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CHAPTER X.
FRICTIONAL RESISTANCES,

112. Preliminary Femarks.—The action of a machine consists, as
we have seen, in a transmission of energy from a driving pair to a
working pair, through a number of intermediate pairs, which change
in a given way the motions proper to the source of energy. In the
absence of friction, the energy transmitted from piece to piece in a
complete period would be the same for all the pairs, but, in con-
sequence of frictional resistances, a certain part of the energy is lost
at each transmission. These frictional resistances are of two kinds,
one due to the relative motion of the elements of the pairs one upon
another, the other to the changes of form which the flexible parts of
the machine undergo, for example to the bending of ropes and belts.
1t is to the first kind that the word “friction” is specially appro-
priated, although it is not essentially different from the second kind
which in some cases is also called “ stiffness.”

We commence with the case of linkwork mechanisms in which the
friction is due simply to the sliding of one surface upon another,
The pairing is in this case of the lower class.

SECTION I.—EFFICIENCY OF LOWER PAIRING.
118. Ordinary Laws of Sliding Friction.—If one body rests on

another (Fig. 102) and is pressed Fig.102.
against it with a force X, a mutual ac- gk &

tion takes place between the two which Lo

resists sliding. The magnitude of this i o

mutual action or tangential stress (Ch. I__l e
XIL) is measured by the force F which is - '

necessary to produce sliding, and the ratio F/X is called the co-efficient
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of friction and will be denoted by f. The value of f depends on the
nature and condition of the surfaces in contact, whether rough or
smooth, dry or lubricated. Under certain circumstances and within
certain limits it is independent of the area of the surfaces in contact
and of the velocity of sliding. These statements may be called the
“ ordinary ” laws of friction. The evidence on which they rest and
the limitations to their truth will be considered hereafter; for the
present we assume them as applicable to all the cases we consider.

The work done in overcoming friction may be estimated just as in
the case of any other resistance. If the body move through a space
» the work done is Fr or f.Xz if X be uniform, and if it be not, a
curve is constructed giving X at every point, then the area under
that curve multiplied by the co-efficient f is the work done (see
Ex. 2). If B be the re-action of the surface upon which the body
we are considering rests, ¢ the angle its direction makes with the
normal to the plane,

Bicos p'="X "B gin'd =F;

~tan ¢ = f,
an equation which shows, that the total mutual action between two
plane surfaces, which slide over one another, makes an angle with the
normal to the plane, the tangent of which is the co-efficient of friction.
The magnitude of this angle then is fixed, bub its direction varies
according to the direction of the sliding. It may therefore be called
the “friction angle,” but it is also often called the ‘“angle of repose,”
because it is the greatest inclination of a plane on which the body
can rest under the action of gravity without slipping. In the
solution of questions respecting friction, graphically or otherwise, it
is often convenient to suppose it known.

114. Friction of Bearings.—Next suppose the surfaces in contact
cylindrical. In Fig. 103 .4B.A represents a cylinder pressed down
into a semicircular bearing by a force S, the direction of which passes
through the point O, which is the intersection of the axis of the
cylinder with the plane of the paper. We may take this to re-
present the ordinary case of a shaft and its bearing from which the
cap has been removed, S being the resultant of all the forces acting
on the shaft which for the moment are supposed to have no
tendency to turn the shaft. The force S is halanced by the
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reaction of the bearing which, when the bearing is in good con-
dition, consists of a pressure distributed over the whole semi-
cylindrical surface. Let DFE he a small element of the surface,

: Fig.103,

p the pressure, 6 the angle the radius of DE makes with the
direction of S, then we must have
ZpDE cos 6 = &§.

If now we knew the law according to which p varies from point
to point, we could by use of this equation find the actual value of p
and also find the total amount of the distributed pressure, that is to
say, 2 p. DE which we will call X. Evidently then we shall have

X=£.8,
where /: is a co-efficient depending on the law of distribution and
therefore to some extent uncertain. When a bearing is well worn
it is probable that (see Art. 115) if p, be the pressure at B
P = . cos 0,
that is, that the intensity of the pressure at any point varies as ON
the distance of the point below the centre. This is the same law as
that which the pressure of a heavy fluid follows, supposed occupying
the semicylinder 4BA, and it is shown in books on hydrostatics
that
Total pressure _ 4 _ %
Resultant pressure =«

Next suppose the shaft to be turned by the action of a couple M

applied to it, then if o be the radius '
M=Zf.p. DE.a=f. Xa=jk. .
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In this formula we have some doubt as to the value of %, and we are
not sure that the co-efficient f would be the same for a curved as for
a plane surface; we therefore replace fk by f/, where f’ is a special
co-efficient of axle friction determined by experiment. If there is a
cap on the bearing, which is screwed down, the value of S is increased
by an amount about equal to the tension of the bolts.

The loss of energy per revolution in overcoming axle friction is
evidently 37 . 27, or if d be the diameter,

Work lost = =f"Sd.
The reaction of the bearing surface on the shaft is partly normal
and partly tangential. The normal part balances S and the tan-
gential part balances I/, hence the two parts may be combined into
a single force opposite and parallel to S at such a distance z from 0
that

Sz =M or 2z = fd,

that is to say, the line of action of the mutual action between the
shaft and its bearing always touches a circle, the diameter of which
is f’ times the diameter of the shaft. This circle is called the
Friction Circle of the shaft or pin considered. When the bearing
has a cap on, the force S must be increased by the tension of the
bolts in caleulating 3/, but not for any other purpose, and the dia-
meter of the friction circle is consequently increased, it may be very
considerably. The utility of this rule will be seen presently.

The real pressure between a shaft and its bearing varies from
point to point, as we have seen. What is conventionally called the
“pressure on the bearing” is something different. Let / be the
length of the bearing, then /d is the area of the diametral section,
and

P

ld

is the quantity in question. It is a sort of mean value of the actual
pressure, and will bear some definite relation to it depending on the
law of pressure. For the particular law of pressure given above

P =P0.‘-Z.

The work lost by friction per square inch of bearing surface per 1’
is evidently proportional to pw, where » is the rubbing velocity in
feet per minute. An equivalent amount of heat is generated as we
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shall see hereafter, and it is upon the rate at which this heat can
be abstracted by the cooling influences to which the bearing is ex-
posed that the amount of bearing surface required depends. In
marine engine bearings the value of pv is sometimes as much as
60,000, though at the expense of a considerable liability to heating,
and in railway machinery it is not less. At lower speeds the value
is smaller. According to a rule given by Rankine,
p (v + 20) = 44,800.

115. Friction of Pivots.—In pivots and other examples in which
the revolving shaft is subject to an
endways force the surfaces in contact H
are frequently conical. In Fig. 104
a conical surface 4B is pressed
against a corresponding conical seat-
ing by a force H, and revolves at a
given rate. If the surface be divided
into rings, one of which is seen in
section at [)F, the pressure on those
rings may be resolved vertically upwards, and must then balance H.
Hence if p be the pressure on DE a ring the radius of which is y,

2p.DE. 2zy cos a = H,
where o is the angle a normal to the conical surface makes with the
axis,

When the bearing is somewhat worn the conical surface will have
descended through a certain space, and it may be assumed that all
points such as DE will descend through an equal space, so that the
wear of the surface measured normal to itself is proportional to
cos a. But if » be the velocity of rubbing of the ring DE, the wear
will be proportional to p», that is to py: hence

PY o COS a.
This principle determines the most probable distribution of the
Pressure on worn surfaces in any case, and has already been used

above for the case of a journal. In the present case a is constant,
and we have

Fig.104.

Py = constant =i = Palfss
where the suffixes 1 and 2 refer to the upper and lower edge; hence,
by substitution, if / be the length 4B of the conical surface,
py.2ml.cos a = H,
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a formula which determines the pressure at every point. The
moment of friction is evidently
M = fEpDE2xny
Zifs DB = e rar]_\’/
: oS o

where Ay is written for the projection of [JE on the transverse plane.
By use of the integral caleulus this is readily seen to be

=f.py.27.

M= j}y’r"‘ 4—_ L25— foOml h +l‘3,
CcOs
mM:ﬂH?&ﬂ
a.

a formula which shows that the friction is the same as that of a ring
of small breadth, of diameter equal to the mean of the greatest and
least diameters of the portion of a cone considered. In the case of
a simple flat-ended pivot the equivalent ring is half the diameter of
the pivot. If the pressure were uniform throughout, the diameter of
the equivalent ring would be # instead of 1 the diameter of the
pivot, and the actual diameter in practice will probably vary between
these limits.

Pivots are sometimes used in which the surfaces in contact are
not cones, but are curved, so that in wearing the pressure and wear
are the same throughout (Schiele’s pivots). That this may be the
case we must have, since p is constant,

i o€ COS o,
that is to say, if we draw a tangent DET to meet the axis in 7, ET
must be constant. The curve which possesses this geometric property
is called the “tractrix.” It is traced readily by stepping from point
to point, keeping the tangent always of the same length. Pivots of
this kind are very suitable for high speeds, as the wear is very
smooth.

118. Friction and Efficiency of Serews.—In any case of a machine
in steady motion the principle of work takes the form (Art. 96)
Energy exerted} _ | Useful work done 4+ Work wasted
in a period £ { in overcoming frictional resistance.
The simplest case is that of a secrew which we will suppose to be
square threaded and applied to a press, or to some similar purpose.
The pressure between the nut and the thread is distributed uniformly
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along the thread, if the screw be accurately constructed and slightly
worn. As shown in the last article in the similar ease of a pivot,
the friction may be regarded as concentrated on a spiral traced
on a cylinder the diameter of which may be expected to be about
the mean of the external and internal diameter of the screw. Fig.
105 shows one convolution of this spiral unrolled. 4B is the thread,
BN, parallel to the axis of the screw, is
the pitch p, and 4 Nis the circnmference
wd. H is the thrust of the screw, being
the force which the serew is overcom-
ing by means of a couple applied to
turn it about its axis. R is the action
of the screw thread which (Art. 113)
makes an angle ¢ with the normal, i

where ¢ is the angle of repose. The normal itself makes an angle
a with the axis of the screw, where « is the pitch angle given by the
formula

Fig.105.

tana =L,

i
This force R arises from the turning forces applied to the screw, and
must have the same moment 3 about the axis of the screw; its
vertical component therefore must be H and its transverse component
a force S such that

d_
S.5= M.
Hence the equations

M=1_;d. sin (a + ¢),

H=ZPR.cos (a+ ).
Also considering a complete revolution of the screw,
Energy exerted =M. 2w = Rad . sin (¢ + ¢),
Useful work done= H.p=Iip. cos (u + ),
from which it follows that the efiiciency of the screw is
tan a
tan (e + )
It is not difficult to show that this fraction is greatest when
o=45" — 14, and its value is then

Efficiency =

Maximum efficiency = ( %;_'—J%_‘-;) approximately.
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For ordinary values of f then, the best pitch angle is approximately
45° and the efficiency is considerable.

In practice, however, the pitch angle is much smaller, its value in
bolts and the screws used in presses ranging from ‘035 in large screws
to *07 in smaller ones; the efficiency is then less, often much less, than
one third, the object aimed at being not efficiency but a great
mechanical advantage.

If the pitch be sufficiently coarse, it will be possible to reverse the
action, the driving force being then I and the resistance a moment
opposing the rotation of the screw. In a well known kind of hand
drill and a few other cases this occurs in practice; the force & is
then inclined on the other side of the normal, and the efficiency is
in the same way as before found to be
tan (a— ¢)

an a.

Efficiency =

In most cases, however, o is less than ¢, and the screw is then
incapable of being reversed. Non-reversibility is often a most valu-
able property in practical applications, the friction then serving to
hold together parts which require to be united or to lock a machine
in any given position.

In estimating the efficiency of screw mechanisms the friction of the
end of the screw acting like a pivot or of the nut upon its seat must
be included; in screw holts this item is generally as great as the
friction of the threads. The friction due to lateral pressure of the
screw on its nut may usnally be neglected, but when necessary it
may be estimated by the same formula as is used for shafts. The
above investigation, strictly speaking, applies only to square-threaded
screws ; it has, however, been shown that the efficiency is only
slightly diminished by the triangular or other form of thread usually
adopted for the sake of strength.* The formula here given for
screws may be applied to any case of a sliding pair in which the
driving effort is at right angles to the useful resistance. A simpler
case is that in which the driving effort is parallel to the direction
of sliding. This is given in Example 1, page 271. In all cases ob-
serve that the efficiency diminishes rapidly when the velocity-ratio is
increased. This, which is common to most mechanisms, limits the

* Cours de Mécanique Appliquée aux Machines, par J, V, Poncelet, p. 386. Paris,
1874.
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mechanical advantage practieally attainable. The hydraulic press is
an exception, as will be seen hereafter.

117. Efficiency of Mechanism by Exact Method.—In the preceding
cases the efficiency is the same for any motion of the mechanism
whether large or small. Generally, however, it will be different in
each position of the mechanism, and by the *efficiency of the
mechanism ” is then to he understood the ratio of the useful work
done in a period to the energy exerted in the period.

The exact calculation of the loss of work by frictional resistances
in mechanism is generally very complicated, so that it is best to
proceed by approximations the nature of which will be understood
on considering an example with some degree of thoroughness. The
case we select is that of the mechanism of the direct-acting vertical
steam engine such as is represented in Plate L., p. 119.

The losses by friction are (1) the loss by piston friction, (2) friction
of guide bars, (3) friction of crosshead pin, (4) friction of crank pin,
(5) friction of crank-shaft bearings. Of these, the first two are
considered separately (Ex. 2, p. 271), and for the present neglected,
while the last three are treated by a graphical method as follows.

In Fig. 106 CQA are the friction circles of the three parts in

Fig.106.

question, which for the sake of clearness are drawn on a very
exaggerated scale while the bearings themselves are omitted. We
Will neglect the weight of the connecting rod and its inertia; of
these the first is generally relatively inconsiderable, but in high-
Speed engines the last is often very large and makes the friction very
different at high speeds and low speeds (see Ch. X1.) The weight of
the crank shaft and all the parts connected with it is supposed to act
through the centre of the shaft; for simplicity we will call it 7.
The pressure on the piston after correction for piston and guide-bar
friction is denoted by . Then, in the absence of friction, the line of
action of the thrust on the conneeting rod is the line joining the
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centres of the friction circles, and the moment of crank effort is P.CT\,
where 7, is the intersection of that line with the vertical through C.
But the line of action in question must now touch the friction circles
(Art. 114), and the true moment of crank effort on the same principle
must be . CT, where T’ is the intersection of this common tangent
with the vertical C7. Thus .77, is the correction for friction of
the crosshead and crank pins, Next observe that the forces acting on
the crank shaft are 77 the weight and S the thrust of the connecting
rod ; these may be compounded into one force 2 passing through 7' as
shown in the diagram. The reaction of the crank-shaft bearing is an
equal and opposite force & which must touch the friction circle and cut
CT in a certain point K. Now the horizontal component of £ is the
same as that of S, namely P; therefore the true moment of crank effort
after allowing for friction is P. T'KK.

By performing this construction for a number of positions, as in
the last chapter, we obtain a diagram of crank effort corrected for
friction. The area of this curve will give us the useful work done
in a revolution, the ratio of which to the energy exerted is the
efficiency of the mechanism : and its intersections with the line of
mean resistance will give the points of maximum and minimum
energy and the fluctuation of energy as corrected for friction. When
the crank makes a certain angle with the line of centres 7K vanishes.
Within this angle no steam pressure, however great, will move the
crank, as is well known in practice. It may be called the “dead
angle,” all points within it being dead points.

118. Efficiency of Mechanism by Approximate Method.—The process
just described is not too complicated for actual use in the foregoing
example, but in many cases it would be otherwise, and it may there-
fore be frequently replaced with advantage by a calculation of the
efficiency of each of the several pairs of which the mechanism is
made up taken by itself.

Each pair consists of two elements, one of which transmits energy
to the other, with a certain deduction caused by the friction between
the elements. The ratio of the energy transmitted to the energy re
ceived may be called the efficiency of the pair. If ¢, ¢, ¢, ... be the
efficiencies of all the pairs in the mechanism it is evident from the
definition that the efficiency of the whole mechanism must bhe

P e
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In some cases the efficiency of each pair will be independent of the
frictional resistances of all the other pairs, and may be found separ-
ately. In general this is approximately, but not exactly, true, a point
which will be best understood by a consideration of the foregoing
diagram. For example, the friction of the guide bars is diminished
in consequence of the friction of the ecrank pin, because the obliquity
of the connecting rod is virtually diminished. The supposition .
is, however, often sufficiently nearly true to enable a rough
estimate to be made of the efficiency of the mechanism by
finding the efficiencies of the several pairs taken alone, all the
- others being supposed smooth. In doing this mean values are
taken for variable forces, if the amount of variation be not consider-
able. The uncertainty and variability of the co-efficients on which
frictional efficiency depends are such as to render refined calculations
of little practical value.

119. Eaperiments on Sliding Friction (Morin).—The ordinary laws
of friction, which may be comprised in the single statement that the
co-efficient of friction depends on the nature of the surfaces alone,
and not on the intensity of the pressure or on the velocity of rub-
bing, were originally given by Coulomb in a memoir, published in
1785, although some facts of a similar kind were previously known,
They are therefore often called Coulomb’s laws. Yet Coulomb's ex-
periments were scarcely sufficient to establish them, and the subject
was reinvestigated by others, especially by the late General Morin,
whose memoirs were presented to the French Academy in 1831-4.
Morin’s experiments were so elaborate and exact that they may be
considered as conclusively proving the truth of Coulomb’s laws
within certain limits of pressure and velocity, and under the circum-
stances in which they were made : it will therefore be advisable to
explain them briefly.

A sledge loaded with a given weight was caused to slide along a
horizontal bed 4B more than 12 feet long (Fig. 107), the rubbing
surfaces being formed of the materials to be experimented on. The
necessary force was supplied by a cord passing over a pulley at B to
& descending weight . The tension of the cord 7' was measured
by a spring dynamometer, and could likewise be inferred from the
magnitude of the weight after correction for the stiffness of the cord
and the friction of the pulley. In one form of experiment the
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weights were so arranged that the sledge moved nearly uniformly :
the corresponding friction was measured and found to be constant.
In a second form, the times occupied by the sledge in reaching given

Fig.107.
W T
A ey
—_—
e it
:
s N

points were automatically measured and compared with the spaces
traversed, by setting them up as ordinates of the curve CZ shown
helow. The curve proved to be a parabola, showing that the space
varied as the square of the time, from which it was inferred that the
acceleration of the sledge was constant.

From hoth methods it appeared that the co-efficient of friction
was exactly the same, whatever the pressure and whatever the
velocity, provided the nature and condition of the surfaces were the
same. A few important results are given in the annexed table ;
they are taken from Morin's latest memoir,* containing, besides many
new experiments, tables of the results of the whole series. The
limits to their application will be considered presently.

\ |
1 NATURE CONDITION C0-EFFICIENT OF
1 OF SURFACES, 0F SURFACES, ; FricrIonN. |

Perfectly dry and B =

Wood on Wood, | ek 25 to -5
t]
Metal or Wood on . . Tt
Metal or Wood, % Slightly oily, - ‘15
| Do. do., . Well lubricated, 07 to 08
|
! Do. do., 1 Lubricant  con- j | 05 |

stantly renewed, |

* Nouvelles Experiences . . . . faites & Metz en 1834. Page 99.
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Full tables of Morin’s results will be found in Moseley’s work cited
on page 267. The friction between surfaces at rest is often greater
than when they are in motion, especially when the surfaces have
heen some time in contact: the excess, however, cannot be relied on,
as it is liable to be overcome by any slight vibration. :

120. Eaceptions to the Ordinary Laws in Plane Surfaces.—From the
exactitude with which Coulomb’s laws were verified by Morin’s
experiments the inference was naturally drawn that they were
universally true, but this is probably erroneous. Although no
complete and thorough investigation has been made, it can hardly
" now be a matter of doubt that there are cases in which the laws of
friction are widely different. The known cases of exception for
plane surfaces may be grouped as follows :—

(1) At low pressures the co-efficient of friction increases when
the pressure diminishes. This has been shown by various experi-
mentalists, as, for example, by Dr. BallL* The lowest pressure
employed by Morin was about three fourths of a Ib. per square inch,
and this is about the pressure at which the deviation noticed by
Ball becomes insensible. This effect may be due to a slight adhesion
between the surfaces independent of friction proper.

(2) At high pressures, according to certain experiments by
Rennie, the co-efficient increases greatly with the pressure. The
upper limit of pressure in Morin’s experiments was from 114 to 128
Ibs. per square inch. At 325 Ibs. per square inch Rennie found for
metallic surfaces at rest *14 to 17, nearly agreeing with Morin ; but
on increasing the pressure the co-efficient hecame gradually greater,
ranging from ‘35 to 4 at pressures exceeding 500 lbs. per square
inch. The metals tried were wrought iron on wrought and cast
iron, and steel on cast iron. Tin on cast iron showed only a slight
increase in the co-efficient. In fully lubricated surfaces in motion we
shall see presently the results are exactly opposite. This increased
friction at high pressures may be due to abrasion of the surfaces.

(3) At high velocities the co-efficient of friction, instead of being
independent of the velocity, diminishes greatly as the velocity in-
creases. This was shown by M. Bochet in 1858. Similar results

* Eaperimental Mechanics, by R. S. Ball, page 78. Maemillan, 1871,
+ Phil, Trans, for 1829.
R
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have been obtained by others, especially by Capt. Galton in some
important experiments on railway brakes.* The limit of velocity
in Morin’s experiments was 10 feet per 17, and at somewhat greater
velocities than this the diminution becomes perceptible. Morin’s
results have been shown to be applicable at the very lowest velocities
by Professor F. Jenkin and Mr. Ewing.t

It appears difficult to explain the diminution at high speeds merely
by a change in the condition of the surfaces ; it should, probably, be
regarded as part of the law of friction. Professor Franke in the
Civil Ingenieur for May, 1882, has proposed the formula

S ety
where f, is about '29, and « (for velocities in metres per 1”) ranges
from 02 to 04, according to the nature and state of the surfaces.

121. Azle Friction.—It has already been pointed out that the co-
efficient of axle friction is not necessarily the same as that for plane
surfaces sliding on one another, and, besides, the continuous contact
of a shaft and its bearing is very different from the brief contact oceur-
ring in sledge experiments. Morin however made special experiments
on the friction of axles and showed that the co-efficients were constant
and nearly the same in the two cases. The diameters employed
however were 4 inches and under, while the revolutions did not
exceed 30 per minute, so that the rubbing velocity was not more
than 30 feet per minute. The pressures were not great, the value of
pv not exceeding 5,000,

Much greater values of pr than this occur in modern machinery,
and then it is tolerably certain that the value of the co-efficient is
much less and diminishes with the pressure. Already in 1855 M.
Hirn had made a long series of experiments on friction, especially of
Iubricated surfaces. The following summary of his results is given by
M. Kretz, editor of the third edition of the Mécanique Industrielle.}

(@) That a lubricant may give a regular and minimum value to the
friction it must be triturated ” for some time between the rubbing
surfaces.

* Qee Engineering, vol. 25, pages 469-472,

+ Phil. Transactions, vol 167, part II.

+ Introduction & la Mécanique Industrielle, par J, V. Poncelet. Troisiéme édition,
Paris, 1870, Page 516.
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(b) The friction of lubricated surfaces diminishes when the tem-
perature is raised, other things being equal.

(¢) With abundant lubrication and uniform temperatuve friction
varies directly as the velocity. When the temperature is not main-
tained uniform, the relation between friction and velocity depends on
the law of cooling of the special machine considered. In ordinary
machinery friction varies as the square root of the velocity.

() The friction of lubricated surfaces is nearly proportional to the
square root of the area and the pressure.

The last result is equivalent to saying that the co-efficient of
friction varies inversely as the square root of the pressure per unit
of area. Tt is remarkable that this law has also been deduced by
Professor Thurston from experiments made apparently without any
knowledge of what Hirn had done* with pressures from 100 to 750
Ibs. per square inch and a velocity of 150 per 1".

It may be open to question whether Ilirn’s experiments are
sufficient to establish all the above statements, but it cannot be
doubted that for values of p» exceeding 5000 the co-efficient of friction
of well lubricated bearings of good construction diminishes with the
Pressure, and may be much less than the value at low speeds as de-
termined by Morin. How far the diminution can be regarded as due
to a change of condition consequent on continuous wear is uncertain,

We now proceed to consider higher pairing, commencing with the
case of rolling contact. The friction is then described as “rolling
friction.”

SrcrroN IL—ErricieNncy oF HicHER PAIRING.

122. Rolling Friction.—When a wheel rolls on soft ground the
resistance to rolling is due to the fact that the wheel makes a rut
and depresses the ground as it advances over it. Thus the resistance
to motion is proportioned to the product of the weight moved into
the depth of the depression. The depth of the rut depends on the
radius as well as the breadth of the wheel. It is found that the
Tesistance may bhe expressed by

bW

e

Where 7 = weight, r = radius of wheel, and ¥ is approximately a
constant length. This might have been anticipated, since the depth

* Friction and Lubrication, by R, H. Thurston, New York, 1879,



260 DYNAMICS OF MACHINES. [PamT 111,

of the rut is the versed sine of the arc of contact, and therefore for a
given small arc is inversely as the radius. If the wheel roll on hard
ground over a succession of obstacles of small height the law of
resistance will be expressed by the same formula.

When the surface rolled over is elastic and the pressure on it is
not sufficient to produce a permanent rut, the resistance to rolling is
not so easily explained. If we consider an extreme case, as for
instance a heavy roller rolling on india-rubber, we shall be able to see
to what action the resistance is due. The wheel will sink into the
rubber, which will close up around it both in advance and behind as
shown in Fig. 108. At € the rubber will be most compressed.

As the wheel advances and commences to crush the rubber in advance
of it the rubber moves away to avoid the compression, heaping itself
up continually in advance of the wheel. In this movement it rubs
itself over the surface Cw of the wheel, exerting on it a frictional force
in the direction shown by the arrow F, which opposes the onward
motion of the wheel. Again, the rubber in the rear is continually
tending to recover its normal position and form of flatness, and in
doing so rubs itself over the surface 6C of the wheel in the direction
shown by the arrow #’, which also tends to oppose the onward motion
of the wheel. The effect of this creeping action of the rubber over
the surface of the wheel is to cause the onward advance of the centre
of the wheel to be different from that due to the circumference rolled
out. ¥ Moreover the vertical component of the reaction of the
surface no longer passes through the centre of the wheel as it must
do in the absence of friction, but is in advance by a small quantity
b such that 7776 is the moment of resistance to rolling.

* Sae a paper by Prof. Osborne Reynolds, Phil. Trans., vol. 166, to whom the true
explanation of resistance to rolling in perfectly elastic hodies is due.
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Experiments on rolling resistance present considerable discrep-
ancies, but within the limits of dimension of rollers which have
been tried it appears that b is independent of the radius; this leads
to a formula of the same form as before for the force necessary to
draw the roller, namely

Rl
=

where § i a constant which for dimensions in inches is from ‘02 to
‘09 according to the nature of the surfaces. With very hard and
smooth surfaces of wood or metal, the lower value ‘02 may be
employed. Rolling friction is not sensibly diminished by lubricants,
but depends mainly on smoothness and hardness of the surfaces. It
is probably influenced by the speed of rolling, but this does not
appear to have been proved by experiment unless in cases where
the resistance of the atmosphere and other causes make the question
more complicated.

In many cases of rolling the surfaces are partly elastic and partly
soft, so that the resistance to rolling is partly due to surface friction
and partly to permanent deformation. The value of the constant b
is then much increased. For wagon wheels on macadamized roads
In good condition the value of & is about -5”, and on soft ground
four to six times greater. The draught of carts is said to be increased
by the absence of springs.

123. Friction of Ropes and Belts.—Frictional resistances are also
Produced by the changes of form and dimension of the parts of a
machine occasioned either by the stresses necessarily accompanying
transmission of energy or by shocks. In the present chapter we
consider tension elements only, that is to say, chiefly ropes and belts.

In Fig. 109 4B is a pulley, the centre of which is 0, over which a
Tope passes embracing the arc 4KB and acted on by forces
I\T, at its ends. If there be sufficient difference between 75
3-1}(1 T, the rope will slip over the pulley notwithstanding the
fnf:tion which tends to prevent it. Let the rope be just on the
bomt of slipping, then its tension will gradually diminish from
Ty at 4 to T, at B. Let T, T" be the tensions at the inter-
mediate points K, Z, then the portion KL of the rope is kept
M equilibrium by the forces 7}, 7" at its ends, and a third force S due
to the reaction of the pulley, the three forces meeting in a point £.
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On OL set off to 0] to represent 7, and draw /% perpendicular to &
to meet OK in Z, then the sides and the triangle Okl will be propor-
tioned by the three forces, so that O represents 7" and a% S. The
angle S makes with the radius
will be the same for all ares
of the same length, and if KL
be taken small enough will be
the angle of friction (Art. 113).
This construction can, if we
please, be commenced at 4 and
repeated for a number of small
portions of the rope till we
arrive at B; we shall obtain
_ a spiral curve allb, the last
L radius Ob of which represents
T, on the same scale as the
first Oa vepresents T It is
convenient however to have an algebraical formula to calculate 7.
Let the angle KOL be i and the angle S makes with the radius ¢,
then

Fig.109.

v \
T T

T 0l _sin Okl _cos (i+ ) o
I = = oS  tan ¢.
7" Ok sin Olk cos ¢ LA L
If now the angle ¢ be diminished indefinitely we may write cos i=1
and sin i =4, so that

FoT

S =i.tan ¢.
Replacing i by A6, T'— 1" by AT, and proceeding to the limit
1 dd
76 tan ¢=1,
which being integrated gives
Iy ‘l fe

where f is the co-efficient of friction, ¢ the angle subtended by the
part of the pulley embraced by the rope, and e the number 27288
being the base of the Napierian system of logarithms. The formula
is applicable even if the pulley be not circular. For a circular pulley
the spiral curve, representing graphically the tension at every point, is
the equiangular or logarithmic spiral of which the formula may be
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regarded as the equation. In constructing it graphically, the value
of ¢, for a small yet finite angle i, is found by replacing 7/T" by efi
and expanding the exponential : we thus get approximately

1+ fi=cosi+sini.tan ¢ =1 — £é* + 4. tan ¢,

s tang = f + &

With small values of the co-efficient 2f may be a sufficiently small
angular interval, but in general it will be advisable to take the
angular interval equal to the angle of friction, then the value of ¢ is
1} times that angle. The construction being one in which errors
accumulate, the formula is preferable when great accuracy is desired.

124. Driving Belts.—When a belt is stretched over a pulley by equal
weights, the tension of the belt is not necessarily the same everywhere
in the first instance; hut if the pul-
ley move steadily and the stiffness
of the belt be disregarded, it must
be so. Assuming this, let one of the
weights be increased by a certain
quantity ¢ and the pulley be held
fast, then the tension of that side
of the belt will be increased by an
amount equal to ¢ at 4, but di-
minishing to zero at L, a point ¢
determined by the intersection of I
the friction spiral «, I, (Fig. 110) b
with the circle alb, the radius of IJ_-’
which represents the weight 77, * L]
Similarly, if the other weight be diminished by (, the tension will be
diminished by an amount equal to ¢ at B, but diminishing to zero
at L, The portion L,L, will remain at the original tension /. If
@' be increased sufficiently, L,, L, will coincide in one point L, the
Position of which will depend on the proportion between  and €.
While these changes take place in tension, corresponding changes of
l‘ength must occur in the parts of the belt exposed to them, AL
ncreases and BL, diminishes in length. Hence both these parts slip
over the pulley and work is lost by friction, while L,L, remains
fixed. If now, instead of altering the weights /7, we imagine these
weights held fast and the pulley forcibly rotated so as to increase
A’s tension by @, and diminish B's tension by @, L, L, will rotate

L Fig.110.
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with the pulley, and the total increase of length of the one side
must be equal to the total diminution on the other, from which con-
sideration it is possible to calculate the ratio ¢ bears to . In
practical cases, however, the difference between () and @' is so small
that it may be neglected without sensible error, and therefore, in all
questions relating to the working of belts, it may be assumed that
the mean tension of the two sides of the belt is independent of
the power which is being transmitted. The difference of tensions,
however, is directly proportional to the power, and may at ouce
be calculated if the speed be known, while the ratio of tensions
may be determined, so that the belt shall just not slip, by means
of the formula above obtained. The value of the co-efficient of
friction of leather on iron ranges from -15 to *46 according to the
degree of lubrication: under ordinary circumstances -25 may be
considered an average value. This, however, is often greatly ex-
ceeded in practice, and one reason why large values are admissible
is said by some to be the effect of atmospheric pressure. The
sectional area of belts is fixed by considerations of strength, and
as their thickness varies little, this is equivalent to saying that a
certain breadth of belt is required for each horse-power transmitted.
(See Ex. 10, page 272).

125. Slip of Belts—When a belt is stretched over a pair of
pulleys, one of which drives the other, notwithstanding a resistance
not so great as to cause slipping of the belt as a whole, it appears
from what has been said that a certain arc exists on each pulley on
which the belt does not slip. The length of these arcs has already
been found, but in the present cases the movement of the pulleys
causes them to place themselves where the belt winds on to the
pulleys, so that the driving pulley has the speed of the tight side of
the belt and the driven pulley that of the slack side. The two sides
have different speeds, because the same weight of belt must pass a
given point in a unit of time, wherever that point be situated,
and therefore the speed must be greater the greater the elongation,
that is to say the greater the tension. Hence the driving pulley
moves quicker than the driven pulley by an amount which can be
calculated when the tensions and the elasticity of the leather are
known, and this  slip ” measures the loss of work due to the creeping
of the belt over the pulleys described above. In ordinary belting
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this loss is small, not exceeding 2 per cent. The length of belts,
however, must not be too great, or its extensibility will be incon-
venient, especially if the motion of the machine be not sufficiently
uniform.*  Within moderate limits extensibility is favourable to
smooth working.

128. Stiffness of Ropes—When a rope is bent it is found that a
certain moment is required to do it depending on the dimensions
of the rope and, besides, on its tension. The reason of this is best
understood by referring to the corresponding case in a chain with
flat links united by pin joints. If d be the diameter of the pin, 7' the
tension of the chain, there will be a certain moment of friction re-
sisting bending which, if the pin be an easy fit, will be simply & /714,
but if it be tight will be '

M = 3fld + 3fT4,
where 7, is a constant depending on the tightness. If the chain
pass over a rotating pulley without slipping, this frictional moment
has to be overcome both when bending on and when bending off
the pulley. The effect shows itself by a shift outwards on the
advancing and inwards on the retiring side of the chain, so as to
increase the leverage of the resistance and diminish that of the effort.
In the present case the two shifts are equal, being each given by the
formula

o o Ty |

T = 2frl{1 +
The case of a rope differs from this only in being more complex : in
the act of bending, the fibres move over each other, and the relative
motion is resisted by friction due to pressures which are partly con-
stant and partly proportional to the tension. The shift of the centre
line of the rope is visible on the side of the resistance, but hardly
perceptible on the side of the hauling force, showing that most of
the loss of work is due to the bending on the pulley. The magnitude
of the shift varies so much according to the mode of manufacture and
the condition of the rope that it is useless to attempt more than
a very rough estimate. According to a formula given by Eytelwein,
if d be the diameter of the rope,

Ti=ited

*Bee a footnote by M. Krets, Cours de Mécanique Appliquée ave Machines par
Poncelet, page 264, :
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where ¢ is a constant, which for dimensions in inches is taken as '47
for hemp ropes; but this value is too large, except for light loads,
and small diameters of pulley. The loss of work per revolution is
T. 27z, and if D be the effective diameter of the pulley,

Efficiency =

D
D+ 2%
There is a loss of work by the stiffiness of belts of a similar kind, but
of uncertain amount. By most authorities it is considered so small
as to be negligible.

The shift of the line of action of the tension of a rope due to its
stiffness has the effect of diminishing its strength.

127. Friction of Toothed Wheels and Cems.—The friction of toothed
wheels is partly rolling and partly sliding, but the first is relatively
small and may be neglected. To determine the sliding friction, let
PT = z (see Fig. 71, page 161), then (page 166) the velocity of
rubbing is given by the formula

v=(d + Az
which may be written, if 7" be the speed of periphery of the pitch
circles, 2, I’ the radii,

If, therefore, the wheels be supposed to turn through a small space
6z measured on the piteh circles, the pair of teeth will slide on one
another through the small space 3y, given by the formula

1 1
= = F — Juim
% R ) R') 2

This enables us to find the work done in overcoming friction, for
if P be the pressure between the pairs of teeth,

Work done = ]‘:[.de e (]11_ - Il.?)j'chl.v.

The pressure between the teeth will vary as the wheels turn ac-
cording to some unknown law, depending on the way the teeth
wear, but the variation is probably not great. Assuming it constant,
and further, supposing that the chord PI' (Fig. 71) is equal to the
arc PT, and therefore to » the arc turned through by the wheels
after the teeth pass the line of centres,

Work done = f. P. (11, + Jl?)gn
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The same formula applies before the line of centres, and if we as-
sume the arcs of approach and recess each equal to the pitch p, we
shall have for the whole work lost by the friction of a pair of teeth,

Whole Work lost = fP(jll) +Jl£;)p"’.
The energy transmitted during the action of a pair of teeth is 22p,
therefore the counter efficiency is ‘

lte=1+flg+)l=1+fr(l+2)

where n, n' are the numbers of teeth in the wheels. A smaller arc
of action is sometimes employed in practice, and the friction will
then be less. This is also the case in bevel gear. The formula shows
that the friction is diminished by increasing the number of teeth.

A more exact solution of this question * can be obtained on the
assumption that P varies as it would do if there were only one pair
of teeth ; but as this is uncertain it is not practically useful.

In all cam and wheel mechanisms the efficiency for a small move-
ment in any position can be determined exactly by a graphical or
other process. For the velocity ratio can be found, as shown in
Part II., and the forceratio is determinate by the principles of
statics, therefore the quotient which gives the efficiency can also be
found. In the case of toothed wheels this method shows at once t
that the friction of the teeth before the line of centres is greater than
the friction after the line of centres. The difference appears
insufficient to account for the injurious effects generally ascribed to
friction before the line of centres, which however may be due to
other causes. In cam mechanisms the efficiency in one position is
little guide to the efficiency in a complete period, which can only
be found by a process too intricate to be useful, or by making
some supposition as the mean value of the pressure between the
rubbing surfaces.

The counter efficiency of a train of 7 equal pairs of wheels is

1 es=1 +'.'nf-:.—(;l_b i i')

Assume now that a given velocity-ratio is to be provided by the
train, and that the number of teeth in one wheel is given, then it is

* See Moseley's Mechanical Principles of Engineering.
+ Ibid., page 286,
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possible to find the value of m that the friction may be least. The
solution of this problem is the same as that of finding the least
possible number of teeth, and it was shown by Young that, for
this, we ought to take m, so that the velocity-ratio for each pair
of wheels is, as nearly as possible, 359. For example, if the
train is to give a total velocity-ratio of 46, there should be
three pair of wheels. The gain over a single pair in this case is
one third, but will be much greater for higher velocity-ratios. The
solution (first given by Mr. Gilbert) takes no account of axle friction,
a circumstance which would greatly modify the result.

SEcTION TTT.—FRICTIONAL RESISTANCES IN GENERAL.

128. Efficiency of Mechanism in general.—It appears from what has
been said that an exact calculation of the frictional resistances is
impracticable, partly because the process is too complex to be useful,
but chiefly because the co-efficients to be employed are variable
according to circumstances, and within limits, which are not precisely
known. Hence when possible the efficiency of a machine is es-
timated, not by considering each particular element, but by direct
experiment on the machine as a whole, and we conclude this chapter
with some general principles which bear on this question.

The effort employed to drive a machine may be greater or less,
according to the resistance which is being overcome, and there-
fore the stress between each element will also vary according to this
effort. As, however, these stresses depend also on other forces, such
as weight and elasticity, which have no connection with the effort,
but are always the same, they will not increase so fast, and the
frictional resistances will accordingly be proportionally less the
greater the effort. Some resistances are absolutely constant, for
example, the friction of bearings, the load on which ig simply the
weight of a fly-wheel or other moving part: or the friction of a piston
rod in its stuffing box. Others are sensibly proportional to the
driving effort or the useful resistance, in which case, when the
ordinary laws of friction apply, the loss of work increases in direct
proportion to these quantities. The greater number depend on hoth
variable and constant forces, but these may be in great measure
separated into two parts, one of which is approximately constant
and the other approximately proportional either to the driving effort
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or to the useful resistance. Hence, if I7 be the useful work done and
E the energy exerted in a period of the machine,
E=U+kU+¥.E + B,

where £, &' are numerical co-efficients and B the work done in over-
coming the constant resistances. In hydraulic and other machines,
where fluid resistances occur, terms depending on the speed of the
machine must be added, indeed this is so in all machines when -
driven at a high speed ; because forces due to inertia increase the
friction, and besides shocks and the resistance of the atmosphere
have to be considered. Such cases, however, are not considered
here.

If we transfer the term ' Z to the other side of the equation and
divide by 1 - %, we get

E=(1+e)U+ E,,

where ¢, I, ave two new constants derived from the former ones, of
which % is the work done in driving the machine when unloaded,
and 1 + ¢ the counter-efficiency when the load is very great.

The same formula may also be written in a way which is some-
times more convenient. Let P be the mean value of the driving
effort and 2 that of the useful resistance during a complete period,
» the mean value of the velocity-ratio of the working and driving
pairs, then

P=(1+e)Br+ Py,
where P, is now the effort required to drive the machine when
unloaded. In hoisting machines £ is the weight lifted and P the
hauling force usually called the power, £/ is the mechanical advan-
tage or purchase.

In the steam engine, if p,, be the actual mean effectlve pressure,
P, the part of that pressure employed in overcoming the useful
resistance, p, the pressure necessary to drive the engine when
unloaded,

Pa=C(1+e) p' + P,
The value of ¢ may be taken as ‘15 or in large engines somewhat
less. The constant p,, often called the “friction pressure,” is from 1
to 1% Ibs. or in marine engines 2 Ibs. or more per square inch. At
high speeds and pressures the ordinary laws of friction fail and e is
diminished, the constant friction is then relatively of more im-
portance,
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If the direction of motion of the machine be reversed so that the
original resistance becomes the driving effort and the effort the
resistance, the same general formula is approximately true, but the
constants %, & are interchanged. Unless under special conditions
the efficiency is not the same in the two cases, and in fact is
generally very different. Let us suppose that in a machine working
against a known reversible resistance, the driving effort is gradually
diminished until the machine reverses, and let Z’ be the work done
when reversing, we have the equations

E=U+kU+¥E+ B,
U=F +E +kU+ B,
from which by subtraction and dividing by U we find
I e )
U R T
a formula which gives the efficiency when reversing. If the original
efficiency be less than } (1—1'), the machine will not reverse even
when the driving force is entirely removed. In most forms of
hoisting machines %' is small enough to be neglected, and we have the
important principle that a machine will not reverse if its efficiency is
less than -5. It will not reverse under any circumstances if & > 1.
As previously explained in the case of a screw, non-reversibility
is a property so valuable in practical applications as to he worth
obtaining at the sacrifice of efficiency. The differential pulley
block is a common example. ?

129. Friction Brakes.—Frictional resistances are not only a source
of loss, they are also usefully employed in machines for various pur-
poses. In screws and driving belts we have already found them
employed for the purpose of locking a pair or closing a kinematic
chain, and many instances of the same kind might be referred to.
Another application of equal importance is for the purpose of absorb-
ing surplus energy, which might otherwise produce dangerous effects,
or which requires to be disposed of in order to stop a machine. An
apparatus for this purpose is called a ¢ brake.”

The most powerful brakes are those in which fluid resistances are
used, but when the amount of energy is small as compared with the
surfaces available, the friction of solids may be employed. The
energy thus absorbed is converted into heat, and is dissipated by
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radiation and conduction. Sufficient surface must be provided to
prevent the temperature rising too high.

A brakeis generally applied to a rotating wheel or drum, and consists
either of a solid block of wood or metal pressed against the wheel by
some suitable mechanism; or else of a strap of metal, often lined with
small blocks of wood, embracing the drum and tightened by a lever
or otherwise. Three common forms are shown in Plate VIL ; two
of these (Figs. 1 and 2) are used as dynamometers, and will be
referred to as such in the next chapter.

EXAMPLES.

1. A weight is moved up a plane inclined at 1 vertical to n horizontal by an effort
parallel to the plane; show that the counter-efficiency is 1+ nf, where f is the co-efficient
of friction. Find the value of n for a mechanical advantage of 10:1 and a co-effici-
ent 05, Ans, n=20.

2, Show that the pressure on the guide bars of a dircct-acting engine is approxi-

mately proportional to the ordinates of an ellipse, and deduce the work lost per stroke,
Referring to Fig. 91 let X be that pressure, then

X=8.sin¢p=P.tancp= ‘L_; sin 0 approximately.

If the radius of the crank circle represent P, and an ellipse be drawn with the same
major axis, and minor axis = P[n, X will be the ordinate of the ellipse at a point repre-
senting position of piston.

Loss of work per stroke = fx Area of semi-ellipse
2 sP
b7,
where s is the stroke and fthe co-efficient of friction.

3. A bearing 16" diameter is acted on by a horizontal force of 50 tons and a vertical
force of 10 tons, Find the work lost by friction per revolution, using a co-efficient of
one-eighteenth. Find also the horse power lost by friction at 70 revolutions per minute,
Ans. Loss of work =11'87 foot-tons. H.P. =564,

4. The thrust of a serew propeller is 20 tons, the pitch 20 feet. The thrust block
ig 18” diameter at the centre of the rings. Find the efficiency with a co-efficient of
friction of ‘06, .4ns. Efficiency = *986.

5. Find the efficiency of a common serew and nut with pitch angle 45° and co-
efficient 16, Ans. Efficiency = 72,

6. A serew bolt is 3 diameter outside and ‘393" at the base of the thread. The
effective diameter of the nut is §, and the co-efficient of friction 16 ; supposing it
screwed up by a spanner two feet long, find the mechuanical advantage.

Tension of bolt =234 x pull on spanner.

7. Find the efficiency of a pair of wheels, the numbers of teeth being 10 and 75,
and the co-efficient of friction *15. Ans. '954,
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8. The stroke of a direct-acting engine is 4 feet, piston load 50 tons, load on
crank-shaft bearings 10 tons, connecting rod 4 cranks : trace the curve of crank effort
when friction is taken into account, assuming all bearings 16" diameter and co-
efficient one eighteenth. Find the ““ dead angle.”

9, In the last question, if the engine drive the screw propeller of question 4, find the
efficiency of the mechanism, including thrust block, by the approximate method.
The connecting rod may be supposed indefinitely long except for the purpose of
estimating the efficiency of the guide bars.

Efficiency = 989 x (*97)* x "986 = *02.

10. A rope is wound thrice round a post, and one end is held tight by a force not
exceeding 10 Ibs, What pull at the other end would be necessary to make the rope
slip, the co-efficient of friction being supposed *3662 Ans. 1,000 lbs.

11. Find the necessary width of belt three sixteenths inch thick to transmit 1 h.p.,
the belt embracing 40 per cent. of the circumference of the smaller pulley and running
at 300 feet per 1. Co-efficient = '25. Ans. Breadth = 43",

12. In question 10 construct the friction spiral showing the tension of the rope at every
point.

13. The axles of a tramway car are 24" diameter, and the wheels 2’ 6”: find, the
resistance being given, that the co-efficient of axle friction is *08 and that for rolling
‘09, Ans. Resistance = 28} lbs. per ton.

14, Find the efficiency of a pulley 6” diameter, over which a rope }” diameter
passes, the axis of the pulley being 4" diameter, and the load on it twice the tension
of the rope. Co-efficient of axle friction ‘08, Co-efficient for stiffness of rope '47.
Ans. Efficiency = 94 per cent.

15, From the result of the preceding question deduce the efficiency of a pair of
three-sheaved blocks. .4ns. Efficiency = 71 per cent.

16. A wheel weighing 20 1bs., radius of gyration 1, is revolving at 1 revolution
per second on axles 1" diameter. It is observed to make 40 revolutions before
stopping : find the co-efficient of axle friction. Ans. Co-efficient = "059.

17. In a pair of three-sheaved blocks it is found by experiment that a weight of 40
1bs. can be raised by a force of 10 lbs., and a weight of 200 Ibs. by a force of 40 1bs,
Find the genera.l relatmn between P a.nd W, and the efficiency when raising 100 1bs.

%W + §. Efficiency = ‘784 when raising 100 1bs. e¢=1.

18. Find the dwtn.uce to which power can be transmitted by shafting of uniform
diameter, with a loss by friction due to its weight of # per cent, assuming that the
angle of torsion is immaterial, and co-efficient for strength 9,000 1bs. per square inch.

If f be co-efficient of friction, then the length of shafting is 13} . ?
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