangles the intercepts are to one another in the ratio
Z : @, 50 that they correctly represent the moments.
We will first draw the diagram of bending moments for a beam

fixed at one end and loaded at intervals along its length.
B
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Returning to Fig. 34, take a line representing the length of the
beam as base line. Produce upwards the lines of action of the
loads. Commence by setting up at the point where W, acts a line
to represent the moment of J¥, about that point, that is, take
22 to represent e, If 12' be joined and produced, then the
intercept between this line and base line 15 will represent on
the same scale the moment of 77, about any point in the beam.
Next at the point 3/, where 12’ cuts /3 2’ 3, set up 3’ 3" to represent
W, join 2" 3” and produce it. The intercept between 2 3" and 2” 3"
will represent the moment of 7/, about any point in the beam.
Then at the point 4/, where 2" 3" cuts /', set up 4’ 4" to represent
W, Join 3" 47, produce it, and so on with all the weights. The
polygon 1, 27,°3", 4", 5” ... will be obtained, the ordinates of which
measured from the base line 4B will represent the bending moment
at any point, due to all the weights on the beam. This is called
the Polygon of Bending Moment. In the case of a continuous distri-
bution of load it is called the curve of bending moment.

There is a very important relation between the polygons of
shearing force and bending moment which have been drawn in all
cases of loading.

The bending moment at the point 2 = W  Now referring to
the shearing force diagram, we observe standing underneath the
interval @, a rectangle whose area = //ja,. Next, for the point 3,

M, = Wit + @) + W,

This is represented on the diagram of bending moment by the ordi-
nate 33”. In the shearing force diagram we notice that the area
under the portion of the beam from 1 to 3 consists of two rectangles,
Wila, + @) + Wiy So that ab this point also the bending moment
is represented by the area of the polygon of shearing force, reckoned
from the end up to the point 3. And so on for every point. This
important deduction may be stated generally thus :—The ordinate of
the curve of bending moment at any point is proportional to the area of
the curve of shearing force reckoned Srom one end of the beam wp to that
point.

30. Application to the case of a Louded Beam.—We will next take
the case of a heam supported at the two ends. ‘

First, calculate the supporting force P, set it up at the end of
the base line as an ordinate, and draw the stepped polygon by continu-
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ally subtracting the 7/’s. At some point in the beam we shall cross
the base line. At that point the shearing force changes sign, and
there the bending moment is a maximum. The shearing force on
the last interval will give the magnitude of the supporting force @.
The polygon thus drawn will be the polygon of shearing force.

The polygon of bending moment may be drawn without previously
determining the supporting force at either end thus :—

PA i Fig.38.

Commencing at O (Fig. 36), the point of application of P, draw any
sloping 11f11e 012 cutting 7, in 1, and /7, in 2. Then set up

2’ 2 to represent /7, join 1 2, produce it to cut /7 in 3'.

3 - Wty v 23, 5 W, in 4.

44 o Wy o 34, 4 W in 5, and so on.
7T will represent 7y,

Now join 7 with the point 0, where 012’ cuts the line of action of
P. This is called the Closing Line of the polygon of moments. Any
vertical intercept of this polygon will represent the bending moment
at the corresponding point of the beam. The proof of this may be
stated shortly thus :—If we produce 01 to meet the line of action of
@ in I, then L7 will, from what has been said before, represent the
sum of the moments of all the weights /7 about the end of the
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beam where Q acts. And from the conditions of equilibrium this
must equal the moment of P about that end.  Accordingly, if we
take any point K, the vertical intercept M7 below it will represent
the moment of P about K. This is an upward moment. The four
weights which lie to the left of K will together have a downward
moment about K represented by MN. Therefore, the difference NT'
will represent the actual bending moment at the point K.

Tt sometimes happens that we want the moment of the forces not
about K, the section which separates the two parts of the structure,
but about some other point, say X, in the figure. We can obtain
this moment also with equal facility ; for if we prolong the line 4 5
of the polygon to meet the vertical through X in the point S, we
find, reasoning in the same way, that SZ, the intercept between the
side so prolonged and the closing line, is the moment required.
Polygons of moments and shearing forces may also be constructed
by making use of the fundamental relations shown above to exist
between them and the load, as will be seen presently, while a third
purely graphical method is explained farther on, based on a most
important property which they possess.

31. Application to the case of a Vessel floating in the Water.—We
sometimes meet with cases in which the beam or structure is loaded
not at intervals, but continuously, the distribution of the load not
being uniform, but varied in some given way. In such a case, the
diagrams of shearing force and bending moment become continuous
w curves. The most convenient way
of expressing how the load is dis-
tributed is by means of a curve,
the ordinate of which at any point
: represents the intensity of the load

" : at that point. Such a curve is

M A called a curve of loads. Tt may be

A K regarded as the profile of the

upper surface of a mass of earth

or other material resting on the
beam.

We will consider, first, the case of a beam fixed at one end and
loaded continuously throughout, in a manner expressed by a curve of
loads LL. (Fig. 36a.) The total arca inclosed by the curve of loads

Fig.86a,
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will represent the total load on the beam, and between the two ordi-
nates of any two points will be the load on the beam between the
two points. Now, the area of the curve of loads, reckoned from the
end 4 up to any point, K say, since it represents the total load to
the left of K, will be the shearing force at K. If at K we erect an
ordinate, KF, to represent on some convenient scale the area 4 LK,
and do this for many points of the beam, we shall obtain a second
curve FF, the curve of shearing force. Having done this, we may
repeat the process on the curve #7, and obtain the curve of bending
moment. For we have previously proved that if the load on the
beam is concentrated at given points, then the ordinate of the curve
of bending moments is at any point proportional to the area enclosed
by the curve of shearing force for the portion of the beam between
the end and that point. The truth of this is not affected by suppos-
ing the points of application of the load to be indefinitely close to
one another, in which case the load becomes continuous. Accord-
ingly, if we set up at K an ordinate, KM, to represent on some con-
venient scale the area A #X of the shearing force curve, and repeat
this for many points, we obtain the curve of bending moment, MM,
Thus the three curves form a series, each being the graphical integral
of the one preceding.

This process has an important application in the determination of
the bending moment to which a ship is subjected on account of the
unequal distribution of her weight and buoyancy along the length of
the ship. On the whole, the upward pressure of the water, called
the buoyancy, must be equal to the downward weight of the ship ;
and the lines of action of these two equal and opposite forces must
be in the same vertical. But for any portion of the length, the up-
ward pressure and the downward weight will not, in general, balance
one another ; so, on account of the difference, shearing and bending
of the ship will be induced. In the case of a rectangular block of
wood floating in water, the upward pressure of the water will, for
every portion of its length, equal the downward weight, and there
will be no shearing and bending action on it. But, in actual ships,
the disposition of weight and buoyancy is not so simple. Taking any
small portion of the length of the ship, the difference between the
Weight of that portion of the ship and the weight of the water dis-
Placed by that portion of the ship, will be a force which acts on the
Vessel sometimes upwards and sometimes downwards, according to
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which is the greater, just in the same way as forces act on a loaded
beam producing shearing and bending. In the construction of the
vessel, strength must be provided to resist these straining actions,
and it is a matter of great practical importance to determine accu-
rately the magnitude of them for all points of the length of the ship.
We will select an example of very frequent occurrence, that in which
at the ends of the ship the weight exceeds the buoyancy, whilst at
the centre the buoyancy exceeds the weight. If the ship were very
bluff ended, and carried a cargo of very heavy material in the centre
hold, the distribution of weight and buoyancy would probably be the

reverse of this.
B

A
Z

~ In the example the ship is supposed to be divided into any num-
ber of equal parts, and the weight of water displaced by each of
those parts determined ; ordinates are set up to represent those
weights, and so, what is called a curve of buoyancy BBB (Fig. 37) is
drawn. The whole area enclosed by the curve will represent the
total buoyancy or displacement of the vessel, and is the same thing
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as the total weight of the vessel. Next we suppose that the weights
of the different portions of the ship are estimated, and ordinates set
up to represent these weights, then what is called a curve of weight,
WWIV,is obtained. In the figure it is set up from the same base
line. The total area enclosed by this curve will also be the total
weight of the ship, and must therefore equal the area enclosed by
the curve of buoyancy. Thus the sum of the two areas marked 1
and 2 must equal the area marked 3. Not only must this be true,
but also the centres of gravity must lie on the same ordinate.
The difference at any point between the ordinates of the two
curves will express by how much at the ends the weight exceeds
the buoyancy, and in the middle portion by how much the buoyancy
exceeds the weight, representing, in the first case, the intensity of
the downward force, and, in the second, the intensity of the upward
force. Where the curves cross one another and the ordinates are
the same height, as at K, and K, the seclions are swid to be water-
borne. If now we set off from the base line ordinates equal to
the difference between the ordinates of the two curves BBB
and W, we obtain the curve of loads LLL; some portions
where the weight is in excess will lie below the base line, and the
rest, where the buoyancy exceeds the weight, will lie above the base
line. From what has been said before, the area above the base line
must equal the area below. Having obtained the curve of loads, the
curve of shearing force is to be obtained from it in the manner pre-
viously described, by setting up, at any point, an ordinate to repre-
sent the area of the curve ZLL between the end of the ship and that
point. In performing the operation, due regard must be paid to the

fact that the loads on different parts of the ship act in different;
directions, and for one direction they must be treated as negative,
and the corresponding area of the curve as a negative area.

Having thus determined the curve of shearing force FFF, the same
operation must be repeated on that curve to determine the curve of
bending moment. In drawing the curve of shearing force it will be
found that at the further end of the ship we return again to the base
line from which we started at first, for the shearing force at the end
must be zero. Also the bending moment at the end must be zero.
This gives us tests of the accuracy of our work.

In this example the bending is wholly in one direction, tending to
make the ends of the ship droop or the ship to “hog” in the tech-
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nical language of the naval architect, but in some examples the
direction of bending changes once or more times. Curves of shear-
ing force and bending moment were first explained in relation to a
vessel floating in the water by the late Professor Rankine in his
work on shipbuilding. It does not, however, appear that any such
curves were ever constructed in any actual example until 1869, when
some were drawn for vessels of war by direction of Mr. (now Sir E.)
Reed, at that time chief constructor of the Navy. The results ob-
tained by him are described in a paper read hefore the Royal Society
(Phil. Trans. for 1871, part 2). They now form part of the ordinary
caleulations of a vessel.

Since the water exerts on the vessel not only vertical but also
horizontal forces, the straining actions upon her do not consist solely
of shearing and bending, but include also a thrust. The horizontal
pressure also produces bending in a manner which we shall hereafter
explain.

39, Mawimam Straining Actions.— The set of forces we are con-
sidering are in equilibrium, and must therefore be partly upwards
and partly downwards. The downward force is the total weight /7,
and is generally more or less distributed, the upward force is of
equal magnitude, and is usually concentrated near two or more
points. In the case of the vessel, however, the upward force is dis-
tributed like the weight, though not according to the same law.
In any case the greatest shearing force must be some fraction of the
weight, and the greatest bending moment must be some fraction of
the weight multiplied by the length 7 over which the weight is
distributed. We may therefore express the maximum straining
actions by the formulae

Fy=k.W; My=m. W1,

where %, m are numerical quantities depending on the distribution of
the load and the mode of support. Thus for a uniformly loaded
beam supported at-the ends & = 4, m=4. The greatest value m can
have in a beam resting on supports without attachment is }; this
occurs when the beam is supported at the ends and the load concen-
trated in the middle or conversely. In vessels where the supporting
force is distributed m is much less ; its maximum value is estimated
by Mr. White at 45 in ordinary merchant steamers.
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EXAMPLES.

1. A Warren girder with 12 divisions in the lower boom is supported at the ends
and loaded with 250 tons, which may be supposed to be equally distributed among
all the 25 joints. Find the stress on each bar by calenlating the series of shearing
force and bending moments.

. RESULTS ¥oR LEFT-HAND HALF OF GIRDER. }
| F %115 lis | o5 |85 |75 |65 s a5 las (25 |15 |5 | 5
} [ | {5 | =
S 132'2.120'7i109'2\97'7:8{5‘2 74‘?i63'2:51'7140'.2:28'7' 17:2 E'T‘i
.M!’1'=Ir‘w‘713 661 | 603 | 54'6i48'8:43'1 37'3i31'6|25'8i20'1114'3 S'6i2‘8%
| | | ‘

1264 229'8 3102 367°6 402 4134
6671 181 2729 3418 3877 4106

H

9. The buoyancy of a vessel is 0 at the ends and increases uniformly to the centre,
while the weight is 0 at the centre and increases uniformly to the ends. Draw the
curves of shearing force and bending moment, and find the maximum values of these
quantities in terms of the displacement and length of the vessel.

Answer—k=%; m=+g

3. A beam, 48 feet span, is supported at the ends and loaded with weights of 6, 9,
10, 13, 5, and 7 tons, placed at intervals of 4, 5, 9, 7, 13, and 8 feet respectively,
commencing at one end. Caleulate the shearing force in each interval and the series
of bending moments.

4. In the last question construct the polygons of shearing force and bending
moment.

5. In the case of a uniformly loaded beam supported at the ends, verify the
principle that the area of the curve of shearing force is proportional to the ordinate
of the curve of bending moment.

6. When a beam is supported at the ends and loaded in any way, show that an
ordinate at the point of maximum moment divides the area of the curve of loads into
parts, which are equal to the supporting forces. Further, if a b are the distances of
the centres of gravity of these parts from the ends of the beam, and { the span, show
that the maximum moment is i W1 where

1

L= 4
e @

TRAVELLING LOADS.

33. We have hitherto been investigating the effect of a per-
manent fixed load on a structure in producing straining actions
on it. We next examine the effect of a load which is not per-
manent, but which at different times takes up different positions
on the structure, and we require to know what position of the load
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will produce the greatest straining action at any particular part of the
structure, and also the amount of that maximum straining action.
This question arises principally in the design of bridges across
which a #ravelling load, such as a train, may proceed. We will take
. Fig.3s. first the simple case of a beam
- . of span {, supported at the
ends and suppose a single con-
centrated load /# to travel
across it in the direction of
----------- the arrow. Let us consider
any point K (Fig. 38) in the
. beam, distant ¢ and b from
B the ends. As the load tra-
verses the beam, each position of the load will produce a certain
shearing force and bending moment at the point K. To find their
greatest value let z = distance of /7 from 4, then the supporting force

I
*®
f
i
i
o 2

——— g
5 '

e el e long as the weight lies between 4 and K

!
the shearing force at K will be simply 2.
Fy = W;f,

consequently the shearing force will increase as @ increases, until the
load reaches the point K. So long as the weight lies to the left of
K, the tendency will be for the portion KB to slide upwards rela-
tively to the portion 4K. This we will call a positive shearing
force. Therefore, putting z = q,

Max. positive shearing force at K = ¥ % :

Now, supposing the weight to move onward, it will in the next
instant have passed to the other side of K, and the shearing force
will have undergone a sudden change. It will now be equal to the
supporting force at the end 2,

b
_ !
G-

But not only is the magnitude of the shearing force suddenly changed,
but the tendency to slide is now in the other direction, and the
shearing force is negative. As the weight moves farther to the right
of K the shearing force diminishes, thus

Max. negative shearing force at X = W/ %}
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Wherever we take the point K it will always be true that the maxi-
mum positive shearing force will occur when the weight lies imme-
diately to the left of K, and the maximum negative when the weight
lies immediately to the right. The maximum positive shearing force
for every point in the beam may be represented by the ordinates of a
sloping line 4 B below the beam, the length BB’ being taken to repre-
sent /7. And similarly the maximum negative shearing force at any
point by the ordinates of the sloping line A'B above, A4’ also being
taken to represent /.

Next as to the bending moment. When the weight lies to the
left of K, and is at a distance from equal to —, the bending

moment at K is given by
b

P — 1 7
This goes on increasing as @ increases until the weight reaches the
point K. After having passed K the bending moment at K must be
differently expressed, being then

w(l - )

—=—a,
which becomes smaller as z increases ; so that the greatest bending
moment at K occurs when the load is immediately over X, and

then the
Max. bending Moment at K = _Jf;‘gaib_
If the point X is taken in the centre of the beam,
Max. Moment at centre = 11/ as before.

If ordinates be set up at all points to represent the maximum bending
moments at these points, a parabola (4CB) will be obtained. For
the expression for the maximum bending moment is just twice that
previously obtained for the same weight distributed uniformly.

If there are more weights, /7, 7, &c., on the beam, and /#; lie
to the right of K, the shearing force at K = P — W, where P is the
right-hand supporting force. Now, suppose we shift W to the left
of K, we shall diminish the supporting force to £ say, and this will
be the new shearing force at K. The difference between P and P’
will be less than 77, and the shearing force will be increased by
passing /7, to the left of K. 1f we were to remove 77, altogether
the diminution of P will be less than the whole of W,, and so
the shearing force at K will be increased by so doing. We obtain
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the greatest positive shearing force at K when all the weights
are to the left of K, but as near to K as possible. The greatest
negative shearing force will occur when all the weights lie to the
right of K, as near to K as possible.

The maximum bending moment at K will occur when the weights
are as near K as possible, whether to the right or left. Any addition to
the load, on whichever side of K it is placed, will cause an addition
to the bending moment.

There is another important case, that in which we have a con-
tinuous load of uniform intensity passing over the beam,  as
when a long train passes on to a bridge. We observe that as the
train approaches K, the supporting force at B, and therefore
the shearing force at K, increases. When any portion of the
weight lies to the right of K, the supporting force will be increased
by a part of the weight lying to the right of & ; but when we have
subtracted the whole of that weight, the difference, which will be
the shearing force at K, will be less than before; thus the maximum
positive shearing force at K will occur when the portion 4K is fully
loaded, and no part of the load is on KB. To find its value we have
only to determine the supporting force at B, by taking moments
about it ; then

that is, the magnitude is proportional to the square of the distance
of the point from the end 4. Tt will be graphically represented
by the ordinates of a parabola which has its vertex at 4 and axis
vertical, cutting the vertical through B in a point B’ such that
BB' = }wl, that is, half the weight on the beam when fully loaded.
As the load travels onward the shearing force diminishes at last to
zero, and then changes sign, becoming negative, the numerical magni-
tude increasing as the rear of the load approaches £. The maximum
negative shearing force will occur when the portion KB only is
loaded. The ordinates of a parabola set below the line of the heam
having its vertex at B and axis vertical, will represent the maxi-
mum negative shearing force.

The question of maximum bending moment is more simple, Tt
will occur at any point when the beam is fully loaded ; for at any
point the bending moment is the sum of the bending moments due
to all the small portions into which the load may be divided, and
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the removal of any one of them will cause a diminution of bending
action throughout the whole length of the beam. A parabola, with
its highest ordinate at the centre = jwl, will represent it at any
point.

34. Counter Bracing of Girders.—In the design of a framework
girder it is very important to take account of the maximum positive
and negative shearing forces due to a travelling load.

In such a structure the shearing force is resisted by the diagonal
bars, and in general these bars are so placed as to be in tension, for
the bar may then be made lighter than if subject to a compressive
force of the same amount. Suppose the diagonal bars so arranged
as to be all in tension when the girder is fully loaded, or when there
is only the dead weight of the girder itself to be taken account of.
There may be ample provision made for withstanding the tensile
forces, and yet it will be important to examine if there may not
be some disposition of the travelling load which would cause a
thrust on some of the diagonals. If so, the maximum amount
of this must be calculated, and the structure made capable of
withstanding it. If the shearing force at any section of the girder
is what we have called a positive shearing force, that in which the
right-hand portion tends to slide upwards relatively to the left, then,
in order that it may be withstood by the tension of a diagonal bar,
the bar must slope upwards to the right. If the bar so slopes, and
by the movement of the travelling load the shearing force becomes
negative, then the bar will be subjected to compression. Now, it
will frequently happen that in the central divisions of a girder the
positive or negative shearing forces due to the dead load are less
than the negative or positive shearing forces due to the travelling
load, so that if those bars are arranged to be in tension under the
dead load, then, on the passage of the travelling load, the stress will
be changed to compression. In some cases the bars are slender and
not suited to sustain compression ; the shearing force is then pro-
vided for by the addition of a second diagonal, sloping in the opposite
direction, which, by its tension, will perform the duty the first bar
would otherwise have to perform by compression. Such a bar is
called a counter-brace. We frequently see such additional bars fitted
to the middle divisions of framework girders.

Again, the powers of resistance of a piece of material to a given
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maximum load are greater the smaller the fluctuation in the stress to
which it is exposed ; and therefore, in determining its dimensions, it
is important to know not only the maximum but also the minimum
stress to which it is exposed. This can be done on the principles
which have just been explained.

EXAMPLES.

1. A single load of 50 tons traverses a bridge of 100 feet span. Draw the curves of
maximum shearing force and bending moment, and give the values of these quanti-
ties for the quarter and half span.

9, A train weighing one ton per foot run, and more than 100 feet long, traverses a
bridge 100 feet span. Draw the curves of maximum shearing force and bending
moment, and give the values of these quantities at the quarter and half span.

8. In the last question, suppose the permanent load fths ton per foot run. Find
within what limits counterbracing will be required.

4, In Ex. b, page 55, the maximum rolling load is estimated at 1 ton per foot run,
Determine which of the diagonals will be in compression, and the amount of that
compression, assuming a complete number of divisions to be loaded.

The two centre diagonals are the only ones which can be in compression, the maxi-
mum amount of which will be = (3:2 — 2)v/2 = 1°7. It will oceur when the rolling
load occupies 4 divisions only of the bridge.

5. In the last question, suppose a single load of 20 tons to traverse the bridge.
Find the maximum stress, both tension and compression, on each part of the girder.

Divisions. 1 i 2 i 3 : 4 ‘ b
Max. tension, bottom boom, - O 4| 48 63 { 72
Max. compression, upper boom, - 27 48 63 72 75
Max. tension of diagonals, - - 381 L 311 24 17 98
Max. compression of diagonals, - = | L i 0 28

6. In the two preceding questions, find the fluctuation of stress on each part of
the girder.

METHOD OF SECTIONS.

35. Method of Sections applied to Incomplete Frames.  Culmann's
Theorem.—The straining actions due to a vertical load may either be
wholly resisted by internal forces called into play within the structure
itself, or also in part by the horizontal reaction of fixed abutments :
the supporting forces being in the first case vertical, and in the
second having a horizontal component. The distinction is one of the
greatest importance in the theory of structures, which are thus
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divided into two classes, Girders and Arches, including under the last
head also chains. It is the first class alone which we consider in this
chapter.

The general consideration of internal forces is outside the limits of
this part of our work, and we shall here merely consider some cases
of framework structures, commencing with that of an incomplete
frame.

Incomplete frames are in general, as in Chapter I, structures of the
arch and chain class, but by a slight modification we can readily
convert such a frame into a girder and thus obtain very interesting
results.

Fig.39a.

>0

Fig. 39a shows a funicular polygon such as that in Fig. 11, page 15,
except that the supports are removed and replaced by a strut 06.
By this addition the polygon becomes a closed figure, and 06 is
therefore called its “closing line.” The structure is carried by sus-
pending rods at the joints 06, and loaded as shown. The construc-
tion of the diagram of forces, Fig. 395, has been sufficiently explained
in the article referred to, and it only remains to observe that the
supporting forces P@) are immediately derived from the diagram by
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drawing OF parallel to the closing line, which is not necessarily
horizontal. The horizontal thrust of the strut and tension of the
rope is found as before by drawing ON horizontal.

This strueture may now be regarded as a girder, the load on which,
together with the vertical supporting forces, produce definite strain-
ing actions M and F on any section. Let the section be KK in the
figure cutting one of the parts of the rope and the strut as
shown in the figure: let the intercept be 7. Consider the forces
acting at the section on the left-hand half of the girder, the
horizontal components of these forces are equal and opposite, acting
as shown in the figure, each being H or ON in the diagram of forces.
The vertical components are balanced by the shearing force, and the
horizontal components by the bending moment, which last fact we
express by the equation

Hy = M,

that is to say, the funicular polygon corresponding to a given load is
also a polygon of bending moments, the intercept between the
polygon and its closing line multiplied by the horizontal force is
equal to the bending moment due to the load. Hence, by a purely
graphical process, we can construct a polygon of moments, for we
have only to construct a funicular polygon corresponding to the load
as shown in the article already cited, and complete it by drawing
its closing line. This is one of the fundamental theorems of
graphical statics, a subject which of late has become almost a new
seience. The construction is intimately connected with the process
of Art. 29 as the reader should show for himself. In its com-
plete form it is due to Culmann and is generally known by his name,
having been given in his work on graphical statics.

36. Method of Sections in general.  Ritter's Method.—In frames
which are complete the number of bars cut by the section, instead of
being two only, as in the preceding case, is in general three at least.

In Fig. 40 let KK' be the section cutting the three bars in
three points which may be considered as the points of application of
three forces PQR due to the reaction of the bars, which balance the
shearing and bending actions to which the section is subject.
Resolving horizontally and vertically, and taking moments, we should
—remembering that the load being wholly vertical the sum of the
horizontal components must be zero—obtain three equations which
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would determine P, @, B. It is, however, simpler to employ a method
introduced by Ritter which enables us to obtain the value of each
force at once. Let the lines of action of P, () intersect in the
point 1, @ and R in 2, P and R in 3, and let the perpendicular

K
]

Fig.40. /
H

dropped from each intersection on to the line of action of the third
force be #, p, ¢, respectively : by measurement on the drawing of the
framework structure we are considering it is always easy to determine
these perpendiculars. Then taking moments about the three points
Wwe get i

Rr=1L; Pp=1L; Qg =L,

where I,, L., L, are the moments of the forces acting on the left-
hand half of the structure about the points 1, 2, 3, respectively. At
page 68 it was shown how to get these moments graphically from the
polygon of moments, but they also may be obtained by direct
caleulation.

We may write down a general formula for this method, thus—

S =i,

where H is the stress on any bar, & its perpendicular distance from
the intersection of the two others cut by a section, and L is the
moment of the forces about that intersection. The special case
in which the intersection lies on the section considered so that the
moment L becomes the bending moment (J/) on the section, has
already been considered in Chapter IL.  'When the stress on a single
bar is required as a verification of results obtained by graphical
methods, or where the maximum stress due to a travelling load has
to be determined, this method is often serviceable, but as a
general method it is inconvenient from the amount of arithmetical

labour involved,
i
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The shearing action on the section is resisted by the components
parallel to the section of the stress on the several bars. In the
case of the incomplete frame of Fig. 39, p. 79, these components
are given at once by the diagram of forces. In general, however,
three bars, and only three, must be cut by the section if the frame
be neither incomplete nor redundant; when two of these are
perpendicular to the section the case is that considered in Chap.
TIL of a framework girder with booms parallel, in which the
diagonal bars alone resist the shearing. When one bar only
is perpendicular to the section, the other two collectively resist
the shearing action: this case is common in bowstring and other
girders of variable depth. The upper hoom together with the web here
resists the shearing,

When more than three bars are cut by the section, the stress
in each is generally indeterminate on account of the number of
bars being redundant. On this question it will be sufficient for
the present to refer to Chapter IL, Section IL.

EXAMPLES.

1. In example 3, page 73, construct the polygon of bending moments by Culmann’s
method.

9. In example 6, page 36, find the stress on each part of the roof by Ritter's
method.

3. In example 7, page 36, find the stress on each bar by Ritter’s method.

4. If a parabolic bowstring girder be subject to a uniform travelling load, repre-
gented by the application of equal weights to some or all of the verticals, show that
the horizontal component of the maximum stress on each diagonal is the same for all.
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