C‘ U q NIEDERSACHSISCHE STAATS- UND
-~ L UNIVERSITATSBIBLIOTHEK GOTTINGEN

Werk

Titel: Applied Mechanics

Untertitel: An elementary general introduction to the theory of structures and machines ; Wit...
Autor: Cotterill, James Henry

Verlag: Macmillan

Ort: London

Jahr: 1884

Kollektion: maps

Signatur: 8 PHYS I, 1457

Werk Id: PPN616235291

PURL: http://resolver.sub.uni-goettingen.de/purl?PID=PPN616235291 | LOG_0016
OPAC: http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=616235291

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational,
research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections
are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission
from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online
system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further
reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the
source.

Contact

Niedersachsische Staats- und Universitatsbibliothek Gottingen
Georg-August-Universitat Gottingen

Platz der Gottinger Sieben 1

37073 Géttingen

Germany

Email: gdz@sub.uni-goettingen.de



PART III.—DYNAMICS OF MACHINES.

CHAPTER VIIL

PRINCIPLE OF WORK.
SECTION I.—BALANCED FORCES (STATICS).

88. Preliminary Explanations. Definition of Work. If the principal
object of a piece of mechanism be to do some kind of work it becomes
a machine. Many mechanisms—as for example clocks and watches
—are not, properly speaking, machines; for though work is done
during their action, yet the object of the mechanism is not the doing
of the work but the measurement of time or some similar operation.
Even in these cases, however, the forces in action cannot in general
he excluded from consideration, and therefore in all mechanism a
study of the manner in which forces are transmitted and modified is
essential. This part of the subject is called the Dynamics of
Machines.

A Dody can in general only be moved into a different position or
be changed in form or size by overcoming resistances which oppose
the change. This process is called doing WORK, and the amount of
work is measured by the resistance multiplied by the space through
which it is overcome. If there be many resistances, the total work
done is the sum of that done in overcoming each resistance
separately.

Consider the case of a weight raised vertically. Here the resist-
ance is due to the action of gravity which is overcome by some
external force, and the work done is simply the product of the weight
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and the height through which it is raised. The weight is measured
by comparing it with that of a certain quantity of matter called a
pound, the weight of which is taken as a unit for measuring forces.
This mode of measurement has the disadvantage of giving a different
unit for different points on the earth’s surface, because the force of
gravity varies according to the position of the point, and, for scientific
purposes therefore, force is measured by the velocity which, when
unbalanced, it produces in a given quantity of matter. In practical
applications, however, gravitation measure is preferable, as the varia-
tion is very small, and the measure may be made precise when
necessary by specifying the place on the earth’s surface at which our
operations are taking place. The unit of space is generally 1 ft., so
that the unit of work is 1 1b. raised through 1 ft., or, as it is generally
called, 1 foot-pound. Other units, however, such as, for example,
“foot-tons,” may also be employed for special purposes.

89. Oblique Resislunce.—The resistance is here directly opposed to
the movement which is taking place ; if this be not the case it must
be resolved into two components, one along and the other perpen-
dicular to the direction of motion. The second of these is balanced
by a constraint to which the motion is subject or by the opposition
which the inertia of the body offers to a change in its direction at any
finite rate ; it is the first alone in overcoming which work is done,
In Fig. 84 let & be a resistance applied at a point 4 which moves
through a distance 4B in a direction inclined at an angle 6 to the
direction of the resistance, then the work done is £. cos 0.4 B, but if
BN be drawn perpendicular to the direction of R to meet that direc-

tion in NV, AN=AR. cos 8,

and therefore the work done is B.AN.
Now AN is the distance through which 4 has moved in the direc-

i Fig.84.

N eeemm e

tion of the resistance, so we obtain another rule for estimating the
N
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work done against an oblique resistance. It is equal to the product
of the resistance into the distance moved in the direction of the
resistance.

Suppose for example that a weight is raised, but that, instead of
being lifted vertically, it is moved in any curved path—there heing
no friction or other resistance than that due to gravity.

Considering any small portion 4B of the path (Fig. 85), the resist-
ance being always vertical, the work done is /7. AN. So the total
work of raising the weight is .24 N or //.h, which is independent
of the path described by the lifted weight, but depends simply on
the height through which the weight is raised.

If there are a number of weights each of them raised through
different heights, the total work done in raising all the weights is the
sum of the works done in raising each weight separately ; and the direct
method of finding the total work is to add the separate results for each
weight. But it may be determined by another method thus—

Let 7y, W, W, &c. be a number of weights which are at heights
Yy U Yy &c. above a given datum plane. Now suppose they are
raised so that they are at heights Y3, Y, ¥, &c. above the same
plane. The total work done in raising the weights will be the sum
of the products,

WYy =) + W Yo — 1) + WY~ 9s) + &e.

Now suppose the centres of gravity g and & for the initial and
final positions of the weights to be at heights y and ¥ above the
datum plane.

The centres of gravity ¢ and G are such that if all the weights
were collected at either centre, the moment of the collected weights
about the plane is equal to the sum of the moments of each separate
weight, before being collected, about the same plane.  This is mathe-
matically expressed thus
Winn+ Waye+ W,y + &c.

W+ W+ W+ &e.

AT S WY+ WX+ WY + &e.
= Wi+ Wot Wet+ &e. °

<=

By subtracting we have

s Wy (Yy—9)+ Wo (Yo —ga) + W3 (Yy—ys5) + &c.
Y W+ W+ W+ &e. ’
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hence the total work done in raising the weights may be expressed
=(Wi+ Wyt Wy+&e) x (¥ —y)
or W (¥ =)
That is to say, the total work of raising a number of weights is equal

to the product of the sum of the weights by the vertical displacement
of the centre of gravity of the weights.

90. Vuriable Resistance.—Let us next consider the work required
to be done to overcome a variable resistance. The whole distance
through which the resistance is overcome must then be divided into a
number of parts, each being so small that, for that small space, the mag-
nitude of the resistance may be treated as sensibly uniform. The work
of overcoming the resistance through each of the small spaces being thus
found, the total work will be the sum. The estimation can generally
+ be most conveniently performed by a graphical construction. We will,
for simplicity, take the case in which the direction of action of the re-
sistance is that of the line of motion. Suppose a body moved from 4
to B against a resistance the magnitude of which varies from point to
point in such a way that it is represented by the ordinates of the
curve standing above 4B.  (Fig. 86.) For the small distance M N
the resistance will vary slightly,
but will have a mean value re-
presented by SM or KN suppose, | ____ roslerat e g i P
and the work of overcoming the | i
resistance through the small space L
MNis MN x SM or is exactly
represented by the area of the
carve standing above MN; and A
so for any other small portion of the displacement of the body.
Thus the total work of overcoming the resistance through AP is
tepresented by the whole area 4 LTB =mean resistance R x 4 B.

The curve LST is called a curve of resistance. Two important
Special cases may be mentioned both of which frequently oceur.

(1) Let the resistance vary uniformly. This is the case of a
Derfectly elastic spring which is compressed, as will be further
explained hereafter. The curve of resistance is a straight line A4ST
(Fig. 87a) where 4B is the compression of the spring, B7 the corres-
Ponding compressing force R, During the compression & is at first

Fig.86. T

:
R
1
|
i

M N 8
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zero and gradually increases to R, its value at any intermediate
point being graphically represented by the ordinate SN correspond-
ing to the compression 4N. The work done is the area of the
triangle, that is 4R, 4B, and the mean resistance }12.

(2) Let the resistance be inversely proportional to the distance of
the point of application from a given point 0. - (Fig 87b.)

Y
Fig.87b.
P
(gl - oA
gt
MmN N B o

This applies to many cases of the compression of air and other
elastic fluids. In the figure NS = R is the resistance and ON.NS is
constant, so that the curve of resistance JST' is an hyperbola. Let
the ratio 04 : OB be called 7, this is called the ratio of compression ;
then from the geometry of the hyperbola we know that the area of
the curve is equal to the constant rectangle ON.NS multiplied by
log, 7, the logarithm being Napierian, or as it is often called “hyper-
bolic” from this property of the hyperbola. If ON be denoted by V
this gives a formula in frequent use for the work done in this kind
of compression.

Work done = RV log, r.

O1. Resistance to Rofation. Stability of @ Vessel.—It often happens
that we have to consider the resistance of a body to rotation about
an axis. Let 4 (Fig. 88) be the point of application of a force
which resists the rotation of a body
about an axis (' perpendicular to
the plane of the paper. If the
resistance at 4 be not in the plane of
rotation P must be supposed to be
the component in that plane; the
: other component will he parallel
Yol to the axis of rotation and need not
Ny be considered. Let 6 be the angle
it makes with the direction of A’s
motion, then E=P.cos @ is the effective resistance, the other com-
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ponent of P merely producing pressure on the axis. As the body
turns through an angle i the resistance R will be overcome through
the arc 4.4', and, assuming in the first instance R constant, the work
done will be—

Work done = R.4A'=R.CA.i.

But, dropping a perpendicular CIV on P’s direction,
CN=CA. cos 6
.. Work done = P.CN.i= Mi,

where J is the moment of the resistance about the axis of rotation.
If there be many resistances then the same formula will hold if M/ be
understood to mean the total moment of resistance.

We can readily extend this to the case of a variable moment by
the graphical process already described for a linear resistance, the
base of the diagram now representing the angles turned through and
the ordinates the corresponding moments. As an example take the
case of a heavy pendulum swinging about an axis 0 (Fig. 89a), let ¢
be the eentre of gravity, Og =/, and let it be swung through the angle
i from the vertical, then the moment of resistance is

M=W.gN=W.sin i

In Fig. 89 draw a curve on the base 4B such that the horizontal
ordinate 4V at every point represents the angle i on the same scale
that 4 B represents two right angles, while the vertical ordinate repre-
sents J. This curve will be the curve of resistance, and in the
Present case is a curve of sines of which the maximum ordinate L&
1s 771 The angles heing supposed reckoned in circular measure so
that 4B - «, the area of the diagram from 4 up to any point S will
represent the work done. We can, however, in this example find
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this work otherwise, for ¢ rises through the height NZ, and therefore
if U be the work
U=WI(1-cos i)

By use of the integral calculus it can be verified that this is also the
value of the area 4SN.

It is not necessary that the axis of rotation should be fixed in
estimating the work done during rotation, provided that the resist-
ance be a couple, for then there is no pressure on the axis. An
important example is that of a vessel floating in the water and
steadily heeled over by the action of a couple 3 produced by external
agency, or more frequently by shifting the weights on board in such
a way that the displacement and trim remain constant. Then for
each angle of heel this couple has a certain definite value which can
be found either by calculation or by observation of the shift of the
weights. The moment of vesistance which is equal and opposite to
M is called the Statical Stability of the vessel, and the curve of
resistance drawn as above deseribed is called the Curve of Stability.
The construction of this curve is an important part of the design of
the vessel. Such curves, though usually unsymmetrical, often bear
a general resemblance to a curve of sines (Fig. 89%), the ordinate
increases to a maximum which gives the maximum stability and then
diminishes to zero at an angle of heel called the “Angle of Vanishing
Stability.” If the vessel be heeled beyond this angle it capsizes.

According to the principles of this article the area ANS of the
curve represents the work done in heeling the vessel over. This is
called the Dynamical Stability, and as is shown elsewhere (see the
chapter on Impact in Part IV.) represents the resistance to heeling
over to that angle by a sudden gust.

An important typical case is when the curve of stability is a true
curve of sines. In this case suppose the angle of vanishing stability
to be =k, where / is some given number, then the ordinate § for any
angle ¢ is given by the equation

8=, .sin ki,
and the stability is the same as that of a heavy pendulum swinging

through % times the angle. The dynamical stability is easily shown
to be

U= i—l (1 - cos ki).
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92. Internal and External Work.—In all that precedes the position
of a body has been changed by overcoming external resistances. All
forces, however, arise from the mutunal action between two bodies or
between two parts of the same body, and every change of position
must be with reference to some other body which is regarded as
fixed. Work, then, consists in a change of relative position of two
bodies notwithstanding a mutual action between the two which
opposes the change. In raising weights the second body is the earth,
but the pair of bodies may be such as occur in mechanism and the
mutual action between the two may be due to springs or an elastic
fluid, or to the resistance of some body to separation into parts. In
scissors, nutcrackers, bellows, and other similar instruments, the
elements of the pair are exactly alike and their existence is recog-
nised in popular language.

In reckoning the work done either body may be regarded as fixed,
the result must he the same and will be unaffected by any movement
of the pieces common to both; thus when air is compressed in a
cylinder the work done depends on the pressure of the air and the
amount of compression, not on the movements of the cylinder within
which the air is contained. In other words the motion to be con-
sidered is the motion of the pair as defined in Art. 46, p. 102.

In every case where we have to do with a number of pieces con-
nected in any way, we may distingnish between the resistances due
to the mutual action between the pieces themselves and those due to
the mutual action between the pieces and external bodies. The
internal resistances require work to be done in changing the relative
position of the pieces themselves, while the external resistances re-
quire work to be done in changing the position of each piece relatively
to external bodies. These two kinds of work are called Internal
Work and External Work respectively. In two cases we can at once
foresee that the internal work will be zero, first when the pieces are
disconnected, secondly when they are rigidly connected. Thus for
example if a heavy mass of matter be raised, we need only consider
the rise of the centre of gravity (Art. 89) if the mass be rigid ; but if
not, any change of form which occurs ought to be taken into account.
In raising ordinary solid bodies and masses of earth the internal work
may usually be disregarded.

93. Energy. Principle of Work.—Hitherto we have been speaking
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of the resistance which is being overcome during the process of doing
work, let us now fix our attention on the effort which overcomes the
resistance.

The forces arigng from the mutual action between a pair of bodies,
when not purely passive like the normal pressure between two sur-
faces in contact, are of two kinds. The first always oppose the motion
of the pair, in other words they are always resistances. Friction
between two surfaces is the simplest example of this, and hence such
actions are called Frictional Resistances. The second on the other
hand promote or oppose the motion of the pair according to the
direction in which the motion is taking place, so that a resistance
becomes an effort when the direction of motion is reversed. Such
actions are conveniently described as Reversible; and systems of
bodies, in which they occur, possess, when the parts are suitably
disposed, the power of doing work. This power is called ENERGY.
As examples of bodies possessing energy may be taken a raised
weight, a compressed spring, or steam of high pressure. Change of
velocity in a moving body likewise gives rise to efforts and resistances,
but this is a matter for subsequent consideration. For the present we
suppose all bodies with which we have to do to be in a state of
uniform motion, or to move so slowly and steadily that no sensible
action of this kind can arise.

Energy is measured by the quantity of work which it is capable of
doing, and the process called doing work may also be described as
the exertion or expenditure of energy, so that we write

Energy exerted = Work done.

If the effort which is being exerted and the resistance which is
being overcome be applied to the elements of the same lower pair,
as when a weight is lifted vertically or a spring wound up, the effort
and the resistance are equal, and the equation shows that the energy
exerted by an effort is the product of the effort and the space through
which it is exerted. Thus all the examples given above of the doing of
work will also serve as examples of the exertion of energy simply by
supposing the direction of motion reversed. In short the exertion
of energy and the doing of work are merely different aspects of the
same process.

In this case the effort and the resistance may be regarded as applied
at the same point, but the equation has a much wider application
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than this, for it is equally true if the points of application be different,
provided only that they are rigidly connected. Thus, for example,
if we dig in the ground, the energy we exert at the handle of the
spade is—if the spade be perfectly rigid—exactly equal to the work
done at the blade. This can be shown to be a necessary consequence
of the forces we are considering being balanced, and the equation
may be regarded as a concise statement of the conditions of equili-
brium of forces applied to a rigid body. It is preferable, however,
for our purposes to regard it as the simplest case of a fundamental
mechanical principle continually verified by experience. This prin-
ciple may be called the PRINCIPLE oF WORK.

We have now a means of transferring the power of doing work,
that is to say energy, from one place to another : evidently we are
not restricted to one piece as in the case of the spade. 'We may make
use of a series of pieces through which energy may be transferred
from piece to piece in succession; and if there were no frictional
resistances to the relative motion of the pieces, there would be no loss
of energy in the process. Thus the principle of work is true when
the points of application of the effort and the resistance are mechani-
cally connected in any way. Frictional resistances however ahsorb
a portion of the energy whenever any relative motion occurs which
- they tend to prevent, and therefore a certain loss always accompanies
the transmission of energy. Nevertheless the principle of work still
holds good if overcoming friction he reckoned as part of the work
done.

It may here be remarked that though frictional resistances are
never a source of energy, yet friction may, like normal pressure
hetween surfaces, transmit energy, and hence, in cases where one only
of the bodies between which it is exerted belong to the set of bodies we
are considering, may be an effort by means of which work is done on
the set. Thus, for example, in the case of a shaft driven by a belt,
the whole power of the engine is transmitted by friction closure
hetween the belt and the pulleys; and if we consider the shaft alone
apart from the rest of the mechanism, the friction may he regarded
as the effort, which drives the shaft. We cannot however in such
cases properly speak of the friction as exerting energy ; the source of
energy is the steam, or other motive power, and the friction merely
transmits it in the same way as the pressure hetween a connecting
rod head and the crank pin transmits energy to the crank shaft.
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Nevertheless in both of these cases the phrase “energy exerted ” may
be used conveniently, though * energy transmitted ” would be more
precise.

If a piece of material through which energy is transmitted yield
under stress applied to it, as in fact it always does, the energy exerted
will not be equal to the work done.* Either the change of relative
position of the several parts of the piece will require work to be done
in order to overcome the mutual actions between the parts which
resist the change, or, conversely, those mutual actions exert energy
during the change. In the first case the work is done at the expense
of the energy transmitted ; in the second the piece of material is a
source of energy which increases the energy transmitted. In per-
fectly elastic material the mutual actions are reversible, and any
energy exerted in overcoming them is stored up in the piece and
recovered when the piece resumes its original form, as in the case of
a watch spring. (Compare Art. 98.)

94. Machines.—A mechanism becomes a machine if we connect
together two of its elements by a link capable of changing its form
or dimensions, and so moving the mechanism, notwithstanding a
resistance applied by a similar link connecting two other elements.

The elements connected may be called the ¢ driving pair”
and the “working pair,” and these pairs often, though by
no means always, have one element common, namely the frame-
link of the mechanism. The driving link is the source of energy.
As examples, we may take steam which connects the piston and
eylinder which form the driving pair in a steam engine, or gravity
which, as in Art. 62, is to be conceived replaced by a link ex-
erting the same effort. The working link is gravity in cranes and
other hoisting machines, or a piece of material the deformation of
which is the object of the machine, as in the case of machine tools.

In addition to the driving and the working links, the force of
gravity acts on all the parts of the machine, and frictional resistances
have to be overcome ; but these are matters for subsequent considera-
tion.

The driving and working pairs are very frequently kinematic pairs
of the lower class. Let us suppose them in the first instance sliding
pairs. Let the driving pair move through a space z, then the
working pair will move through a space y, which is in a certain
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definite proportion to 2 depending on the nature of the mechanism.
Let P be the driving effort, which, by taking z small enough, can he
made as nearly uniform as we please; and let R be the resistance
opposing the motion of the working pair, then

Energy exerted = Px; Work done = Ry,
and these must be equal, therefore

Py Velocity of Working Pair
R~ x~ Velocity of Driving Pair’

from which it appears that the ratio of the effort to the resistance,
or as we may briefly call it, the “foree ratio,” is the reciprocal of
the velocity ratio of the driving and working pairs. In works on
mechanics this is also known as the Principle of Virtual Velocities.

If the pairs be turning instead of sliding pairs, then the effort and
resistance are moments, and the velocities will be angular; and if
one pair be sliding, the other turning, a suitable “radius of reference ”
must be selected (p. 103) to compare the
motions and the forces, but the same prin-
ciple holds good.

In the simplest machines, known fre-
quently as the “mechanical powers,” we
have a 2 or 3-linked chain, so that the
driving pair and working pair are identical
or very closely connected. - But they may
be separated by a long train of mechanism
and have no common link. In all cases it
must be carefully remembered that the
effort and the resistance arise from the
mutual action between the elements, each
consisting of two equal and opposite forces,
just as in the straining actions considered in
Chapter II. and elsewhere. Either of these :
as before measures the magnitude of the E‘]
action,

Fig.00,

H
|
i
|
i
H
|
i
i
!

98. Verification of the Principle of Work in Special Examples.—We
will now take some examples to illustrate and verify the principle of
work, neglecting friction.
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(1.) Take the common wheel and axle. Suppose P to be just
sufficient to lift the weight 77, so that the two forces exactly bal-
ance one another. Now let P descend through the distance y (Fig.
90), and 7/ rise through the corresponding distance 2.

As P falls it is said to exert emergy. Energy exerted =Py.
This is employed in overcoming the resistance to the rise of the
weight 7. Work done = #z. The principle of work asserts that
Energy exerted = Work done, that is Py = /Fa.

Suppose the wheel and axle to turn through the angle 6, then
y=00 and z=a6. Then in order that the weights P and /¥ may
statically balance one another, Pb= Wa; from which it follows that
Py = W, verifying the principle of work.

Also, we may write,

Jg x v
74 e g
where v, V are the velocities of P, 7/ respectively, thus showing that
the force ratio is the reciprocal of the velocity ratio.

In this simple example both the force ratio and the velocity
ratio remain constant throughout the movement. In general this
will not happen.

(2.) Take the case of the mechanism of the steam engine for an ex-
ample. Neglect friction and let the driving pressure on the piston be
P. A thrust which we will call S will be produced along the connect-
ing rod and transmitted to the crank pin as shown in Fig. 91. At the
crank pin this force S may be resolved into two components, one

=
=

]

Fig.ol.

acting along the crank arm and the other, &, perpendicularly to it.
The last alone will tend to turn the crank, the other component pro-
ducing only a pressure on the shaft immediately balanced by the
pressure of the bearings on the journals of the shaft.

This component 7 which tends to turn the shaft is called the crank
effort. 1f the turning effort on the crank is perfectly balanced at all
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points of its revolution by some suitable resistance, then the resisting
force which must be applied at the crank pin at right angles to the
erank arm in order to balance perfectly the pressure of the steam on
the piston must be equal and opposite to the component £ previously
referred to. The force ratio will be 2/E. We have, with the nota-
tion employed in Chap. V., § cos ¢ = P and S sin (8 + ¢) = .

Th 2 S0 (0+4) _sin 0BT _ 0T
U p="ios$ = sin OTB = OB

That is, the crank effort is to the steam pressure as the intercept
OT is to the crank arm OB.

But we have previously shown (see p. 109) that this fraction
expresses the veloeity ratio of piston to crank pin; hence we have
again found in this case that the force ratio is the reciprocal of
velocity ratio, and the curve which we previously drew to represent
the varying velocity of the piston, the crank pin moving uniformly,
will represent also the varying crank effort, the pressure of the steam
on the piston being uniform throughout the stroke. So we may call
it the Curve of Crank Effort.

(3.) The same thing may be proved to be true for every mechan-
ism, the forces acting on which balance one another. In some
cases it may be easier to determine the force ratio than the velocity
ratio or zice versa. In any case either may be inferred by taking the
reciprocal of the other. As an additional example take the case of
two pieces driving one.another by simple contact (Fig. 92). We
have already found the velo-
city ratio by a direct process
(p- 165), but we may also de-
termine it in the following
way. When A presses on B
there is a resistance [ equal ...
and opposite to the pressure,
and normal to the portions of the surfaces in contact, if we suppose
no friction to exist. Drop perpendiculars p, and p, on the common
normal. Then the moment of the driving pressure £ which 4
exerts on B or the turning moment due to 4 =M, =Rp,. Simi
larly the moment of the resisting force which B exerts on A4 or the
moment of resistance to turning which B opposes to 4 = M= Bp,.
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Driving moment M, p,
Resisting moment ~ M, ~ p,°

But we have previously proved that this fraction is the angular
velocity ratio of the piece B to the piece 4, and thus we show that
the moment ratio is the reciprocal of the angular velocity ratio.

Thus the ratio

96. Periodic Motion of Machines.—One of the most essential char-
acteristics of a machine is the periodic character of its motion. Each
part goes through a eycle of changes of position and velocity and
returns periodically to its original place. When moving steadily the
periods are equal and the velocity of each piece is the same at the
beginning and end of each period. That this may be the case it is
not necessary that the driving effort should balance the working
resistance in every position ; on the contrary, this seldom happens ;
it is sufficient it the mean effort be equivalent to the mean resistance,
or as we may otherwise express it

Energy exerted during a period = Work done in the period;

a condition which always governs the action of a machine in steady
motion. In reckoning the energy and work the action of gravity on
any piece of the machine may be omitted, for, if the piece rise through
any height during one part of the period, it will fall through an
equal height during another part. The work done consists partly of
the work which the machine is designed to do, and partly of frictional
resistance to the relative motion of the parts of the machine, or in
other words of Useful Work and Waste Work. The ratio of the
useful work to the energy exerted is called the Efficiency of the
machine and its reciprocal the Counter-Efficiency. The efficiency of
a machine depends partly on the kind of machine and partly on the
speed, as will be explained in the chapter devoted to frictional resist-
ances (Chap. X.). In estimating the power required to drive a
machine a value is assumed for the efficiency derived from experience
of machines of the same or nearly the same type. Examples will be
given hereafter.

OT. Power. Sources of Energy.—The sources of energy are—
(1) Living agents ;

(2.) Gravity acting usually by means of falling water ;

(3.) Springs and elastic fluids ;

(4.) Gunpowder and other explosive agents.
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The energy thus derived may be traced further back to the action
of heat and chemical affinity, and we may add to the list electric and
magnetic forces, but the foregoing is a sufficient statement for our
present purpose. A machine which employs such agents directly is
called a Prime Mover, or, more briefly, a Motor, but a number of
machines may be driven from one prime mover which serves as
their source of energy. In general, each source of energy has a
motion and an effort peculiar to itself while the work is required to
be done at a different place and under different circumstances. A
machine, then, is & mechanism which transmits energy and converts
it into a form suitable to the work to be done.

The rate at which energy is exerted is called Power; it is this
which measures the value of a source of energy and the expense of
the work which is being done. The ordinary unit of measurement
is the conventional horse-power of 33,000 foot-pounds per minute or
550 per second, a quantity much greater than the working power of
an ordinary draught horse on the average of a day’s work. The unit of
power employed universally on the Continent is somewhat less, being
75 kilogrammetres per second or 32,550 foot-pounds per minute.

In prime movers the effort may generally be regarded as applied
at a point which moves with a known mean velocity ; then the
horse-power is given by the equation

PV
33,000’
where P is the mean value of the effort in lbs. and 7 the mean
velocity in feet per minute.

In machines driven from a prime mover the effort is generally a
moment M which exerts the energy M.2r in every revolution of a
driving shaft. We,then have

H.P. =

.M- 2mn
H.P. =33 000

where M is the mean moment and n the revolutions per minute.

08. Reversibility. Conservation and Storage of Enerqy.—The resist-
ance overcome at the working point may be either frictional as in
machine tools or reversible as in machines for raising weights. In the
second case, if the machine were stopped and set in motion in the
reverse direction it would, if friction could be neglected, work equally
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well, the driving effort and working resistance would be interchanged,
and constructive modifications might be required, but otherwise the
action is unaltered. This may be described by saying that the
machine is Reversible. Many machines actually oceur in both their
direct and their reversed forms ; thus a pump is a reversed hydraulic
motor. Hence it appears that in reversible machines the power of
doing work, that is to say, energy, is not lost after being exerted, for
by reversing the machine it may be employed a second time. Thus
it is that we describe the action of reversible machines as a transfer
of energy, and are led to conceive of energy as indestructible and
independent of the bodies through which it is manifested. No
machine, indeed, is completely reversible, for in all cases frictional
resistances oceur to a greater or less extent, while many machines are
completely non-reversible; but we shall see as we proceed that even
then energy is not lost but only converted into another form, so that
we have in reversible machines the first and most simple example
of the great natural law called the Conservation of Energy. The
importance of reversibility as a test of maximum efficiency will be
seen more fully hereafter.

Again, we can store up energy and use it as required when it is
inconvenient to resort to any of the usual sources. For example, by
a few turns of the watch key we store energy in the mainspring
which is supplied at a regular rate to the watch throughout the day.
So the hydraulic accumulator (Part V.) receives energy from the
pumping engines and supplies it at irregular intervals to the hydraulic
machines which lift weights and move gates in a dockyard or work
the guns in a ship of war.

A large part of what follows in the present work is merely a
development of what has been said here: in the succeeding chapters
of the present division we consider machines comprising solid elements
only, while in a future division we shall consider the transmission
and conversion of energy by means of fluids.

EXAMPLES.

1. A waggon weighs 2 tons and its draught is g'sth of its weight. Find the work
done in drawing it up a hill 1 in 20, half a mile long. Find also how long three
horses will take to do it supposing each horse to work at the rate of 16,000 foot-
pounds per minute.

Work done = 370 ft.-tons. Time occupied =17’ 15",
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2. A force of 10 Ibs, stretches a spiral spring 2”, find the work done in stretching
it successively 17, 2", 3", &c., up to 6". Ans. 2}, 10, 223, 40, 62} and 90 inch-Ibs.

3. Find the H.-P. required to draw a train weighing 200 tons at the speed of 40
miles an hour on a level, the resistance being estimated at 20 Ibs, per ton. Find also
the speed of the train up a gradient of 1 in 100, the engine exerting the same power.
H.-P. required = 4263. Ams. Speed up the incline = 18'87 miles per hour.

4. The resistance of H.M.S. “Iris ” at 17 knots is estimated at 40,000 Ibs., what
will be the H.P. required simply to propel the ship. Find also in inch-tons the
moment, on each of the twin screw shafts, equivalent to this power, the revolutions
being 80 per minute. Ans. H.-P. required = 2088. Moment on each shaft = 367
inch-tons, -

5. The curve of stability of a vessel is a common parabola, the angle of vanishing
stability 70”, and the maximum moment of stability 4,000 ft.-tons, Find the statical
and dynamical stabilities at 30°. Ans, Statical stability =3918 ft.-tons. Dynamical
stability = 1283 ft.-tons.

6. Verify the principle of work, neglecting friction, in :—(a) The differential pulley
(Art, 59). (b) A pair of 3-sheaved blocks. (¢) The hydraulic press (Art. 62).

7. From the results in question 3, p. 112, dednce the crank efforts for the given
positions of the piston and the mean crank effort, supposing the effective steam
pressure on the piston 20 tons and neglecting friction.

Crank effort at { forward stroke = 18'4 tons,  Mean = 12'74 tons.
quarter stroke in the backward ,, =166 tons.

8. Show that the efficiency of a machine is equal to the velocity ratio divided by
the force ratio.

SECTION IT—UNBALANCED ForcEs (KINETICS).

99. Kinetic Energy of a Particle—We now proceed to consider the
cases in which efforts or resistances arise from the changes of velocity
of the parts of a system, which changes thus become a source of
energy or require energy in order to produce them. The commonest
observation is sufficient to show the importance of such cases: a
cannon ball possesses a great power of doing work, and a railway
train requires energy to he exerted by the steam to obtain the requi-
site speed, quite irrespectively of that necessary to maintain the
speed when once produced.

First, suppose a weight under the action of gravity only. Unless it
be supported by a vertical force exactly equal to the weight it will
fall with a gradually increasing velocity. Let it be wholly unresisted,
let it start from rest and fall through a height %, then we know that
it will acquire a velocity » given by the formula

v* = 2gh,

where ¢ is a number which for velocities in feet per second ranges
0
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from 32117 at the equator to 32:227 at the pole, and having inter-
mediate values at other points on the earth’s surface according to the
intensity of gravity at the point. The average value 322 is usually
adopted for this important constant, and the height % is called the
“height due to the velocity.”

During the whole fall, the weight /7" of the body has been exerting
an effort upon it which overcomes an equal resistance occasioned by
the change of velocity which is taking place ; thus an amount of
energy has been exerted, and an amount of work done equal to /.
Resistance of this kind is of the reversible kind, for if we imagine the
weight, after reaching the ground, proj ected up again with the same
velocity, it will, if wholly unresisted, attain the height from which
it originally fell. ~Hence we describe the weight as possessing
energy, and the amount it possesses when moving with velocity v is

A
g

Energy due to motion is called Kinetic Energy, to distinguish it
from that kind of energy considered previously, which is a consequence
of the relative position of the parts of a system, and which is called
Potential Energy. The kinetic energy of a body depends on its
velocity only, not on the direction of its motion nor on the way in
which its motion has been produced; and the energy exerted in
changing the motion of a body is always represented by an exactly
equivalent increase of kinetic energy, whether this effort be uniform
or variable, or whether its direction coincide with the direction of
motion or not. To illustrate this, consider the following cases.

(1) Let the body move in a straight line under the action of a
force P, in that line let it start with velocity 7, and after moving
through a space = let its velocity be v, then, it is shown in works on
elementary dynamies, that v is given by a formula which may be

written
ww WP

Pr= —2—9‘ - *—29'—
Now, the left-hand side of the equation is the energy exerted by
P, and the right-hand side is the increase of kinetic energy of the
body.
If P be a resistance instead of an effort, then work is done at the
expense of the kinetic energy which is now diminished. If P be
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variable we must represent it graphically by a curve as in Art. 90,
and it should be especially remarked that the ordinate of the curve
of areas deduced as in Art. 31 will, on affixing a suitable scale and
measuring the ordinates from a suitable base line, represent the
height due to the velocity of the body.

(2) Let the body be constrained by means of a smooth guiding
curve to move along a given path by a force P in any direction, then
the energy exerted by 2 is the same as that exerted by the resolved
part of P in the direction of motion. But this resolved part accel-
erates the motion just as if the body moved in a straight line, so that
this case is reduced to the last.

(3) The pressure on the guiding curve will be the difference he-
tween the normal component of P and the force necessary to change
the direction of P’s motion. If the two are equal the guiding curve
may be removed, and we obtain the case where the body moves
freely, as in the case of a projectile in vacuo.

100. Partially Unbalanced Forces. Principle of Work.—Again, the
effect which is changing the motion of the body may be partly bal-
anced by an external resistance to which the body is subject. If
this be the case we can imagine it separated into two parts, a part
which is, and a part which is not, balanced. The energy exerted by
the first is employed in overcoming the external resistance, while
that exerted by the second is employed in increasing the kinetic
energy of the body. Or the resistance may be greater than the
effort, then the excess is overcome at the expense of the kinetic
energy of the body, the velocity of which now diminishes.

In the present treatise we shall use the phrases ¢ energy exerted ”
and “work done” only in reference to efforts and resistances other
than those due to inertia, subject to which convention, we may state
the principle of work as applied to cases where the forces are par-
tially unbalanced, as follows—

Energy exerted = Work done + Change of Kinetic Energy.

In this statement the work done may be greater or less than the
energy exerted. In the first case the change of kinetic energy is a de-
crease, in the second an increase.

Not only does this principle apply to a single body, but—subject

‘to the observations of the preceding section—to a set of bodies
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mechanically connected in any way, provided that one of them be
fixed to the earth ; or, in other words, that a body of great mass
like the earth be one of the set. When no one of the set predomin-
ates over the rest it is necessary to consider further how the kinetic
energy should be reckoned: for the present, however, we shall
suppose this condition satisfied.

A simple case is that of Atwood’s machine. Let the descending
weight P be greater than the rising one @ Neglecting friction, the
excess sets the two weights in motion. Let P descend through a
distance 7, then @ rises through the same distance, and therefore

Energy exerted = Py.
Work done = Q.

Let » be the velocity of the two weights; then supposing them to
start from rest,
2
Kinetic energy acquired = (P + @) ;i
9
From principle of work

P+

The law of increase of velocity is, therefore, the same as that of a
body falling freely, but the rate of increase is less. This formula
is the same as that obtained by other methods, and we have therefore
here a verification of the principle of work.

J

e i) L et e
Ll d eyt 29y.

101. Kinetic Energy of the Moving Parts of @ Machine.—Instead of a
single body, suppose we have a system of bodies, and we require to know
the total kinetic energy of the system. The direct method is to find
the energy of each separate particle of the system and add the results.
In the particular case of a rotating rigid body we are able to express
the result of the summation in a convenient and simple form. First
consider a ring of small section rotating about an axis in the centre
perpendicular to its plane. Every portion of the ring will move
with the same velocity, » say, and the kinetic energy of the ring
may, as before, be written //2°/2g.

We may express this another way, as follows :—If n be the re-
volutions per second, and @ the radius, » = 2man,
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If the ring is not complete, but /7 is the weight of a portion which
has the same centre of rotation, the expression will still hold.

Now, suppose we have a body consisting of a number of particles
rigidly connected together, rotating about a centre 0, at n revolu-
tions per second.

Let the weights of the particles be wy, wy, ws, wy, ete.,
rotating about O at distances Y1y Yo Yz s ebC.

By adding together the results for each particle, we obtain for the
kinetic energy of the system,
4

win? + weye® + ways® + ete.
% (wiip 22 53 )

Now suppose a is such a radius that

Wi + wyp® + was® + ete.

ol
a® =
wy + W, + Wz + ete.

then substituting, we may write

2 4arin?
doin (w1 + wy + wy + ete.) @ = Was.
2¢ 29

Kinetic energy =

By this method we are always able to reduce any system of bodies to
a ring, which ring is often called the Egquivalent Fly Wheel, and the
radius o is called the Radius of Gyration. The quantity Wa*/y is
usually called the Moment of Inertia, and denoted by the symbol L.

However numerous the particles are, the expression obtained
above will hold, and so will be true if they are sufficient in number to
make up a solid body. In a continuous body, the separate weights
wy, 1wy, Wy, ete., must be taken indefinitely small and close together to
get accurate results, and the results of the summation may be most
conveniently arrived at by the use of the calculus. The quantity
W /g is called the mass of the body, and but for the introduction of
this factor the symbol 7 would have the same meaning as in Chap. XIL
Hence all the results there given may be used here for thin plates
simply by multiplication by the mass of a unit of area. In addition,
the following simple cases will be sufficient. The fourth is a par-
ticular case of the second.

1. Solid cylinder rotating about its axis.
Radius = 7.

5}

1l

o] %
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2. Rectangular parallelopiped rotating about i @&
an axis. Diagonal of either end = 2d. TR
3. Sphere rotating about a diameter. Radius g 2°
: ="F

=
4. Rod rotating about an axis perpendicular atia ?
to it through one end. Length = /. 3

In other cases such as oceur in practice, the body is generally too
irregular and complex in form to render mathematical formule use-
ful ; we then apply the rule given in Ch. XIL for plane areas, which
by a similar process can readily be extended to solids. That is
to say, if I be the moment of inertia of a body about any axis,
I, that about a parallel axis through the centre of gravity at a
distance /,

e= Io + 7Ilfh2,

where m is the mass of the body. In applying this rule the body is
cut up into portions to which the values just given apply exactly or
with sufficient approximation, just as in the chapter cited.

In estimating the kinetic energy of a fly-wheel, which consists
of rim, arms, and boss, since the rim is by far the most important
part for storing energy, it is generally sufficient to consider it alone.
If it be desired to take the remaining parts into account, an addition
of about one-third the weight of the arms may be made to the
weight of the rim. The combined effect of arms and boss is said to
amount to an addition of, on the average, about 8 per cent. to the
weight of the rim.

If the body have a motion of translation, combined with a motion of
rotation abhout its centre of gravity, it will be shown hereafter that its
total kinetic energy is the sum of that due to the translation and the
rotation taken separately, so that the whole can be found by preceding
rules. As an example of the use of this principle, consider the case of
a ball rolling down an inclined plane, the ball and plane]being suf-
ficiently rough that slipping does not take place between them ; and
suppose the resistance to rolling, called the rolling friction, is in-
sensible. In this case the whole energy due to the descent of the
ball is employed in generating kinetic energy in the ball, which will
be stored in it by virtue of its two motions of translation and
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rotation. Let /” be the velocity of translation, 4 the angular velo-

city, r the radius of sphere ; then since no slipping occurs ¥ = Ar.
Let the ball descend through a vertical height A, then the energy

exerted is 7%, equating which to the kinetic energy stored we

obtain

e AR

T 9 7 = —*—"2 7 ]

where ¢ = radius of gyration is given by a2 = g T

Wh

WV W 2, TV

W = . Ap2 L grreliah

b= Z b g 2t =i F
V2=g2gk.

Thus the velocity of the ball will be less than if it simply slid down
the plane without rotating in the proportion /5 : /7.

The total kinetic energy of the moving parts of a machine in any
position may be found by drawing a diagram of velocity for that
position in the manmner explained in Chaps. V. and VI. Each part
may be divided into a number of small portions, and the centre of
each portion may be laid down on the diagram, as explained on
page 125. If now the diagram be imagined to represent a set of
particles rigidly connected, of masses equal to those of the particles
in question, the moment of inertia of those particles about the pole
of the diagram must be the total kinetic energy required ; the radius
vector of each particle representing the velocity of the corresponding
portion.

102. Conservation of Energy.—The principle of work may also be
stated in another form, which, though not so convenient in practical
applications, is much employed by scientific writers. It has already
been explained that, when there are no frictional resistances, the
power of doing work (energy) exerted in doing a given amount of
work is not lost but merely transferred from one place to another
(Art. 98), while it appears from the present section that any energy
exerted in changing the motion of a body is represented by an ex-
actly equivalent amount of kinetic energy stored up in the moving
body ; hence it follows that in any dynamical system, which receives
no energy from without and supplies none to external bodies, the
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total amount of energy is always the same if there be no frictional
resistances. We express this by the equation

Kinetic Energy + Potential Energy = Total Energy = Constant,

and call it the principle of the Conservation of Energy. In all actual
motions frictional resistances occur which gradually absorb the
energy, but we shall find hereafter that this process is accompanied
by the generation of heat which is equivalent to the energy absorbed
a fact which leads us to conclude that heat is a form of energy, so that
the principle still holds good.

103. Ezamples.—Let us now illustrate and verify the principle by
some examples.

(1) Suppose a weight suspended by a string and oscillating under
the action of gravity, forming the simple pendulum Oy (Fig. 89«,
p. 197), of length I

Let the pendulum start from the position O, and when it
reaches the position Oy let its velocity be ». Let the height of g
above the tangent at the lowest point be 7, and that of 4, &, then we
know that

vt =2g9(h—2),

which may be written, if 7/~ be the weight,
o2
w % + Wy = Wh.

Here the first term on the left-hand side is the kinetic energy of
the weight and the second term /7y the potential energy, that is to
say, the power of doing work which the weight possesses, in virtue
of its height y above the lowest position it is capable of occupying.
The sum of the two is the total energy 7, and the motion consists
in a continual interchange hetween the kinetic and potential energies.
It is, of course, supposed that the resistance of the air is neglected;
this is a resistance of the frictional kind, and continually absorbs
energy from the weight which is thus at last reduced to rest.

The time of an unresisted double oscillation is shown in works

on dynamics to be
= ,\/ ¢
g

when the oscillations are small enough to be sensibly isochronous.
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Larger oscillations are sensibly slower, as shown by the approximate
formula,
16 =T 1 g |
= B = T 1 s
S {1+16f "1° " 52521
where 6 is the angle of swing in circular measure, and # is the same
angle in degrees.

(2) The pendulum has been here supposed to be merely a heavy
particle attached to the end of a string without weight. Let us next
suppose a rigid body, the centre of gravity of which is ¢, oscillating
about a centre 0. Let v be the velocity of g, then

e v? P4
Kinetic Energy = W% + W o (p. 214),

where £ is the radius of gyration about the centre of gravity, and 4
the angular velocity. If L be the length Og of the compound pen-
dulum, this may be written

W' L
Kinetic Energy = 7‘;‘ { e I? } '

The potential energy is the same as if the whole weight were con-
centrated at ¢ ; therefore, assuming the pendulum to start from the
position 04, as hefore,

Eff{ 1+

}h‘i
2q £

7 }+Wy=7m

Comparing this with the result previously obtained for the
simple pendulum, it is not difficult to see that the motion is iden-
tical if

I = JT+R

which is the length of the simple equivalent pendulum.

(3) Take the case of a projectile unresisted by the air. Let ./ be
the point from which the projectile starts with velocity /. If we
draw through 4 a horizontal line AL, from this set up an ordi-
nate 4 H = h = V*/2g, and then draw a horizontal line HK, this line
will be the directrix of the parabola in which the projectile moves.
When the projectile has reached any point in its path, which is at a
height y from the ground and at which it has the velocity », the

2
total energy possessed by the projectile = /7 (y + %) This being
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equal to that which it had at starting = W' 2K; = Wi, QL{]: b -y, and so

the projectile will, at every point of its path, have a velocity due to
its having fallen from the directrix.

EXAMPLES.

1. The energy of 1 1b. of pebble powder is 70 foot-tons. Find the weight of charge
necessary to produce an initial velocity of 1300 feet per second in a projectile weigh-
ing 700 1bs., neglecting the recoil of the gun and the rotation of the shot.

Wt. of powder required = 117 Ibs.

2, In Example 1 suppose the gun fired at an elevation of 30°, and resistance of the
atmosphere neglected, find the kinetic and potential energies of the shot at its great-
est elevation. Also deduce the greatest elevation.

Horizontal velocity = velocity at highest point = 1300 1;?’

Kinetic energy at highest point = 6150 ft.-tons,
Potential % o =2050 ,,
Potential energy _

WVt of shot = 65606 feet = maximum elevation.

3 A train is running at 40 miles an hour, find the resistance in pounds per ton
necessary to stop the train in 1000 yards on a level. Also find the distance in which
the train would be brought up by the same brake power on a gradient of 1in 100,
both when going up and when going down.

Resistance = 39°9 1bs. per ton.
Distance required to bring up the train when ascending

the gradient ... 5 ... = 640 yards,
‘When descending ... % e = 2280 ,,

4. The reciprocating parts of an engine running at 75 revolutions per minute weigh
925 tons, of which parts weighing 20 tons have a stroke of 4 feet and parts weighing
% tons a stroke of 2 feet. Find the energy stored in the parts, assuming a pair of
cranks OP, 0Q at right angles and neglecting obliquity of connecting rod.

LE

Velocity of parts attached to crank P= PN op
1
1) ” 2 Q=QM 'OH}"

Where ¥ is the velocity of the crank pin and PN, PM are perpendiculars on the line
of centres.
Assuming weights attached to these cranks each equal W. Then energy stored in

WFE nrs o 1 WP
5y PN+ QI G =

2

Tn example, total kinetic energy = 40°7 ft.-tons.

5. One weight draws up another by means of a common wheel and axle. The
force ratio is 1 to 8 and the velocity ratio is 9 to 1. Find the revolutions per minute
after 10 complete revolutions have been performed, neglecting frictional resistances
and the inertia of the wheel and axle. Diameter of axle 6 inches.

Revolutions per second = 2'14.

these weights together =
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6. In Ex. 1 suppose the gun rifled so that the projectile makes 1 turn in 40 dia-
meters, find the additional powder charge required to provide for the rotation of the
shot, the diameter of shot being 12 inches and the radius of gyration 4% inches.

Additional powder required = 407 1b.

7. A disc of iron rolls along a horizontal plane with veloeity 15 feet per second,
and comes to an incline of 1 in 40 on to which it passes without shock. Find how
far it will ascend the incline, neglecting friction.

Distance along incline it will run = 2096 feet.

8. In Ex. 5 suppose the weight of wheel = weight of axle, and the two together /
= gum of weights, obtain the result, taking account of the inertia of the wheel and
axle.

After 10 revs. it will rotate at 122 revs. per second.

9. Assuming that when a vessel rolls her dynamical stability is the same as when
steadily heeled over (Art. 91), and neglecting that part of her kinetic energy which
is due to the motion of her centre of gravity (Art. 101), write down her equation of
energy (Art. 103). If the curve of stability be a true curve of sines, show that the
vessel will keep time with a pendulum of length ! swinging through % times her
angle of heel, where

7
klg=m; 1 =V
8, being her angle of vanishing stability and » her radius of gyration.

Note.—The rolling is here supposed unresisted. Observe that the deviation from
isochronism is much greater than in a simple pendulum swinging through the same
angle, k being always greater than unity,

REFERENCES,

Numerous elementary examples on the application of the Principle of Work will
be found in Twisden’s Practical Mechanics.



CHAPTER IX.
DYNAMICS OF THE STEAM ENGINE.

104. Construction of Polar Curves of Cramk Effort.—One of the
most common and important applications of the principles of the
preceding chapter is to the working of steam engines, and we shall
investigate this question, chiefly with reference to fluctuations of
stress, energy and speed. Throughout, frictional resistances are
neglected.

In Ch. V. a curve was constructed which shows the velocity
ratio of piston and crank pin, and it has been proved (p. 204) that
this curve must also give the ratio of the effort tending to turn the
crank to the pressure of the steam on the piston, so that it may also
be called a Curve of Crank Effort. If there are two or more cranks,
the crank effort can be obtained by suitably combining the results for
each taken separately, and a curve may then be drawn representing
the combination. There are two kinds of such curves, the Polar and
the Linear. First suppose two cranks at right angles, steam pressure
uniform, and the same on both pistons. Let us commence with the
polar curve.

Suppose 0T}'B,, 0T,'B, (Fig. 93) to represent the polar curve of
crank effort for an engine constructed as in Art. 49, and let the two
cranks be in the positions 0@, 0@, each pointing towards the
cylinder. Add together the corresponding crank efforts 07y, 07/,
which are given by the curve, and set off their sum along 0, we
thus obtain a radius 07", which represents the total crank effort for
the two engines taken together. It may also be considered as the
leverage at which the pressure on one piston must act to produce the
same turning moment. Performing this construction for a number
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of positions of the cranks, we obtain a polar curve showing the crank
effort in every position.

If the connecting rod is indefinitely long the single curve of crank
effort consists of the pair of circles on 0B,, 0B,, shown dotted in the
diagram. If we add together radii of these ecircles, the combined
curve of crank effort will consist of four portions of circles passing
the points 4,B,4,B,; each of the circular arcs if produced would pass

through the point 0. These arcs are also dotted in the diagram.
When the crank is in a quadrant lying towards the engine, the actual
crank effort is in excess of that due to a long conmecting rod. So
for the positions 0Q,,0@Q., shown, for each the crank effort is in excess,
and thus the curve of combined effort will for the quadrant 4,5, lie
outside the circular arc. When the cranks are in the two upper
quadrants the effort for the leading crank is less than when the



222 DYNAMICS OF MACHINES. [pART 111,

connecting rod is long, whereas for the following crank it is greater;
and the diminution of one is very approximately equal to the excess
of the other; and the sum is the same as that, neglecting the shortness
of the rod. The true combined effort is then for the quadrant B,4,
represented by the circle. In the next quadrant both are in diminu-
tion; and the true curve will lie inside the circle 4,B,, while for the
fourth quadrant it will again coincide with the circular are.

We may, if we please, lay off the sum of the radii on the following
crank instead of the leading ; the same series of curves would be
obtained, but would be turned backwards through an angle of 90°.

To add to this the circle of mean crank effort we equate the work
done on the two pistons in the double strokes to the work due to the
mean effort &, exerted through a complete revolution.

P x 2% da=R, % 2nra.
“B.=2P
@

In these curves the steam pressure P is represented by the radius
of the crank-pin circle, so the mean crank effort will be represented
on the diagram by drawing a circle, shown dotted, with centre 0 and
radius = 400Q)/m.

If there are three or more cranks inclined at any angles, the com-
bined crank effort diagram can be constructed by adding together
three or more radii vectores of the curve of single crank effort, and
laying the sum off on either of the cranks.

105. Construction of Linear Curves of Cramk Effort.—The linear
curve of crank effort, which is more useful for most purposes, is con-
structed as follows :—

Take a base line 4,4, = semi-circumference of the crank-pin
circle, and let the circle and this base line be divided into the same
number of equal parts, and at the points of division of the base line
set off ordinates such as SN, M both above and below the base
equal to lengths of the common ordinates of the single crank effort
diagram such as 01", 01"y, and so we construct the linear crank effort
diagram for a single crank. Neglecting the obliquity of the connect-
ing rod, the diagram will consist of two curves of sines shown dotted,
one above, the other below (Fig. 94). To get the combined crank
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effort diagram we have only to add together proper ordinates accord-
ing to the angle between the cranks, just as we did in drawing
the polar diagram. When the cranks are at right angles it will be
seen that when the leading crank is, for example, at @, or N the
following crank is at @, or J; and if the ordinate M7 is laid off on
the top of ordinate VS we obtain a point 77 on the curve of com-
bined crank effort. If the same process be followed throughout we
obtain the diagram shown in Fig. 94, consisting of four curves. If.
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the connecting rod be taken as indefinitely long, and ordinates of the
dotted curve be added together the combined diagram will consist of
four curves, also curves of sines shown dotted in the diagram, all
alike and all of the same height. But taking proper account of the
shortness of the rod, we observe that for one quadrant of the revolu-
tion when both cranks lie towards the eylinder, each ordinate added is
In excess of that, neglecting obliquity, and then we obtain the highest
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curve. In the next quadrant the height of the curve is less and is
the same as if we neglected the shortness of the rod. In the next
quadrant when both cranks are away from the cylinder the shortness
of the rod makes the crank effort for each engine less, and we get a
very low curve for the combination. This is followed in the last
quadrant by a curve like the second.

The mean crank effort will be represented by a horizontal line at
a height 40Q)/, as before. Setting off this line we observe that unless
the connecting rod is longer than is usual in ordinary practice, the
actual crank effort will be less than the mean throughout the whole
of one of the quadrants.

At the points where the straight line 2Z cuts the curves the actual
crank effort is equal to the mean.

108. Ratio of Mazimum and Minimum Crank Effort to Mean.—One
of the principal objects in the construction of curves of crank effort is
the determination of the ratio which the maximum and the minimum
values of that quantity bear to its mean value as determined from
the power of the engine. It is on these quantities that the strength
required for the shaft depends, besides which, too great an inequality
in the turning moment on the shaft is frequently injurious to the
machine which is being driven by the engine, or to the work which
the machine is doing.

Approximate mathematical formuls, analogous to those given on
p- 111 for piston velocity, may be used in simple cases, but in
general it is preferable to construct a diagram. The annexed table
gives some numerical results.

FrucrvATION OF CRANK ErrorT WiTH UNIFORM STEAM PRESSURE.

|
|
Ro.tio Thrcu Cylinders
for | One Crank. | Two Cranks |.¢ 1900 “driving]  Connecting Rod. [
Mea.u { | “t right angles. t.hesame Crank. e
Maximum. ! 1:57 1112 1047 |
i 5 |
S = Indefinitelvlong,
Minimum. | 0 785 | 907
| e |
Maximum, | 162 1'31 1:077 |
— s == = Four Cranks.
Minimum, i 0 | *785 ‘ 794
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The great influence which the length of the connecting rod has on
the results should be especially noticed ; we shall return to this here-
after, but now go on to consider the motion of the engine under the
action of the varying crank effort.

107. Fluctuation of Energy—We have already referred to the
periodic. character of the motion of a machine, and explained that
when the mean motion is uniform we have for a complete period

Energy exerted = Work done.

It will seldom happen however that this equation holds good for a
portion of the period. In general, during some part of the period the
work done will be greater, and in some part less, than the energy
exerted. In the first case some part of the kinetic energy of the
moving parts is absorbed in doing a part of the work, and the speed
of the machine diminishes ; while in the second, a part of the energy
exerted is employed in increasing the kinetic energy of the moving
parts and the speed of the machine increases. Thus the Lmetlc
energy of the moving parts alternately increases and diminishes, the
increase exactly balancing the decrease. At some instant in its
motion, the energy of the moving parts will be a minimum, and at
some other point a maximum. The difference between the maximum
and minimum energies is called the Fluctuation of Energy of the
machine. It is most conveniently expressed as a fraction of the
whole energy exerted during a complete period of the machine, and
this fraction is called the Co-efficient of Energy.

All this will apply to any machine taken as a whole, or to
any part of that machine; for every piece of the machine has a
driving point and a working point, and the equation of energy may
be applied to it.

Take now the case of the mechanism of a direct-acting engine.
Suppose the pressure P on the piston to be uniform. This through
the connecting rod will produce a crank effort S, the magnitude of
Which for each position of the crank may be found as just now shown.
To the crank and shaft S is the driving force and furnishes the
energy exerted. At every point of the revolution of the shaft a
certain resistance will be overcome, which resistance will tend to
prevent the shaft from turning; it will not depend on the steam
Pressure, but on the sort of work that is being done. As the most
simple ordinary case we will suppose the resistance overcome to be
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uniform, and we will neglect the inertia of the reciprocating parts
(Art. 110). 'We may represent this constant resistance by a constant
force R applied to the crank pin @ (Fig. 95), at right angles to the

Fig.95.

crank arm, resisting its motion. The magnitude of & is immediately
determined by the application of the principle of work to a complete
period, say one revolution. We have

Phg=Rx %, .-.R:?_P.

This constant resisting force is the same as the mean crank effort.
Then, so long as S>F the speed of the crank shaft will increase,
and when S< £ it will diminish.

Referring to the linear curve of crank effort (Fig. 94, p. 223) let
AN =the arc 4,Q (Fig. 95), then NS =crank effort S for this
position of the crank. If an ordinate 4,K be set up to represent the
constant resistance or mean crank effort, and a horizontal line parallel
to base line be drawn, then NH being the representation of £ the
resistance overcome, the effort S will be greater for this position of
the crank, and the difference HS will be employed in accelerating
the motion of the machine. Irom the commencement of the revolu-
tion up to this position, the energy exerted is represented by the
area 4, NS, whereas the work done is represented by the area
AKHN. As the crank revolves from the position 4, the crank
effort increases until when at U, it is equal to the resistance. Up to
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this point the speed of rotation will have been diminishing, After
passing the point U, the effort will be greater than the resistance
and the speed of the engine will increase. Thus 7 is a point of
minimum speed at which the kinetic energy is a minimum. When
the crank reaches the position U, the effort will again be equal to the
resistance; and, since from U to U, the effort has been greater than
the resistance, during the whole of which time the engine has been
increasing its speed, it follows that at the point U, the speed and the
kinetic energy will have reached a maximum. The energy stored
during this interval will be equal to the area C}SC,, and this will be
the fluctuation of energy. During all the movement from 7, to U, the
speed of the engine will diminish, so that/isanother pointof minimum
kinetic energy. The kinetic energy stored from U, to U is negative
and represented by €,4.0,, which quantity also is the fluctuation of
energy. Again at U, the kinetic energy is a maximum. If the
resistance had not been uniform, but its varying magnitude repre-
sented by the ordinates of some curve of resistance, then where the
curve of resistance intersected the curve of crank effort would be the
points where the kinetic energies would he maximum and minimum,
as just explained. By the graphical construction of such a curve of
resistance the fluctuation of energy may be estimated by measuring

Max, Min.

Fig.06

the areq of the crank-effort curve cut off above or below the curve of
resistance, which area will lie between consecutive points of maximum



9298 DYNAMICS OF MACHINES. [PART 111

and minimum energies. If the energy be £, the fluetuation of energy
may properly be denoted by AE. It is convenient to express this
as a fraction of the total energy 4Pa exerted in a revolution. We

have then for the co-efficient of fluctuation of energy %i =

The value of % does not depend on the size of the engine, but only
on the length of the connecting rod and the way in which the
steam pressure and resistance vary. If the connecting rod is in-
definitely long, steam pressure and resistance uniform, %= -1052.
The shorter the connecting rod the greater will be the value of k.

An equally important case is that of two cranks at right angles
also shown in Fig. 94. Neglecting the shortness of the connecting
rod, then the line of resistance cuts each of the four curves in two
points, the first of which is a point of minimum energy as shown in
Fig. 96, on the preceding page. For this case k =+01055 or one-
tenth of its value for a single crank: eight fluctuations of equal
magnitude occur in each revolution. When the connecting rod
is short the curves of crank effort are not the same in each
quadrant (see Fig. 94), and one of them lies wholly below the
line of resistance. There are then six fluctuations in each revolu-
tion: four of these are nearly the same as before, but the other two
are much greater, the values of % being ‘037 and ‘042, with a con-
necting rod of four cranks. The annexed table gives the maximum
value of & for various cases, supposing steam pressure uniform and
resistance uniform.

FLUCTUATION OF ENERGY.

Values of £ supposing | |

T —‘ Length of Rod.
Two Cranks, |Three Cylinders, |

|
one o | i i, B 0L
a : |
1052 \ 01055 | 00325 |  Infinite.
125 | 0314 00s¢ | SixCramks.

1358 ‘ 0418 0113 | Four Cranks.
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As before, the great influence of length of connecting rod on the
results should be noticed. Frictional resistances, which are here
neglected, generally increase the value of £.

In general the pressure of the steam in the cylinder of an engine varies throughout
the stroke, and the construction of the curve of crank effort previously described
must be modified on account of this. Suppose, instead of the steam being admitted
throughout the stroke, it is cut off at a certain point and expanded so that the expan-
sion curve is hyperbolic. For simplicity neglect the back pressure. At the point N

in the stroke (Fig. 97) the pressure will have fallen to P, such that 1_; ~ % If we
1
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draw an ordinate P, such that the area of the rectangle enclosed is equal to the area

1 +loger
g

of indicator diagram, then Pm =Py where 7= ?ﬁ:’ Up to the point K the

crank-effort diagram will be the same as previously described, but after that point the
crank effort will be less than that due to a uniform steam pressure. At the point IV
in the stroke, for example, the crank effort instead of being V'S will be NS’ found by
joining OS to cut a vertical through the point K of cut-off and making N§'= KL,

NS T
g T{) In the expanded diagram, the base of which is taken equal to the circum-
> §

ference of the crank-pin circle, ordinates must be taken equal t. VS, and a diagram
50 constructed, from which the fluctuation of energy may be calculated. Assuming
the resistance to be uniform, it will have a value R such that

Rea- Pula=2aP 18T,

R=2 P, 1——"1,?5”‘ 3

Lrg
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and drawing a horizontal line above the base at a height to represent R, it will cut off
an area above it which will be the fluctuation of energy. The diagram for the return
stroke is shown below. It is not exactly the same as that for the forward stroke,
because the effect of obliquity is different. A general method of procedure applicable
with any given indicator diagram is explained at the end of this chapter.

108. Fluctuation of Speed. Fly-IWheels.—Fluctuation of energy in
an engine or any other machine is necessarily always accompanied by
a fluctuation of speed ; but the heavier the moving parts the less
will be the fluctuation of speed. In most cases it is necessary that
the fluctuation of speed should not exceed certain limits, as it would
be injurious to the working parts of the machine and would some-
times impair the character of the work done ; so it is a question of
some importance to inquire as to what the weight of the moving
parts must be to confine the fluctuation of speed within a given limit.

Consider the steam engine, and, first, take the case of a single crank.
We have already for this case determined the points in the revolu-
tion at which the energy of the moving parts is a maximum and
minimum, and also the fluctuation of energy. The energy of the
moving parts consists of the energy of the rotating crank shaft and
all its connections, as well as that of the reciprocating parts. If we
imagine a case in which the shaft and all the parts which rotate
with it are comparatively very light, then the points determined
will be the points at which the piston and reciprocating parts move
fastest and slowest, the motion would be very irregular, and, in
fact, the engine would not get over the dead points. To avoid this
the weight of the rotating parts is made considerable as com-
pared with that of the reciprocating parts, and the heavier they are
the more uniform the motion of the engine will be. To increase
the uniformity, the weight must generally be artificially increased
by the addition of a heavy fly-wheel to the shaft, and the inertia
of this is predominant over that of the other moving parts of the
engine. For the present we may neglect the inertia of the recipro-
cating parts and consider the fly-wheel alone.

On this supposition the energy and speed of the fly-wheel will be
greatest and least at the points previously described, viz., where the
curve of crank effort is cut by the line of uniform resistance. Let
W be the weight, /7 the velocity of rim of fly-wheel ; then

2
IZ(V— = Energy of Rim.

<4
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The energy of the arms and boss may be estimated by the addition
of a percentage to the weight of the rim, or be considered as furnish-
ing a margin in favour of uniformity. On account of the danger of
fracture the speed of periphery 7 should not exceed 80 feet per
second. This is the limit of speed commonly stated, but the
liability to fracture depends very much on the straining action on
the arms of the wheel due to inequality between the crank effort
and the resistance, and not merely on centrifugal forces. (See Ch.
XL). In large wheels the rim is in segments, and the speed is not
more than from 40 to 50 feet per second.

Let /7, and 7, be the greatest and least speed of periphery due
% (V7 — V.?) is the fluctuation of en-
ergy of the wheel. By the graphical process previously described we
have been able to determine the fluctuation of energy in terms of
the total energy %, expended in one revolution.

Equating these two we have

%
ST2= V) = A,

to the fluctuation of speed, then

where £ is the co-efficient previously found.

Suppose now that it is required that the fluctuation of speed
should not exceed a certain amount, then we may write

h-V=gqV,

where ¥, is the mean speed and ¢ is a co-efficient depending on the
degree of uniformity which is considered desirable. In some cases
¢ must not exceed ‘02 or even less, whilst in others ‘05 or even
more may be sufficient.

We may generally assume with sufficient accuracy that
' _h+h

9

4

(see next Article), then we find by substitution that, at the mean
speed,

Vy

Energy of Wheel = ‘f"é B,

In a single crank non-expansive engine the value of % ranges, as
we have seen, from ‘1 to ‘14 when the resistance is uniform. In
expansive engines £ may be ‘25 even with a uniform resistance, and
when an engine is doing very irregular work % may be unity.
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If we have a pair of cranks at right angles, the kinetic energy of
the reciprocating parts is the same, at the same speed, for all positions
of the cranks. (Ex. 4, p. 218.) Consequently these parts may be con-
sidered as so much added to the weight of the fly-wheel. Besides this
the value of /% is much less, seldom reaching -1 if the resistance is ap-
proximately uniform. Hence a lighter fly-wheel may be used. The
difference however is not so great as it might appear, for in estimating
the weight of wheel required, it is important to consider not merely
the change of speed, but also the time in which the change takes
place. A small change taking place rapidly may be as injurious as
a much greater change taking place slowly. The values of the
acceleration and retardation at any instant are proportional to the
difference between the crank effort and resistance at that instant,
which can be found from tables such as that on page 224, and some
regard should be paid to these numbers in considering what value
of ¢ should be employed.

In any case then we may write

Energy of Wheel = K. E,

where K is a co-efficient, which will vary within much narrower limits
than the two co-efficients of speed and energy on which it depends.
In general, in the very cases in which the resistance is most irregular
a greater variation in speed is admissible.

The old rule for fly-wheels, dating from the time of Watt, was
that the energy of the wheel should be 3:75 times the energy exerted
per stroke. This corresponds to K = 1-875, and would be satistied
by k = 1, ¢ = 267, or by &k = '125, ¢ = ™. The first of these
cases would be a very irregular resistance with a great varia-
tion in speed, and the second a moderately uniform resistance with
a uniformity of speed which would be sufficient for most purposes.
Heavier wheels are not unusual in modern practice, and it may be
here remarked that the minimum weight necessary may depend
partly on the rigidity of the shafting.

There is another method of obtaining the fluctuation of energy which, though
not practically so convenient, is for some purposes advanfageous. A curve
representing the energy exerted may be constructed in this way: Suppose
the steam pressure P constant, then in the movement of the crank pin from
A to Q the piston moves from A to N and the energy exerted = P x AN,
which will be proportional to AN, Now in Fig. 98 take a base line 4.4’ equal to the
semi-circumference, and at the various points, such as @, set up ordinates QK = AN,
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A'A"= A A", and s0 on; a curve AKLA" will be obtained, which will represent by its
ordinates the energy which has been exerted from the commencement up to the
various points in the stroke. At the same time, the resistance being uniform,

] {B=7EE f e e =
AI ! 1
e
________ e e e e

A”

the work done will be proportional to the length of the arc AQ, since work
done = B x AQ. If from the base line A4’ we set up ordinates to represent the
work done, a straight sloping line will be obtained. If the work done = energy
exerted in the complete stroke, they will both be represented by the same ordinate
A’4", and so the sloping line will meet the curve at the point A”. The intercept
between the curve and line 4.A” measured on the vertical ordinate will at any
point be the difference between the energy exerted and the work done reckoned from
the commencement of the stroke up to that point, and what we have called the
fluctuation of energy will be the vertical intercept between two tangents to the
curve A KL A" drawn parallel to 4.4".

From this we can derive a curve which will represent the varying angular velocity
of the crank ; but, in order to simplify the measurement and description, let the
vertical intercepts of the curve just described be laid off from a horizontal base line,
as shown below.

For suppose we know the moment of inertia of the equivalent fly-wheel of the
engine and the angular velocity of the crank in some one position : the ordinate of
the curve AZLA" at this point measured from a properly taken base line must re-
Dresent the energy of the moving parts. Thus, if the base line be drawn in proper
Position, all ordinates measured from it will represent the square of the velocity of
revolution of the crank shaft. If the speed of the machine is great, the base line will
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be some distance below the curve. On the other hand, if the speed is small, the base
line will be close to the curve. There is manifestly a minimum speed at which the
machine can be kept revolving ; it is that which corresponds to the case in which the
base line touches the curve. At one instant of the period of the machine the energy
will then be zero.

Drawing such a base line all the ordinates measured from it will represent the
square of the angular velocity, and we can from this deduce a curve of angular
velocity. It will be noticed that half the sum of the greatest and least angular
velocities is not exactly, but only approximately, the mean angular velocity. The
true mean may be determined by means of the curve of angular velocity, the con-
struction of which has just been described.

109. Correction of Indicator Diagram for Inertia of Reciprocating
Parts.—All that has been said respecting the fluctuation of energy
and speed of a machine as a whole, applies to each of the several
parts of which it is constructed. The energy supplied by the driving
power is transmitted through each piece in succession from the
driving pair to the working pair. For each piece the energy exerted
is equal to the work done for the whole period ; but for a part of the
period the two are unequal, so that the kinetic energy of the piece
varies. If the motion of the piece be known, the variation of its
energy can be used to determine the difference between the driving
force on the piece considered and on the piece immediately following
- it.  Of this caleulation an important example is the change in the
crank effort caused by the inertia of the reciprocating parts of an
engine.

In this calculation we neglect, in the first instance, the obliquity

Fig.o9. of the connnecting rod, and suppose
the crank to rotate uniformly. Let
@ (Fig. 99) be the centre of the crank
pin describing a circle 4Q4 with
velocity 7, then the position of the
piston is represented by N, and its
velocity is

v{)

Vi="J5.en 6,

from which it follows that the kin-
A etic energy of the reciprocating parts
L must be given by

WVsisin?@ _ ffVVf(I mﬂ>

Kinetic E AL i) Sl S ]
inetic Energy % %
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where 7 is the weight of the piston, piston rod, and other recipro-
cating parts, and z is the distance of the piston from the centre of
its stroke.

Take now two positions N, N’, at distances a,, @, from the centre,
and find by this formula the change of kinetic energy as the piston
moves from N to N'. HKvidently we shall have
wry o' - o

a

Change of Kinetic Energy = % =
Now this energy must have been obtained from the steam pressure
which drives the piston and accelerates its motion. Let P be the
mean value of that part of the whole steam pressure which is em-
ployed in this way between N and N’, then P. NN is the energy

exerted in this way, so that
Wy xd — s
By pee o -
(Tl :r_) 2q @

or dividing by z, — @,
Pl WV = + Y

2 @

This formula gives the mean value of the pressure in question be-
tween any two points N, V', and therefore, if we take the points
near enough, we shall obtain the actual pressure at any point of the
stroke. Putting z, = 2, = « we get
A
ga " a
It is convenient to express our result as a pressure in lbs. per square
inch by dividing by the area of the piston in square inches, then
4 ()2 €T
P = .pﬂ < % . (-l',’
where p, is the weight of the reciprocating parts divided by the area
of the piston, or, as we may call it, the ¢ pressure equivalent to the
weight of the reciprocating parts.”

When 2z = ¢ we get the pressure at the commencement of the
stroke required to start the piston: here the pressure is greatest,
and elsewhere varies as the distance from the centre. At the centre
the pressure is zero: the piston then for the moment moves with
uniform velocity and requires no force to change its motion. When
past the centre the pressure is so much addition to the steam pressure
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because the piston is at every instant being stopped : this is shown
by the formula, since @ is then negative. All this is shown graphi-
cally by drawing a straight line LCL through (' such that

e Vet
AL =15 e

The ordinate of that straight line represents the pressure due to
inertia for each position of the piston. After subtracting this from
the actual steam pressure the effective pressure is found, which is
transmitted to the crank pin, and furnishes the crank effort.

The value of p, the pressure equivalent to the weight of the
reciprocating parts, varies considerably according to the size and
type of engine, but in ordinary cases ranges from 1} to 3 lbs. per
square inch. In return connecting rod engines, and in some other
types where the reciprocating parts are exceptionally heavy, p, may
reach 4} or 5 Ibs. per square inch. This being given, the pressure due
to inertia will vary inversely as the stroke and directly as the square of
the speed; in the short-stroke high-speed marine engines common in

the present day, the correction for
L\K inertia is sometimes very consider-
Sk Q <

\ able. It is hardly necessary to say
that it is only the value of the crank
effort at particular points of the
stroke which is affected. The mean
value must remain unaltered, for any
energy employed in overcoming in-
ertia at one part of the stroke must

Fig.100.

be given out again at another part,
so that the total energy exerted by
the steam remains the same. Fur-
ther, when there are a pair of cranks
at right angles the total erank effort
is little altered.

The effect is best seen by correct-
ing an indicator diagram for the
inertia of reciprocating parts in the
following way. Consider, for sim-
plicity, a theoretical indicator dia-

gram (Fig. 100) 8QZ.4, in which BB is the back-pressure line, @2
the expansion ‘curve, then, but for inertia, the ordinates reckoned
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from BB of SQZ give the effective pressure of the steam. Set up
BL equal to the pressure necessary to start the piston found above
and draw the straight line LCL, then the actual effective pressure
will be obtained by measuring the ordinates to the sloping base LOL
instead of the original hase BB. It will be seen that the general
effect is to equalize the steam pressure throughout the stroke.

In engines running at a very high speed the pressure necessary to
start the piston at the commencement of the stroke may be greater
than the steam pressure (see Ex. 11, p. 243), which will be shown on the
diagram by the point L rising above S, as shown by the dotted line
L'CL of the figure. The direction of stress on piston rod
and connecting rod is then reversed, which will produce a shock if
the brasses are at all loose. This gives a limit to the speed with
which the engine can safely be driven (see p. 244).

In obtaining the preceding results it has been supposed, first, that the
crank rotates uniformly and, secondly, that the connecting rod is inde-
finitely long. To take account of the variation in the velocity of the
crank, it would be necessary to draw a curve representing that velocity,
and deduce from it a curve showing the kinetic energy of the piston in
every position. In general, however, the inertia of the rotating parts
will be sufficient to reduce the variation in speed within narrow limits,
and the error caused by neglecting it may be disregarded. The
effect of obliquity is of more importance : to obtain it we may either
use the formula for piston velocity given on p. 111 instead of the
simpler formula employed above (Ex. 13, p. 243), or we may derive a
curve of kinetic energy from the known curve of piston velocity and
take the differences of equidistant ordinates. For the sake of variety,
however, we will employ a method depending on a different principle,
which is perhaps more simple in praectical application.

Divide the crank-pin circle into a number of equal parts, and supposing the con-
necting rods drawn, let them cut the vertical through 0 in the points 1’, 2, 3’ in Fig.
101. Also find and mark off the corresponding positions of the piston 17, 2", 3", &e.
Now, since the lengths 01, 02/, 03, &c., represent the velocities of the piston and
reciprocating parts when in positions 17, 27, 3", &c., the difference between any two
consecutive lengths, for example 1', 2/, will represent the change of velocity that has
taken place in the corresponding movement of the piston 17, 2", If we suppose the
crank pin to revolve uniformly and divide the circle into equal parts, equal
times will be occupied in the motions from point to point, and therefore equal times in
the motions between consecutive positions 17, 27, 3", 4”, &c., of the piston. Accordingly
the differences 01, 12, 23, &c., will represent the force required to change the
velacity of the reciprocating parts; and if we set them up as ordinates between the
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corresponding positions of the piston, we shall obtain the curve expressing the
effect of inertia. The ordinate should be erected from the position of the piston
when the crank-pin is at the middle of the intervals 1, 2, 8, &e.

It will be seen that the greater the number of parts into which we divide the
crank-pin circle the less will be the ordinates representing the effect of inertia,
though in all the curves the same character will be preserved. Accordingly it is
possible to determine the number of parts into which the crank circle should be
divided, or to determine the angle between consecutive radii, 01, 02, &c., such that
the ordinates of the inertin curve be of such a length that they represent the pressure

Fig. 102.
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per square inch of piston area required for inertia on the same scale that the indicator
diagram is drawn. The ordinates of the resulting inertia curve may then be directly
employed to correct the indicator diagram.

Let V be the number of revolutions per minute; @, @' consecutive points on the crank-
pin circle; and let QOQ' =n° Further suppose that the erank-pin circle is drawn on
a scale of @ inches to the foot. Then

change of velocity of piston 7'7"
velocity of crank pin 0Q’

.. change of velocity of piston Ay, in feet per second = gg’l’.’[" 4
where 7'7" is to be measured in feet on the scale « inches =1 foot.

G A= 2:%1- g'g', where 7’7" is to be measured in inches.

Now this change of velocity takes place in the time occupied by the movement
= At seconds = Woams ont
G L 000 6

Dividing Av by At we get the rate of change of velocity,

Av 27N (7'T") inches 6V
AT 60N R

Now the mass of the reciprocating parts x %%’ will be the magnitude of the force due

to inertia.
.+ Foree due to inertia = » 42~ " 2 ya(TT" in inches
g At g 10 xn
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Divide both sides by the area of the piston, and let p = pressure per square inch
due to inertia, which will be in lbs. if W is taken in lbs. Also let p,= pressure
equivalent to weight of reciprocating parts in 1bs. per square inch.

o 2 a2 (2T mches)
“P=Pogg, xn®
If now the indicator diagram be drawn on a scale of  1bs. to the inch, the pressure p
equivalent to inertia will be represented on the same scale by taking a length in
inches—
2‘—

4
p“l(]g xJn" (TT inches).

Now it is required that n° be so taken that p/y in inches shall be the same thing as
77" in inches. Consequently

e A2
P09 a:yn"ﬁ
2@ .N“"
. n° _109'% = 0195 p, '

If now we draw a number of eranks inclined to each other at an angle of #°, we may
obtain as many points on the curve of inertia as we please.

In practice it will in general be sufficient if we determine the end ordinates 4K,
BS, and the point L (Fig. 101) and draw a fair curve through these points. The
ordinates A K and BSwill be determined if we take (Fig. 102) 40Q,, 4A0Q,, BOQ,, BOQ,
each equal $»°, then @,0Q, and Q;0Q, being each equal #°, 7,7, will equal 4K and
73T, = BS.

Further, the curve will cross the base line at the point L, at which the piston will
have its maximum velocity, which will occur approximately when the crank is at
right angles to the connecting rod.

‘. OL= J (con. rod)*+ (erank)* - connecting rod.

110. Construction of Curves of Crank Effort for any given Indicator
Diagram.—If the varying magnitude of the steam pressure is given
by the actual indicator diagram of the engine we may deduce the
true crank effort as follows :—Let Fig. 1, Plate V., be a pair of indi-
cator diagrams. The examples chosen are from the low-pressure
cylinder of H.M.S, “ Nelson.” * Before proceeding to make use of
them they should be corrected for inertia, and, where the engines
are vertical, for the weight of the reciproeating parts.  The curve of
Pressure due to inertia is KLS in Fig. 1, which has been drawn, as
Just described, to the same scale as the indicator diagram. If we
draw a line MN parallel to the base line of the inertia curve to
represent po, the pressure due to the weight of the reciprocating

*I am indebted to Mr. T. Hearson for the example here given, and for the method
of drawing'the curve of inertia which has just been described.
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parts, then the intercept between MV and KLS will be the neces-
sary correction for inertia and weight combined. In applying the
correction, the forward pressure in one of the pair of diagrams should
be taken in conjunction with the back pressure of the other, for it
is the difference between these which gives the true effective
pressure on the piston. Let the dotted lower curves be the result of
the correction, so that the virtual pressure which is transmitted to
the crank pin is to be measured by the vertical intercept between the
upper steam curve and the dotted curve, such as BC for example.
Immediately below the diagram draw a crank-pin circle with diameter
equal to the length of the indicator diagrams. Divide the crank-pin
circle into, say 20, equal parts, and suppose the erank pin to be suc-
cessively at these points of division ; determine the corresponding
positions of the piston in its stroke. Whilst doing this, mark the
directions in which the connecting rod lies when the crank pin
is in these several positions. Let the positions of the piston in
the line of stroke be set off along the diameter 0, 10. Through
these points draw verticals to intersect the indicator diagrams.
The intercepts of these verticals will give us the virtual steam
pressure at each of the points of the stroke and corresponding to
each position of the crank in its revolution. Next, having in
Fig. 2 drawn a number of radii through the points 1, 2, 3, &e., lay
off from the centre O along each, the respective intercepts of the
indicator diagram which represent the vertical pressures of the
steam when the cranks are in those positions. We thus draw what
we may call a polar curve of virtual steam pressure. We have for
example taken 0K equal to BC in the figure, and similarly for all
other radii.

Now, referring to page 204, we observe that if the conmecting
rod in any position he drawn to cut the vertical through 0, in a point
T, as for example in Fig. 2 when the crank is at 7, then the
length 07 will represent the crank effort on the same scale that the
length of the crank arm O7 represents the magnitude of the steam
pressure. 1f now through K we draw KT' parallel to 77, then by
similar triangles g%, = %g’, and thus on the same scale that OK
represents the steam pressure 0T will represent the crank effort.
Now along the crank O7 set off a length 01" = 0T', and perform
a similar operation for each of the positions of the crank. If
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through the points so obtained we draw a continuous curve it
will be the polar curve of crank effort which we require, for it
will represent hy its radii in any position the actual crank effort
when the crank is in that position; and we see that, in the construc-
tion, account is taken not only of the angular position of the crank,
but also of the steam pressure which is available for turning the
crank. Taking both indicator diagrams we thus draw the curve
for the complete revolution of the engine. By transfer of the radii
of the polar curve to the crank circle unrolled we can construct
a linear curve (Art. 105), and thus determine the fluctuation of
energy.

In Fig. 2 the thick curve has been drawn to show the crank effort
due to the high and low pressure cylinders combined, by adding to
the radii of the original curve the corresponding radii of the high
pressure curve (not shown in the figure). In this engine the high
pressure crank is 90° in advance of the low : if it had been 90°
behind the low the fluctuation of crank effort would have been less,
This is shown by the large dotted curve in the figure. The circle of
mean crank effort is added to facilitate comparison. The values of
the co-efficients of crank effort and energy are given in the diagram.

111. Periodic Motion of Machines in General—The motion of a
steam engine, which we have been describing in detail in this
chapter, may be taken as a typical example of the transmission of
energy by any machine whatever. Neglecting frictional resistances
the energy is transmitted without alteration from a driving pair to a
working pair—when the complete period of the machine is con-
sidered ; but the rate of transmission varies from instant to instant
during the period. The alternate excess and deficiency of energy is
provided for by the moving parts of the machine, which serve as a
store of energy or “ kinetic accumulator,” which can be drawn upon
at pleasure. For equable motion it is necessary that they should
be sufficiently heavy, and that the rotating pieces should greatly pre-
dominate over the reciprocating pieces. If the speed be very great
reciprocating pieces are to be avoided altogether, especially in cases
of higher pairing with force closure (Ex. 17, p. 244).

It has been supposed that the mean resistance at the working
pair is exactly equal to the mean effort at the driving pair. If this
be not the case the machine will rapidly alter its mean speed, till the

Q



249 DYNAMICS OF MACHINES. . [pART 1L

equality is restored by alteration of the effort or the resistance or
both. The equality seldom exists for long, and some means of con-
trolling the machine is therefore generally indispensable, but this is
a matter for subsequent consideration,

EXAMPLES.

1. In the case of a pair of cranks at right angles, draw the polar diagram of crank
effort when the connecting rod is indefinitely long, and find the ratio of maximum
crank effort to mean. Find also the position of the cranks when the actual erank
cffort is equal to the mean.

Maximum crank effort = 1'11 mean.

2. Draw the diagram and obtain the results as in the last question, when the
length of connecting rod is equal to 4 cranks.

Maximum crank effort = 1':307 mean.

3, Draw the linear diagram of crank effort, assuming two eranks at right angles
and connecting rod = 4 cranks.

4, What is the maximum length of connecting rod for which the crank effort is
less than the mean throughout one quadrant ?

Connecting rod = 7°1 cranks.

5, From the diagram of crank effort constructed in question 3, determine the co-
efficient of fluctuation of energy, 1st. When the connecting rods are indefinitely
long ; 2nd. When the length equals 4 cranks.

Connecting rod indefinitely long. Co-efficient of fluctuation of energy = ‘011,

Connecting rod = 4 cranks. Co-efficients are ‘011, ‘042, ‘011, ‘009, ‘038, *009.

6. A pair of engines of 500 h.p., working on cranks at right angles with connecting
rods = 4 cranks, are running at 70 revolutions per minute. Find the maximum and
minimum moments of crank effort, and the fluctuation of energy in ft.-lbs. ; assum-
ing the steam pressure and resistance uniform.

Maximum moment of erank effort = 49,125 ft.-lbs.
Minimum moment of crank effort = 29,465 ft.-1bs.
Mean moment of crank effort = 37,500 ft.-lbs.

Fluctuation of energy = 9,900 ft.-lbs. Co-efficient = ‘042,

7. In the case of a single crank the steam is cut off at one-fourth of the
stroke. Neglecting back pressure and inertia, find the ratio of maximum to mean
crank effort, and also the ratio of the fluctnation of energy to the energy of one
revolution,

Maximum = 2'9 mean crank effort.
Fluctuation of energy = } energy of one revolution,

8. Construct a diagram of crank effort for three cranks at angles of 120°, The
lines of stroke of the three pistons are parallel, the steam pressure constant, and the
resistance uniform. Find the ratio of maximum to mean crank effort, and the co-
efficient of fluctuation of energy for a connecting rod of 4 cranks.

Maximum = 1'077 mean crank effort,
k= 0115,
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9. In a pair of cranks at right angles, connecting rod 4 cranks long, the recipro-
cating parts have a stroke of 4 feet and weigh 20 tons. The steam pressure is uniform,
and equal to 50 tons on each piston, and the resistance moment is uniform. Find
the least number of revolutions the engines can make without the aid of a fly-wheel,
and draw a curve of angular velocity ratio for this case.

Ans. At the point of maximum speed the least number of revolutions will be 50
per 1'. To obtain the curve and the least number of complete revolutions, see p, 233.

10. The pressure equivalent to the weight of the reciprocating parts of an engine
is 4 Ibs. per square inch, the stroke is 4 feet. Find the pressure necessary to start
the piston, when the engines are making 75 revolutions per minute. If the steam
Pressure be initially at 80 Ibs. above the atmosphere, and the cut-off at }th the stroke,
find the effective pressure at each eighth of the stroke, taking account of the inertia of
the piston, and assuming a constant back pressure of 3 1bs,

Pressure equivalent to inertia at commencement of stroke = 15°3 Ibs. per sq. in.
Effective pressure at commencement = 26°4

“ i 1st eighth =303
= = ond =340
H ST 3rd T = 23"
" 5 4th ., =194
33 2 5th 2 =187
3 o 6th. =195
: ¥ s =212
8th ,, = 235

11. In thelast question find the number of revolutions per minute necessary to pro-
duce a shock near the commencement of the stroke. If the steam be cut off at 3th,
or earlier, show that a shock oceurs also at other points of the stroke, 4ns. 124,

12, In question 10 construct a curve showing the kinetic energy of the piston at
each point of the stroke, and deduce a curve showing the pressure due to inertia of
the piston.

Take the curve of piston velocity previously constructed, and PN heing any or-
dinate of it, the kinetic energy of the piston will be proportional to the square of PN,
50 we have only to draw a curve whose ordinates vary as (PNV)

Having drawn the curve of kinetic energy, take the difference between consecutive
equi-distant ordinates of that curve and set them as an ordinate from a new base line
AB as ('d, and so construct a curve whose ordinates will be proportional to the
Pressure equivalent to inertia.

13. By use of the formula :

V-Vu(sin¢9+ ~

. 8in @, cos ﬁ')
n

(page 111) for the velocity of the piston, prove that the pressure necessary to start
and stop the piston at the ends of the stroke is given hy
fmpp L0 (141
p'=py W (1 + n)'

14, Draw a curve of kinetic energy of an oscillating cylinder, assuming a mean
radins of gyration for the cylinder and piston, and deduce the bending moment on
the piston rod.

NotrEe.—The force of inertia in this case is so great that the speed of oscillating
engines is limited.
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15, If n be the revolutions per minute of a fly-wheel and d its diameter : show that
the weight of wheel necessary for a given regularity in an engine of given indicated
power is

& [P
W=_C, prr L
where C'is constant.

Nore.—The diameter is generally about 34 times the stroke (S), and according to a
well-known empirical rule for piston speed (¥) employed in calculating nominal
horse-power V2« S. If this be assumed 1% is constant, and the weight of wheel is
then proportional fo the indicated horse-power, a rule sometimes employed, 100 1bs.
being allowed for each horse-power.

16. The fluctuation of energy of an engine of 150 7. H. P. is 13 per cent. of the energy
exerted in one revolution. The revolutions are 35 per minute, find the weight of a
fly-wheel 20 feet in diameter, that the fluctuation in speed may not exceed one-
fortieth, Ans. 8 tons.

17. In the cam movement shown in Fig. 1, Plate IV., page 173, suppose the cam a
circular disk of radius equal to the stroke of the sliding piece. Supposing the force
of the spring twice the weight of sliding piece: find the greatest number of revolu-
tions per 1’ the mechanism can make when the cam rotates uniformly.

Ans. If S be the stroke in inches, # the revolutions,

216

7 Vi
18. In a 3-cylinder Brotherhood engine, the stroke is S inches, the revolutions =
per 1/, the total pressure on one piston P; show that, to avoid reversal of the

stress on the piston rod, the weight of a piston and rod must not exceed
/5
W= 170,500 .
. n*S

Note.—In a double-acting engine there is necessarily reversal at the ends of the
stroke : in the Brotherhood this is avoided by the use of 3 cylinders at 120°, the
inner ends of which communicate constantly with a central chamber containing
steam at full pressure. These engines therefore may run at a very high speed if the
cut off at the outer end he sufficient.



CHAPTER X.
FRICTIONAL RESISTANCES,

112. Preliminary Femarks.—The action of a machine consists, as
we have seen, in a transmission of energy from a driving pair to a
working pair, through a number of intermediate pairs, which change
in a given way the motions proper to the source of energy. In the
absence of friction, the energy transmitted from piece to piece in a
complete period would be the same for all the pairs, but, in con-
sequence of frictional resistances, a certain part of the energy is lost
at each transmission. These frictional resistances are of two kinds,
one due to the relative motion of the elements of the pairs one upon
another, the other to the changes of form which the flexible parts of
the machine undergo, for example to the bending of ropes and belts.
1t is to the first kind that the word “friction” is specially appro-
priated, although it is not essentially different from the second kind
which in some cases is also called “ stiffness.”

We commence with the case of linkwork mechanisms in which the
friction is due simply to the sliding of one surface upon another,
The pairing is in this case of the lower class.

SECTION I.—EFFICIENCY OF LOWER PAIRING.
118. Ordinary Laws of Sliding Friction.—If one body rests on

another (Fig. 102) and is pressed Fig.102.
against it with a force X, a mutual ac- gk &

tion takes place between the two which Lo

resists sliding. The magnitude of this i o

mutual action or tangential stress (Ch. I__l e
XIL) is measured by the force F which is - '

necessary to produce sliding, and the ratio F/X is called the co-efficient
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of friction and will be denoted by f. The value of f depends on the
nature and condition of the surfaces in contact, whether rough or
smooth, dry or lubricated. Under certain circumstances and within
certain limits it is independent of the area of the surfaces in contact
and of the velocity of sliding. These statements may be called the
“ ordinary ” laws of friction. The evidence on which they rest and
the limitations to their truth will be considered hereafter; for the
present we assume them as applicable to all the cases we consider.

The work done in overcoming friction may be estimated just as in
the case of any other resistance. If the body move through a space
» the work done is Fr or f.Xz if X be uniform, and if it be not, a
curve is constructed giving X at every point, then the area under
that curve multiplied by the co-efficient f is the work done (see
Ex. 2). If B be the re-action of the surface upon which the body
we are considering rests, ¢ the angle its direction makes with the
normal to the plane,

Bicos p'="X "B gin'd =F;

~tan ¢ = f,
an equation which shows, that the total mutual action between two
plane surfaces, which slide over one another, makes an angle with the
normal to the plane, the tangent of which is the co-efficient of friction.
The magnitude of this angle then is fixed, bub its direction varies
according to the direction of the sliding. It may therefore be called
the “friction angle,” but it is also often called the ‘“angle of repose,”
because it is the greatest inclination of a plane on which the body
can rest under the action of gravity without slipping. In the
solution of questions respecting friction, graphically or otherwise, it
is often convenient to suppose it known.

114. Friction of Bearings.—Next suppose the surfaces in contact
cylindrical. In Fig. 103 .4B.A represents a cylinder pressed down
into a semicircular bearing by a force S, the direction of which passes
through the point O, which is the intersection of the axis of the
cylinder with the plane of the paper. We may take this to re-
present the ordinary case of a shaft and its bearing from which the
cap has been removed, S being the resultant of all the forces acting
on the shaft which for the moment are supposed to have no
tendency to turn the shaft. The force S is halanced by the
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reaction of the bearing which, when the bearing is in good con-
dition, consists of a pressure distributed over the whole semi-
cylindrical surface. Let DFE he a small element of the surface,

: Fig.103,

p the pressure, 6 the angle the radius of DE makes with the
direction of S, then we must have
ZpDE cos 6 = &§.

If now we knew the law according to which p varies from point
to point, we could by use of this equation find the actual value of p
and also find the total amount of the distributed pressure, that is to
say, 2 p. DE which we will call X. Evidently then we shall have

X=£.8,
where /: is a co-efficient depending on the law of distribution and
therefore to some extent uncertain. When a bearing is well worn
it is probable that (see Art. 115) if p, be the pressure at B
P = . cos 0,
that is, that the intensity of the pressure at any point varies as ON
the distance of the point below the centre. This is the same law as
that which the pressure of a heavy fluid follows, supposed occupying
the semicylinder 4BA, and it is shown in books on hydrostatics
that
Total pressure _ 4 _ %
Resultant pressure =«

Next suppose the shaft to be turned by the action of a couple M

applied to it, then if o be the radius '
M=Zf.p. DE.a=f. Xa=jk. .
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In this formula we have some doubt as to the value of %, and we are
not sure that the co-efficient f would be the same for a curved as for
a plane surface; we therefore replace fk by f/, where f’ is a special
co-efficient of axle friction determined by experiment. If there is a
cap on the bearing, which is screwed down, the value of S is increased
by an amount about equal to the tension of the bolts.

The loss of energy per revolution in overcoming axle friction is
evidently 37 . 27, or if d be the diameter,

Work lost = =f"Sd.
The reaction of the bearing surface on the shaft is partly normal
and partly tangential. The normal part balances S and the tan-
gential part balances I/, hence the two parts may be combined into
a single force opposite and parallel to S at such a distance z from 0
that

Sz =M or 2z = fd,

that is to say, the line of action of the mutual action between the
shaft and its bearing always touches a circle, the diameter of which
is f’ times the diameter of the shaft. This circle is called the
Friction Circle of the shaft or pin considered. When the bearing
has a cap on, the force S must be increased by the tension of the
bolts in caleulating 3/, but not for any other purpose, and the dia-
meter of the friction circle is consequently increased, it may be very
considerably. The utility of this rule will be seen presently.

The real pressure between a shaft and its bearing varies from
point to point, as we have seen. What is conventionally called the
“pressure on the bearing” is something different. Let / be the
length of the bearing, then /d is the area of the diametral section,
and

P

ld

is the quantity in question. It is a sort of mean value of the actual
pressure, and will bear some definite relation to it depending on the
law of pressure. For the particular law of pressure given above

P =P0.‘-Z.

The work lost by friction per square inch of bearing surface per 1’
is evidently proportional to pw, where » is the rubbing velocity in
feet per minute. An equivalent amount of heat is generated as we
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shall see hereafter, and it is upon the rate at which this heat can
be abstracted by the cooling influences to which the bearing is ex-
posed that the amount of bearing surface required depends. In
marine engine bearings the value of pv is sometimes as much as
60,000, though at the expense of a considerable liability to heating,
and in railway machinery it is not less. At lower speeds the value
is smaller. According to a rule given by Rankine,
p (v + 20) = 44,800.

115. Friction of Pivots.—In pivots and other examples in which
the revolving shaft is subject to an
endways force the surfaces in contact H
are frequently conical. In Fig. 104
a conical surface 4B is pressed
against a corresponding conical seat-
ing by a force H, and revolves at a
given rate. If the surface be divided
into rings, one of which is seen in
section at [)F, the pressure on those
rings may be resolved vertically upwards, and must then balance H.
Hence if p be the pressure on DE a ring the radius of which is y,

2p.DE. 2zy cos a = H,
where o is the angle a normal to the conical surface makes with the
axis,

When the bearing is somewhat worn the conical surface will have
descended through a certain space, and it may be assumed that all
points such as DE will descend through an equal space, so that the
wear of the surface measured normal to itself is proportional to
cos a. But if » be the velocity of rubbing of the ring DE, the wear
will be proportional to p», that is to py: hence

PY o COS a.
This principle determines the most probable distribution of the
Pressure on worn surfaces in any case, and has already been used

above for the case of a journal. In the present case a is constant,
and we have

Fig.104.

Py = constant =i = Palfss
where the suffixes 1 and 2 refer to the upper and lower edge; hence,
by substitution, if / be the length 4B of the conical surface,
py.2ml.cos a = H,
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a formula which determines the pressure at every point. The
moment of friction is evidently
M = fEpDE2xny
Zifs DB = e rar]_\’/
: oS o

where Ay is written for the projection of [JE on the transverse plane.
By use of the integral caleulus this is readily seen to be

=f.py.27.

M= j}y’r"‘ 4—_ L25— foOml h +l‘3,
CcOs
mM:ﬂH?&ﬂ
a.

a formula which shows that the friction is the same as that of a ring
of small breadth, of diameter equal to the mean of the greatest and
least diameters of the portion of a cone considered. In the case of
a simple flat-ended pivot the equivalent ring is half the diameter of
the pivot. If the pressure were uniform throughout, the diameter of
the equivalent ring would be # instead of 1 the diameter of the
pivot, and the actual diameter in practice will probably vary between
these limits.

Pivots are sometimes used in which the surfaces in contact are
not cones, but are curved, so that in wearing the pressure and wear
are the same throughout (Schiele’s pivots). That this may be the
case we must have, since p is constant,

i o€ COS o,
that is to say, if we draw a tangent DET to meet the axis in 7, ET
must be constant. The curve which possesses this geometric property
is called the “tractrix.” It is traced readily by stepping from point
to point, keeping the tangent always of the same length. Pivots of
this kind are very suitable for high speeds, as the wear is very
smooth.

118. Friction and Efficiency of Serews.—In any case of a machine
in steady motion the principle of work takes the form (Art. 96)
Energy exerted} _ | Useful work done 4+ Work wasted
in a period £ { in overcoming frictional resistance.
The simplest case is that of a secrew which we will suppose to be
square threaded and applied to a press, or to some similar purpose.
The pressure between the nut and the thread is distributed uniformly
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along the thread, if the screw be accurately constructed and slightly
worn. As shown in the last article in the similar ease of a pivot,
the friction may be regarded as concentrated on a spiral traced
on a cylinder the diameter of which may be expected to be about
the mean of the external and internal diameter of the screw. Fig.
105 shows one convolution of this spiral unrolled. 4B is the thread,
BN, parallel to the axis of the screw, is
the pitch p, and 4 Nis the circnmference
wd. H is the thrust of the screw, being
the force which the serew is overcom-
ing by means of a couple applied to
turn it about its axis. R is the action
of the screw thread which (Art. 113)
makes an angle ¢ with the normal, i

where ¢ is the angle of repose. The normal itself makes an angle
a with the axis of the screw, where « is the pitch angle given by the
formula

Fig.105.

tana =L,

i
This force R arises from the turning forces applied to the screw, and
must have the same moment 3 about the axis of the screw; its
vertical component therefore must be H and its transverse component
a force S such that

d_
S.5= M.
Hence the equations

M=1_;d. sin (a + ¢),

H=ZPR.cos (a+ ).
Also considering a complete revolution of the screw,
Energy exerted =M. 2w = Rad . sin (¢ + ¢),
Useful work done= H.p=Iip. cos (u + ),
from which it follows that the efiiciency of the screw is
tan a
tan (e + )
It is not difficult to show that this fraction is greatest when
o=45" — 14, and its value is then

Efficiency =

Maximum efficiency = ( %;_'—J%_‘-;) approximately.
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For ordinary values of f then, the best pitch angle is approximately
45° and the efficiency is considerable.

In practice, however, the pitch angle is much smaller, its value in
bolts and the screws used in presses ranging from ‘035 in large screws
to *07 in smaller ones; the efficiency is then less, often much less, than
one third, the object aimed at being not efficiency but a great
mechanical advantage.

If the pitch be sufficiently coarse, it will be possible to reverse the
action, the driving force being then I and the resistance a moment
opposing the rotation of the screw. In a well known kind of hand
drill and a few other cases this occurs in practice; the force & is
then inclined on the other side of the normal, and the efficiency is
in the same way as before found to be
tan (a— ¢)

an a.

Efficiency =

In most cases, however, o is less than ¢, and the screw is then
incapable of being reversed. Non-reversibility is often a most valu-
able property in practical applications, the friction then serving to
hold together parts which require to be united or to lock a machine
in any given position.

In estimating the efficiency of screw mechanisms the friction of the
end of the screw acting like a pivot or of the nut upon its seat must
be included; in screw holts this item is generally as great as the
friction of the threads. The friction due to lateral pressure of the
screw on its nut may usnally be neglected, but when necessary it
may be estimated by the same formula as is used for shafts. The
above investigation, strictly speaking, applies only to square-threaded
screws ; it has, however, been shown that the efficiency is only
slightly diminished by the triangular or other form of thread usually
adopted for the sake of strength.* The formula here given for
screws may be applied to any case of a sliding pair in which the
driving effort is at right angles to the useful resistance. A simpler
case is that in which the driving effort is parallel to the direction
of sliding. This is given in Example 1, page 271. In all cases ob-
serve that the efficiency diminishes rapidly when the velocity-ratio is
increased. This, which is common to most mechanisms, limits the

* Cours de Mécanique Appliquée aux Machines, par J, V, Poncelet, p. 386. Paris,
1874.
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mechanical advantage practieally attainable. The hydraulic press is
an exception, as will be seen hereafter.

117. Efficiency of Mechanism by Exact Method.—In the preceding
cases the efficiency is the same for any motion of the mechanism
whether large or small. Generally, however, it will be different in
each position of the mechanism, and by the *efficiency of the
mechanism ” is then to he understood the ratio of the useful work
done in a period to the energy exerted in the period.

The exact calculation of the loss of work by frictional resistances
in mechanism is generally very complicated, so that it is best to
proceed by approximations the nature of which will be understood
on considering an example with some degree of thoroughness. The
case we select is that of the mechanism of the direct-acting vertical
steam engine such as is represented in Plate L., p. 119.

The losses by friction are (1) the loss by piston friction, (2) friction
of guide bars, (3) friction of crosshead pin, (4) friction of crank pin,
(5) friction of crank-shaft bearings. Of these, the first two are
considered separately (Ex. 2, p. 271), and for the present neglected,
while the last three are treated by a graphical method as follows.

In Fig. 106 CQA are the friction circles of the three parts in

Fig.106.

question, which for the sake of clearness are drawn on a very
exaggerated scale while the bearings themselves are omitted. We
Will neglect the weight of the connecting rod and its inertia; of
these the first is generally relatively inconsiderable, but in high-
Speed engines the last is often very large and makes the friction very
different at high speeds and low speeds (see Ch. X1.) The weight of
the crank shaft and all the parts connected with it is supposed to act
through the centre of the shaft; for simplicity we will call it 7.
The pressure on the piston after correction for piston and guide-bar
friction is denoted by . Then, in the absence of friction, the line of
action of the thrust on the conneeting rod is the line joining the
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centres of the friction circles, and the moment of crank effort is P.CT\,
where 7, is the intersection of that line with the vertical through C.
But the line of action in question must now touch the friction circles
(Art. 114), and the true moment of crank effort on the same principle
must be . CT, where T’ is the intersection of this common tangent
with the vertical C7. Thus .77, is the correction for friction of
the crosshead and crank pins, Next observe that the forces acting on
the crank shaft are 77 the weight and S the thrust of the connecting
rod ; these may be compounded into one force 2 passing through 7' as
shown in the diagram. The reaction of the crank-shaft bearing is an
equal and opposite force & which must touch the friction circle and cut
CT in a certain point K. Now the horizontal component of £ is the
same as that of S, namely P; therefore the true moment of crank effort
after allowing for friction is P. T'KK.

By performing this construction for a number of positions, as in
the last chapter, we obtain a diagram of crank effort corrected for
friction. The area of this curve will give us the useful work done
in a revolution, the ratio of which to the energy exerted is the
efficiency of the mechanism : and its intersections with the line of
mean resistance will give the points of maximum and minimum
energy and the fluctuation of energy as corrected for friction. When
the crank makes a certain angle with the line of centres 7K vanishes.
Within this angle no steam pressure, however great, will move the
crank, as is well known in practice. It may be called the “dead
angle,” all points within it being dead points.

118. Efficiency of Mechanism by Approximate Method.—The process
just described is not too complicated for actual use in the foregoing
example, but in many cases it would be otherwise, and it may there-
fore be frequently replaced with advantage by a calculation of the
efficiency of each of the several pairs of which the mechanism is
made up taken by itself.

Each pair consists of two elements, one of which transmits energy
to the other, with a certain deduction caused by the friction between
the elements. The ratio of the energy transmitted to the energy re
ceived may be called the efficiency of the pair. If ¢, ¢, ¢, ... be the
efficiencies of all the pairs in the mechanism it is evident from the
definition that the efficiency of the whole mechanism must bhe

P e
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In some cases the efficiency of each pair will be independent of the
frictional resistances of all the other pairs, and may be found separ-
ately. In general this is approximately, but not exactly, true, a point
which will be best understood by a consideration of the foregoing
diagram. For example, the friction of the guide bars is diminished
in consequence of the friction of the ecrank pin, because the obliquity
of the connecting rod is virtually diminished. The supposition .
is, however, often sufficiently nearly true to enable a rough
estimate to be made of the efficiency of the mechanism by
finding the efficiencies of the several pairs taken alone, all the
- others being supposed smooth. In doing this mean values are
taken for variable forces, if the amount of variation be not consider-
able. The uncertainty and variability of the co-efficients on which
frictional efficiency depends are such as to render refined calculations
of little practical value.

119. Eaperiments on Sliding Friction (Morin).—The ordinary laws
of friction, which may be comprised in the single statement that the
co-efficient of friction depends on the nature of the surfaces alone,
and not on the intensity of the pressure or on the velocity of rub-
bing, were originally given by Coulomb in a memoir, published in
1785, although some facts of a similar kind were previously known,
They are therefore often called Coulomb’s laws. Yet Coulomb's ex-
periments were scarcely sufficient to establish them, and the subject
was reinvestigated by others, especially by the late General Morin,
whose memoirs were presented to the French Academy in 1831-4.
Morin’s experiments were so elaborate and exact that they may be
considered as conclusively proving the truth of Coulomb’s laws
within certain limits of pressure and velocity, and under the circum-
stances in which they were made : it will therefore be advisable to
explain them briefly.

A sledge loaded with a given weight was caused to slide along a
horizontal bed 4B more than 12 feet long (Fig. 107), the rubbing
surfaces being formed of the materials to be experimented on. The
necessary force was supplied by a cord passing over a pulley at B to
& descending weight . The tension of the cord 7' was measured
by a spring dynamometer, and could likewise be inferred from the
magnitude of the weight after correction for the stiffness of the cord
and the friction of the pulley. In one form of experiment the
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weights were so arranged that the sledge moved nearly uniformly :
the corresponding friction was measured and found to be constant.
In a second form, the times occupied by the sledge in reaching given

Fig.107.
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points were automatically measured and compared with the spaces
traversed, by setting them up as ordinates of the curve CZ shown
helow. The curve proved to be a parabola, showing that the space
varied as the square of the time, from which it was inferred that the
acceleration of the sledge was constant.

From hoth methods it appeared that the co-efficient of friction
was exactly the same, whatever the pressure and whatever the
velocity, provided the nature and condition of the surfaces were the
same. A few important results are given in the annexed table ;
they are taken from Morin's latest memoir,* containing, besides many
new experiments, tables of the results of the whole series. The
limits to their application will be considered presently.

\ |
1 NATURE CONDITION C0-EFFICIENT OF
1 OF SURFACES, 0F SURFACES, ; FricrIonN. |

Perfectly dry and B =

Wood on Wood, | ek 25 to -5
t]
Metal or Wood on . . Tt
Metal or Wood, % Slightly oily, - ‘15
| Do. do., . Well lubricated, 07 to 08
|
! Do. do., 1 Lubricant  con- j | 05 |

stantly renewed, |

* Nouvelles Experiences . . . . faites & Metz en 1834. Page 99.
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Full tables of Morin’s results will be found in Moseley’s work cited
on page 267. The friction between surfaces at rest is often greater
than when they are in motion, especially when the surfaces have
heen some time in contact: the excess, however, cannot be relied on,
as it is liable to be overcome by any slight vibration. :

120. Eaceptions to the Ordinary Laws in Plane Surfaces.—From the
exactitude with which Coulomb’s laws were verified by Morin’s
experiments the inference was naturally drawn that they were
universally true, but this is probably erroneous. Although no
complete and thorough investigation has been made, it can hardly
" now be a matter of doubt that there are cases in which the laws of
friction are widely different. The known cases of exception for
plane surfaces may be grouped as follows :—

(1) At low pressures the co-efficient of friction increases when
the pressure diminishes. This has been shown by various experi-
mentalists, as, for example, by Dr. BallL* The lowest pressure
employed by Morin was about three fourths of a Ib. per square inch,
and this is about the pressure at which the deviation noticed by
Ball becomes insensible. This effect may be due to a slight adhesion
between the surfaces independent of friction proper.

(2) At high pressures, according to certain experiments by
Rennie, the co-efficient increases greatly with the pressure. The
upper limit of pressure in Morin’s experiments was from 114 to 128
Ibs. per square inch. At 325 Ibs. per square inch Rennie found for
metallic surfaces at rest *14 to 17, nearly agreeing with Morin ; but
on increasing the pressure the co-efficient hecame gradually greater,
ranging from ‘35 to 4 at pressures exceeding 500 lbs. per square
inch. The metals tried were wrought iron on wrought and cast
iron, and steel on cast iron. Tin on cast iron showed only a slight
increase in the co-efficient. In fully lubricated surfaces in motion we
shall see presently the results are exactly opposite. This increased
friction at high pressures may be due to abrasion of the surfaces.

(3) At high velocities the co-efficient of friction, instead of being
independent of the velocity, diminishes greatly as the velocity in-
creases. This was shown by M. Bochet in 1858. Similar results

* Eaperimental Mechanics, by R. S. Ball, page 78. Maemillan, 1871,
+ Phil, Trans, for 1829.
R



258 DYNAMICS OF MACHINES. [PART TIT.

have been obtained by others, especially by Capt. Galton in some
important experiments on railway brakes.* The limit of velocity
in Morin’s experiments was 10 feet per 17, and at somewhat greater
velocities than this the diminution becomes perceptible. Morin’s
results have been shown to be applicable at the very lowest velocities
by Professor F. Jenkin and Mr. Ewing.t

It appears difficult to explain the diminution at high speeds merely
by a change in the condition of the surfaces ; it should, probably, be
regarded as part of the law of friction. Professor Franke in the
Civil Ingenieur for May, 1882, has proposed the formula

S ety
where f, is about '29, and « (for velocities in metres per 1”) ranges
from 02 to 04, according to the nature and state of the surfaces.

121. Azle Friction.—It has already been pointed out that the co-
efficient of axle friction is not necessarily the same as that for plane
surfaces sliding on one another, and, besides, the continuous contact
of a shaft and its bearing is very different from the brief contact oceur-
ring in sledge experiments. Morin however made special experiments
on the friction of axles and showed that the co-efficients were constant
and nearly the same in the two cases. The diameters employed
however were 4 inches and under, while the revolutions did not
exceed 30 per minute, so that the rubbing velocity was not more
than 30 feet per minute. The pressures were not great, the value of
pv not exceeding 5,000,

Much greater values of pr than this occur in modern machinery,
and then it is tolerably certain that the value of the co-efficient is
much less and diminishes with the pressure. Already in 1855 M.
Hirn had made a long series of experiments on friction, especially of
Iubricated surfaces. The following summary of his results is given by
M. Kretz, editor of the third edition of the Mécanique Industrielle.}

(@) That a lubricant may give a regular and minimum value to the
friction it must be triturated ” for some time between the rubbing
surfaces.

* Qee Engineering, vol. 25, pages 469-472,

+ Phil. Transactions, vol 167, part II.

+ Introduction & la Mécanique Industrielle, par J, V. Poncelet. Troisiéme édition,
Paris, 1870, Page 516.
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(b) The friction of lubricated surfaces diminishes when the tem-
perature is raised, other things being equal.

(¢) With abundant lubrication and uniform temperatuve friction
varies directly as the velocity. When the temperature is not main-
tained uniform, the relation between friction and velocity depends on
the law of cooling of the special machine considered. In ordinary
machinery friction varies as the square root of the velocity.

() The friction of lubricated surfaces is nearly proportional to the
square root of the area and the pressure.

The last result is equivalent to saying that the co-efficient of
friction varies inversely as the square root of the pressure per unit
of area. Tt is remarkable that this law has also been deduced by
Professor Thurston from experiments made apparently without any
knowledge of what Hirn had done* with pressures from 100 to 750
Ibs. per square inch and a velocity of 150 per 1".

It may be open to question whether Ilirn’s experiments are
sufficient to establish all the above statements, but it cannot be
doubted that for values of p» exceeding 5000 the co-efficient of friction
of well lubricated bearings of good construction diminishes with the
Pressure, and may be much less than the value at low speeds as de-
termined by Morin. How far the diminution can be regarded as due
to a change of condition consequent on continuous wear is uncertain,

We now proceed to consider higher pairing, commencing with the
case of rolling contact. The friction is then described as “rolling
friction.”

SrcrroN IL—ErricieNncy oF HicHER PAIRING.

122. Rolling Friction.—When a wheel rolls on soft ground the
resistance to rolling is due to the fact that the wheel makes a rut
and depresses the ground as it advances over it. Thus the resistance
to motion is proportioned to the product of the weight moved into
the depth of the depression. The depth of the rut depends on the
radius as well as the breadth of the wheel. It is found that the
Tesistance may bhe expressed by

bW

e

Where 7 = weight, r = radius of wheel, and ¥ is approximately a
constant length. This might have been anticipated, since the depth

* Friction and Lubrication, by R, H. Thurston, New York, 1879,
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of the rut is the versed sine of the arc of contact, and therefore for a
given small arc is inversely as the radius. If the wheel roll on hard
ground over a succession of obstacles of small height the law of
resistance will be expressed by the same formula.

When the surface rolled over is elastic and the pressure on it is
not sufficient to produce a permanent rut, the resistance to rolling is
not so easily explained. If we consider an extreme case, as for
instance a heavy roller rolling on india-rubber, we shall be able to see
to what action the resistance is due. The wheel will sink into the
rubber, which will close up around it both in advance and behind as
shown in Fig. 108. At € the rubber will be most compressed.

As the wheel advances and commences to crush the rubber in advance
of it the rubber moves away to avoid the compression, heaping itself
up continually in advance of the wheel. In this movement it rubs
itself over the surface Cw of the wheel, exerting on it a frictional force
in the direction shown by the arrow F, which opposes the onward
motion of the wheel. Again, the rubber in the rear is continually
tending to recover its normal position and form of flatness, and in
doing so rubs itself over the surface 6C of the wheel in the direction
shown by the arrow #’, which also tends to oppose the onward motion
of the wheel. The effect of this creeping action of the rubber over
the surface of the wheel is to cause the onward advance of the centre
of the wheel to be different from that due to the circumference rolled
out. ¥ Moreover the vertical component of the reaction of the
surface no longer passes through the centre of the wheel as it must
do in the absence of friction, but is in advance by a small quantity
b such that 7776 is the moment of resistance to rolling.

* Sae a paper by Prof. Osborne Reynolds, Phil. Trans., vol. 166, to whom the true
explanation of resistance to rolling in perfectly elastic hodies is due.
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Experiments on rolling resistance present considerable discrep-
ancies, but within the limits of dimension of rollers which have
been tried it appears that b is independent of the radius; this leads
to a formula of the same form as before for the force necessary to
draw the roller, namely

Rl
=

where § i a constant which for dimensions in inches is from ‘02 to
‘09 according to the nature of the surfaces. With very hard and
smooth surfaces of wood or metal, the lower value ‘02 may be
employed. Rolling friction is not sensibly diminished by lubricants,
but depends mainly on smoothness and hardness of the surfaces. It
is probably influenced by the speed of rolling, but this does not
appear to have been proved by experiment unless in cases where
the resistance of the atmosphere and other causes make the question
more complicated.

In many cases of rolling the surfaces are partly elastic and partly
soft, so that the resistance to rolling is partly due to surface friction
and partly to permanent deformation. The value of the constant b
is then much increased. For wagon wheels on macadamized roads
In good condition the value of & is about -5”, and on soft ground
four to six times greater. The draught of carts is said to be increased
by the absence of springs.

123. Friction of Ropes and Belts.—Frictional resistances are also
Produced by the changes of form and dimension of the parts of a
machine occasioned either by the stresses necessarily accompanying
transmission of energy or by shocks. In the present chapter we
consider tension elements only, that is to say, chiefly ropes and belts.

In Fig. 109 4B is a pulley, the centre of which is 0, over which a
Tope passes embracing the arc 4KB and acted on by forces
I\T, at its ends. If there be sufficient difference between 75
3-1}(1 T, the rope will slip over the pulley notwithstanding the
fnf:tion which tends to prevent it. Let the rope be just on the
bomt of slipping, then its tension will gradually diminish from
Ty at 4 to T, at B. Let T, T" be the tensions at the inter-
mediate points K, Z, then the portion KL of the rope is kept
M equilibrium by the forces 7}, 7" at its ends, and a third force S due
to the reaction of the pulley, the three forces meeting in a point £.
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On OL set off to 0] to represent 7, and draw /% perpendicular to &
to meet OK in Z, then the sides and the triangle Okl will be propor-
tioned by the three forces, so that O represents 7" and a% S. The
angle S makes with the radius
will be the same for all ares
of the same length, and if KL
be taken small enough will be
the angle of friction (Art. 113).
This construction can, if we
please, be commenced at 4 and
repeated for a number of small
portions of the rope till we
arrive at B; we shall obtain
_ a spiral curve allb, the last
L radius Ob of which represents
T, on the same scale as the
first Oa vepresents T It is
convenient however to have an algebraical formula to calculate 7.
Let the angle KOL be i and the angle S makes with the radius ¢,
then

Fig.109.

v \
T T

T 0l _sin Okl _cos (i+ ) o
I = = oS  tan ¢.
7" Ok sin Olk cos ¢ LA L
If now the angle ¢ be diminished indefinitely we may write cos i=1
and sin i =4, so that

FoT

S =i.tan ¢.
Replacing i by A6, T'— 1" by AT, and proceeding to the limit
1 dd
76 tan ¢=1,
which being integrated gives
Iy ‘l fe

where f is the co-efficient of friction, ¢ the angle subtended by the
part of the pulley embraced by the rope, and e the number 27288
being the base of the Napierian system of logarithms. The formula
is applicable even if the pulley be not circular. For a circular pulley
the spiral curve, representing graphically the tension at every point, is
the equiangular or logarithmic spiral of which the formula may be
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regarded as the equation. In constructing it graphically, the value
of ¢, for a small yet finite angle i, is found by replacing 7/T" by efi
and expanding the exponential : we thus get approximately

1+ fi=cosi+sini.tan ¢ =1 — £é* + 4. tan ¢,

s tang = f + &

With small values of the co-efficient 2f may be a sufficiently small
angular interval, but in general it will be advisable to take the
angular interval equal to the angle of friction, then the value of ¢ is
1} times that angle. The construction being one in which errors
accumulate, the formula is preferable when great accuracy is desired.

124. Driving Belts.—When a belt is stretched over a pulley by equal
weights, the tension of the belt is not necessarily the same everywhere
in the first instance; hut if the pul-
ley move steadily and the stiffness
of the belt be disregarded, it must
be so. Assuming this, let one of the
weights be increased by a certain
quantity ¢ and the pulley be held
fast, then the tension of that side
of the belt will be increased by an
amount equal to ¢ at 4, but di-
minishing to zero at L, a point ¢
determined by the intersection of I
the friction spiral «, I, (Fig. 110) b
with the circle alb, the radius of IJ_-’
which represents the weight 77, * L]
Similarly, if the other weight be diminished by (, the tension will be
diminished by an amount equal to ¢ at B, but diminishing to zero
at L, The portion L,L, will remain at the original tension /. If
@' be increased sufficiently, L,, L, will coincide in one point L, the
Position of which will depend on the proportion between  and €.
While these changes take place in tension, corresponding changes of
l‘ength must occur in the parts of the belt exposed to them, AL
ncreases and BL, diminishes in length. Hence both these parts slip
over the pulley and work is lost by friction, while L,L, remains
fixed. If now, instead of altering the weights /7, we imagine these
weights held fast and the pulley forcibly rotated so as to increase
A’s tension by @, and diminish B's tension by @, L, L, will rotate

L Fig.110.
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with the pulley, and the total increase of length of the one side
must be equal to the total diminution on the other, from which con-
sideration it is possible to calculate the ratio ¢ bears to . In
practical cases, however, the difference between () and @' is so small
that it may be neglected without sensible error, and therefore, in all
questions relating to the working of belts, it may be assumed that
the mean tension of the two sides of the belt is independent of
the power which is being transmitted. The difference of tensions,
however, is directly proportional to the power, and may at ouce
be calculated if the speed be known, while the ratio of tensions
may be determined, so that the belt shall just not slip, by means
of the formula above obtained. The value of the co-efficient of
friction of leather on iron ranges from -15 to *46 according to the
degree of lubrication: under ordinary circumstances -25 may be
considered an average value. This, however, is often greatly ex-
ceeded in practice, and one reason why large values are admissible
is said by some to be the effect of atmospheric pressure. The
sectional area of belts is fixed by considerations of strength, and
as their thickness varies little, this is equivalent to saying that a
certain breadth of belt is required for each horse-power transmitted.
(See Ex. 10, page 272).

125. Slip of Belts—When a belt is stretched over a pair of
pulleys, one of which drives the other, notwithstanding a resistance
not so great as to cause slipping of the belt as a whole, it appears
from what has been said that a certain arc exists on each pulley on
which the belt does not slip. The length of these arcs has already
been found, but in the present cases the movement of the pulleys
causes them to place themselves where the belt winds on to the
pulleys, so that the driving pulley has the speed of the tight side of
the belt and the driven pulley that of the slack side. The two sides
have different speeds, because the same weight of belt must pass a
given point in a unit of time, wherever that point be situated,
and therefore the speed must be greater the greater the elongation,
that is to say the greater the tension. Hence the driving pulley
moves quicker than the driven pulley by an amount which can be
calculated when the tensions and the elasticity of the leather are
known, and this  slip ” measures the loss of work due to the creeping
of the belt over the pulleys described above. In ordinary belting



CH. X. ART. 126.] FRICTIONAL RESISTANCES. 265

this loss is small, not exceeding 2 per cent. The length of belts,
however, must not be too great, or its extensibility will be incon-
venient, especially if the motion of the machine be not sufficiently
uniform.*  Within moderate limits extensibility is favourable to
smooth working.

128. Stiffness of Ropes—When a rope is bent it is found that a
certain moment is required to do it depending on the dimensions
of the rope and, besides, on its tension. The reason of this is best
understood by referring to the corresponding case in a chain with
flat links united by pin joints. If d be the diameter of the pin, 7' the
tension of the chain, there will be a certain moment of friction re-
sisting bending which, if the pin be an easy fit, will be simply & /714,
but if it be tight will be '

M = 3fld + 3fT4,
where 7, is a constant depending on the tightness. If the chain
pass over a rotating pulley without slipping, this frictional moment
has to be overcome both when bending on and when bending off
the pulley. The effect shows itself by a shift outwards on the
advancing and inwards on the retiring side of the chain, so as to
increase the leverage of the resistance and diminish that of the effort.
In the present case the two shifts are equal, being each given by the
formula

o o Ty |

T = 2frl{1 +
The case of a rope differs from this only in being more complex : in
the act of bending, the fibres move over each other, and the relative
motion is resisted by friction due to pressures which are partly con-
stant and partly proportional to the tension. The shift of the centre
line of the rope is visible on the side of the resistance, but hardly
perceptible on the side of the hauling force, showing that most of
the loss of work is due to the bending on the pulley. The magnitude
of the shift varies so much according to the mode of manufacture and
the condition of the rope that it is useless to attempt more than
a very rough estimate. According to a formula given by Eytelwein,
if d be the diameter of the rope,

Ti=ited

*Bee a footnote by M. Krets, Cours de Mécanique Appliquée ave Machines par
Poncelet, page 264, :
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where ¢ is a constant, which for dimensions in inches is taken as '47
for hemp ropes; but this value is too large, except for light loads,
and small diameters of pulley. The loss of work per revolution is
T. 27z, and if D be the effective diameter of the pulley,

Efficiency =

D
D+ 2%
There is a loss of work by the stiffiness of belts of a similar kind, but
of uncertain amount. By most authorities it is considered so small
as to be negligible.

The shift of the line of action of the tension of a rope due to its
stiffness has the effect of diminishing its strength.

127. Friction of Toothed Wheels and Cems.—The friction of toothed
wheels is partly rolling and partly sliding, but the first is relatively
small and may be neglected. To determine the sliding friction, let
PT = z (see Fig. 71, page 161), then (page 166) the velocity of
rubbing is given by the formula

v=(d + Az
which may be written, if 7" be the speed of periphery of the pitch
circles, 2, I’ the radii,

If, therefore, the wheels be supposed to turn through a small space
6z measured on the piteh circles, the pair of teeth will slide on one
another through the small space 3y, given by the formula

1 1
= = F — Juim
% R ) R') 2

This enables us to find the work done in overcoming friction, for
if P be the pressure between the pairs of teeth,

Work done = ]‘:[.de e (]11_ - Il.?)j'chl.v.

The pressure between the teeth will vary as the wheels turn ac-
cording to some unknown law, depending on the way the teeth
wear, but the variation is probably not great. Assuming it constant,
and further, supposing that the chord PI' (Fig. 71) is equal to the
arc PT, and therefore to » the arc turned through by the wheels
after the teeth pass the line of centres,

Work done = f. P. (11, + Jl?)gn
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The same formula applies before the line of centres, and if we as-
sume the arcs of approach and recess each equal to the pitch p, we
shall have for the whole work lost by the friction of a pair of teeth,

Whole Work lost = fP(jll) +Jl£;)p"’.
The energy transmitted during the action of a pair of teeth is 22p,
therefore the counter efficiency is ‘

lte=1+flg+)l=1+fr(l+2)

where n, n' are the numbers of teeth in the wheels. A smaller arc
of action is sometimes employed in practice, and the friction will
then be less. This is also the case in bevel gear. The formula shows
that the friction is diminished by increasing the number of teeth.

A more exact solution of this question * can be obtained on the
assumption that P varies as it would do if there were only one pair
of teeth ; but as this is uncertain it is not practically useful.

In all cam and wheel mechanisms the efficiency for a small move-
ment in any position can be determined exactly by a graphical or
other process. For the velocity ratio can be found, as shown in
Part II., and the forceratio is determinate by the principles of
statics, therefore the quotient which gives the efficiency can also be
found. In the case of toothed wheels this method shows at once t
that the friction of the teeth before the line of centres is greater than
the friction after the line of centres. The difference appears
insufficient to account for the injurious effects generally ascribed to
friction before the line of centres, which however may be due to
other causes. In cam mechanisms the efficiency in one position is
little guide to the efficiency in a complete period, which can only
be found by a process too intricate to be useful, or by making
some supposition as the mean value of the pressure between the
rubbing surfaces.

The counter efficiency of a train of 7 equal pairs of wheels is

1 es=1 +'.'nf-:.—(;l_b i i')

Assume now that a given velocity-ratio is to be provided by the
train, and that the number of teeth in one wheel is given, then it is

* See Moseley's Mechanical Principles of Engineering.
+ Ibid., page 286,
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possible to find the value of m that the friction may be least. The
solution of this problem is the same as that of finding the least
possible number of teeth, and it was shown by Young that, for
this, we ought to take m, so that the velocity-ratio for each pair
of wheels is, as nearly as possible, 359. For example, if the
train is to give a total velocity-ratio of 46, there should be
three pair of wheels. The gain over a single pair in this case is
one third, but will be much greater for higher velocity-ratios. The
solution (first given by Mr. Gilbert) takes no account of axle friction,
a circumstance which would greatly modify the result.

SEcTION TTT.—FRICTIONAL RESISTANCES IN GENERAL.

128. Efficiency of Mechanism in general.—It appears from what has
been said that an exact calculation of the frictional resistances is
impracticable, partly because the process is too complex to be useful,
but chiefly because the co-efficients to be employed are variable
according to circumstances, and within limits, which are not precisely
known. Hence when possible the efficiency of a machine is es-
timated, not by considering each particular element, but by direct
experiment on the machine as a whole, and we conclude this chapter
with some general principles which bear on this question.

The effort employed to drive a machine may be greater or less,
according to the resistance which is being overcome, and there-
fore the stress between each element will also vary according to this
effort. As, however, these stresses depend also on other forces, such
as weight and elasticity, which have no connection with the effort,
but are always the same, they will not increase so fast, and the
frictional resistances will accordingly be proportionally less the
greater the effort. Some resistances are absolutely constant, for
example, the friction of bearings, the load on which ig simply the
weight of a fly-wheel or other moving part: or the friction of a piston
rod in its stuffing box. Others are sensibly proportional to the
driving effort or the useful resistance, in which case, when the
ordinary laws of friction apply, the loss of work increases in direct
proportion to these quantities. The greater number depend on hoth
variable and constant forces, but these may be in great measure
separated into two parts, one of which is approximately constant
and the other approximately proportional either to the driving effort
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or to the useful resistance. Hence, if I7 be the useful work done and
E the energy exerted in a period of the machine,
E=U+kU+¥.E + B,

where £, &' are numerical co-efficients and B the work done in over-
coming the constant resistances. In hydraulic and other machines,
where fluid resistances occur, terms depending on the speed of the
machine must be added, indeed this is so in all machines when -
driven at a high speed ; because forces due to inertia increase the
friction, and besides shocks and the resistance of the atmosphere
have to be considered. Such cases, however, are not considered
here.

If we transfer the term ' Z to the other side of the equation and
divide by 1 - %, we get

E=(1+e)U+ E,,

where ¢, I, ave two new constants derived from the former ones, of
which % is the work done in driving the machine when unloaded,
and 1 + ¢ the counter-efficiency when the load is very great.

The same formula may also be written in a way which is some-
times more convenient. Let P be the mean value of the driving
effort and 2 that of the useful resistance during a complete period,
» the mean value of the velocity-ratio of the working and driving
pairs, then

P=(1+e)Br+ Py,
where P, is now the effort required to drive the machine when
unloaded. In hoisting machines £ is the weight lifted and P the
hauling force usually called the power, £/ is the mechanical advan-
tage or purchase.

In the steam engine, if p,, be the actual mean effectlve pressure,
P, the part of that pressure employed in overcoming the useful
resistance, p, the pressure necessary to drive the engine when
unloaded,

Pa=C(1+e) p' + P,
The value of ¢ may be taken as ‘15 or in large engines somewhat
less. The constant p,, often called the “friction pressure,” is from 1
to 1% Ibs. or in marine engines 2 Ibs. or more per square inch. At
high speeds and pressures the ordinary laws of friction fail and e is
diminished, the constant friction is then relatively of more im-
portance,
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If the direction of motion of the machine be reversed so that the
original resistance becomes the driving effort and the effort the
resistance, the same general formula is approximately true, but the
constants %, & are interchanged. Unless under special conditions
the efficiency is not the same in the two cases, and in fact is
generally very different. Let us suppose that in a machine working
against a known reversible resistance, the driving effort is gradually
diminished until the machine reverses, and let Z’ be the work done
when reversing, we have the equations

E=U+kU+¥E+ B,
U=F +E +kU+ B,
from which by subtraction and dividing by U we find
I e )
U R T
a formula which gives the efficiency when reversing. If the original
efficiency be less than } (1—1'), the machine will not reverse even
when the driving force is entirely removed. In most forms of
hoisting machines %' is small enough to be neglected, and we have the
important principle that a machine will not reverse if its efficiency is
less than -5. It will not reverse under any circumstances if & > 1.
As previously explained in the case of a screw, non-reversibility
is a property so valuable in practical applications as to he worth
obtaining at the sacrifice of efficiency. The differential pulley
block is a common example. ?

129. Friction Brakes.—Frictional resistances are not only a source
of loss, they are also usefully employed in machines for various pur-
poses. In screws and driving belts we have already found them
employed for the purpose of locking a pair or closing a kinematic
chain, and many instances of the same kind might be referred to.
Another application of equal importance is for the purpose of absorb-
ing surplus energy, which might otherwise produce dangerous effects,
or which requires to be disposed of in order to stop a machine. An
apparatus for this purpose is called a ¢ brake.”

The most powerful brakes are those in which fluid resistances are
used, but when the amount of energy is small as compared with the
surfaces available, the friction of solids may be employed. The
energy thus absorbed is converted into heat, and is dissipated by
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radiation and conduction. Sufficient surface must be provided to
prevent the temperature rising too high.

A brakeis generally applied to a rotating wheel or drum, and consists
either of a solid block of wood or metal pressed against the wheel by
some suitable mechanism; or else of a strap of metal, often lined with
small blocks of wood, embracing the drum and tightened by a lever
or otherwise. Three common forms are shown in Plate VIL ; two
of these (Figs. 1 and 2) are used as dynamometers, and will be
referred to as such in the next chapter.

EXAMPLES.

1. A weight is moved up a plane inclined at 1 vertical to n horizontal by an effort
parallel to the plane; show that the counter-efficiency is 1+ nf, where f is the co-efficient
of friction. Find the value of n for a mechanical advantage of 10:1 and a co-effici-
ent 05, Ans, n=20.

2, Show that the pressure on the guide bars of a dircct-acting engine is approxi-

mately proportional to the ordinates of an ellipse, and deduce the work lost per stroke,
Referring to Fig. 91 let X be that pressure, then

X=8.sin¢p=P.tancp= ‘L_; sin 0 approximately.

If the radius of the crank circle represent P, and an ellipse be drawn with the same
major axis, and minor axis = P[n, X will be the ordinate of the ellipse at a point repre-
senting position of piston.

Loss of work per stroke = fx Area of semi-ellipse
2 sP
b7,
where s is the stroke and fthe co-efficient of friction.

3. A bearing 16" diameter is acted on by a horizontal force of 50 tons and a vertical
force of 10 tons, Find the work lost by friction per revolution, using a co-efficient of
one-eighteenth. Find also the horse power lost by friction at 70 revolutions per minute,
Ans. Loss of work =11'87 foot-tons. H.P. =564,

4. The thrust of a serew propeller is 20 tons, the pitch 20 feet. The thrust block
ig 18” diameter at the centre of the rings. Find the efficiency with a co-efficient of
friction of ‘06, .4ns. Efficiency = *986.

5. Find the efficiency of a common serew and nut with pitch angle 45° and co-
efficient 16, Ans. Efficiency = 72,

6. A serew bolt is 3 diameter outside and ‘393" at the base of the thread. The
effective diameter of the nut is §, and the co-efficient of friction 16 ; supposing it
screwed up by a spanner two feet long, find the mechuanical advantage.

Tension of bolt =234 x pull on spanner.

7. Find the efficiency of a pair of wheels, the numbers of teeth being 10 and 75,
and the co-efficient of friction *15. Ans. '954,
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8. The stroke of a direct-acting engine is 4 feet, piston load 50 tons, load on
crank-shaft bearings 10 tons, connecting rod 4 cranks : trace the curve of crank effort
when friction is taken into account, assuming all bearings 16" diameter and co-
efficient one eighteenth. Find the ““ dead angle.”

9, In the last question, if the engine drive the screw propeller of question 4, find the
efficiency of the mechanism, including thrust block, by the approximate method.
The connecting rod may be supposed indefinitely long except for the purpose of
estimating the efficiency of the guide bars.

Efficiency = 989 x (*97)* x "986 = *02.

10. A rope is wound thrice round a post, and one end is held tight by a force not
exceeding 10 Ibs, What pull at the other end would be necessary to make the rope
slip, the co-efficient of friction being supposed *3662 Ans. 1,000 lbs.

11. Find the necessary width of belt three sixteenths inch thick to transmit 1 h.p.,
the belt embracing 40 per cent. of the circumference of the smaller pulley and running
at 300 feet per 1. Co-efficient = '25. Ans. Breadth = 43",

12. In question 10 construct the friction spiral showing the tension of the rope at every
point.

13. The axles of a tramway car are 24" diameter, and the wheels 2’ 6”: find, the
resistance being given, that the co-efficient of axle friction is *08 and that for rolling
‘09, Ans. Resistance = 28} lbs. per ton.

14, Find the efficiency of a pulley 6” diameter, over which a rope }” diameter
passes, the axis of the pulley being 4" diameter, and the load on it twice the tension
of the rope. Co-efficient of axle friction ‘08, Co-efficient for stiffness of rope '47.
Ans. Efficiency = 94 per cent.

15, From the result of the preceding question deduce the efficiency of a pair of
three-sheaved blocks. .4ns. Efficiency = 71 per cent.

16. A wheel weighing 20 1bs., radius of gyration 1, is revolving at 1 revolution
per second on axles 1" diameter. It is observed to make 40 revolutions before
stopping : find the co-efficient of axle friction. Ans. Co-efficient = "059.

17. In a pair of three-sheaved blocks it is found by experiment that a weight of 40
1bs. can be raised by a force of 10 lbs., and a weight of 200 Ibs. by a force of 40 1bs,
Find the genera.l relatmn between P a.nd W, and the efficiency when raising 100 1bs.

%W + §. Efficiency = ‘784 when raising 100 1bs. e¢=1.

18. Find the dwtn.uce to which power can be transmitted by shafting of uniform
diameter, with a loss by friction due to its weight of # per cent, assuming that the
angle of torsion is immaterial, and co-efficient for strength 9,000 1bs. per square inch.

If f be co-efficient of friction, then the length of shafting is 13} . ?

REFERENCES.

On the graphical determination of the efficiency of mechanism the reader is referred
to two papers by Prof. F. Jenkin in the Z'ransactions of the Royal Society of
Edinburgh. On the stiffness of ropes, see Weishach, Zngenicur-Mechanik, vol. 1., 3rd
German edition, p. 300



CHAPTER XI.

INCOMPLETE CONSTRAINT. STRAINING ACTIONS
ON MACHINES.

130. Preliminary Remarks.—In the motion of a machine the re-
lative movements of the several parts are completely defined by the
nature of the machine, and the principal action consists in a trans-
mission and conversion of energy. Hence it is that the principle of
work is of such importance in all mechanical operations that it is
desirable to consider it as an independent fundamental law verified
by daily experience. Even in applied mechanics, however, we have
sometimes to do with sets of bodies, the relative movements of which
are not completely defined by the constraint to which they are
subject, but partly depend on given mutual actions between them.
When this is the case, the principle of work, though still of great
Importance, is not by itself sufficient to determine the motions.

Again, if we wish to study the forces which arise when the diree-
tion of a body’s motion is changed, the principle of work does not
help us, for no work is done by such forces. For example, the
Position of the arms of a governor, revolving at a given speed, cannot
be found, except, perhaps, indirectly, by the methods hitherto em-
Ployed. We then resort to the ordinary laws connecting matter
and motion, which form the base of the science of mechanics, and of
which the principle of work itself is often considered as a consequence.

The present chapter will be devoted in the first place to a brief
Summary of elementary dynamical principles, and afterwards to
various questions relating to machines and the forces to which they

are subject.
S
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SrorioN I—ELEMENTARY PRINCIPLES OF DYNAMICS.*

131. Impulse and Momentum.—The effect of an unbalanced force
P, acting during a certain time , on a piece of matter, is to generate
a velocity », which is proportional to P and / directly and the
quantity of matter inversely. ~When the force P is equal to the
weight 77, as in the case of a body falling freely, the velocity gen-
erated in 17 is known to be g, where ¢ is a number which varies
slightly for different positions on the earth’s surface (Art. 99), but
is precisely the same for all sorts of matter. We may express this

by the equation
= E’L’.
Ay

In this formula we may take /7 to mean the weight of the piece of
matter as compared with that of a unit piece at a given point on the
earth’s surface. As formerly stated (Art. 88) this is called “ gravi-
tation measure,” and has the defect of giving a varying unit of force,
so that considerations of convenience alone induce us to employ it.
If, instead of measuring 7/ in units of weight, we compare it with the
force P, which produces unit velocity in unit time, we have

we="Fq :
that is, the weight of the unit piece of matter is g units of force.
Such units depend on nothing but the size of the unit piece of
matter, and are hence called “absolute ” units. For scientific pur-
poses, and especially in electrical measurements, they are much
employed.

Quantity ot matter is called MAss, and, when absolute measure is
used, is simply measured by comparing it with that of a standard
piece, for example, in Britain, with a certain piece of platinum
called a pound. The unit of force is then that which is necessary
to produce a velocity of 1 foot per 1”in this piece, a quantity for
which the name “Poundal” was suggested by the late Professor
Clerk Maxwell ; the weight of a piece is then g poundals, so that
what is called a pound-weight in the common gravitation measure is
about 322 of these units. When absolute measure is used, how-
ever, the Continental system of units depending on the métre and

gramme is likely to be universally employed. No more need be

* The brief statement here made of principles assumed in subsequent articles of this
treatise is not intended as a substitute for a treatise on elementary dynamics,
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said on this point, as gravitation measure is exclusively used in this
treatise.

When gravitation measure is used the unit of mass employed is that
piece of matter in which a pound weight generates a’velocity of 1
foot per second, that is the above mentioned piece of platinum
divided by the numerical value of g, so that the unit of mass as well
as the unit of force varies according to the place. If m be the mass,
W the weight,

W = myg,
where ¢ is taken equal to 32-2.
This explanation being premised we have
Pt = mw.
The products Pt, mv are called IMPULSE and MOMENTUM respec-
tively, and the equation may be written
Impulse exerted = Momentum generated.

A unit of impulse is unit force exerted for unit time, usually 1 1b.
for 1, a quantity for which the expression “second-pound ” may
conveniently be used. If P be variable, then impulse is calculated
in the same way as the energy exerted by a variable force (Art. 90),
the absciss®e of the diagram now representing time instead of space.

The body we are considering may have a velocity at the commence-
ment of the time #, and the force may be partially balanced ; if 50, ¥
Tust be understood to be the change of velocity, and P the un-
balanced part of the force.

132. Centrifugal Force.—So far the equation of momentum is
analogous to the equation of work, impulse representing the time-
effect of force as energy represents its space-effect. There are,
however, two important differences.

Change of kinetic energy arises from a change in the magni-
tude of the velocity irrespectively of direction, whereas change of
momentum must be estimated in the direction of the force pro-
fiUCillg it, and includes change of direction. Hence the equation
1s applicable when the direction of the force is perpendicular to the
dl:rection of motion, so that the only effect produced is change of
direction. The rate of change of velocity, taken in the most general
Sense, is called Acceleration, and the equation of momentum may

also he written
Bi=mf,
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where f is the acceleration estimated in the direction of the force.
By taking the force perpendicular to the direction of motion we get
the equation which connects the curvature of the path of a moving
body with the force R, which compels it to deviate from the
straight line, namely,
o2 mﬁ,
7

where v is the velocity and » the radius of the circle in which it is
moving at the instant considered. Like other forces this arises
from the mutual action between two bodies: one of these is the
moving body ; the other, the fixed body which furnishes the necessary
constraint. If we are thinking of the fixed body instead of the
moving body, we call the force 2 the Centrifugal Force, heing the
equal and opposite force with which the moving body acts on the
body which constrains it. The two forces together constitute what
we have already called a Stress (Art. 1). To determine a stress of
this kind it is necessary to refer the direction of motion to some
body which we know may be regarded as fixed, and we are not at
liberty to choose any body we please for this purpose, as in kine-
matical questions. What constitutes a fixed body is a question of
abstract dynamics, into which we need not enter. For practical
purposes the Earth is taken as fixed.

If a body rotate about a fixed axis the centrifugal forces, arising
from the motion of each particle, will not balance one another unless
the axis be one of three lines, passing through the centre of gravity,
which are called the ¢ principal axes of inertia ” at that point. In
most cases occurring in practical applications the position of these
lines can be at once foreseen as being axes of symmetry. This is
the case, for example, in homogeneous ellipsoids and parallelopipeds.
In the common case of a homogeneous solid of revolution, the axis of
revolution, and any line at right angles to it through the centre of
gravity, are principal axes. If the axis of rotation be parallel to
one of these axes, but do not pass through the centre of gravity, the
centrifugal forces reduce to a single force, which is the same as if the
whole mass were concentrated at the centre of gravity. In all other
cases there is a couple depending on the direction of the axis of
rotation, as well as the force just mentioned. (Ex. 16, p. 297.)

133. Principle of Momentum.—-Again, every force arises from the
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mutual action between two bodies, consisting in an action on one
accompanied by an equal and opposite reaction on the other. Hence,
if we understand by the total momentum of two bodies in any
direction, the sum or the difference of the momenta of each, according
as the bodies move in the same or in the opposite direction, it
appears that the total momentum will not be affected by the mutual
action between the two. And more generally, if there be any number -
of bodies we shall have

Total impulse exerted = Change of total momentum,
where, in reckoning the impulse, we are to take into account ex-
ternal forces alone, and not the internal forces arising from the
mutual action of the parts of the set of bodies we are considering.
This equation expresses one form of what we may call the Principle
of Momentum ; other forms will be explained hereafter in connection
with questions relating to fluid motion (Part V..

The total momentum of a number of bodies may be reckoned by
direct summation, with due regard to sign, but it may also be expressed
in terms of the velocity of the centre of gravity ; for, let m be the
mass of any particle of the system, the ordinate of which, reckoned
from a given origin parallel to a given line, is 2 ; also, let Zma de-
hote the sum of all the separate products ma, for all the particles
of the system, and let I bhe the total mass, then we know that
the ordinate of the centre of gravity * is given by the formula

T=gr

Let “the velocity of a particle parallel to the given line be u, then
If @, 2, be the ordinates at the beginning and end of 1” we shall
have

U = X3 — .
Hence, if 4 be the velocity of the centre of gravity parallel to the
Same line,
— —- - Zm(zy-z) _Zmu
U=0y =Ty = e 7 R T
which equation may be written
M = Zma,
showing that the total momentum of the system is the same as if its
total mass were concentrated in its centre of eravity. We conclude
from this that the motion of the centre of gravity can only he

* Called more correctly by modern writers on mechanics the *‘ centre of mass.”
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influenced by external forces and not by any action between the parts
of the system.

134. Internal and External Kinetic Enerqy.—If we multiply the
equation just obtained by 27 and remember that % being constant
may be placed within the sign of summation, we obtain

IME =Zm . 2u,

which, adding Zmu? to each side and re-arranging the terms, may be
written

M + Zm (7 — ) = Zmar’,
This is true in whatever direction the velocities are estimated, and we
can therefore write down two similar equations for the velocities in
two directions at right angles to the first. Now the resultant of three
velocities at right angles is the square root of the sum of the squares of
the components, also % — » is the velocity parallel to z relatively to the
centre of gravity ; hence if I/ be the resultant velocity of the centre
of gravity, v, » the velocities of any particle relatively to the body
regarded as fixed and relatively to the centre of gravity respectively,
we have, adding the three equations together, and dividing by 2,

IMU? + 2me? = Sk,
The first term on the left-hand side of this equation is what the
energy would be, if the whole mass were concentrated at its centre of
gravity, a quantity which may be described as the External Energy,
or otherwise as the Energy of Translation of the system. The
second term is the emergy relatively to the centre of gravity con-
sidered as fixed, which may be called the Internal Energy. The right-
hand side is the total energy of motion, and we see therefore that
this is the sum of the internal and external energies. In the case
of a single rigid body the motion relatively to the centre of gravity
is always a rotation about some axis, and therefore

Energy of Motion = Energy of Translation + Energy of Rotation,

a principle already employed in a preceding chapter (p. 214).

In the case of a set of rigid bodies the internal energy s the sum

of the energies of rotation of each together with the internal energy

of a set of particles of the same mass occupying the centres of
gravity of the bodies and moving in the same way.

135. Examples of Incomplete Constraint.—In the cases which
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oceur in applications to machines and structures we usually have to
consider two bodies moving in straight lines without rotation.

CASE L Recoil of o Gun.—When a cannon is fired the shot is
projected and the cannon recoils with velocities dependent on the
relative weights of the shot, the cannon, and the charge of powder.

Here, the motion is due to the pressure of the gases generated by
the combustion of the powder one way on the shot, the other way on’
the cannon. If the inertia of these gases could be neglected these
pressures would be exactly equal at each instant and would cease as
soon as the shot left the bore. The impulse exerted on shot and
cannon would then be equal. In fact, the inertia of the powder gases
causes the pressure to be greater and to last longer on the cannon
than on the shot, so that the impulses on the two are not nearly
equal. For the present we shall neglect this, and shall further
suppose that the material of both shot and gun is sensibly rigid.

In general, recoil is checked by an apparatus called a « compressor,”
which supplies a gradually increasing resistance to the backward
movement of the gun, while friction and the resistance to rotation of
the shot resist the forward movement of the shot. In the first
Instance suppose there are no such resistances, let ¥ be the velocity
of recoil and M the mass of the gun, v the velocity and m the mass
of the shot ; then, since the impulse exerted is the same for hoth,

MV = mw.

Further, if the weight of the charge and the amount of work 1 b,
of it is capable of doing be known, the explosion will develop a
definite amount of energy (#) which will be all spent in giving
motion to the shot and the eannon.

Energy of Explosion = 1M V* + Ja?.
Here Z is the sum of two parts—

M

E hot = E
nergy of Shot Vo

Energy of Recoil = M?Z mE.

The energy of recoil has to be absorbed by the compressor, usually an
hydraulic brake, which will be considered hereafter (see Part V.).

CASE 11, Collision of Vessels.—When two vessels come into collision
an amount of damage is done depending on the size and velocities
of the vessels.
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Here we may suppose the vessels moving in given directions with
given velocities ; let the velocities parallel to a given line be wu, uy,
and the masses m,, m,, then, as in Art. 133, the velocity of the centre
of gravity parallel to the same line is
el i s

My + My
and therefore the velocities of the vessels relatively to their common
centre of gravity must be ~

o gy — ) | “

T 11 (1 — Uy)

my+my '_t'::m'
Two similar equations may be written down for the velocities in a
direction at right angles to the first. Square and add corresponding
equations, multiply by 4m,, 4m.,, and add the pair of products, then
(Art. 134)

My g
1My + 1My

Internal Energy =1 .

3

where /" is the velocity of either vessel relatively to the other, a
quantity found immediately from the given velocities of the vessels
by means of a triangle of velocities.

The total kinetic energy of the vessels is found by adding the
energy of translation. As, however, this quantity cannot-be altered
by the collision, it is clear that the amount of work done must depend
on the internal energy alone: we may properly call it therefore the
“energy of collision.” If the displacements in tons of the vessels be
Wy, Ws, we shall have, in foot-tons,

bl
Energy of Collision o o ATy

It is not, however, to be supposed that the whole of this is neces-
sarily expended in damage to the vessels; if the circumstances of the
collision be such that the vessels, even though completely devoid
of elasticity, would have a motion of rotation or a velocity of separa-
tion of their centres of gravity, then the corresponding internal
energy must be deducted. Also the influence of the water surround-
ing the vessels has been left out of account ; this somewhat augments
the effect by increasing the virtual mass of the vessels.

The same formula may be used for other cases of impact, but the
effects of impact depend so much on the strength and stiffness of
the colliding bodies that the subject must be postponed (Ch. XV1.).
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SECTION II.—CENTRIFUGAL REGULATORS.

136. Preliminary Remarks.—Centrifugal forces may be employed
in machines to do the work which is the object of the machine, as in
certain drying machines where the substance to be dried is caused to
rotate with great rapidity so that the fluid is expelled at the outer
circumference : or, partially, in centrifugal pumps. More frequently
they serve to move a kinematic chain connected with a shifting
piece which regulates the speed of the machine. Such mechanisms
are called Centrifugal Regulators or, more briefly, Governors.

137. Simple Revolving Pendulum. :
—1In Fig. 112 @ is a heavy particle :
attached by a string to a fixed point

~ 0 and revolving in a horizontal circle
the centre of which is /N vertically
below 0. This will be possible if
the centrifugal force due to the
motion of the particle just balances
the horizontal component of the
tension of the string. Let S be that
tension, /7 the weight of the particle,
and let the string make an angle 6 with the vertical, then the
horizontal and vertical components of S are

X=8.sin6; W=_8.cos 0.
Let 4 be the angular velocity of the revolving particle, then it

is shown in works on elementary dynamics that the centrifugal
foree is

Wi W A2 QN.
b
Equating these values of X and eliminating S,
W tan 6 = ;—V A2, QN.
Since )N = ON . tan 6, this reduces to the simple formula
ON= 791’,

which shows that the vertical distance of ¢ below the point of
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suspension depends on the speed, not on the length of the string or
the magnitude of the weight.

This distance is called the height of the revolving pendulum, and
will be denoted by 4. If f be the period, that is the time of a com-
plete revolution, we find, since A7 = 2

?
£ & \/’f,
g

showing that the period is the same as that of a double oscillation of
a simple pendulum of length % (see Art. 103). The height of a
simple revolving pendulum may often be conveniently adopted as a
measure of a speed of revolution, and will then be spoken of as the
“height due to the revolutions.” Its value in inches for n revolu-
tions per minute is given by the formula
nh = 35,232, :
Instead of supposing the string attached to a point O in the axis
of revolution, we may suppose it attached to a point K, rigidly con-
nected by a cross-piece KF, with a revolving spindle O, The same
reasoning applies, 0 heing now an ideal point, found by prolonging
the string to meet the axis. The height of the pendulum is still ON,
and is found by the same formula.

138. Speed of a Governor to overcome given Frictional Resistances.
Loaded Governors.—In the simplest centrifugal governors two heavy
balls are attached to arms, which are jointed either directly to a
revolving spindle, or to the ends of a cross-piece attached to a
spindle. Motion is communicated by links from the arms to a
piece sliding on the spindle, the movement of which is communi-
cated by a train of linkwork, either to a throttle valve directly
controlling the supply of steam, or to an expansion valve which
regulates the cut-off. In either case an upward movement of the
arms has the effect of diminishing the mean effective pressure, and a
downward movement of increasing it. Two forms of this mechan-
ism are shown in the figures of Plate VI.: in one of these (Fig. 1) the
weight of the sliding piece is increased by a large additional weight,
the governor is then said to be loaded ; while in the other (Fig. 2)
the arms cross each other, the spindle being slotted, or the arms
bent to permit this. The object of these arrangements we shall see
presently.



Plate.VI.

FIG.I.
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If now the speed of revolution be increased or diminished, the arms
move outwards or inwards, and so adapt the mean effective pressure
to the work which is being done. If there were no frictional resis-
tances the smallest variation of speed would produce a corresponding
motion in the arms ; but, as the linkwork mechanism necessarily
offers a certain resistance, motion cannot take place until the change
of speed has reached a certain magnitude, which is smaller the more”
sensitive the governor is. These frictional resistances are measured
by a certain addition to, or subtraction from, the weight of the
sliding-piece, which might be determined experimentally, and there-
fore will be supposed a known quantity . We first investigate what
change of speed will be necessary to overcome them.

In Fig. 113 4QB is a triangle revolving about 4B, which is
vertical, a heavy particle is placed at ¢, and the
weights of the bars 4@, B are small enough to
be neglected. If the triangle revolve at a speed o
corresponding to the height 4N of a simple re-
volving pendulum 4@, there will be no stress on
B, but if it be greater or less there will be a
pull or thrust, the magnitude of which is de-
termined thus:—

Set up NO equal to the height due to the B
revolutions, and join 0. Then it appears from
what was said in the last article that if NO
be taken to represent the weight 77 of the particle, N@ will
represent X the centrifugal force, and therefore the resultant
force on B must be represented by 0. Through O draw 04
parallel to B@, then Q0Z is a triangle of forces for the joint @ of the
triangular frame 4B, so that ()7, 0Z must represent the stresses
on A, B respectively. For our purposes we require the vertical
component of the stress on the link B, which is obtained by
drawing ZL horizontal: 0L must be the force in question which we
call 7. In the figure 7' is an upward force, O being below 4, and
the speed of revolution therefore great. In this construction the
links need not be actually jointed to the spindle 4B ; they may, as
in the simple pendulum, be attached to the extremities of cross-
pieces fixed to 4B. 4 and B are then ideal points of intersection
of the links with the axis of rotation,

In general 4Q and BQ are equal ; we may then obtain a simple

Fig.113.

T
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formula for 7. Let NO = I, a quantity given by the same formula
as before for a given speed, and let 4N, the actual height of the
governor, be denoted by I, then 04 = H — h; but in the case
supposed, 04 = 20L, therefore

om _ - H—=h . _ e

T= . N = h = H'WT?T'
formulze which give the pull for any speed, and conversely the speed
for which the pull will have a given value. In practical applications
there are always two balls, so that if /#” be the weight of one, 2T
will be the pull due to both.

We can now find within what limits of speed the mechanism can
be in equilibrium. Let w be the weight of the sliding-piece B,
inclusive of any load which may be added to it, 7 the height due
to the speed at which there is no tendency to move the arms, A, &,
the heights due to the speeds at which they are on the point of
moving upwards or downwards respectively, then

W i sooel WG weat W
WiwaTls ol enie o e T
In general # will be small compared with #~ + w, and then we have

very approximately,

By = H

Vi
W+

These results show that loading a governor gives it a power of over-
coming frictional resistances, which would otherwise require a
weight of ball equal to the sum of the load and the actual weight.
Light balls may therefore be used as in the figure (Plate V1.) without
sacrificing power, as the load may be made great without incon-
venience. The speed of a loaded governor is greater than that of
a simple governor of the same actual height, as appears from the
formula for z. It may be altered at pleasure by altering the load.
This arrangement is known as Porter’s governor, from the name of
the inventor.

hg —h=h = hy="h

139. Variation of Height of a Pendulum Governor by a Change of
Position of the Arms.—Next suppose the speed to alter so much that
the arms actually change their position, then if /7 remained the same,
the tendency to move would also be the same, and the movement

&,
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must therefore continue until the speed is brought back within the
limits for which rest is possible. In the ordinary pendulum gover-
nor, however, H alters in a way which depends on the mode of
attachment and arrangement of the
arms, as will appear from the annexed
diagram (Fig. 114) which shows three
cases.

In the centre figure the arms are
jointed to the spindle so that their !
centres of rotation are in the axis, =3’
in the two others they are jointed to -
a cross-piece KK, but differently ar-
ranged in the two cases. Inall three,
as explained in the preceding article,
the height H is measured to 4, the
real or ideal intersection of the arms
with the axis of rotation.

Suppose the arms to move from
position 1 to position 2 in the figure ;
H diminishes to H’, but the amount
of diminution is different in the three ;
cases: in the right-hand figure it is
greatest, and in the left-hand least.
Indeed in the latter case where the
arms are crossed it is possible, by
making KK long enough, to change
the diminution into an increase. (Ex.
4, p. 295.)

If then, by an increase in the speed,
the arms move into a new position, .
the speed required for equilibrium POENG
does not remain the same but in- ¥ I
creases, so that, when the adjustment ; |
has been effected between the energy ’.
and the work, the speed is increased,
instead of being the same as before. Conversely, after adjustmen
to suit a diminished speed, the speed actually attained is diminished.
Thus the effect of the variation in H is to widen the limits within
which the speed can vary.
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140. Parabolic Governors—A governor may be constructed in
which H does not vary at all.

In Fig. 115 @ is a ball resting on a curve CC attached to a vertical
spindle. The curve lies in a vertical plane,
and D is the lowest point. ~When at
gL rost the ball can only be in equilibrium
1A at D, but, if the spindle revolve, it may
: rest at another point, the position of

which depends on the speed of revolu-
ON Qe /c tion. If the eurve be a circle we have

.......... N . .

%/ only the pendulum governor in a different

) form, for, drawing the normal QA and

the perpendicular @N, 4 will he a
point to which ¢ might be attached by a string and the curve
removed. Hence, 4N must he equal to 4, the height due to the
speed of revolution. But if the curve be not a circle the same thing
must be true, only 4 is now not a fixed point; hence in every case
the sub-normal 4N of the curve at the point of equilibrium must be
equal to & In general this geometrical condition determines one,
and only one, position for a given speed; but if the curve be a
parabola with vertex at D), 4N will be constant, and therefore ¢ will
rest in any position for one particular speed, but for lower speeds
will roll down to 1), and for higher speeds will move upwards
indefinitely. We have here a governor for which, neglecting fric-
tional resistances, only one speed is possible. Such a governor is
said to be “isochronous.”

The curve arrangement is inconvenient for constructive reasons,
but if it be replaced by a linkwork mechanism the ball still moves
in a parabola. An isochronous governor is therefore often said to be
“parabolic.” The term is preferable, for no governor is actually
isochronous on account of frictional resistances. A pendulum gover-
nor is much more nearly parabolic when the arms are crossed, and
by properly taking the length of the cross-piece (Ex. 4, p. 295) it
may be made exactly parabolic for small displacements. This ar-
rangement is called Farcot's governor from the name of the inventor.

141. Stability of Governors.—1If the curve CC' be not a parabola H will
diminish or increase as the ball @ moves outwards. Take the first
case and suppose ¢ in equilibrium at a certain point when the speed
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of revolution has a given value. Let @ now be moved up or down,
then, if released, it will not remain at rest, but will return towards
its original position and oscillate about it, or in other words the
equilibrium of @ is stable. A governor possessing this property is
described as “stable,” and its stability is greater the quicker A
diminishes. Similarly when H increases for an outward movement
of the balls the governor is “unstable,” and a parabolic governor -
may properly be described as “neutral.”

A certain degree of stability is necessary for the proper working
of a governor, and the amount required is greater the greater
the frictional resistances. For assuming the revolutions at which the
machine is intended to work to be #, the balls commence to move
outward at the speed n + x, where = is a small quantity depending on
the frictional resistance. After starting, the frictional resistances are
not increased, but on the contrary will somewhat diminish ; and, in a
neutral governor, the balls therefore move outwards with increasing
speed until by alteration of the regulating valve the supply of energy
is diminished and the speed of the machine lessened. This change
however requires time, and besides the balls are in motion and have
to be stopped. The consequence is that they move outwards too far,
and the supply of energy being too small the revolutions diminish to
n — z, the speed necessary to move the balls inwards, notwithstanding
the frictional resistance. Thus the motion is unsteady, the balls
oscillating, and the speed fluctuating, between limits wider than n+ 2
without ever settling down to a permanent regime.

The oscillation of the halls may be checked by a suitable brake,
but it is preferable to employ a governor possessing a moderate
degree of stability; the tendency to move the balls then diminishes
as soon as the balls move, and they stop before moving far. The
greater the frictional resistances the greater is the change required
to enable the balls to return at once if they have moved too far for
equilibrium.  An important characteristic therefore of a good centri-
fugal governor is that the stability be capable of adjustment to suit
the frictional resistances. Certain forms of compound ZOVernors, as
for example that known as the ¢ cosine,” fulfil this condition and can,
probably, be made more perfect than the simple pendulum governor.

All such mechanisms are however imperfect in principle, for they
cannot come into operation till a certain change of speed has actually
existed for a perceptible length of time. Where the changes of



288 DYNAMICS OF MACHINES. [PART 111.

resistance are sudden and violent the best governor will scarcely
prevent violent fluctuations in speed. In screw vessels, where this
difficulty is much felt, it has been proposed to employ an auxiliary
engine rotating against a uniform resistance; any difference of speed
of which and the screw shaft immediately shifts the regulating valve.

In the “cup governor,” invented by Dr. Siemens,* a regulator and
an hydraulic brake are combined. A cup containing water rotates
within a cylindrical casing ; at low speeds the water remains within
the cup, but as soon as the speed exceeds a certain limit centrifugal
action causes it to pour over the edge of the cup into the space be-
tween the cup and the casing. A set of vanes attached to the cup
rotate between fixed vanes attached to the casing, and break up the
descending water, which re-enters the cup by an orifice in the
bottom. There is then a great resistance to the motion of the cup
which absorbs surplus energy. Some other forms of governor will be
considered hereafter.

SgortoN III.—STRAINING ACTIONS ON THE PARTS OF A MACHINE,

1492. Transmission of Stress in Machines.—We have seen (Art. 94,
p. 202) that a mechanism becomes a machine if certain links are
added capable of changing their form or size, and so producing
forces which tend to move the mechanism combined with other
forces which resist the motion. Each link so added exerts equal
and opposite forces on the elements it connects, and for the pair of
forces the general word “ Stress ” may be used, which has been al-
ready employed in Article 1 in the case of the bars of a framework
structure.

When the machine is at rest the forces, being all in pairs, halance
each other, and have no tendency to move the machine as a whole.
For example in the direct-acting vertical engine represented in Fig.
1, Plate I, p. 119, the driving link is the steam, pressing with
equal force, one way on the cylinder cover, and the other way on
the piston ; the working link is the resistance to turning of the crank
shaft, which exerts equal and opposite forces, one way on the crank,
the other way on the frame which carries the erank-shaft bearings.
The steam pressure and the working resistance may each be de-

* Phil, Trans., 1866,
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scribed as a ¢ Stress.” The forces which make up the stress are
transmitted from the piston through the connecting rod to the
crank, and, in the opposite direction, from the cylinder cover through
the frame to the crank shaft. The horizontal pressure of the cross-
head on the guide bars is in like manner balanced by the equal
horizontal thrust of the conneeting rod on the crank pin, combined
with the moment of the working resistance. :

So in every machine, when at rest, or moving slowly and steadily,
the stress is transmitted from the driving pair to the working pair,
not only through the moveable parts of the machine, but in the
opposite direction, through the framing; and this is a circumstance
which must be always borne in mind in designing the framing.
Thus, in our example, the steam cylinder and crank-shaft bearing
must be rigidly connected by a frame strong enough to withstand
the total steam pressure and, in addition, the bending due to the
lateral pressure on the guide bars.

We have here one of the simplest examples of the transmission of
stress ; whether in a machine or in a structure it always takes place
in a closed circuit.

If the driving pair and the working pair are the same, and acted
on by the same stress, the whole state of stress is the same for all
the mechanisms which are derived by inversion from the same
kinematic chain. All such mechanisms are therefore statically as
well as kinematically identical ; it is only when we consider machines
In motion, or the straining actions due to gravity, that it is necessary
to consider which link (if any) is fixed to the earth. For example,
the only difference between the direct-acting engine of Fig. 1, and the
oscillating engine of Fig. 4, Plate L, is that the working pair is B4 in
the first and BC in the second. So again, in Plate IIL, the only
difference hetween the water wheel of Fig. 2 and the horse gear of
Fig- 3 is in the nature of the driving link, which in the first case
18 gravity acting on the falling water, and in the second a living agent.

A striking example of the balance of forces in a machine occurs in
the hydraulic rivetting machines. Here the working pair is a small
hytzh‘aulic cylinder and its ram, between which the rivet is compressed.
:Plns cylinder is suspended from a crane by chains, and can be moved
nto any position, as it communicates with the accumulator (Part V.)
by a flexible pipe. Any portable machine, however, is an example

of the same kind : machines which require foundations have no com-
T
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plete frame apart from the solid ground which connects their parts
together.

143. Dynamometers.—1It is often a question of great practical im-
portance to determine by direct experiment the power which is
being expended in driving a machine. Instruments for effecting this
are called Dynamometers; they are of very various construction,
and only a few simple cases can be mentioned here. The most
common are those in which the instrument measures the driving
effort, while the speed is independently determined, and the power
thence obtained, as in Art. 97, page 207.

(1) In Fig. 4, Plate III, a common “ transmission dynamometer 2
is represented. A shaft transmitting the power is divided into
parts, and bevel wheels B, D attached to each. A lever A, turning
about an axis concentric with the shaft, has a weight suspended
from it, which is found by trial just to balance the driving couple,
transmitted through the bevel wheels C' attached to 4 and gearing
with BD. The whole forms the train described on page 152.
Here the driving couple is measured in the act of transmission, and
the revolutions of the shaft being known the power can be found.

(2) In Fig. 1, Plate VIL, a “friction dynamometer” is repre-
sented in one of the various forms in which it is applied. A is a
lever from which a weight is suspended ; B is a block fixed to A,
which rests on a revolving drum. A strap passes below the drum,
and is tightened by the nuts IV, I, till the friction just balances the
weight, which by trial is made to balance the driving couple tending
to turn the shaft. FHere the driving couple and, consequently, the
power are determined as in the preceding case, from which it only
differs in the way in which the power is employed. Instead of
being transmitted to the machine it is all absorbed by a friction
brake which replaces it for the time being. A modification is shown
in Fig. 2, in which the strap passes over a wheel and is tightened by
a suspended weight, the difference between which and the tension of
a spring balance measures the driving couple. (See Appendix.)

(3) In both the preceding cases the driving effort and the speed of
the driving pair are constant, but in the indicator universally em-
ployed to measure the power of steam and other heat engines, we
find an example in which both vary. The driving effort is now
measured for each position of the piston and a curve drawn which
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represents it ; the area of this curve will be the work done per
stroke, and divided by the length of the stroke will give the mean
driving effort. This will be further explained in Part V.

(4) Instead of measuring the effort and the speed independently, and
performing a caleulation to obtain the power, an instrument may be
constructed which performs the operation automatically. Such in-
struments are called “integrating dynamometers,” or sometimes |
“power meters.” They are a special variety of Integrating Ap-
paratus, on the construction of which the reader is referred to papers
by Mr. Boys, in the Proceedings of the Physical Society, vols. iv., v.

144. Stability of Machines. Balancing.—In a machine with recip-
rocating parts the balance of forces (Art. 142) is destroyed by their
inertia when the machine is in motion, and, in consequence, the
machine must be attached to the earth or some massive structure
by fastenings of sufficient strength. The straining actions on these
fastenings will now be briefly considered. '

Taking the case of a direct-acting horizontal steam engine, let P
be the total pressure of the steam on the cylinder cover, then the
pressure (£) transmitted to the crank pin is not equal to P, but there
is a difference (S), given by the formula (Art. 109, p. 234 ; see also
Ex. 13, p. 296)

R e it

e
This difference will be a force acting on the engine as a whole,
and straining the fastenings. The direction of this force is reversed
twice every revolution, and its maximum value is obtained by
putting @ = ¢ in the above formula. In slow-moving engines the
value of § is small, but at high piston speeds it becomes very great,
and must be carefully provided against, especially when, as in
locomotives, the engine cannot be attached to the ground.

In most cases there are two cranks at right angles, and therefore
two forces S, S’ given by the equations

S = WV"E. cos @5 S = idifs
ga ga
where @ is the angle the first crank makes with the line of centres.
These two forces are equivalent to a single force (Fig. 116),

o O

. 8in 6,

Q=29+ S’:%(sin9+cosﬁ),
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acting midway between them, and a couple

2
L=(8=-8)= l%Z—“ . ¢(cos 0 — sin 0),
where ¢ is the distance apart of the centre lines of the cylinders.
The total effect therefore is the same as that of a single alternating

Fig.116.
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force combined with an alternating couple, which tends to turn the
engine as a whole about a vertical axis. The maximum values are

717 2 g
Q=" 25 I = LU
and they are each reversed twice in every revolution.

In locomotives this action produces dangerous oscillations at high
speeds, and must therefore be counteracted by the introduction of
suitably placed balance weights, so as to
neutralize both the force and the couple.

Fig. 117 shows a projection on a ver-
tical plane of the two driving wheels
—r and their cranks. On each wheel a

halance weight is placed, occupying a
segment between two or more spokes.
The centre of gravity of each weight is

in a radiug nearly, but not exactly, op-
posite the nearer crank, the angle of in-
clination to the bisector being an angle i
somewhat less than 45° If B be the weight, » the radius of the
circle in which its centre of gravity lies,
s BV &

gt

Fig.117. fR
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is its centrifugal foree ; and by rightly taking the values of B and i
the horizontal components of these forces derived from the two
balance weights, may be made to counteract both the force and the
couple (Ex. 10, p. 296). In practice the weights are fixed approxi-
mately by a formula detived in this way, and the final adjustment is
performed by trial. The engine is suspended by chains, and its
oscillations, when perfectly adjusted, are very small even at very
high speeds. (See Appendix.)

In high-speed marine engines similar forces arise, of great magni-
tude, which must add considerably to the strain on the fastenings,
but no attempt is commonly made to balance them.

When the speed of a machine is excessive, reversal of stress
must be avoided (see Exs. 17, 18, p- 244), and the greatest care
Is necessary that the axis of rotation of each rotating piece passes
through its centre of gravity, and coincides with one of the axes of
inertia of the piece (Art. 132). The magnitude of the forces which
arise, in case of any error, may be judged of from the results of Exs. 13,
16, pp. 296, 297. The vibrations due to these forces will, however,
in some cases he greatest at some particular speed—depending on the
Natural period of vibration of the frame of the machine—which could
only be determined by trial. (Ch. XVL)

In similar machines the forces due to inertia will be in a fixed
broportion to the weight of the pieces, when the revolutions vary
inversely as the square root, of the linear dimensions of the machine.

145. Straining Actions on the Parts of & Machine due to their Inertia.
—Another important effect of the inertia of a piece is to produce
straining actions upon it. An important example is that of a ring
rotating about its centre : the centrifugal force produces a tension on
the ring which may be thus determined.

Suppose Fig. 121, p. 305, to represent the ring. Let the velocity
of periphery be 7, the weight 77, and the radius 7, then the centri-
fugal force on the small portion BB’ of length z is

§anpr b,
2mr  gr

Resolve this in a given direction and sum the resolved parts, as in
the article to which this figure refers, then the total is
Eishe o

2 g mr g
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The stress to which this gives rise is evidently
oo il S
dmrd’ g g
where A is the sectional area of the ring and  is the weight of unit
volume. The result here obtained is of great importance ; it shows
that the ¢ centrifugal tension” of a revolving ring is independent of
the radius for a given speed of periphery. Hence the result also
applies to every point of a flexible element, such as a belt, whatever
be the form of the surfaces over which it is stretched. In high-speed
belts the tension is considerably increased by this cause, and ad-
ditional strength has to be provided (Ex. 12, p. 293).

Another example of the straining actions due to inertia oceurs in
the motion of a rod, the ends of which describe given curves.
Shearing and bending are produced, and at high speeds the magni-
tude of the stress thus arising is very great. Two common examples
are given on page 296, but the limits of this work do not permit us
to pursue the subject.

In similar machines the intensity of the stress occasioned by the
straining actions we are here considering will be the same if the
revolutions vary inversely as the linear dimensions of the machine. .

146, Virtual Machines—It has already been pointed out (Art.
94) that a machine may be regarded as a mechanism with two
additional links applied as straining links, or, what is the same thing,
a frame with one straining link (Art. 43). Further, as also remarked
in the article cited, the external forces on any structure may be
regarded as a set of straining links. Tt follows then that if in any
framework or other structure one of its parts suffer a change of form
or size of any kind, the rest remaining rigid, we shall have a
machine in which the driving links exert a known stress and the
working link is the bar in question. The principle of work then
enables us to determine the stress on the bar, for the stress
ratio must be the reciprocal of the velocity ratio. A machine thus
formed may be called a “virtual machine,” its movements being
only supposed for the purpose of the caleulation, not actually exist-
ing. It is especially in applying this method that we find in
treatises on statics the principle of work employed under the title
« principle of virtual velocities. 2

We must content ourselves with a single example of this method.
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4B (Fig. 118) is a beam supported at the ends and loaded uniformly.
Imagine the beam broken at K, and Fig.118.

the pieces united by a stiff hinge, A ... ... N____ B
the friction of which is exactly equal | Ty T%) L
to the bending moment 1, then if

the hinge be supposed gradually to yield under the weight, so
that the joint K descends through the small space KN(=y), ;

Energy exerted = Jyw(4K + BK).
SR oY Y
Work done = M(i, + i) = ﬂ[(A'K + =z

where iy, i, are the angles 4K, BK make with the horizontal.
Equating the two
114(;41]_f + ﬁf{) — (4K + BE),
which gives the known value (p. 44),
M=31w. AK. BK.

The advantage of this method is that it leads directly to the required
result, without the introduction of unknown quantities which
Tequire to be afterwards eliminated.

EXAMPLES,

‘1- In Ex, 1, page 218, suppose the gun to weigh 35 tons, what additional powder
Will be required to provide for recoil? Ans. 1 1Ib, nearly.

2. Two vessels of displacements 8,000 and 5,000 tons are moving at 6 knots and 4
knﬂ.ts. respectively. One is going north and the other south-west ; find the energy of
collision, Ang, 11,700 foot-tons.

3. Find the height of a governor revolving at 75 revolutions per 1. Ans. 6:24”,

_4- Find the dimensions of a Farcot governor to revolve at 40 revolutions per 1/,
With the arms inclined at 30° to the vertical, and to be parabolic for small displace-
n}ents, Ans. Height of governor = 22". Length of arms = 34", Length of cross
Plece to which'arms are attached = 8%4". More generally, if 0 be the inclination, I the
length of the arms, the length of the cross-piece is 2{. sin®d.

. 2 Inasimple governor revolving at 40 revolutions per 1 find the rise of the balls
;)n consequence of an increase of speed to 41 revolutions. Also find the weight of

all necessary to overcome a frictional resistance of 1 1b., the linkwork being arranged
80 that the slider rises at the same rate as the balls. Ans. Rise of balls = 11",
Weight of each ball = 5 Ibs,

6. fF'he balls of a governor weigh 5 lbs. each and it is loaded with 50 Ihs, The link-
;Vork 18 such that the slider rises and falls twice as fast as the balls. Find the height

Or & speed of 200 revolutions per 1/, and, if the speed be altered 2 per cent., find the
tendency o move the regulating apparatus. How much is this tendency increased
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by the loading? If the engine is required to work at three fourths its original speed,
by how much should the load on the governor be diminished? Ans. Height = 9"°T.
Tendency = 2'2 lbs. (increased 11 times).

7. A uniform rod is hinged to a vertical spindle and revolves at a given number of
revolutions; find its position, Deduce the effect of the weight of the arms of a
governor on its height. Ans. Height of vod =£.g/4% Height of governor is

increased in the ratio 1+ §n:1+ 4n where n is the ratio of the weight of the arm to
the weight of the ball.

8. In Ex. 6, p. 133, find the ratio in which the bending moment at each point is
affected by the inertia of the rod.

Every point of the rod describes relatively to the engine a circle and the centrifugal
force of any portion of the rod = 18°6 times the weight. In the lowest position the
centrifugal force acts with gravity, and so in this position the bending action is the
same as if the weight of the material of the rod were 19'6 times its true weight.

9. In a horizontal marine engine with two cranks at right angles distant 8 feet from
one another, weight of reciprocating parts attached to each crank 10 tons, revolutions
75 per minute, stroke 4 feet. Find the alternating force and couple due to inertia.
Ans. Alternating force =542 tons. Alternating couple = 216'8 foot-tons. 3

10. An inside cylinder locomotive is running at 50 miles per hour, find the alter-
nating force and couple. Also find the magnitude and position of suitable halance
weights, the diameter of driving wheels being 6 feet, the distance hetween centre lines
of cylinders 2/ 6", stroke 2/, weight of one piston and rods 3001bs. Horizontal distance
apart of balance weights 4 9”. Diameter of weight circle 4' 6. Ans. Alternating
force =7,871 Ibs. Alternating couple = 9,839 foot-lbs. B=106'51bs. i=275"

11. A fly-wheel 20 feet diameter revolves at 30 revolutions per 1. Assuming weight
of iron 450 lbs. per cubic foot, find the intensity of the stress on the transverse
section of the rim, assuming it unaffected by the arms. Ans. 96 lbs. per sq. inch.

12. A leather belt runs at 2,400 feet per 1, find how much its tension is increased
by centrifugal action, the weight of leather being taken as 60 1bs, per cubic foot.
Ans. 20°5 Ibs. per square inch,

13. If r be the radius of the circle described by the centre of gravity of a rotating
body, % the height due to the revolutions (page 282), show that the centrifugal force
is

R=i
I

Obtain the numerical result (1) for a wheel weighing 100 1bs, with centre of gravity
one gixteenth of an inch out of centre, revolving at 1000 revolutions per minute, (2)
for a piece weighing 10 lbs. revolving at 300 revolutions per minute in a civcle 1 foot
diameter, Ans. (1) 178 1bs. (2) 154 1bs.

Nore.—The formulee of Art. 144 can all be expressed most simply in terms of k.

14. In Question 8 suppose the connecting rod of uniform transverse section, find
how much the bending moment upon it due to its weight is increased by the effect
of inertia.

Here the bending moment is greatest (very approximately) when the erank is at
right angles to the connecting rod, and the forces due to inertia then consist (also very
approximately) of a set of forces perpendicular to the rod, and varying as the dis-
tance from the crosshead pin. At the crank pin we have simply the centrifugal force
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due to the revolutions and length of crank. Thus the curve of loads is a straight
line (p. 68) whenee, proceeding by the methods of Chap. ITI., we find for the maximum
moment

Wl a

W3 W

where 7 is the length of rod, « the length of crank, & the height due to the revolutions.
In the numerical example the effect of inertia is about 9% times that of the weight W.

mu=1rt

15. A body rotates about an axis OF, lying in a principal plane through its centre
of gravity ¢, and inclined to a principal axis OG at an angle 0. Show that the mo-
ment of the centrifugal forces about O is

L= W’“_J“_ sin @ . cos 0,

where 7 is the height due to the revolutwns, and &, k are the radii of gyration about
O, and a line through O, perpendicular to OG' in the plane G'OF, respectively.
Deduce the height of a compound revolving pendulum,

16. A disc rotates about an axis through its centre at 1000 revolutions per minute.
The disc is intended to be perpendicular to the axis, but is out of truth by £}t
of the radius: find the centrifugal couple. Ans. If » be the radius in inches the
couple in inch-lbs. is

Wit
=131

17. In question 10 find the alternate increase and diminution of the pressure of the
driving wheel on the rail due to the inertia of the balance weight. Ans. 5,900 lbs.

Nore.—This force of more than 2} tons produces great straining actions on both
the wheel and the rails.

18, The power of a portable engine is tested by passing a strap over the fly-wheel,
Wwhich is 4 feet 6 inches diameter, fixing one end and suspending a weight from the
other. The weight is 300 Ibs., and the tension of the fixed end is found by a spring
balance to be 195 Ibs: what is the power when running at 160 revolutions per
minute. Ans. 7'8 h.p.



