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PART III.—DYNAMICS OF MACHINES.

CHAPTER VIIL

PRINCIPLE OF WORK.
SECTION I.—BALANCED FORCES (STATICS).

88. Preliminary Explanations. Definition of Work. If the principal
object of a piece of mechanism be to do some kind of work it becomes
a machine. Many mechanisms—as for example clocks and watches
—are not, properly speaking, machines; for though work is done
during their action, yet the object of the mechanism is not the doing
of the work but the measurement of time or some similar operation.
Even in these cases, however, the forces in action cannot in general
he excluded from consideration, and therefore in all mechanism a
study of the manner in which forces are transmitted and modified is
essential. This part of the subject is called the Dynamics of
Machines.

A Dody can in general only be moved into a different position or
be changed in form or size by overcoming resistances which oppose
the change. This process is called doing WORK, and the amount of
work is measured by the resistance multiplied by the space through
which it is overcome. If there be many resistances, the total work
done is the sum of that done in overcoming each resistance
separately.

Consider the case of a weight raised vertically. Here the resist-
ance is due to the action of gravity which is overcome by some
external force, and the work done is simply the product of the weight
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and the height through which it is raised. The weight is measured
by comparing it with that of a certain quantity of matter called a
pound, the weight of which is taken as a unit for measuring forces.
This mode of measurement has the disadvantage of giving a different
unit for different points on the earth’s surface, because the force of
gravity varies according to the position of the point, and, for scientific
purposes therefore, force is measured by the velocity which, when
unbalanced, it produces in a given quantity of matter. In practical
applications, however, gravitation measure is preferable, as the varia-
tion is very small, and the measure may be made precise when
necessary by specifying the place on the earth’s surface at which our
operations are taking place. The unit of space is generally 1 ft., so
that the unit of work is 1 1b. raised through 1 ft., or, as it is generally
called, 1 foot-pound. Other units, however, such as, for example,
“foot-tons,” may also be employed for special purposes.

89. Oblique Resislunce.—The resistance is here directly opposed to
the movement which is taking place ; if this be not the case it must
be resolved into two components, one along and the other perpen-
dicular to the direction of motion. The second of these is balanced
by a constraint to which the motion is subject or by the opposition
which the inertia of the body offers to a change in its direction at any
finite rate ; it is the first alone in overcoming which work is done,
In Fig. 84 let & be a resistance applied at a point 4 which moves
through a distance 4B in a direction inclined at an angle 6 to the
direction of the resistance, then the work done is £. cos 0.4 B, but if
BN be drawn perpendicular to the direction of R to meet that direc-

tion in NV, AN=AR. cos 8,

and therefore the work done is B.AN.
Now AN is the distance through which 4 has moved in the direc-

i Fig.84.

N eeemm e

tion of the resistance, so we obtain another rule for estimating the
N
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work done against an oblique resistance. It is equal to the product
of the resistance into the distance moved in the direction of the
resistance.

Suppose for example that a weight is raised, but that, instead of
being lifted vertically, it is moved in any curved path—there heing
no friction or other resistance than that due to gravity.

Considering any small portion 4B of the path (Fig. 85), the resist-
ance being always vertical, the work done is /7. AN. So the total
work of raising the weight is .24 N or //.h, which is independent
of the path described by the lifted weight, but depends simply on
the height through which the weight is raised.

If there are a number of weights each of them raised through
different heights, the total work done in raising all the weights is the
sum of the works done in raising each weight separately ; and the direct
method of finding the total work is to add the separate results for each
weight. But it may be determined by another method thus—

Let 7y, W, W, &c. be a number of weights which are at heights
Yy U Yy &c. above a given datum plane. Now suppose they are
raised so that they are at heights Y3, Y, ¥, &c. above the same
plane. The total work done in raising the weights will be the sum
of the products,

WYy =) + W Yo — 1) + WY~ 9s) + &e.

Now suppose the centres of gravity g and & for the initial and
final positions of the weights to be at heights y and ¥ above the
datum plane.

The centres of gravity ¢ and G are such that if all the weights
were collected at either centre, the moment of the collected weights
about the plane is equal to the sum of the moments of each separate
weight, before being collected, about the same plane.  This is mathe-
matically expressed thus
Winn+ Waye+ W,y + &c.

W+ W+ W+ &e.

AT S WY+ WX+ WY + &e.
= Wi+ Wot Wet+ &e. °

<=

By subtracting we have

s Wy (Yy—9)+ Wo (Yo —ga) + W3 (Yy—ys5) + &c.
Y W+ W+ W+ &e. ’
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hence the total work done in raising the weights may be expressed
=(Wi+ Wyt Wy+&e) x (¥ —y)
or W (¥ =)
That is to say, the total work of raising a number of weights is equal

to the product of the sum of the weights by the vertical displacement
of the centre of gravity of the weights.

90. Vuriable Resistance.—Let us next consider the work required
to be done to overcome a variable resistance. The whole distance
through which the resistance is overcome must then be divided into a
number of parts, each being so small that, for that small space, the mag-
nitude of the resistance may be treated as sensibly uniform. The work
of overcoming the resistance through each of the small spaces being thus
found, the total work will be the sum. The estimation can generally
+ be most conveniently performed by a graphical construction. We will,
for simplicity, take the case in which the direction of action of the re-
sistance is that of the line of motion. Suppose a body moved from 4
to B against a resistance the magnitude of which varies from point to
point in such a way that it is represented by the ordinates of the
curve standing above 4B.  (Fig. 86.) For the small distance M N
the resistance will vary slightly,
but will have a mean value re-
presented by SM or KN suppose, | ____ roslerat e g i P
and the work of overcoming the | i
resistance through the small space L
MNis MN x SM or is exactly
represented by the area of the
carve standing above MN; and A
so for any other small portion of the displacement of the body.
Thus the total work of overcoming the resistance through AP is
tepresented by the whole area 4 LTB =mean resistance R x 4 B.

The curve LST is called a curve of resistance. Two important
Special cases may be mentioned both of which frequently oceur.

(1) Let the resistance vary uniformly. This is the case of a
Derfectly elastic spring which is compressed, as will be further
explained hereafter. The curve of resistance is a straight line A4ST
(Fig. 87a) where 4B is the compression of the spring, B7 the corres-
Ponding compressing force R, During the compression & is at first

Fig.86. T

:
R
1
|
i

M N 8
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zero and gradually increases to R, its value at any intermediate
point being graphically represented by the ordinate SN correspond-
ing to the compression 4N. The work done is the area of the
triangle, that is 4R, 4B, and the mean resistance }12.

(2) Let the resistance be inversely proportional to the distance of
the point of application from a given point 0. - (Fig 87b.)

Y
Fig.87b.
P
(gl - oA
gt
MmN N B o

This applies to many cases of the compression of air and other
elastic fluids. In the figure NS = R is the resistance and ON.NS is
constant, so that the curve of resistance JST' is an hyperbola. Let
the ratio 04 : OB be called 7, this is called the ratio of compression ;
then from the geometry of the hyperbola we know that the area of
the curve is equal to the constant rectangle ON.NS multiplied by
log, 7, the logarithm being Napierian, or as it is often called “hyper-
bolic” from this property of the hyperbola. If ON be denoted by V
this gives a formula in frequent use for the work done in this kind
of compression.

Work done = RV log, r.

O1. Resistance to Rofation. Stability of @ Vessel.—It often happens
that we have to consider the resistance of a body to rotation about
an axis. Let 4 (Fig. 88) be the point of application of a force
which resists the rotation of a body
about an axis (' perpendicular to
the plane of the paper. If the
resistance at 4 be not in the plane of
rotation P must be supposed to be
the component in that plane; the
: other component will he parallel
Yol to the axis of rotation and need not
Ny be considered. Let 6 be the angle
it makes with the direction of A’s
motion, then E=P.cos @ is the effective resistance, the other com-
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ponent of P merely producing pressure on the axis. As the body
turns through an angle i the resistance R will be overcome through
the arc 4.4', and, assuming in the first instance R constant, the work
done will be—

Work done = R.4A'=R.CA.i.

But, dropping a perpendicular CIV on P’s direction,
CN=CA. cos 6
.. Work done = P.CN.i= Mi,

where J is the moment of the resistance about the axis of rotation.
If there be many resistances then the same formula will hold if M/ be
understood to mean the total moment of resistance.

We can readily extend this to the case of a variable moment by
the graphical process already described for a linear resistance, the
base of the diagram now representing the angles turned through and
the ordinates the corresponding moments. As an example take the
case of a heavy pendulum swinging about an axis 0 (Fig. 89a), let ¢
be the eentre of gravity, Og =/, and let it be swung through the angle
i from the vertical, then the moment of resistance is

M=W.gN=W.sin i

In Fig. 89 draw a curve on the base 4B such that the horizontal
ordinate 4V at every point represents the angle i on the same scale
that 4 B represents two right angles, while the vertical ordinate repre-
sents J. This curve will be the curve of resistance, and in the
Present case is a curve of sines of which the maximum ordinate L&
1s 771 The angles heing supposed reckoned in circular measure so
that 4B - «, the area of the diagram from 4 up to any point S will
represent the work done. We can, however, in this example find
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this work otherwise, for ¢ rises through the height NZ, and therefore
if U be the work
U=WI(1-cos i)

By use of the integral calculus it can be verified that this is also the
value of the area 4SN.

It is not necessary that the axis of rotation should be fixed in
estimating the work done during rotation, provided that the resist-
ance be a couple, for then there is no pressure on the axis. An
important example is that of a vessel floating in the water and
steadily heeled over by the action of a couple 3 produced by external
agency, or more frequently by shifting the weights on board in such
a way that the displacement and trim remain constant. Then for
each angle of heel this couple has a certain definite value which can
be found either by calculation or by observation of the shift of the
weights. The moment of vesistance which is equal and opposite to
M is called the Statical Stability of the vessel, and the curve of
resistance drawn as above deseribed is called the Curve of Stability.
The construction of this curve is an important part of the design of
the vessel. Such curves, though usually unsymmetrical, often bear
a general resemblance to a curve of sines (Fig. 89%), the ordinate
increases to a maximum which gives the maximum stability and then
diminishes to zero at an angle of heel called the “Angle of Vanishing
Stability.” If the vessel be heeled beyond this angle it capsizes.

According to the principles of this article the area ANS of the
curve represents the work done in heeling the vessel over. This is
called the Dynamical Stability, and as is shown elsewhere (see the
chapter on Impact in Part IV.) represents the resistance to heeling
over to that angle by a sudden gust.

An important typical case is when the curve of stability is a true
curve of sines. In this case suppose the angle of vanishing stability
to be =k, where / is some given number, then the ordinate § for any
angle ¢ is given by the equation

8=, .sin ki,
and the stability is the same as that of a heavy pendulum swinging

through % times the angle. The dynamical stability is easily shown
to be

U= i—l (1 - cos ki).
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92. Internal and External Work.—In all that precedes the position
of a body has been changed by overcoming external resistances. All
forces, however, arise from the mutunal action between two bodies or
between two parts of the same body, and every change of position
must be with reference to some other body which is regarded as
fixed. Work, then, consists in a change of relative position of two
bodies notwithstanding a mutual action between the two which
opposes the change. In raising weights the second body is the earth,
but the pair of bodies may be such as occur in mechanism and the
mutual action between the two may be due to springs or an elastic
fluid, or to the resistance of some body to separation into parts. In
scissors, nutcrackers, bellows, and other similar instruments, the
elements of the pair are exactly alike and their existence is recog-
nised in popular language.

In reckoning the work done either body may be regarded as fixed,
the result must he the same and will be unaffected by any movement
of the pieces common to both; thus when air is compressed in a
cylinder the work done depends on the pressure of the air and the
amount of compression, not on the movements of the cylinder within
which the air is contained. In other words the motion to be con-
sidered is the motion of the pair as defined in Art. 46, p. 102.

In every case where we have to do with a number of pieces con-
nected in any way, we may distingnish between the resistances due
to the mutual action between the pieces themselves and those due to
the mutual action between the pieces and external bodies. The
internal resistances require work to be done in changing the relative
position of the pieces themselves, while the external resistances re-
quire work to be done in changing the position of each piece relatively
to external bodies. These two kinds of work are called Internal
Work and External Work respectively. In two cases we can at once
foresee that the internal work will be zero, first when the pieces are
disconnected, secondly when they are rigidly connected. Thus for
example if a heavy mass of matter be raised, we need only consider
the rise of the centre of gravity (Art. 89) if the mass be rigid ; but if
not, any change of form which occurs ought to be taken into account.
In raising ordinary solid bodies and masses of earth the internal work
may usually be disregarded.

93. Energy. Principle of Work.—Hitherto we have been speaking
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of the resistance which is being overcome during the process of doing
work, let us now fix our attention on the effort which overcomes the
resistance.

The forces arigng from the mutual action between a pair of bodies,
when not purely passive like the normal pressure between two sur-
faces in contact, are of two kinds. The first always oppose the motion
of the pair, in other words they are always resistances. Friction
between two surfaces is the simplest example of this, and hence such
actions are called Frictional Resistances. The second on the other
hand promote or oppose the motion of the pair according to the
direction in which the motion is taking place, so that a resistance
becomes an effort when the direction of motion is reversed. Such
actions are conveniently described as Reversible; and systems of
bodies, in which they occur, possess, when the parts are suitably
disposed, the power of doing work. This power is called ENERGY.
As examples of bodies possessing energy may be taken a raised
weight, a compressed spring, or steam of high pressure. Change of
velocity in a moving body likewise gives rise to efforts and resistances,
but this is a matter for subsequent consideration. For the present we
suppose all bodies with which we have to do to be in a state of
uniform motion, or to move so slowly and steadily that no sensible
action of this kind can arise.

Energy is measured by the quantity of work which it is capable of
doing, and the process called doing work may also be described as
the exertion or expenditure of energy, so that we write

Energy exerted = Work done.

If the effort which is being exerted and the resistance which is
being overcome be applied to the elements of the same lower pair,
as when a weight is lifted vertically or a spring wound up, the effort
and the resistance are equal, and the equation shows that the energy
exerted by an effort is the product of the effort and the space through
which it is exerted. Thus all the examples given above of the doing of
work will also serve as examples of the exertion of energy simply by
supposing the direction of motion reversed. In short the exertion
of energy and the doing of work are merely different aspects of the
same process.

In this case the effort and the resistance may be regarded as applied
at the same point, but the equation has a much wider application
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than this, for it is equally true if the points of application be different,
provided only that they are rigidly connected. Thus, for example,
if we dig in the ground, the energy we exert at the handle of the
spade is—if the spade be perfectly rigid—exactly equal to the work
done at the blade. This can be shown to be a necessary consequence
of the forces we are considering being balanced, and the equation
may be regarded as a concise statement of the conditions of equili-
brium of forces applied to a rigid body. It is preferable, however,
for our purposes to regard it as the simplest case of a fundamental
mechanical principle continually verified by experience. This prin-
ciple may be called the PRINCIPLE oF WORK.

We have now a means of transferring the power of doing work,
that is to say energy, from one place to another : evidently we are
not restricted to one piece as in the case of the spade. 'We may make
use of a series of pieces through which energy may be transferred
from piece to piece in succession; and if there were no frictional
resistances to the relative motion of the pieces, there would be no loss
of energy in the process. Thus the principle of work is true when
the points of application of the effort and the resistance are mechani-
cally connected in any way. Frictional resistances however ahsorb
a portion of the energy whenever any relative motion occurs which
- they tend to prevent, and therefore a certain loss always accompanies
the transmission of energy. Nevertheless the principle of work still
holds good if overcoming friction he reckoned as part of the work
done.

It may here be remarked that though frictional resistances are
never a source of energy, yet friction may, like normal pressure
hetween surfaces, transmit energy, and hence, in cases where one only
of the bodies between which it is exerted belong to the set of bodies we
are considering, may be an effort by means of which work is done on
the set. Thus, for example, in the case of a shaft driven by a belt,
the whole power of the engine is transmitted by friction closure
hetween the belt and the pulleys; and if we consider the shaft alone
apart from the rest of the mechanism, the friction may he regarded
as the effort, which drives the shaft. We cannot however in such
cases properly speak of the friction as exerting energy ; the source of
energy is the steam, or other motive power, and the friction merely
transmits it in the same way as the pressure hetween a connecting
rod head and the crank pin transmits energy to the crank shaft.
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Nevertheless in both of these cases the phrase “energy exerted ” may
be used conveniently, though * energy transmitted ” would be more
precise.

If a piece of material through which energy is transmitted yield
under stress applied to it, as in fact it always does, the energy exerted
will not be equal to the work done.* Either the change of relative
position of the several parts of the piece will require work to be done
in order to overcome the mutual actions between the parts which
resist the change, or, conversely, those mutual actions exert energy
during the change. In the first case the work is done at the expense
of the energy transmitted ; in the second the piece of material is a
source of energy which increases the energy transmitted. In per-
fectly elastic material the mutual actions are reversible, and any
energy exerted in overcoming them is stored up in the piece and
recovered when the piece resumes its original form, as in the case of
a watch spring. (Compare Art. 98.)

94. Machines.—A mechanism becomes a machine if we connect
together two of its elements by a link capable of changing its form
or dimensions, and so moving the mechanism, notwithstanding a
resistance applied by a similar link connecting two other elements.

The elements connected may be called the ¢ driving pair”
and the “working pair,” and these pairs often, though by
no means always, have one element common, namely the frame-
link of the mechanism. The driving link is the source of energy.
As examples, we may take steam which connects the piston and
eylinder which form the driving pair in a steam engine, or gravity
which, as in Art. 62, is to be conceived replaced by a link ex-
erting the same effort. The working link is gravity in cranes and
other hoisting machines, or a piece of material the deformation of
which is the object of the machine, as in the case of machine tools.

In addition to the driving and the working links, the force of
gravity acts on all the parts of the machine, and frictional resistances
have to be overcome ; but these are matters for subsequent considera-
tion.

The driving and working pairs are very frequently kinematic pairs
of the lower class. Let us suppose them in the first instance sliding
pairs. Let the driving pair move through a space z, then the
working pair will move through a space y, which is in a certain
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definite proportion to 2 depending on the nature of the mechanism.
Let P be the driving effort, which, by taking z small enough, can he
made as nearly uniform as we please; and let R be the resistance
opposing the motion of the working pair, then

Energy exerted = Px; Work done = Ry,
and these must be equal, therefore

Py Velocity of Working Pair
R~ x~ Velocity of Driving Pair’

from which it appears that the ratio of the effort to the resistance,
or as we may briefly call it, the “foree ratio,” is the reciprocal of
the velocity ratio of the driving and working pairs. In works on
mechanics this is also known as the Principle of Virtual Velocities.

If the pairs be turning instead of sliding pairs, then the effort and
resistance are moments, and the velocities will be angular; and if
one pair be sliding, the other turning, a suitable “radius of reference ”
must be selected (p. 103) to compare the
motions and the forces, but the same prin-
ciple holds good.

In the simplest machines, known fre-
quently as the “mechanical powers,” we
have a 2 or 3-linked chain, so that the
driving pair and working pair are identical
or very closely connected. - But they may
be separated by a long train of mechanism
and have no common link. In all cases it
must be carefully remembered that the
effort and the resistance arise from the
mutual action between the elements, each
consisting of two equal and opposite forces,
just as in the straining actions considered in
Chapter II. and elsewhere. Either of these :
as before measures the magnitude of the E‘]
action,

Fig.00,

H
|
i
|
i
H
|
i
i
!

98. Verification of the Principle of Work in Special Examples.—We
will now take some examples to illustrate and verify the principle of
work, neglecting friction.
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(1.) Take the common wheel and axle. Suppose P to be just
sufficient to lift the weight 77, so that the two forces exactly bal-
ance one another. Now let P descend through the distance y (Fig.
90), and 7/ rise through the corresponding distance 2.

As P falls it is said to exert emergy. Energy exerted =Py.
This is employed in overcoming the resistance to the rise of the
weight 7. Work done = #z. The principle of work asserts that
Energy exerted = Work done, that is Py = /Fa.

Suppose the wheel and axle to turn through the angle 6, then
y=00 and z=a6. Then in order that the weights P and /¥ may
statically balance one another, Pb= Wa; from which it follows that
Py = W, verifying the principle of work.

Also, we may write,

Jg x v
74 e g
where v, V are the velocities of P, 7/ respectively, thus showing that
the force ratio is the reciprocal of the velocity ratio.

In this simple example both the force ratio and the velocity
ratio remain constant throughout the movement. In general this
will not happen.

(2.) Take the case of the mechanism of the steam engine for an ex-
ample. Neglect friction and let the driving pressure on the piston be
P. A thrust which we will call S will be produced along the connect-
ing rod and transmitted to the crank pin as shown in Fig. 91. At the
crank pin this force S may be resolved into two components, one

=
=

]

Fig.ol.

acting along the crank arm and the other, &, perpendicularly to it.
The last alone will tend to turn the crank, the other component pro-
ducing only a pressure on the shaft immediately balanced by the
pressure of the bearings on the journals of the shaft.

This component 7 which tends to turn the shaft is called the crank
effort. 1f the turning effort on the crank is perfectly balanced at all
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points of its revolution by some suitable resistance, then the resisting
force which must be applied at the crank pin at right angles to the
erank arm in order to balance perfectly the pressure of the steam on
the piston must be equal and opposite to the component £ previously
referred to. The force ratio will be 2/E. We have, with the nota-
tion employed in Chap. V., § cos ¢ = P and S sin (8 + ¢) = .

Th 2 S0 (0+4) _sin 0BT _ 0T
U p="ios$ = sin OTB = OB

That is, the crank effort is to the steam pressure as the intercept
OT is to the crank arm OB.

But we have previously shown (see p. 109) that this fraction
expresses the veloeity ratio of piston to crank pin; hence we have
again found in this case that the force ratio is the reciprocal of
velocity ratio, and the curve which we previously drew to represent
the varying velocity of the piston, the crank pin moving uniformly,
will represent also the varying crank effort, the pressure of the steam
on the piston being uniform throughout the stroke. So we may call
it the Curve of Crank Effort.

(3.) The same thing may be proved to be true for every mechan-
ism, the forces acting on which balance one another. In some
cases it may be easier to determine the force ratio than the velocity
ratio or zice versa. In any case either may be inferred by taking the
reciprocal of the other. As an additional example take the case of
two pieces driving one.another by simple contact (Fig. 92). We
have already found the velo-
city ratio by a direct process
(p- 165), but we may also de-
termine it in the following
way. When A presses on B
there is a resistance [ equal ...
and opposite to the pressure,
and normal to the portions of the surfaces in contact, if we suppose
no friction to exist. Drop perpendiculars p, and p, on the common
normal. Then the moment of the driving pressure £ which 4
exerts on B or the turning moment due to 4 =M, =Rp,. Simi
larly the moment of the resisting force which B exerts on A4 or the
moment of resistance to turning which B opposes to 4 = M= Bp,.
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Driving moment M, p,
Resisting moment ~ M, ~ p,°

But we have previously proved that this fraction is the angular
velocity ratio of the piece B to the piece 4, and thus we show that
the moment ratio is the reciprocal of the angular velocity ratio.

Thus the ratio

96. Periodic Motion of Machines.—One of the most essential char-
acteristics of a machine is the periodic character of its motion. Each
part goes through a eycle of changes of position and velocity and
returns periodically to its original place. When moving steadily the
periods are equal and the velocity of each piece is the same at the
beginning and end of each period. That this may be the case it is
not necessary that the driving effort should balance the working
resistance in every position ; on the contrary, this seldom happens ;
it is sufficient it the mean effort be equivalent to the mean resistance,
or as we may otherwise express it

Energy exerted during a period = Work done in the period;

a condition which always governs the action of a machine in steady
motion. In reckoning the energy and work the action of gravity on
any piece of the machine may be omitted, for, if the piece rise through
any height during one part of the period, it will fall through an
equal height during another part. The work done consists partly of
the work which the machine is designed to do, and partly of frictional
resistance to the relative motion of the parts of the machine, or in
other words of Useful Work and Waste Work. The ratio of the
useful work to the energy exerted is called the Efficiency of the
machine and its reciprocal the Counter-Efficiency. The efficiency of
a machine depends partly on the kind of machine and partly on the
speed, as will be explained in the chapter devoted to frictional resist-
ances (Chap. X.). In estimating the power required to drive a
machine a value is assumed for the efficiency derived from experience
of machines of the same or nearly the same type. Examples will be
given hereafter.

OT. Power. Sources of Energy.—The sources of energy are—
(1) Living agents ;

(2.) Gravity acting usually by means of falling water ;

(3.) Springs and elastic fluids ;

(4.) Gunpowder and other explosive agents.
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The energy thus derived may be traced further back to the action
of heat and chemical affinity, and we may add to the list electric and
magnetic forces, but the foregoing is a sufficient statement for our
present purpose. A machine which employs such agents directly is
called a Prime Mover, or, more briefly, a Motor, but a number of
machines may be driven from one prime mover which serves as
their source of energy. In general, each source of energy has a
motion and an effort peculiar to itself while the work is required to
be done at a different place and under different circumstances. A
machine, then, is & mechanism which transmits energy and converts
it into a form suitable to the work to be done.

The rate at which energy is exerted is called Power; it is this
which measures the value of a source of energy and the expense of
the work which is being done. The ordinary unit of measurement
is the conventional horse-power of 33,000 foot-pounds per minute or
550 per second, a quantity much greater than the working power of
an ordinary draught horse on the average of a day’s work. The unit of
power employed universally on the Continent is somewhat less, being
75 kilogrammetres per second or 32,550 foot-pounds per minute.

In prime movers the effort may generally be regarded as applied
at a point which moves with a known mean velocity ; then the
horse-power is given by the equation

PV
33,000’
where P is the mean value of the effort in lbs. and 7 the mean
velocity in feet per minute.

In machines driven from a prime mover the effort is generally a
moment M which exerts the energy M.2r in every revolution of a
driving shaft. We,then have

H.P. =

.M- 2mn
H.P. =33 000

where M is the mean moment and n the revolutions per minute.

08. Reversibility. Conservation and Storage of Enerqy.—The resist-
ance overcome at the working point may be either frictional as in
machine tools or reversible as in machines for raising weights. In the
second case, if the machine were stopped and set in motion in the
reverse direction it would, if friction could be neglected, work equally
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well, the driving effort and working resistance would be interchanged,
and constructive modifications might be required, but otherwise the
action is unaltered. This may be described by saying that the
machine is Reversible. Many machines actually oceur in both their
direct and their reversed forms ; thus a pump is a reversed hydraulic
motor. Hence it appears that in reversible machines the power of
doing work, that is to say, energy, is not lost after being exerted, for
by reversing the machine it may be employed a second time. Thus
it is that we describe the action of reversible machines as a transfer
of energy, and are led to conceive of energy as indestructible and
independent of the bodies through which it is manifested. No
machine, indeed, is completely reversible, for in all cases frictional
resistances oceur to a greater or less extent, while many machines are
completely non-reversible; but we shall see as we proceed that even
then energy is not lost but only converted into another form, so that
we have in reversible machines the first and most simple example
of the great natural law called the Conservation of Energy. The
importance of reversibility as a test of maximum efficiency will be
seen more fully hereafter.

Again, we can store up energy and use it as required when it is
inconvenient to resort to any of the usual sources. For example, by
a few turns of the watch key we store energy in the mainspring
which is supplied at a regular rate to the watch throughout the day.
So the hydraulic accumulator (Part V.) receives energy from the
pumping engines and supplies it at irregular intervals to the hydraulic
machines which lift weights and move gates in a dockyard or work
the guns in a ship of war.

A large part of what follows in the present work is merely a
development of what has been said here: in the succeeding chapters
of the present division we consider machines comprising solid elements
only, while in a future division we shall consider the transmission
and conversion of energy by means of fluids.

EXAMPLES.

1. A waggon weighs 2 tons and its draught is g'sth of its weight. Find the work
done in drawing it up a hill 1 in 20, half a mile long. Find also how long three
horses will take to do it supposing each horse to work at the rate of 16,000 foot-
pounds per minute.

Work done = 370 ft.-tons. Time occupied =17’ 15",
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2. A force of 10 Ibs, stretches a spiral spring 2”, find the work done in stretching
it successively 17, 2", 3", &c., up to 6". Ans. 2}, 10, 223, 40, 62} and 90 inch-Ibs.

3. Find the H.-P. required to draw a train weighing 200 tons at the speed of 40
miles an hour on a level, the resistance being estimated at 20 Ibs, per ton. Find also
the speed of the train up a gradient of 1 in 100, the engine exerting the same power.
H.-P. required = 4263. Ams. Speed up the incline = 18'87 miles per hour.

4. The resistance of H.M.S. “Iris ” at 17 knots is estimated at 40,000 Ibs., what
will be the H.P. required simply to propel the ship. Find also in inch-tons the
moment, on each of the twin screw shafts, equivalent to this power, the revolutions
being 80 per minute. Ans. H.-P. required = 2088. Moment on each shaft = 367
inch-tons, -

5. The curve of stability of a vessel is a common parabola, the angle of vanishing
stability 70”, and the maximum moment of stability 4,000 ft.-tons, Find the statical
and dynamical stabilities at 30°. Ans, Statical stability =3918 ft.-tons. Dynamical
stability = 1283 ft.-tons.

6. Verify the principle of work, neglecting friction, in :—(a) The differential pulley
(Art, 59). (b) A pair of 3-sheaved blocks. (¢) The hydraulic press (Art. 62).

7. From the results in question 3, p. 112, dednce the crank efforts for the given
positions of the piston and the mean crank effort, supposing the effective steam
pressure on the piston 20 tons and neglecting friction.

Crank effort at { forward stroke = 18'4 tons,  Mean = 12'74 tons.
quarter stroke in the backward ,, =166 tons.

8. Show that the efficiency of a machine is equal to the velocity ratio divided by
the force ratio.

SECTION IT—UNBALANCED ForcEs (KINETICS).

99. Kinetic Energy of a Particle—We now proceed to consider the
cases in which efforts or resistances arise from the changes of velocity
of the parts of a system, which changes thus become a source of
energy or require energy in order to produce them. The commonest
observation is sufficient to show the importance of such cases: a
cannon ball possesses a great power of doing work, and a railway
train requires energy to he exerted by the steam to obtain the requi-
site speed, quite irrespectively of that necessary to maintain the
speed when once produced.

First, suppose a weight under the action of gravity only. Unless it
be supported by a vertical force exactly equal to the weight it will
fall with a gradually increasing velocity. Let it be wholly unresisted,
let it start from rest and fall through a height %, then we know that
it will acquire a velocity » given by the formula

v* = 2gh,

where ¢ is a number which for velocities in feet per second ranges
0
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from 32117 at the equator to 32:227 at the pole, and having inter-
mediate values at other points on the earth’s surface according to the
intensity of gravity at the point. The average value 322 is usually
adopted for this important constant, and the height % is called the
“height due to the velocity.”

During the whole fall, the weight /7" of the body has been exerting
an effort upon it which overcomes an equal resistance occasioned by
the change of velocity which is taking place ; thus an amount of
energy has been exerted, and an amount of work done equal to /.
Resistance of this kind is of the reversible kind, for if we imagine the
weight, after reaching the ground, proj ected up again with the same
velocity, it will, if wholly unresisted, attain the height from which
it originally fell. ~Hence we describe the weight as possessing
energy, and the amount it possesses when moving with velocity v is

A
g

Energy due to motion is called Kinetic Energy, to distinguish it
from that kind of energy considered previously, which is a consequence
of the relative position of the parts of a system, and which is called
Potential Energy. The kinetic energy of a body depends on its
velocity only, not on the direction of its motion nor on the way in
which its motion has been produced; and the energy exerted in
changing the motion of a body is always represented by an exactly
equivalent increase of kinetic energy, whether this effort be uniform
or variable, or whether its direction coincide with the direction of
motion or not. To illustrate this, consider the following cases.

(1) Let the body move in a straight line under the action of a
force P, in that line let it start with velocity 7, and after moving
through a space = let its velocity be v, then, it is shown in works on
elementary dynamies, that v is given by a formula which may be

written
ww WP

Pr= —2—9‘ - *—29'—
Now, the left-hand side of the equation is the energy exerted by
P, and the right-hand side is the increase of kinetic energy of the
body.
If P be a resistance instead of an effort, then work is done at the
expense of the kinetic energy which is now diminished. If P be
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variable we must represent it graphically by a curve as in Art. 90,
and it should be especially remarked that the ordinate of the curve
of areas deduced as in Art. 31 will, on affixing a suitable scale and
measuring the ordinates from a suitable base line, represent the
height due to the velocity of the body.

(2) Let the body be constrained by means of a smooth guiding
curve to move along a given path by a force P in any direction, then
the energy exerted by 2 is the same as that exerted by the resolved
part of P in the direction of motion. But this resolved part accel-
erates the motion just as if the body moved in a straight line, so that
this case is reduced to the last.

(3) The pressure on the guiding curve will be the difference he-
tween the normal component of P and the force necessary to change
the direction of P’s motion. If the two are equal the guiding curve
may be removed, and we obtain the case where the body moves
freely, as in the case of a projectile in vacuo.

100. Partially Unbalanced Forces. Principle of Work.—Again, the
effect which is changing the motion of the body may be partly bal-
anced by an external resistance to which the body is subject. If
this be the case we can imagine it separated into two parts, a part
which is, and a part which is not, balanced. The energy exerted by
the first is employed in overcoming the external resistance, while
that exerted by the second is employed in increasing the kinetic
energy of the body. Or the resistance may be greater than the
effort, then the excess is overcome at the expense of the kinetic
energy of the body, the velocity of which now diminishes.

In the present treatise we shall use the phrases ¢ energy exerted ”
and “work done” only in reference to efforts and resistances other
than those due to inertia, subject to which convention, we may state
the principle of work as applied to cases where the forces are par-
tially unbalanced, as follows—

Energy exerted = Work done + Change of Kinetic Energy.

In this statement the work done may be greater or less than the
energy exerted. In the first case the change of kinetic energy is a de-
crease, in the second an increase.

Not only does this principle apply to a single body, but—subject

‘to the observations of the preceding section—to a set of bodies
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mechanically connected in any way, provided that one of them be
fixed to the earth ; or, in other words, that a body of great mass
like the earth be one of the set. When no one of the set predomin-
ates over the rest it is necessary to consider further how the kinetic
energy should be reckoned: for the present, however, we shall
suppose this condition satisfied.

A simple case is that of Atwood’s machine. Let the descending
weight P be greater than the rising one @ Neglecting friction, the
excess sets the two weights in motion. Let P descend through a
distance 7, then @ rises through the same distance, and therefore

Energy exerted = Py.
Work done = Q.

Let » be the velocity of the two weights; then supposing them to
start from rest,
2
Kinetic energy acquired = (P + @) ;i
9
From principle of work

P+

The law of increase of velocity is, therefore, the same as that of a
body falling freely, but the rate of increase is less. This formula
is the same as that obtained by other methods, and we have therefore
here a verification of the principle of work.

J

e i) L et e
Ll d eyt 29y.

101. Kinetic Energy of the Moving Parts of @ Machine.—Instead of a
single body, suppose we have a system of bodies, and we require to know
the total kinetic energy of the system. The direct method is to find
the energy of each separate particle of the system and add the results.
In the particular case of a rotating rigid body we are able to express
the result of the summation in a convenient and simple form. First
consider a ring of small section rotating about an axis in the centre
perpendicular to its plane. Every portion of the ring will move
with the same velocity, » say, and the kinetic energy of the ring
may, as before, be written //2°/2g.

We may express this another way, as follows :—If n be the re-
volutions per second, and @ the radius, » = 2man,
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If the ring is not complete, but /7 is the weight of a portion which
has the same centre of rotation, the expression will still hold.

Now, suppose we have a body consisting of a number of particles
rigidly connected together, rotating about a centre 0, at n revolu-
tions per second.

Let the weights of the particles be wy, wy, ws, wy, ete.,
rotating about O at distances Y1y Yo Yz s ebC.

By adding together the results for each particle, we obtain for the
kinetic energy of the system,
4

win? + weye® + ways® + ete.
% (wiip 22 53 )

Now suppose a is such a radius that

Wi + wyp® + was® + ete.

ol
a® =
wy + W, + Wz + ete.

then substituting, we may write

2 4arin?
doin (w1 + wy + wy + ete.) @ = Was.
2¢ 29

Kinetic energy =

By this method we are always able to reduce any system of bodies to
a ring, which ring is often called the Egquivalent Fly Wheel, and the
radius o is called the Radius of Gyration. The quantity Wa*/y is
usually called the Moment of Inertia, and denoted by the symbol L.

However numerous the particles are, the expression obtained
above will hold, and so will be true if they are sufficient in number to
make up a solid body. In a continuous body, the separate weights
wy, 1wy, Wy, ete., must be taken indefinitely small and close together to
get accurate results, and the results of the summation may be most
conveniently arrived at by the use of the calculus. The quantity
W /g is called the mass of the body, and but for the introduction of
this factor the symbol 7 would have the same meaning as in Chap. XIL
Hence all the results there given may be used here for thin plates
simply by multiplication by the mass of a unit of area. In addition,
the following simple cases will be sufficient. The fourth is a par-
ticular case of the second.

1. Solid cylinder rotating about its axis.
Radius = 7.

5}

1l

o] %
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2. Rectangular parallelopiped rotating about i @&
an axis. Diagonal of either end = 2d. TR
3. Sphere rotating about a diameter. Radius g 2°
: ="F

=
4. Rod rotating about an axis perpendicular atia ?
to it through one end. Length = /. 3

In other cases such as oceur in practice, the body is generally too
irregular and complex in form to render mathematical formule use-
ful ; we then apply the rule given in Ch. XIL for plane areas, which
by a similar process can readily be extended to solids. That is
to say, if I be the moment of inertia of a body about any axis,
I, that about a parallel axis through the centre of gravity at a
distance /,

e= Io + 7Ilfh2,

where m is the mass of the body. In applying this rule the body is
cut up into portions to which the values just given apply exactly or
with sufficient approximation, just as in the chapter cited.

In estimating the kinetic energy of a fly-wheel, which consists
of rim, arms, and boss, since the rim is by far the most important
part for storing energy, it is generally sufficient to consider it alone.
If it be desired to take the remaining parts into account, an addition
of about one-third the weight of the arms may be made to the
weight of the rim. The combined effect of arms and boss is said to
amount to an addition of, on the average, about 8 per cent. to the
weight of the rim.

If the body have a motion of translation, combined with a motion of
rotation abhout its centre of gravity, it will be shown hereafter that its
total kinetic energy is the sum of that due to the translation and the
rotation taken separately, so that the whole can be found by preceding
rules. As an example of the use of this principle, consider the case of
a ball rolling down an inclined plane, the ball and plane]being suf-
ficiently rough that slipping does not take place between them ; and
suppose the resistance to rolling, called the rolling friction, is in-
sensible. In this case the whole energy due to the descent of the
ball is employed in generating kinetic energy in the ball, which will
be stored in it by virtue of its two motions of translation and
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rotation. Let /” be the velocity of translation, 4 the angular velo-

city, r the radius of sphere ; then since no slipping occurs ¥ = Ar.
Let the ball descend through a vertical height A, then the energy

exerted is 7%, equating which to the kinetic energy stored we

obtain

e AR

T 9 7 = —*—"2 7 ]

where ¢ = radius of gyration is given by a2 = g T

Wh

WV W 2, TV

W = . Ap2 L grreliah

b= Z b g 2t =i F
V2=g2gk.

Thus the velocity of the ball will be less than if it simply slid down
the plane without rotating in the proportion /5 : /7.

The total kinetic energy of the moving parts of a machine in any
position may be found by drawing a diagram of velocity for that
position in the manmner explained in Chaps. V. and VI. Each part
may be divided into a number of small portions, and the centre of
each portion may be laid down on the diagram, as explained on
page 125. If now the diagram be imagined to represent a set of
particles rigidly connected, of masses equal to those of the particles
in question, the moment of inertia of those particles about the pole
of the diagram must be the total kinetic energy required ; the radius
vector of each particle representing the velocity of the corresponding
portion.

102. Conservation of Energy.—The principle of work may also be
stated in another form, which, though not so convenient in practical
applications, is much employed by scientific writers. It has already
been explained that, when there are no frictional resistances, the
power of doing work (energy) exerted in doing a given amount of
work is not lost but merely transferred from one place to another
(Art. 98), while it appears from the present section that any energy
exerted in changing the motion of a body is represented by an ex-
actly equivalent amount of kinetic energy stored up in the moving
body ; hence it follows that in any dynamical system, which receives
no energy from without and supplies none to external bodies, the
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total amount of energy is always the same if there be no frictional
resistances. We express this by the equation

Kinetic Energy + Potential Energy = Total Energy = Constant,

and call it the principle of the Conservation of Energy. In all actual
motions frictional resistances occur which gradually absorb the
energy, but we shall find hereafter that this process is accompanied
by the generation of heat which is equivalent to the energy absorbed
a fact which leads us to conclude that heat is a form of energy, so that
the principle still holds good.

103. Ezamples.—Let us now illustrate and verify the principle by
some examples.

(1) Suppose a weight suspended by a string and oscillating under
the action of gravity, forming the simple pendulum Oy (Fig. 89«,
p. 197), of length I

Let the pendulum start from the position O, and when it
reaches the position Oy let its velocity be ». Let the height of g
above the tangent at the lowest point be 7, and that of 4, &, then we
know that

vt =2g9(h—2),

which may be written, if 7/~ be the weight,
o2
w % + Wy = Wh.

Here the first term on the left-hand side is the kinetic energy of
the weight and the second term /7y the potential energy, that is to
say, the power of doing work which the weight possesses, in virtue
of its height y above the lowest position it is capable of occupying.
The sum of the two is the total energy 7, and the motion consists
in a continual interchange hetween the kinetic and potential energies.
It is, of course, supposed that the resistance of the air is neglected;
this is a resistance of the frictional kind, and continually absorbs
energy from the weight which is thus at last reduced to rest.

The time of an unresisted double oscillation is shown in works

on dynamics to be
= ,\/ ¢
g

when the oscillations are small enough to be sensibly isochronous.
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Larger oscillations are sensibly slower, as shown by the approximate
formula,
16 =T 1 g |
= B = T 1 s
S {1+16f "1° " 52521
where 6 is the angle of swing in circular measure, and # is the same
angle in degrees.

(2) The pendulum has been here supposed to be merely a heavy
particle attached to the end of a string without weight. Let us next
suppose a rigid body, the centre of gravity of which is ¢, oscillating
about a centre 0. Let v be the velocity of g, then

e v? P4
Kinetic Energy = W% + W o (p. 214),

where £ is the radius of gyration about the centre of gravity, and 4
the angular velocity. If L be the length Og of the compound pen-
dulum, this may be written

W' L
Kinetic Energy = 7‘;‘ { e I? } '

The potential energy is the same as if the whole weight were con-
centrated at ¢ ; therefore, assuming the pendulum to start from the
position 04, as hefore,

Eff{ 1+

}h‘i
2q £

7 }+Wy=7m

Comparing this with the result previously obtained for the
simple pendulum, it is not difficult to see that the motion is iden-
tical if

I = JT+R

which is the length of the simple equivalent pendulum.

(3) Take the case of a projectile unresisted by the air. Let ./ be
the point from which the projectile starts with velocity /. If we
draw through 4 a horizontal line AL, from this set up an ordi-
nate 4 H = h = V*/2g, and then draw a horizontal line HK, this line
will be the directrix of the parabola in which the projectile moves.
When the projectile has reached any point in its path, which is at a
height y from the ground and at which it has the velocity », the

2
total energy possessed by the projectile = /7 (y + %) This being
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equal to that which it had at starting = W' 2K; = Wi, QL{]: b -y, and so

the projectile will, at every point of its path, have a velocity due to
its having fallen from the directrix.

EXAMPLES.

1. The energy of 1 1b. of pebble powder is 70 foot-tons. Find the weight of charge
necessary to produce an initial velocity of 1300 feet per second in a projectile weigh-
ing 700 1bs., neglecting the recoil of the gun and the rotation of the shot.

Wt. of powder required = 117 Ibs.

2, In Example 1 suppose the gun fired at an elevation of 30°, and resistance of the
atmosphere neglected, find the kinetic and potential energies of the shot at its great-
est elevation. Also deduce the greatest elevation.

Horizontal velocity = velocity at highest point = 1300 1;?’

Kinetic energy at highest point = 6150 ft.-tons,
Potential % o =2050 ,,
Potential energy _

WVt of shot = 65606 feet = maximum elevation.

3 A train is running at 40 miles an hour, find the resistance in pounds per ton
necessary to stop the train in 1000 yards on a level. Also find the distance in which
the train would be brought up by the same brake power on a gradient of 1in 100,
both when going up and when going down.

Resistance = 39°9 1bs. per ton.
Distance required to bring up the train when ascending

the gradient ... 5 ... = 640 yards,
‘When descending ... % e = 2280 ,,

4. The reciprocating parts of an engine running at 75 revolutions per minute weigh
925 tons, of which parts weighing 20 tons have a stroke of 4 feet and parts weighing
% tons a stroke of 2 feet. Find the energy stored in the parts, assuming a pair of
cranks OP, 0Q at right angles and neglecting obliquity of connecting rod.

LE

Velocity of parts attached to crank P= PN op
1
1) ” 2 Q=QM 'OH}"

Where ¥ is the velocity of the crank pin and PN, PM are perpendiculars on the line
of centres.
Assuming weights attached to these cranks each equal W. Then energy stored in

WFE nrs o 1 WP
5y PN+ QI G =

2

Tn example, total kinetic energy = 40°7 ft.-tons.

5. One weight draws up another by means of a common wheel and axle. The
force ratio is 1 to 8 and the velocity ratio is 9 to 1. Find the revolutions per minute
after 10 complete revolutions have been performed, neglecting frictional resistances
and the inertia of the wheel and axle. Diameter of axle 6 inches.

Revolutions per second = 2'14.

these weights together =
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6. In Ex. 1 suppose the gun rifled so that the projectile makes 1 turn in 40 dia-
meters, find the additional powder charge required to provide for the rotation of the
shot, the diameter of shot being 12 inches and the radius of gyration 4% inches.

Additional powder required = 407 1b.

7. A disc of iron rolls along a horizontal plane with veloeity 15 feet per second,
and comes to an incline of 1 in 40 on to which it passes without shock. Find how
far it will ascend the incline, neglecting friction.

Distance along incline it will run = 2096 feet.

8. In Ex. 5 suppose the weight of wheel = weight of axle, and the two together /
= gum of weights, obtain the result, taking account of the inertia of the wheel and
axle.

After 10 revs. it will rotate at 122 revs. per second.

9. Assuming that when a vessel rolls her dynamical stability is the same as when
steadily heeled over (Art. 91), and neglecting that part of her kinetic energy which
is due to the motion of her centre of gravity (Art. 101), write down her equation of
energy (Art. 103). If the curve of stability be a true curve of sines, show that the
vessel will keep time with a pendulum of length ! swinging through % times her
angle of heel, where

7
klg=m; 1 =V
8, being her angle of vanishing stability and » her radius of gyration.

Note.—The rolling is here supposed unresisted. Observe that the deviation from
isochronism is much greater than in a simple pendulum swinging through the same
angle, k being always greater than unity,

REFERENCES,

Numerous elementary examples on the application of the Principle of Work will
be found in Twisden’s Practical Mechanics.



