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CHAPTER IV.
FRAMEWORK IN GENERAL.

37. Straining Actions on the Bars of a Frame. General Method
of Reduction.—When the bars of a frame are not straight, or when
they carry loads at some intermediate points, the straining action
on them is not generally a simple thrust or pull, but includes a
shearing and bending action. The present and two following articles
will be devoted to some cases of this kind.

First suppose the bars straight, but let one or more be loaded
in any way, and in the first instance consider any one bar 4B
(Fig. 41) apart from the vest of the frame, and suspended by

Strings in an inclined position. Let any weights act on it as
SI{OWn in the figure, then the temsions of the vertical strings
Will be just the same as in a beam, 4B, supported horizontally
at the ends and loaded at the same points with the same weights.
Resolve the forces into two sets, one along the bar, the other
!iransverse to the bar. The first set produce shearing and bending
Just as if applied to a beam in a horizontal position, while the
second set produce a longitudinal stress, which will be different
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in each division of the bar. Let 6 be the inclination of the bar
to the vertical, then the pulls on the successive divisions are

the last being a thrust equal to @ . cos 6, so that the stress varies from
Q.cosOto — P.cosf. Now ohserve that we can apply to 4B at its
ends, in the direction of its length, a thrust, H,, of any magnitude we
please without altering 2 and @, but that we cannot apply a force in
any other direction, whence it follows that when 4B forms one
of the bars of a frame, its reaction on the joint 4 must be a
downward force, P, and a force, H;, which must have the direction
BA, while the reaction on B in like manner consists of a downward
force, @, and an equal force, H, in the direction 4B. The
downward forces P, @, are described as the part of the load on
AB carried at the joints 4, B, and it is now clear that if these
quantities be estimated for each bar and added to the load directly
suspended there, we must be able to determine the forces H, by
exactly the same process as that by which we find the stress
on each bar of a frame loaded at the joints. The actual thrust
on AB evidently varies between Hy, — P.cos6 at the top, to
H, + Q.cos at the bottom, so that I, may he described as the
mean thrust on the bar, while the shearing and bending depend
solely on the load on the bar itself, and not on the nature of
the framework structure of which it forms part, or on the load
on that structure. In the particular case where the load on the bar
is uniformly distributed, the forces PQ are each half the weight of
the bar, and the thrust 7, is the actual thrust at the middle point
of the bar.

This question may also be treated by the graphical method of
Art. 35 with great advantage. Through 4 and B draw a funicular
polygon corresponding to the load on 4 B, the line OV in the diagram
of forces will be parallel to 4B and may be taken to represent . This
funicular polygon will be the curve of bending moment for the bar,and
the other straining actions at every point are immediately deducible.
Tt will be seen presently that the bar need not be straight.

For simplicity it has been supposed that the forces acting on
the bar are parallel: if they be not, the reduction is not quite so
gsimple. It will then be mnecessary to resolve the forces into
components along the bar and transverse to the bar, the second -
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set can be treated as above, while the total amount of the first
set must be considered as part of the force applied to the joints
either at 4 or B. Such cases, however, do not often occur,
and it is therefore unnecessary to dwell on them.

The joints have been supposed simple pin joints or their equi-
valents, but the method used for frames loaded at the joints wil
apply even if the real or ideal centres of rotation of the bars are not
coincident, provided only the centre lines prolonged pass through
the point where the load is applied. The method of reduction just
explained then requires modification. Such cases are of frequent
occurrence, and the next article will be devoted to them.

38. Hinged Girders. Virtual Joints.—The case of a loaded beam,
the ends of which overhang the supports on which it rests, has
already been considered in Art. 21, where it was shown that the
straining actions at any point might be expressed in terms of the
bending moments at the points of support, which of course will be
determined by the load on the overhanging part. If the over-
hanging parts be supported, as in the case of a beam continuous over
several spans, or with the ends fixed in a wall, the same formula
will serve to express the straining actions at any point in terms of
the bending moments at the points of support, but those bending
moments will not be known unless the material of the beam and
the mode of support are fully known. Hence the full consideration
of such cases forms part of a later division of our work. Certain
general conclusions can be drawn, however, which are of practical
Interest,

The graphic construction for the bending moment at any point
?f a beam, (', which is not free at the points of support, is given
 Fig. 28, p. 45. The figure refers to the case where the bending
action at €' and D is in the opposite direction to the bending action
Near the centre, as it is easily seen must be the case in general.
The points of intersection of the moment line with the curve
of moments drawn, as explained in the article cited, on the sup-
Position of the ends being free, show where the negative bending
at the ends passes into the positive bending at the centre. Here
!:here is no bending at all, and the central part of the beam (EF
In figure) is exactly in the position of a beam supported but otherwise
free at its ends. We may therefore treat the case as if £ and F were
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joints, the position of which will be known if the bending moments
at the ends are known, and conversely. In some cases there may
be actual joints in given positions, while in others there will be
“virtual joints,” the position of which may be supposed known
for the purposes of the investigation.

Fig.42,

% L VAN WM & C W
% C D

Fig. 42 shows a beam 4B continuous over three spans, the
moment curves for which will be known when the load resting
on each span is known. It is evident from what has been said
that the moment line must be the broken line AedB, cutting
the moment curve of the centre gpan in two points, and the moment
curves of the end spans each in one point, the others being the
ends of the beam. Thus there are four virtual joints, of which
two must be supposed known in order to find the straining actions
at any point. Their position will depend (1) on whether the
supports are on the same level or not, (2) on the material and
mode of construction of the beam, (3) on the load. Such a beam
is in a condition analogous to that of a frame with redundant
bars, considered in Chapter II. Section IIL; the straining actions
are indeterminate by purely statical considerations, for the same
reason as before. We can, however, see that the bending action at
each point is in general less than if the beam were not continuous.

In one particular case the position of the virtual joints can
be foreseen. Suppose a perfectly straight beam, of uniform trans- -
verse section, to be continuous over an indefinite number of equal
spans : let the weight of the beam he negligible, and let equal
weights be placed at the centre of each span. Then since the
pressure on each support must be equal to the weight, the heam
is acted on by equal forces at equal distances alternately upwards
and downwards, and there being perfect symmetry in the action
of the upward and downward forces, the virtual joints must be
midway between the centre and the points of support of each span.
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In the special case where the beam is uniformly loaded we
can further see that the load resting on the supports is not one
half the weight of the parts of the beam resting there, as it would
be if the beam were not continuous, but must in general be greater
for the centre supports and less for the end supports. For if the
virtual joints be LNML, as in the figure, it is easily seen that
4 carries half the weight of AL, not of A4C, while (' carries half
the weight of 4L and N, together with the whole weight of CL and
CN. This observation shows that in trussed bheams where, as is
usually the case, the loaded heam is continuous through certain
joints, the effect of the continuity is generally to transfer a part of
the weight from the joints where the ends are free to the joints
where the beam is continuous. We shall return to this point
hereafter,

The principle of continuity is frequently taken advantage of in the
construction of girders of uniform depth by making them continuous
over several spans. The virtual joints, then, vary in position for each
Position of the travelling load, rendering it a complicated matter to
determine the maximum straining actions, while there is always an
element of uncertainty about the results, for reasons already referred
to and afterwards to be stated more fully.

In some structures, however, the joints have a definite position.

A Bl_“'l

/ Fig.43. %

c N M D

Figure 43 shows a cantilever bowstring girder, consisting of a
central bowstring girder N, the ends of which rest on parts
4CN, BDH, projecting from the piers, technically described as
cantilevers. The joints here are at N and M. In structures of
gteat span, in which the weight of the structure is the principal ele-
ment, so that the variations in distribution are small, this type of
girder is economical in weight. In a bridge over the Forth now
M process of execution (1883), the central portion for each of two
Principal openings consists of a bowstring suspension girder 350 feet
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span, while the cantilevers are each no less than 675 feet in length,
making a total span of 1700 feet. These cantilevers are of great
depth near the piers, and, to provide against wind pressure, they are
there likewise greatly increased in breadth, and solidly united to
them. For a description of this design, which, from its gigantic
dimensions and other unusual features, deserves attentive study, the
reader is referred to Engineering for September, 1882.

39. Hinged Arches—In the second section of Chapter I. certain
forms of arches were considered which are simply inverted chains,
and require for equilibrium a load of a certain definite intensity at
each point. We shall now take the case of an arched rib capable of
sustaining a load distributed in any way. We shall suppose the load
vertical, and, to take the thrust of the arch, we shall imagine a tie
rod introduced so as to convert it into a bowstring girder. If the
straining actions at each point of the rib are to be determinate with-
out reference to the relative flexibility of the several parts of the rib,
and other eircumstances, we must have, as in the case of the continu-
ous beam, joints in some given position. The necessary joints are in
this instance three in number, and, we shall suppose, are at the
crown C (Fig. 44), and one at each springing 4 and B.

=z

X 5 i

Taking a vertical section KK' through the rib and tie, let the
bending moment due to the vertical load and supporting forces be
M. This bending moment is resisted, firsf, by the horizontal forces
called into play ; that is to say, the pull of the tie rod H at K, and
the equal and opposite horizontal thrust of the rib at K ; secondly, by
the resistance to bending of the rib itself, the moment of which we
will call . Hence if 7 be the ordinate of the point considered, we

must have
M= Hy + p
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To determine H we have only to notice that at the crown where
y = h there is a joint, that is, p = 0,

M, = HI,

where 2/, is the bending moment due to the load for the central sec-
tion. Thus, to determine z« we have the equation

Sy M
el h

The graphic representation of p is very simple. Let us imagine
the curve of moments drawn for the given vertical load, and let it be
so drawn as to pass through 4, B, and C, which is evidently always
possible. Then, if ¥ be the ordinate of the curve,

=1
Therefore, by substitution,
e L=
So that the bending moment at each point of the rib is represented
graphically by the vertical intercept between the rib and the curve
of moments. In the figure, the dotted curve 4ZCB is the curve of
moments, and K7 is the intercept in question.

Arched ribs in practice are rarely, if ever, hinged, and the strain-
ing actions on them occasioned by a distribution of the load not
corresponding to their form depend, therefore, upon the relative
flexibility of the several parts of the rib, and other complicated cir-
cumstances. If the position of the virtual joints be known, or the
bending moments at any three points, the graphical construction just
given can be applied.

Instead of a rigid arch, from which a flexible platform is sus-
pended, we may have a stiff platform suspended from a chain. This
is the case where a suspension bridge is adapted to a variable load

by means of a stiffening girder. For this case it will be sufficient to
refer to Ex. 3, page 97.

40. Structures of Uniform Strength—In any framework structure
without redundant bars, the stress on each bar may be determined
as in Chapter L, by drawing a diagram of forces for any given load,
W, and expressed by the formula

H = ¥,
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where [ is a co-efficient depending on the distribution of the load.
If 4 be the sectional area of the bar we find by division the stress
per sq. inch, which must not exceed a certain limit, depending on
the nature of the material as explained in Part IV. of this work.
When the structure is completely adapted to the load which it has
to carry, the stress per sq. inch is the same for all the bars, and it is
then said to be of Uniform Strength. Uniformity of strength cannot
be reached exactly in practice, but it is a theoretical condition which
is carried out as far as possible in the design of the structure.
Other things being equal, the weight of a structure of uniform
strength is less than that of any other. Such a structure js
therefore less costly, for weight is to a great extent a measure
of cost. :

Whenever the load is known, the weight of a structure of
given type and of uniform strength ean be caleulated thus. Suppose
A the sectional area of a piece, H, the stress on it, £, a co-efficient
of strength, then

IFLE 2 i
Next let u, be the weight of a unit of volume, usually a cubic
inch, and assume

then A is a certain length, being in fact the length of a bar of the
material which will just carry its own weight. Its value for various
materials is given in Chapter XVIIL Then, assuming the piece
prismatic and of length s, its weight is

Hs

A, 2

and therefore the weight of the whole structure must be for the
same value of A,

wyds =

it
the summation extending to all the pieces in the structure, and
being performed by integration in a continuous arch op chain.
It will be observed that s is the length of any line in the frame-
diagram, and /7 that of the corresponding line in the diagram
of forces; we have only then to take the sum of the products of
these lines and divide by A, the result will be the weight of the
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structure. It is however generally necessary to find the weights,
W, W, of the parts in compression and in tension separately,
because the value of A is generally different in the two cases.

A remarkable connection was shown by the late Prof. Clerk Maxwell to exist
between Wy and W, Let us take a structure of the girder class and suppose the
total load upon it ¢, and the height of the centre of gravity of that load above the
points of support % Imagine this structure to become gradually smaller without
altering either its proportions or the magnitude and distribution of the load &, then
G descends and does work during the descent in overcoming the resistance (I') of
the bars in compression to diminution of length, while at the same time the bars in
tension (P) do work during contraction, The values of Z’and P do not alter, for the
diagram of forces remains the same, and therefore if we conceive the process to
continue till the structure has shrunk to a point,

Gh=32Ts-ZPs=MW, - W,
In particular, if the centre of gravity of the load lies on the line of support, and if
the co-efficients be the same, the weights of the parts in compression and tension
will be equal. A corresponding formula may be obtained for structures of the
arch-class by taking into account the thrust.

The weight of an actual structure is always greater than that
found by this method. First, an addition must be made to allow
for joints and fastenings. Thus, for example, in ordinary pin
joints the eye of the bar weighs more than the corresponding
fraction of the length of the bar, and in addition there is the
weight of the pin. Secondly, in all structures there is more or
less redundant material necessary to provide against accidental
strains not comprehended in the useful load. Thirdly, there are
local straining actions in the pieces occasioned by their own weight
and other causes.

41, Stress due to the Weight of o Structure.—The total load on
any structure consists partly of external forces applied to it at
various points, and partly of its own weight : the total stress on
any member is therefore the sum of that due to the external
load and of that due to the weight of the structure itself. As
that stress cannot exceed a certain limit, depending on the strength
of the material, it necessarily follows that the stress due to the
weight is so much deducted from the strength. Thus the consideration
of the weight of a structure is an essential part of the subject,
even if we disregard the question of cost.

The weight of each member is of course distributed over its
whole length, and so also may be a part or the whole of the
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external load. Applying the general method of reduction explained
in Art. 37, we suppose an equivalent load applied at each joint,
and drawing a diagram of forces we determine the mean stress, H, on
the member. If the unsupported length of the bars be not too
great, a matter to be considered presently, this stress will be the
principal part of the straining action on the bar, and the bending
may be neglected as in the preceding article.

Now consider two structures similar in form and loaded with
the same total weight, distributed in the same way, so that the
only difference in the structures is in size: then the stress on
corresponding bars must be the same, for the structures have the
same diagram of forces. That is to say, in the formula

=
the coefficient /: depends on the type of structure and the distribu-
tion of the load upon it, but not on its dimensions. Dividing by the
sectional area the intensity of the stress is
w
p==F 5
Next let 7/, be the weight of the structure itself, and suppose the
relative sectional areas of the several pieces the same, then
Hy =y cal
where ¢ is a coefficient depending on the type of strueture, and
I a length depending on the linear dimensions of the structure.
For example, in roofs and bridges ! may conveniently be taken
as the span. Then if %, be the value of %, which corresponds to
the distribution of the weight of the structure, which will be the
same whether the structure be large or small,
W

Po = Ky T" = Wkl

will be the stress due to the weight of the structure. In other
words, the stress due to the weight of similar structures varies
as their linear dimensions.

Since p, cannot exceed f it follows at once that there must
be a limit to the size of each particular type of structure, beyond
which it will not carry its own weight. If L be that limit given by

Fi

3
ke
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the stress due to the weight of any similar structure of smaller
dimensions will be simply

l
Do =f‘ 'L’

and f, =f"1’n=f' L}:-I

is the strength which may be allowed in calculations made irre-
spectively of weight. If the structure be of uniform strength
throughout under its own weight, the value of p, will be the same
for each member, but this is not necessarily the case, and there may
be a different value of f' for each member. The actual limiting
dimensions of the structure will of course be the least of the various
values corresponding to the various members.

The conclusion here arrived at is obviously of the greatest
importance, for it immediately follows that in designing a roof,
bridge, or other structure of great size, the weight of the structure
is the principal thing to be considered in estimating the straining
actions upon it, while a certain limiting span can never be exceeded.
On the other hand, in small structures the straining actions due to
the weight are unimportant; it is the magnitude and variations of
the external load which have the greatest influence. This remark
also applies to the local straining actions which produce bending
in the pieces, their relative importance increases with the size of
the structure, and it is necessary to provide against them by
additional trussing. A large structure is therefore generally of more
complex construction than a small one, as is illustrated by the
various types of roof-trusses considered in Chapter I.

The difference of type of large structures and small ones, as well
as the circumstances mentioned at the close of the last article,
render tentative processes gemerally necessary in caleulations re-
specting weight. If the type of structure and the distribution
of the total load, 77, be supposed known, the value of the co-
efficients % and ¢ will be known for some given member. By
assuming the stress on that member equal to the co-efficient of
strength £, we find

. 1
Hi= W.ck.;,{,

a formula which gives the weight of the structure in terms of
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the load, but the co-efficients will generally vary according to
the span. Among the circumstances on which they depend the
ratio of the vertical to the horizontal dimensions of the structure
is most important. For a given span / diminishes when the depth is
increased, while on the other hand ¢ generally increases, so that for
a certain ratio of depth to span the weight of the structure is least.
In ideal cases ¢ may remain the same (Ex.10,p.97), but in actual struc-
tures the redundant weight of material necessary to give stiffness and
lateral stability increases, so that the most economical ratio of depth to
span is generally much less than would be found by neglecting such
considerations. These points are illustrated by examples at the end
of this Chapter and Chapter XIL, where the question is again
considered briefly ; but for detailed applications to actual structures
the reader is referred to works on bridges, in the design of which
it is of the greatest importance.

49, Straining Actions on o Loaded Structure in General—The
results obtained in the last chapter for the case of parallel forces
acting on a structure possessing a plane of symmetry in which the
forces lie, may be readily extended to structures which have an
axis of symmetry acted on by any forces passing through that axis
and perpendicular to it. This is the case, for example, of a beam
acted on by a vertical load, and also by some horizontal forces
arising say from the thrust of a roof or from wind pressure. We have
then only to consider the vertical and horizontal forces separately.
Fach will produce shearing and bending in its own plane, which
may be represented by polygons as before. The total straining
action will be simply shearing and bending, and will be as before
independent of the particular structure on which the forces operate.
The magnitude of the straining action, whether shearing or bending,
will be the square root of the sum of the squares of its components,
and may therefore be readily found by construction and exhibited
graphically by curves. In shafts such cases are common, and some
examples will be given hereafter.

Another entirely different kind of straining action sometimes
oceurs in structures proper (roofs, bridges, etc.), and in machines
is one of the principal things to be considered. Imagine a structure
of any kind to be divided by an ideal plane section into parts
A and B, and to be acted on by forces parallel to that plane.
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Let the forces acting on A reduce to a couple the axis of which
is perpendicular to the section, the forces on B are equal and
opposite, and the two equal and opposite couples tend to cause
A4 and B to rotate relatively to each other. As already stated in
Art. 16 this effect is called Twisting, and the magnitude of the
twisting action is measured by the magnitude of either of the couples
which form its elements.

Simple twisting sometimes occurs in practice, for example, when
a capstan is rotated by equal forces applied to all the bars, but
it is generally combined with shearing and bending. Tt is then
necessary to know about what axis the twisting moment should be
reckoned, which will depend on the nature of the structure. In
shafts and other cases to be considered hereafter the geometrical
axis is an axis of symmetry which at once determines this.

When twisting exists the shearing and bending are determined
by the same method as before, for they are independent of the
axis of reference. Should however the structure be subject to
a thrust or a pull (Art 16), the axis about which the bending
moment should be reckoned must be known, for it will depend
on the nature of the structure.

These general observations will be illustrated hereafter, and are
only introduced here to show how far straining actions can be
regarded as depending solely on the external forces operating on
the structure without reference to any other circumstances.

43. Framework with Redundant Parts.—In a complete frame, with-
out redundant bars (pp. 13, 56), suppose a link applied to any two
b_&I‘S, one end attached to each. Let the link be provided with a
right and left handed screw or other means of altering its length at
Pleasure, then by screwing up the link a pull may be produced in
th_e link of any magnitude we please, while a corresponding stress
Will be produced in each bar of the frame which will bear a given
Tatio to the pull. Such a link may be called a straining link, and by
1ts 'a.ddition We obtain a frame with one redundant bar. The stress-
Tatio on the parts of a frame of this kind is completely definite, but
the magnitude of the stress may be anything we please. Instead of
o stra.ir}ing link we may have any number, and if the stress on each
of these links be given, the same thing will be true. Thus it appears
that a frame with redundant parts may be in a state of stress even
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though no external forces act upon it. This is of practical import-
ance on account of the effect of changes of temperature. If all the
bars of a frame with redundant parts are equally heated or cooled,
the frame expands or contracts as a whole, but no other effect is
produced ; any inequality, however, causes a stress which may, under
certain circumstances, be very great. This (at least theoretically)
is one of the reasons why redundant parts are a source of weakness.
The necessity of providing against expansion and contraction is well
known in large structures resting on supports. The ground connect-
ing the supports suffers little change of temperature, and the
structure, therefore, cannot be attached to the supports, but must be
enabled to move horizontally by the intervention of rollers. The
magnitude of the stress produced when changes of length are forcibly
prevented will be considered hereafter (Chapter XIL).

There is no essential difference between a frame the stress on the
parts of which is due to the action of straining links, and a frame
acted on by external forces ; for every force arises from the mutual
action between two bodies, and may therefore be represented by a
straining link connecting the bodies. Even gravity may be regarded
as a number of such links connecting each particle of the heavy
body with the earth. Accordingly, if we include in the structure we
are considering, the supports and solid ground on which it rests, we
may regard it as a frame under no external forces, but including a
number of straining links screwed up to a given stress. If the
original frame be incomplete, its parts will be capable of motion, and
it becomes a machine, ag will be explained in Part III. of this work.

44. Concluding Iemarks—Various other questions relating to
framework remain to be considered, especially with reference to the
joints by which the parts are connected, but these, involving other
than purely statical considerations, do not come within the present
division of our work, but are referred to at a later period.

EXAMPLES,

1. In Ex. 4, page 12, if the weight be supposed uniformly distributed, find the
thrust, shearing force, and bending moment at each point of each rafter, and
exhibit the results graphically by drawing curves.

Diagrams of shearing force will be sloping lines crossing each rafter at the centre.

Max. shearing for short rafter = 91 lbs.

» 31 long ” = 1583 ,,

Diagrams of bending moment will be parabolas.
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Max. moment at centre of short rafter = 117 ft.-bs.
3 » kmg »” = 290 3

2. A triangular frame A BC, supported at 4 and €, with A€ horizontal, is con-
structed of uniform bars weighing 10 lbs. per foot, the lengths being—AB = 3 feet,
B( = 4 feet, and A =5 feet. Suppose, further, that 4B and B each carry 50 lbs.
in the centre. Draw eurves of thrust, shearing force, and bending moment for each
bar.

3. The platform of a suspension bridge is stiffened by girders hinged at the centre
and at the piers. The chains hang in a parabola, and the weight of the platform,
chains and suspending rods may be regarded as uniformly distributed. Find the
bending moment at any point of the stiffening girder, and exhibit it graphically by
a curve when a single load W is placed (1) at the centre of the bridge, and (2) at
quarter span. 5

First case. On account of W each half of the girder will tend to turn downwards
about the ends, and will be supported by the uniform upward pull of the suspending
rods. ., total upward pull for each % girder = W, because the centre of action is at
1 span. Thus each  girder will be in the state of a heam londed uniformly with W,
and supported at the ends. Max, moment at middle of each half

= W x half span.

Second case. The upward pull of the suspending rods will still be uniform, but
for each half girder will now be only 4 W, found by assuming an equal action and
reaction af the centre joint, and taking moments of each half about the ends. For
the half girder which carries the weight the bending moment will be the difference
between that due to W concentrated in the centre and 4 ¥ distributed uniformly.

Max, = % W x half span.

On the other half it will be due simply to a distributed load of 4W. Max.
= 1'% W x half span. :

: 4 A timber beam 24 feet span is trussed by a pair of struts 8’ apart, resting on
ron tension rods forming a simple queen truss 3’ deep without a diagonal brace.
T!JE beam is loaded with 5 tons placed immediately over one of the vertical struts.
:_E'\.nd the shearing force and bending moment at any point of the beam, supposing it
Jointed at the centre and the centre only.

The thrust on each strut must be 24 tons; therefore, curves of shearing force
and bending moment for each half of the beam are the same as those for a beam 12
feet long loaded at a point 4 feet from one end with 2} tons.

The problem should also be treated by the method of sections. Results should
a.lsuo be obtained for the case where one half the beam is uniformly loaded.

2 A beam uniformly loaded is fixed horizontally at the two ends, and jointed at
:;V © given points. Draw the diagrams of shearing force and bending moment. Show
: 4% the beam will be strongest when the distance of each point from centre is rather
€58 than 8 span.

G . Th‘f D}ﬂ.tform of a bowstring bridge of span 2a is suspended from parabelic
*ched ribs hinged at crown and springing. One half the platform only is lozded
“.lnfom]y with a0 1bs, per foot run. Show that the greatest bending moment on the
Tibg ig Lpeal,
W,il In the last question, if a weight of W tons travel over the bridge, how great
1L be the maximum bending moment produced ?
G



98 STATICS OF STRUCTURE, [Parr 1. cm. 1v.]

8. A girder is continuous over three equal spans, and is hinged at points in the
centre span midway between centre and piers. Find the virtual joints in the end
spans when uniformly loaded throughout.

9, The weight of the chains, platform and suspension rods of a suspension bridge
may be treated as a uniform load per foot-run, which at the centre of the bridge is
double the weight of the chain. The dip of the chain is /;th the span. The weight
of iron being 480 1bs, per cubic foot, and the safe load per square inch of sectional
area of chain being 5 tons, find the limiting span, and deduce the sectional area of
chains for a load of % ton per foot-run on a similar bridge 300 feet span.

If A = seetional area of chains at centre in sq. ins., then 20 4 = weight of bridge
per foot-run in lbs.

Horizontal tension = 4P AL =5 x 2240. 4.
% L =1034 feet.
If A’ = area of one chain of the bridge 300 feet span,
‘Whole load on chain = (%04’ + 2240) 300,
Horizontal tension =3 (%04’ + “:0) 300 x 13 = b x 22404,
.5 A" =344 sq. in. each chain.

Remark.— By the use of steel wire ropes and by lightening ‘the platform and other
parts of the skructure as much as possible, the limiting span of suspension bridges is
much increased, there being several examples of a span of 1250 feet and upwards.

10. In a girder with booms parallel and of uniform transverse section the weight
of the web is equal to the weight of the booms. Assuming a co-efficient of strength
of 9000 1bs per sq. inch, and the weight of a cubic inch %th of a Ib., show that the
limiting span in feet is

L = 5400,

where AV is the ratio of depth to span.
11, The weight of a rib of parabolic form, span 7, rise nl, with transverse section
varying for uniform strength under a uniformly distributed load W, is

1 (!
Wo- (ot +§n)WX.

e V3 i
This is least when n = e *433, then Wy ="577T W X

The formula fails if Wo be nearly equal to W, for the external load would then have
to be partly acting upwards to secure uniform distribution of the total load.



