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PART IV.—STIFFNESS AND STRENGTH
OF MATERIALS.

147. Introductory Remarks.—The straining actions which tend to
cause a body or a structure to separate into parts 4 and B in the
manner explained in Part I. are counteracted by the mutual action
between the parts at each point of the real or ideal surface which
divides them. In other words (see Avt. 1), a STRESS exists at
each point of the surface, the elements of which are A’s action
on B and B's action on 4. If we consider the total amount of -
the stress, these elements each form one element of the straining
actions on 4 and B respectively ; but for our present purpose it is
needful to consider, not the total amount, but the intensity of the
stress. This in general varies from point to point, and at each point
is measured by the stress per unit of area on any small area enclosing
the point. :

Either element (say A4) may be regarded either as A’s action on B,
or as the resistance which 4 offers to the action of B, in other words
stress may be regarded in two aspects, either as the cause tending to
produce separation into parts, or as the resistance to such separation.
It is under the first aspect that we shall chiefly regard stress, gen-
erally employing the word resistance when we wish to express the
second idea. Stress then may be described as the straining action
on the ultimate particles of a body. Conversely a straining action
as defined in Ch. IL. may also be described as the “ resultant stress”
on the section we are considering.

If the stress exceeds a certain limit, separation into parts occurs,
and this limiting intensity of stress varies for different materials
and measures the Strength of the material.
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Accompanying the tendency to separation into parts we invari-
ably find changes of dimension in the body and each of its parts, for
no body in nature is absolutely rigid. Such changes are called
STRAINS, and are of two kinds, changes of volume and changes of
figure, or, in other words, changes of size and changes of shape.
Changes of size in any dimension are measured by the ratio of
the change to the original dimension considered ; changes of shape
consist in the alteration of relative angular position or distortion of
the parts considered, and are measured by the absolute magnitude
of the alterations in question. In most cases which concern us,
both kinds of change take place together and are of exceeding
smallness.

The strains produced in solid bodies by the action of forces de-
pend on the nature of the material and on the kind of stress.

Bodies are either solid or fluid. A fluid may be defined as
material which offers no resistance to change of shape, but only
to change of volume, especially diminution of volume, so that any
distorting stress, however small, will cause indefinite change of shape
if sufficient time be allowed. On the other hand a solid body will
Tresist a distorting stress for an indefinite time, provided that stress
be not too great. In a fluid body at rest only one kind of stress
can exist, namely, a pressure equal in all directions; hence often
called “ fluid ” stress.

There are two extreme conditions in which a solid body may
exist, the Elastic state and the Plastic state. Elasticity is the power
a body possesses of returning to its original shape and dimensions
after the forces which have been applied to it are removed. All
bodies possess this property to a greater or less extent, and most
(perhaps all) possess it to a great degree of perfection if the strains to
which it has been exposed are not too great. Even so unlikely a
material as soft clay is elastic if the force applied to it is very small.
This may be shown by suspending a long filament, formed by forcing
clay through a small orifice, by one end and twisting the other, to
which an index is attached: on release the index returns to its
original position.* In perfectly elastic material the recovery of size
and shape on removal of the forces is complete, unless the tempera-

* See Robison’s Mechanical Philosophy, vol. L., page 875. The original observa-
tion is said to have been made by Coulombh. Though frequently quoted it does not
appear to have been verified.
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ture has meanwhile varied : and the materials of construction may be
regarded as approximately satisfying this condition, provided a
certain limit stress be not overpassed. This is called the Elastic
Strength of the material. It is also described as the “limit of
elasticity.”

When, on the other hand, the forces applied to the body are
comparatively great, the material in many cases approaches the
other extreme condition, the plastic state. In this state any forces
causing a distorting stress beyond a certain limit, and so applied
that disruption does not occur, will produce indefinite distortion, so
that the material behaves like a fluid. Thus soft clay, lead, copper,
or even malleable iron may be moulded into different shapes or
drawn out into wire. In intermediate cases a hody may exhibit the
properties of the elastic and the plastic states combined,

We commence by studying matter in the perfectly elastic
state. There are two different kinds of elasticity, — Elasticity
of Volume and Elasticity of Figure. A fluid possesses the first
kind only, since by definition it has no power of resisting
change of shape: the second is characteristic of solids. In
general a change of dimensions involves both a change of size
and a change of shape, so that hoth kinds of elasticity are called
into play together. In perfectly elastic material the strain
produced by a given stress is always proportional to the stress,
being found by multiplying the stress by a co-efficient or * modulus ”
of elasticity, depending on the kind of stress and the nature
of the material. This property having been discovered by Robert
Hooke is known as Hooke’s Law. Further, if the stress be relaxed
in the slightest degree the strain diminishes, that is, in perfectly
elastic material, the elastic forces are completely ¢ reversible ”
(p. 205).

The magnitude of the stress produced by the action of given forces
upon a body depends very much on whether they are applied all at
once or are supposed to be at first very small and gradually to
increase to their actual amounts. The next four chapters will be
limited to the action of a gradually applied load on perfectly elastic
material. The experimental part of the subject is placed in the last
chapter (Ch. XVIIL), but should be referred to constantly as
required.



CHAPTER XII.

SIMPLE TENSION, COMPRESSION, AND BENDING OF
PERFECTLY ELASTIC MATERIAL.

SEcTIoN I—TENSION AND COMPRESSION.

148. Simple Tension.—The effect of forces acting on a bar has
already been explained in Chapter II. to consist in the production
of certain straining actions which we called Tension, Compression,
Bending, Shearing, and Twisting, and we now go on to consider the
changes of form and size which the bar undergoes and the stress
produced at each point on the supposition that
the material of the bar is perfectly elastic.

Let 4B (Fig. 119) be a bar subjected to the
action of equal and opposite forces applied at
the ends in the same straight line. At any trans-
verse section KK there will be a tendency to
separate into two parts 4, B, which is counter-
acted by a mutual action between the parts at
each point of the section, which, in accordance
with our previous definitions, is called the Tensile
Stress at the point. The total amount of the
stress will be P ; but the intensity will depend on
the avea of the section (), so that P/4 is the
mean intensity of stress or the stress per unit of
area. The stress may be the same at all points
of the section. We then say it is uniformly distributed, and the
intensity at all points = P/A.

In order that the intensity of the stress may be the same at every
point of every transverse section of the bar, it is theoretically necessary
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that the load P should be applied in a uniformly distributed manner
all over the end B. Then if the material is perfectly homogeneous
each elementary portion of KB will be strained alike, and the
uniformly distributed load at B will be balanced by a uniformly
distributed stress over any section KK. In such a case the line of
action of the resultant of the applied load P passes through the
centre of gravity or centre of position of the transverse section KK.
Unless it does so the equilibrium of the portion KB is not possible
by means of a uniformly distributed stress over the section. But
from experience it appears that for uniformity of stress it is mnot
absolutely necessary for the load to be applied in this distributed
manner, It may be applied for instance by pressure on a project-
ing collar; and yet if the line of application of the load traverses the centre
of grawity of the sectional area, the material, if homogeneous, will so
yield as practically to produce at a section a little distant from the
place of application of the load a stress of uniform intensity. This
is a particular case of a principle which will be further referred to
hereafter.

If the applied load is increased, the stress on the section is pro-
portionately increased, until at last the material yields under it and
the bar breaks. If /77 = breaking load, the corresponding stress
measured by /4 is a quantity which depends on the nature
of the material. If we call it f, then the breaking or ultimate
load = A4f.

Accompanying the application of the load producing a tensile
stress, an increase of length and diminution of transverse dimension
is observed. In metallic bodies the alterations are exceedingly small
if the limit of elasticity is not exceeded (see Table II., page 437),
and therefore in estimating the stress on the section it is not worth
while to take account of the slight alteration in the area of the trans-
verse section. Under the same load the change of length is
proportional to the length. If @ be the total change of length, and
1 the original length, then the extension per unit of length is
e
=
On account of the smallness of ¢ it is immaterial whether 7 is taken
as the original or altered length of a metallic bar.

As already stated (Art. 147), it is usual to restrict the word strain to
mean the alteration of the dimension and form which bodies undergo

(4
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and to use the word sfress when referring to the elastic forces which
accompany the strain. Thus ¢ is a measure of the tensile strain pro-
duced in the bar, whilst p is a measure of the accompanying tensile
stress. Since by Hooke's law the extension of the bar is proportional
to the force producing it, it follows that the strain is proportional
to the accompanying stress. Thus p and ¢ may be connected by
some constant the value of which depends on the nature of the
material. We may write
p=1Fe,
in which Z is called the modulus of elasticity of the material, which,
when the stress p is expressed in pounds per square inch, has for
wrought iron a value of about 28,000,000.
Putting for ¢ its value #/l, we have the general relation,

22
Rl
The transverse strain, that is, the contraction per unit of transverse

dimension, is from one third to one fourth the longitudinal strain.

149. Work done in Stretching o Rod.—Having found the relation
between the tensile stress and strain, we will now consider how
much work must be done in order to stretch it.

Let a load of gradually increasing amount be applied to the bar,
the bar will stretch equal amounts for equal increments of
load : or the elongation of the bar will for all loads be
proportional to the load. This may be represented graphi-
cally. Suppose the load P’ produces the extension shown,
greatly exaggerated, by BB’ (Fig. 120), and we set off an
ordinate B'N’ to represent /' on some scale, and do that
for any number of loads, taking, for example, BN to
represent P, which produces the extension B,B=x; then
all the points N will lie on the sloping line passing
through B, Having done this, the area of the triangle
ByBN will represent the quantity of work done on the bar in
stretching it the amount BB = 2. Thus

Work done = 1 Pa.
The energy thus exerted is stored up in the stretched bar, and may
be recovered if the bar is allowed under a gradually diminished load
to contract. In the perfectly elastic bar the contraction will be
exactly the same as the extension, and there will be no loss of
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energy in stretching it. In other words the elastic forces are ¢ re-
versible.” But if the elasticity is imperfect, some of the energy
expended in stretching the bar is employed in producing molecular
changes, as for example, change of temperature. ~On contraction
this amount of energy will not be restored. :

We can express the work done in stretching the bar otherwise.
For P put its value = p4, and for  its value = pl/E. The substitu-
tion of these values of P and = will give

Work done = fp4 %E = % ‘%ﬁ = ]; %X % volume.
Thus the work required to produce a given stress p is proportional
to the volume, or, what is the same thing, to the weight, of the bar.

If the stress produced is increased up to the elastic limit, or, as it
Tie : Volume
¥ 2
presses the greatest amount of work which can be done on, and
stored in the bar without injuring it or impairing its elasticity.

This is called the resilience of the har. The quantity f*/E, the value
of which depends on the nature of the material, is called the modulus of
resilience, and, as we shall see hereafter, furnishes a measure of the
resistance of the material to impact in those cases in which the
limits of elasticity are not exceeded (Chap. XVL). A table of co-
efficients of strength and elasticity for materials commonly used in
construction will be found at the end of Chapter XVIII.

is often called, the proof stress, so that p = f, then ex-

150. Thin Pipes and Spheres under Internal Fluid Pressure.—We
now pass on to consider an important case of simple tension: that
of a thin eylindrical shell subjected to internal fluid pressure. A cyl-
inder with rigid ends and a sphere are cases of a vessel under internal
fluid pressure which tends to preserve its form. The equilibrinm in
these two cases is stable, for if the vessel suffers deformation the
internal pressure tends to make it recover its original true form.
Vessels the sides of which are flat tend, by hulging, to assume these
forms, and the tendency must be resisted by staying the surfaces in
some way. If, as generally happens, there is acting also an ex-
ternal fluid pressure less than the internal, then, in what follows, the
intensity of the internal pressure must be taken to be the excess of
the internal over the external pressure,
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Let p be the intensity of the fluid pressure in pounds per square
inch, d the diameter, ¢ the thickness of the shell, and I the length of
the cylinder. Suppose in some way that the ends are maintained
perfectly rigid, and for convenience let them be flat. There are two
principal ways in which the strength of the shell can be estimated.

First, consider the tendency to tear asunder longitudinally, parallel
to the axis of the cylinder. Imagine the cylinder divided into two
parts by a plane passing through the axis of the cylinder. On each
half cylinder there is a pressure P due to the resultant fluid pressure
on that half which tends to produce a separation at the section im-
agined. The separation is prevented by the resistance to tearing
which the metal of the shell offers, calling into action a uniform ten-
sile stress at the two sections made by the imaginary plane through
the axis of the cylinder. ;

Let ¢ = intensity of tensile stress produced; then the area over
which the stress acts being 24, the
total resistance to tearing is ¢ x 24,
which must also be the tendency to
tear = P.

In a transverse section take two
points B, B’ (Fig. 121) near to-
gether. The surface of the shell,
BE x 1, is acted upon by a normal
Pressure p per unit of area. The
pressure p. BE'. ! may be taken to
act in a radius drawn to the middle
point of BB, making an angle 6 with the direction of the resultant
force P. The resolved part of this pressure in the direction of P

=pl .BB'.cos 0 = pl. NV,

NN" being the projection of BB’ on the plane of section. Sum-
ming up the pressures on all the small ares BB, composing the
semicircle, we obtain the total separating force,

P=pl.ZNN' =p.l.d,

Fig.121,

- 298 = pld,
d

thus the tcnsﬂe stress is directly proportional to the diameter, and
U
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inversely proportional to the thickness of the cylindrical shell. For
greatest accuracy d should be taken as the mean of the internal and
external diameters. The formula just obtained is true only when the
thickness is small compared with the diameter. If ¢ is large, the
stress is not uniform over the section ; the formula will then give the
mean stress if d be understood to mean the internal diameter.

We next consider the tendency for the cylinder to tear across a
transverse section. The total pressure on each end of the cylin-
drical shell is the separating force, and the resistance to separation
is due to the tensile stress, ¢’ suppose, called into action over the
annular area md . f of the transverse section.

' , 1
. wdl. g =Ed2 oy =%.

This is just half the stress on the longitudinal section. If the
vessel is spherical in form, the stress produced on all sections of the
sphere through the centre is the same as ab the transverse section
of the cylinder. It should be observed that we have here assumed
“that the transverse stress has ‘no influence on the resistance to
longitudinal tearing (Art. 222), and that the pressure on the ends is
not provided against by longitudinal stays.

The formula just obtained is used to estimate the strength of a
boiler which is more or less cylindrical ; but since the boiler is made
up of plates overlapping each other, connected together at the edges
by rivets, and since also a line of rivets in a longitudinal section is
generally found only for a portion of the length of the boiler, the
question of strength is complicated. But a longitudinal section
through the greatest number of rivet holes is the weakest section,
and if for ¢ we write £, where f is a co-efficient of strength to be
determined from experience, the value of it depending, amongst
other things, on the form of joint, then the formula

i g{‘];é, Qe — e
may be used as a semi-empirical formula to determine the greatest
pressure which can be employed in a given boiler, or the thickness
of metal required to sustain a given pressure. The value of the co-
efficient for iron boilers with single rivetted joints is about 4,000 Ibs.
per square inch, or, when double rivetted, as is usual in large boilers,
5,500. With steel the value is about one-third greater.
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181. Remarks on Tension.—The results obtained in the present
section are, strictly speaking, only applicable when the piece of
material considered is of uniform transverse section, but they never-
theless may be used when the transverse section is variable, provided
the rate of variation be not too great and the other conditions men-
tioned are strictly fulfilled. The intensity of the stress is then
different at different parts of the bar, varying inversely as the trans-
verse section, and in determining the elongation this must be taken
into account.

In many cases of tension the effect of the weight of the tie and
other circumstances introduces an additional stress, the amount of
which is often imperfectly known. This is allowed for either by
making a certain addition to the theoretical diameter or by the use
of a factor of safety adapted to the particular case. On the other
hand it also often happens, as in the case of ropes for example, that
the strength of the material is greater in small sizes than large ones
for reasons connected with the mode of manufacture.

182. Simple Compression.—When the forces applied to the ends of
a bar act in a direction towards one another the bar is in a state of
compression. If the bar is long compared with its transverse dimen-
sions, then any slight disturbance from uniformity will cause it to
bend sideways under the compressive force, and we have then, nof
simple compression, but compression compounded with bending,
an important case to be considered hereafter. To obtain simple
compression the ratio of length to smallest breadth should not exceed
certain limits which depend on the nature of the material, viz., cast
Iron 5 to 1, wrought iron 10 to 1, steel 7 to 1. Further, it is neces-
sary that the material be perfectly homogeneous and that the line of
action of the load should be in the axis of the bar. Then the results
Wwe have obtained for simple tension apply to this case of simple
compression

=F
b ‘21
and the strength of the column is given by P =_Af, where f is the

co-efficient of strength. The compression z which the column under-
8oes is connected with the stress by the equation

o

=L 7
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The modulus of elasticity £ would, in a perfectly elastic body, be the
same as for tension. In actual materials it sometimes appears to be
less ; but within the elastic limit only slightly less.

EXAMPLES.

1. A rod of iron 1 inch in diameter and 6 feet long is found to stretch one sixteenth
inch under a load of 74 tons. Find the intensity of stress on the transverse section
and the modulus of elasticity in 1bs. and fons per square inch.

Stress=21,382 1bs. = 9°55 tons.
Modulus of elasticity = 24,631,855 lbs, = 109964 tons.

9. What should be the diameter of the stays of a boiler in which the pressure is
30 1bs. per square inch, allowing one stay to each 14 square feet of surface and a stress
of 3,500 1bs. per square inch of section of the iron? Ans. 1} inches.

3. In example 1 find the work stored up in the rod in foot-pounds. .Ans. 433

4, If in the last question the rod were originally 2 diameter and half its length
were turned down to a diameter of 1", Compare the work stored in the rod with
the result of the previous question.

Ratio = §.

5. In Example 1 assume the given load of 74 tons to be the proof load; find the

modulus of resilience. Ans. 1856 in inch-1b. units.

6. Find the thickness of plates of a cylindrical hoiler 4' 2" diameter to sustain a
pressure of 50 Ibs. per square inch, taking the co-efficient of strength of plate at
4,000 1bs, Ans. "

7. A spherical shell 4' diameter 1" thick is under internal fluid pressure of 1000
Ibs. per square inch. Find the intensity of stress on a section of the sphere taken
through the centre. Ans. 48,000 1bs. per square inch.

8, Find the necessary thickness of a copper steam pipe 4" diameter for a steam
pressure of 100 pounds above the atmosphere, the safe stress for copper being taken
as 1000 Ibs. per square inch., Ans, ‘2",

9. A circular iron tank, diameter 16 feet, with vertical sides 3" thick, is filled with
water to a depth of 12 feet : find the stress on the sides at the bottom. How should
the thickness vary for uniform strength throughout? .4ns. 1024 lbs., per square
inch.

10. What length of iron suspension rod will just carry its own weight, the stress
being limited to 4 tons per square inch, and what will be the extension under this
load? Ans. 2,700 feet,

11. The end of a beam 10" broad rests on a wall of masonry ; if it be loaded with
10 tons what length of bearing surface is necessary, the safe crushing stress for stone
being 150 1bs. per square inch. Ans, 15",

19, Find the diameter of bearing surface at the base for a column carrying 20 tons,
the stress allowed being as in the last question. Ans. 20" nearly.

13. Compare the weight of the shell of a cylindrical boiler with the weight of
water it contains when full, Ans, Ratio=>55p[f.
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SecTIioN II.—SIMPLE BENDING.

1563. Proof that the Stress at each Point varies as ils Distance from
the Neutral Awis.—The nature of the straining action producing
bending has been sufficiently explained in the third section of Chapter
II., and we shall now consider the kind of stress which results on the
ultimate particles of a solid bar of uniform transverse section and of
perfectly elastic material. The bar is supposed symmetrical about
a plane through its geometrical axis, and the bending is supposed
to take place in this plane which may be called the Plane of Bending.

In the first instance the bending is supposed to be “simple,” that
18, it is not combined with shearing as is most often the case in
Practice, but is due to a uniform bending moment (see Art. 21). The
curvature of the beam is then uniform, that is to say, it is bent into
a cireular are.  The investigation consists of three parts.

Fig. 122 shows a longitudinal section 4B and a transverse section
LL through the centre of the beam ; by symmetry it follows that if
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the bending moment be applied to both ends in exactly the same
way, that transverse section, if plane before bending, will be still plane
after bending, for there is no reason for deviation in one direction
rather than another. It will be seen presently that if the bending
moment be applied to the ends of the beam in a particular way all
transverse sections will be in the same condition, and we may there-
fore assume that not only the central section, but any other sections
KK we please to take, will remain plane notwithstanding the bending
of the beam. All such sections, if produced, will meet in a line the
intersection of which by the plane of bending will be a point 0 which
is the common centre of the circular ares KL, PP, NN, &c., formed
by the intersection of the same plane with originally plane longitu-
dinal layers. These layers after bending have a double curvature,
one in the plane of bending, the other in the transverse plane; the
transverse bending however need not be considered at present, and
the transverse section of the layers may be treated as straight lines.
Before bending the layers were all of the same length, being cut off
by parallel planes, but now they will vary in length since they lie
between planes radiating from an axis 0. We shall find presently
that some layers must be lengthened and some shortened, an inter-
mediate layer, NV in the figure, being unaltered in length. This
layer is called the Neutral Surface and the transverse section of that
layer SS is called the Neutral Axis, the last expression being always
used in reference to a fransverse section, not a longitudinal section.
Let the radius of the neutral surface he R. The more the beam is
bent, that is the less R is, the greater will be the stress produced by
the bending action ; and the first step in the investigation is to obtain
the relation between the stress produced at any point of a transverse
section and the radius of curvature B. If we bisect SS in NV and
draw LNL at right angles to SNS, it is necessary that the section of
the beam should be symmetrical on each side of LNL; with this
restriction the section may be any shape we please.

Now consider any layer PP of the beam between the planes LL and
KK which is at the distance y from the neutral surface VAV or neutral
axis SNS. This layer will be curved to a circle whose radius is £+,
and it must undergo an alteration of length from XNV which it had
before bending, to PP which it now has. Thus the alteration of

PP- NN

- length per unit of length, that is, the strain e= = but since
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J . s PP B4y
arcs are proportional to radii V=R
; : PP—NN_y
.. the strain ¢ = e
If the layer we are considering is taken below the neutral surface,
the strain, which will then be compression, will be given by the
same expression e¢=/R, ¢ and y both being negative.
Accompanying the longitudinal strain just estimated there must
be a longitudinal stress proportional to the strain. Let p be the

intensity of that stress, then
p=2DEe,
where £ is a modulus of elasticity. If we imagine the beam divided
into elementary longitudinal bars, and if we imagine each of those
bars independent of the others, it will follow that £ is the same
modulus of elasticity as we have previously employed in Section I.
of this chapter. This, however, implies that the bar can freely con-
tract and expand laterally when stretched and compressed, and we
therefore could not be sure a priori that the union of the bars into a
solid mass would not cause the value of £ to be different from that
for simple stretching, and to vary for different layers of the heam.
It will be seen hereafter, however, that there are good reasons
for the assumption.
Accordingly we write
ZoaT) Y
P =ch: »
Where 7 is the ordinary (also called Young’s) modulus of elasticity.
If y is taken below the neutral axis then 2 is negative, signifying
that the stress is now compressive. In perfectly elastic material the
value of Z is the same for compression as for tension, and so, within
the limits of elasticity, the same equation will apply for all parts of
the transverse section.
Thus the stress at any point of the transverse section of the
bar is proportional to its distance from the neutral axis.

. 184. Determination of Position of Neutral Awis—The second step
Il the investigation is to find the position of the neutral axis.
That position is deduced by dividing the bheam into two portions,
4 and B, by a section LI, and considering the horizontal equili-
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brium of either portion, say B. The external forces acting trans-
versely to the beam balance one another, but being vertical have no
resultant in the horizontal direction of the length of the beam.

We have next to take account of the internal molecular forces
which act at the section LL. Above the neutral axis the action of
LA is a tendency to pull B to the left; but below the neutral axis,
the tendency is to thrust B to the right. In order that it may
remain in equilibrium, and not move horizontally, it is necessary
that the total pull should equal the total thrust; or the total
horizontal force at the section must be zero. To estimate the
horizontal force, consider the force acting on a thin strip of the
transverse section, of breadth &, and thickness #, distant y from the
neutral axis. The thrust or pull on this elementary strip = p. 5. £.

Summing the forces on all the strips composing the sectional area,
we must have

205 bt =08

but p = Ey/R where E and R are the same for all strips of the
section.
5y B

That is to say, the sum of the products of each elementary area into
its distance from the neutral axis must be zero.

This can be true only if the axis passes through the centre of
gravity of the section ; for it is the same thing as saying that the
moment of the area about the neutral axis is to be zero.

2ht.y = 0.

166. Delermination of the Moment of Resistance—The third and
last step in the investigation is to obtain the connection hetween
the bending moment applied, and the stress which is produced by it.
Again, considering either portion, 4L or BL, of the beam, say AL,
the external forces on 4 produce a bending moment or couple, M,
which has to be resisted by the internal stresses called into action at
the section K'; so that the total moment of these stresses must
be equal to M. The moment of the resisting stresses, being a
couple, may be estimated about any axis with the same result.
For convenience we will estimate it about the neutral axis of the
section.

Let us again consider the elementary strip of area 3f, distant ¥
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from neutral axis, on which the intensity of stress is p, the force,
pull, or thrust, on this strip being pbf. The moment of the force
=p.bt.y. Seeing that forces on all elementary strips, whether pull
or thrust, all tend to turn the piece AL the same way, the total
moment of the stresses will be found by summing all terms, p . by,
for the whole area of the section.

M= Zp. by

Since p = Ey/R, substitute, and remember that E/R is the same for
all strips, then

M:%Eb.t.a‘i

In this formula the area of each strip has to be multiplied by the
square of its distance from the neutral axis and the sum of the pro-
ducts taken. This, or an analogous sum, is of constant occurrence in
mechanics, and has a name assigned toit. Zbfy is the simple moment
of an area about an axis. =bfy® may be called the moment of the
second degree, but the common name is the Moment of Inertia; be-
cause a similar sum (differing only from this in involving the mass)
occurs in dynamics under that name. To distinguish the two cases
area-moment and mass-moment, the former is sometimes called the
geometrical moment of inertia.

Let I denote the moment of inertia, so that 7 = Shty?, the value
of which for any form of section can be obtained by geometry, then

B M _E

e T oh et

RS S

thus connecting the curvature of the beam with the moment
Producing it. Having previously found p/y = E/R, we can now
connect the moment with the stress by writing

et

s

This equation may be employed to determine the strength of
a beam to resist bending. The limit of strength is reached when
either the greatest safe tensile stress on one side of the neutral axis,
or the greatest safe compressive stress on the other side of the
neutral axis is called into action. Thus in the equation p/y=M/I
We must put p = f, the co-efficient of strength under tension, or
P=F, the co-efficient of strength under compression ; and for 7, either
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7, the distance of the most remote point on the stretched side, or .,
the distance of the most remote point on the compressed side, so
that

M= J:’I, or f"I
% Ya

The strength of the beam, or maximum moment of resistance to
hending, is measured by the least of these quantities.

9 or y, is readily determined from geometry, the form of the
section of the beam being given. It may be most conveniently ex-
pressed as a fraction of the depth of the beam. Thus #, or 7 may
be put = ¢h, where the co-efficient ¢ has different values. In a rect-
angular section ¢ = }, in a triangular section ¢ =  or £, and so on.

Next to express the value of . It will be found that whatever be
the form of the section, / may always be written = n.44% A being
the area of the section of the beam, % the depth in the direction of
bending, and n a numerical co-efficient, the value of which depends
on the form of the section.

For a rectangular section,

= 15, 80 that I = ;4%
» elliptical or circular ,,
n =1 w4 = Fadl?,
s triangular
n = vy " I= T‘EA]”;‘:
and so on.
Therefore assuming ¢ and # known, we can write

M= ;_;LnAiﬁ = £ Ah,

a formula which shows that for sections in which n/g is the same, the
moment of resistance to bending is proportional to the product of
the area and depth of the beam. Sections with the same n and g
are said to be of the sume fype. They are often, but not correctly,
said to be similar.

In estimating the numerical value of M, care must be taken with
the units. It is generally advisable to use the inch unit throughout.

166. Remarks on Theory of Bending.—In the foregoing theory of
simple bending it is supposed
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(1) That the bar is homogeneous and of uniform transverse
section and perfectly elastic ;

(2) That sections plane before bending are plane after bending,
for which it is theoretically necessary that the bending moment
should be uniform, and applied at the ends of the bar in a particular
way ;

(3) That longitudinal layers of the beam expand and contract
laterally in the same way, as if they were disconnected from each
other (see pp. 303, 401).

These assumptions are not obvious @ priori, and require justifica-
tion, which at the present stage of the subject we are not in a
position to give: for the present it may be stated that if the
material be homogeneous and perfectly elastic, the equations hold
good even though the transverse sections and the curvature vary
and however the bending moment is applied. The strenglh of the
material, however, is not generally the same as if the layers were dis-
connected, and co-efficients of strength require therefore to be
determined by special experiment on transverse strength (Art. 217).

157. Caleulation of Meoments of Inertin—We have frequently to
deal with beams of complex section, in which case to determine I it
is convenient to divide the section up into simple areas, the I of
each of which is known, and the total moment of inertia of the
section will be the sum of these I's. In employing this process we
require to know the relation between the moments
of inertia of an area about two axes parallel to
one another, one being the neutral axis. We make —S{-—i—p—}8-
use of a general theorem which may be thus proved.

Let 4 be an area of which we know the moment
of inertia about the neutral axis, SS (Fig. 123),
and we require to know the moment of inertia _X
about any parallel axis, XX, distant 9, from SS. Dividing the area
into strips of breadth b, and thickness ¢,

Moment of Inertia required I = =b. ¢. (y + )%

= 20y + 2,20 .y + 9,°Zb . ¢.

Now Zbfy* = moment of inertia about neutral axis, Zbf.y = 0,
because the neutral axis passes through the centre of gravity of the
section, and 2bf = Area A.

RS TR S

Fig.128,

.

X
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The moment of inertia of an area about any axi& is, therefore,
determined by adding to the moment of inertia of the area about
a parallel axis through the centre of gravity the product of the
area into the square of the distance between the two axes.

This theorem, together with previously quoted values of 7, will
enable us to determine the following results, which will be usetul in
application to beams—

Rectangle about its base, I = %4y

Triangle i o L = %4y

Triangle about a parallel to its base ’ohroufrh vertex, I = 34y

Many other forms will divide up into rectangles or triangles, or
both ; for example, the moment of inertia of a trapezoid about the
neutral axis may be readily determined by taking, for the area
above the neutral axis, the I for a rectangle about one end, and tri-
angles about the base. For the area below, a rectangle about one
end and triangles about the vertex, and add the results.

158. Beams of I Section with Equal Flanges.—The case of a beam
of I section is very important.
First, suppose the flanges of equal breadth and thickness, and the
web of uniform thickness ', the depth being
F--3"==>=-= I, b being the breadth of the flange, and %
: thL whole depth of the beam. The moment
of inertia of the section may be taken as
the difference of the moments of inertia of
two rectangles (see Fig. 124).
e I =bL08 — &0 — B)he
This is the accurate value of [, and when the flanges are thick
this expression for I must be used ; but if the flanges are thin com-
pared with the depth, a very close approximation can be obtained
with less trouble by supposing each flange to be concentrated in its
centre line, and taking for the depth of the beam the distance ,
to the centre of flanges.
If A4 = area of each flange and (' = area of web,

o

& emmesa-

Fommmm T ememe

Bl
»

) 4/;;////9 =

k

i thenI=Ak—"2+Ah_°Q+Tl_2_C]L2_ho (A )
ii,, (5 4 4 6

Putting p = f and 5 =1k, in the fo_rmula,;/ = l."ff,

v

A
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ékn (A +Z)=fh(4+ ﬁ)

This shows that, area for area, the web has only one-sixth the power
resisting bending that the flanges have.
We previously deduced an approximate expression for the strength
of an I beam, viz.,
M=Hh=fhd (see Art. 27),

in which the effect of the web in resisting bending was neglected,
the whole of the bending action being supposed to be taken by the
flanges. The present formula shows the amount of the error involved
in that assumption. In using this approximation when /4 the effective
depth is reckoned from centre to centre of the flanges, two errors are
made, one in supposing the resistance to bending of the web
neglected, and the other, often much greater, in supposing the mean
stress on the flange equal to the maximum, hence it is better to take
for the effective depth
= ’;—",,

where 7' is the outside depth and %, the depth from centre to centre
of flanges.

169. Ratio of Depth to Span in I Beams—The formula just
obtained for the moment of resistance of a beam of I section shows
that the greater the depth of the beam and the thinner the web the
stronger will the beam be for the same weight of material, or in
other words that the best distribution of material is as far away
from the neutral axis as possible. The practical limitation to this is
that a certain thickness of web is necessary to hold the flanges
together and give sufficient power of resistance to lateral forces and
to the direct action of any part of the load which may rest on the
upper flange. Hence the weight of web rapidly increases as the
depth increases, and a certain ratio of depth to span is best as regards
economy of material (see Ex. 17, page 325). This is especially im-
portant in large girders in which economy of material is the
primary consideration. In smaller beams the proper ratio of depth
to span is generally in great measure a question of stiffness, a part
of the subject to be considered in Chapter XIII. The moment of
resistance of I sections of practical proportions is generally about
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double that of a rectangular section of equal area. The straining
actions on the web will be considered in Ch. XV.

180. Proportions of I Beams for Equal Stremgth.—Materials in
general are not equally strong under tension and compression, so
that a beam whose section is symmetrical above and below the
neutral axis will yield on one side before the material on the other
side of the neutral axis has reached its limiting stress. Accordingly
we might obtain a more economical distribution of material if we
were to take some from the stronger side and put it on the weaker,
so that the limiting tensile on one side and the limiting compressive
stress on the other may be produced simultaneously. The section
of the beam will be different above and below the neutral axis, which
will not now be at the centre of depth of the beam, but in such a
position that the distances to the top and bottom of the heam are
in the proportion of the greatest allowed stresses to one another.
The neutral axis in all cases must pass through the centre of gravity
of the section.

Let fy, f» be the co-efficients of strength under compression and
tension respectively, v,, ¥, distances of the most strained layer from
neutral axis, then the beam will be strongest when

Yo _Ys _Yit¥s . h

Ja fB f‘:‘l:}ca Ja +f1:
For simplicity of calculation we will consider a beam (Fig. 125) in
which the web is of uniform thickness
throughout the depth, and so of rectangular
section, and each flange also of rectangular

I . St

R e

y,
Fig.125.C iA section, and determine the relation which
N7 -~-a;'=---f~—- - should hold between the areas of flanges and
i web for maximum strength of beam, and
B ////% e

the moment of resistance to bending where
this condition is satisfied. We will further suppose each flange to
be concentrated in its centre line.

Let A = area of compressed flange, B = area of stretched flange,
¢ = area of web. Since the neutral axis is at the centre of gravity
of the section, we obtain, by taking moments about that axis,

Ay, +U1j‘:- = Bys ;



CH, XII. ART. 160.] BENDING. 319
or, substituting the previously given values of 7, and ¥,
Afu s 0BT B,

Sapposing f, and f; known, 4, B, and ¢ must be such as to satisfy
this relation. We have some liberty of choice between these
quantities, and frequently find one of the flanges omitted, so pro-
ducing a beam of T or L section.

In a cast-iron heam, where the resistance to compression is
greater than for tension, the compressed flange 4 may be omitted.
Putting 4 = 0 we get € = s B, and supposing L 40 =

e Iz
2B, or B=1LC. In a wroughtiron beam on the other hand f,/f,

is about ¢, and the stretched flange B is the area to be omitted.
Putting B = 0, we find 4 = fff_);ffdo e
=4
Otherwise we may assume the depth and thickness of the web to
be given (Art. 159), then the equation

af, + 0L ts o gy,

furnishes a relation between the areas of the flanges. For example,
in cast iron, if we assume f, = 4f,, we find

Bt Sgc

Having decided on the proportions between the parts of the
section we can now calculate the moments of inertia and resistance.
Still considering the flanges concentrated in their centre lines,

I=4dy? + By + 1C. /}‘ e+ 3C. 1"” STr

— Ay, + Byt + 30, 4t ; i

a result which admits of ready calculation. Further

Ml felwlfadits
digosy o0z b
whence we obtain

M= (f, + fi.

The caleulation just now made is one which has been frequently
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given in dealing with beams of I section,* but in applying it to
actual examples it should be remembered that the results ave ob-
tained on the supposition that the flanges are concentrated in their
centre lines, and are consequently only approximate when the co-
efficients f,, f, mean the intensities of the stress at those centre lines,
not at the surface of the beam where the stress iz greatest. If, for
example, F, be the maximum stress on the flange 4
By st
Y

where ¢, is the thickness of the flange. The difference is especially
great in the case of the larger flange of cast-iron beams, and the
true ratio of maximum compressive and tensile stress is much less
than it appears in the preceding article. On the other hand, in
extreme cases, such as we are now considering, the stress may not
be uniformly distributed along a line parallel to the neutral axis.

Extensive experiments were made on cast-iron beams by Hodgkin-
son, with the object of determining the best proportions between the
flanges, with the result that rupture always took place by tearing
asunder of the lower flange, unless it was at least six times the size
of the compressed flange. This proportion is rarely adopted in
practice, from the difficulties of obtaining a sound casting, and the
necessity of having sufficient lateral strength. Nor is it certain that
the proportions which are best for resisting the ultimate load are
also best in the case of the working load ; it is, in fact, probable
that a smaller proportion is better even on the score of strength.
If we take f, = 2%f5, instead of 4f,, we find

: B =214 + 40,
which agrees more closely with practice. The ratio of maximum
compressive and tensile strength is in this case about 2, which, ac-
cording to some authorities, is the ratio of elastic strengths in the
two cases.

In wrought-iron beams the areas of the flanges are usually equal,
and this is correct if the elastic strength, and not the ultimate
strength, is regarded as fixing the proper proportions, and if
there be sufficient provision against the yielding of the top flange
by lateral flexure. Small-sized beams of this kind are rolled
in one piece, while large girders are constructed of iron or steel

* Sce Rankine's Civil Engineering, page 257,
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plates and angle irons, rivetted together. Some of the forms they
assume are shown in Plate VIII., Ch. XVIII.

In making caleulations respecting girders, approximate methods may
be used for preliminary tentative calculations, but should be checked
by a subsequent accurate determination of the neutral axis and
moment of inertia. A previous reduction of the section to an equi-
valent solid section is required when, as is often the case, all parts of
the section do not offer the same elastic resistance to the stress
applied to them, either because they are not sufficiently rigidly con-
nected or from the material being different. This is especially the
case in determining the resistance to the longitudinal bending of a
vessel occasioned by the unequal distribution of weight and buoyancy
already considered in Chapter III.  On this important question the
reader is referred to a treatise on Naval Architecture by Mr. W. H.
White. In many cases of built-up girders the shearing action which
generally exists has considerable influence, a matter for subsequent con-
sideration (Ch. XV.). The effect of the weight of the girder itself has
been considered in Ch.IV.  (See also Ex. 13,p. 324, and Ex. 11,p.372.)

181. Beams of Uniform Strengih.—A beam of uniform strength is
one in which the maximum stress is the same on all sections. For
beams of the same transverse section throughout this can only be the
case when the bending moment is uniform, but, by properly varying
the section, it is possible to satisfy the condition however the bend-
ing moment vary. For this purpose we have only to counsider the
equation

M- f. % Ah,

which must now be satisfied at all sections. Suppose
A = kbh,
Where % is a numerical factor depending on the type of section, then

M ”;_’” b,

All sections of the beam being supposed of the same type we have
only to make 4% or bh2 vary as M, that is as the ordinates of the
curve of bending moments. The principal cases are—

(1) Depth uniform. Here the breadth must vary as the bending
moment, whence it is clear that the eurve of moments may be taken

48 representing the half plan of the beam.
X
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(2) Sectional Area uniform. Here the depth must vary as the
bending moment, that is, the curve of moments may be taken to
represent the elevation or half elevation of the heam.

(3) Breadth uniform. Here the elevation or half elevation of the
beam must be a curve, the co-ordinates of which are the square roots
of the co-ordinates of the curve of moments,

(4) Ratio of breadth to depth constant. Here the half plan and
half elevation are each curves, the ordinates of which are the cube
roots of the ordinates of the curve of moments.

The first, third, and fourth of these cases are common in practice
with some modifications occasioned by the necessity of providing
strength at sections of the beam where the hending moment vanishes,
as it usually does at one or both ends,

162. Unsymmetrical Bending.—It occasionally happens that the
plane of the bending moment is not a prineipal plane of the beam, as
for example when a vessel heels over, the plane of longitudinal bend-
ing will not coincide with the plane of symmetry of the vessel which
is obviously the plane of the masts. The neutral axis does not now
coincide with the axis of the bending couple, though in other respects
the theory of bending still holds good.

Y

Fig.126,

In Fig. 126 let MM be the axis of the bending moment, J/ inelined
ab an angle 6 to the principal axis of inertia X, GY of the plane
section. Then the couple M/ may be resolved into two components
M cos @ and M sin 6, each of which will produce stress at any point
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P as if the other did not exist. Let p be the stress, #, 7 the co-ordi-
nates of P referred to the axes G'X, G'Y, the moments of inertia
about which are I, I,, then
P=M.cos 6.?{+ﬂ{.sil‘£.m-
1, 1
The position of the neutral axis NN is found by putting p =0,
then the angle ¢ which it makes with GX is given by

1

I tan g
7 - tan

This equation shows that the neutral axis is parallel to a line
Joining the centres of the circles into which the beam would be bent
by the component couples supposed each to act alone,

The neutral axis being thus determined and laid down on the
diagram the points can be found which lie at the greatest distance
from that axis. At these points the stress will be greatest, and if
X, ¥ be their co-ordinates, still referred to the axes GX, @Y, the
moment of resistance will be determined by the equation

Y.cos X.sin 6]
=M { — = T L,
/ 1 Lo
For a different method of expressing the moment of resistance see
Rankine’s Applied Mechanics, p. 314. '

tan ¢ = —g:

EXAMPLES.

1. A bar of iron 2” diameter is bent into the arc of a circle 372’ diameter, Find in
tons per square inch, 1st, the greatest stress at any point of the transverse section;
2nd, the stress on a line parallel to the neutral axis half an inch from the centre,
E being taken = 29,000,000. Ans. Maximum stress =58, Stress at 4" from
centre = 2°0,

2. Find the diameter of the smallest circle into which the bar of the last question
can be bent; the stress being limited to 4 tons per square inch. 4ns, Diameter
= 540 feet.

3. Find the position of the neutral axis of a trapezoidal section ; the top side being
8", bottom 67, and depth 8”. Also find the ratio of maximum tensile and com-
bressive stresses, .4ns. Neutral axis 3:56 inches from bottom. Ratio of stresses
5 to 4, 3

4. A cast-iron beam is of I section with top flange 3" broad and 1 thick and bottom
flange 8" broad and 2" thick; the web is trapezoidal in section 4 thick at top and 1”
at bottom ; total outside depth of beam 16", Find the position of the neutral axis
and the ratio of maximum tensile and compressive stresses. Ams. Neutral axis
481 inches from bottom, Ratio of stresses 3 to 7.
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5. A wrought iron beam of rectangular section is 9" deep, 3" broad, and 10 feet
long. Find how much it will carry loaded in the centre, allowing a co-efficient of 3
tons per square inch, Also deduce the load the same beam will bear when set flat-
ways. Ans, When upright load =405 tons. When set flatways load = 1'35 tons.

6. A piece of oak of uniform circular section is 16” diameter and 12 feet long. It
is supported at the two ends and loaded at a point 5 feet from one end. How great
may the load be, allowing a stress of 4 ton per square inch? Ans, Load may be
5'74 tons,

7. In Example 5 suppose the same weight of metal formed into a beam of I section,
each flange being equal to the web; what load will the beam carry? Ans. Load
may then be 9°45 tons.

8. Find the moment of resistance to bending of the section given in Example 4,
the co-efficient for tension being 1 ton per square inch. A4ns. I =798 inch units.
Moment of resistance to bending =166°4 inch-tons.

9, Suppose the skin and plate deck of an iron vessel to have the following dimen-
sions at the midship section, measured at the middle of the thickness of the plates.
Find the position of the neutral axis and moment of resistance to bending. Breadth
48 and depth of vertical sides 24/, the bilges being quadrants of 12’ radius, Thick-
ness of plate §” all round, and co-efficient of strength 4 tons in compression, Ans.
Neutral axis 14" above centre of depth. Moment of resistance to hogging = 40,000
ft.-tons,

10, What should be the sectional area of a T beam of wrought iron to carry 4 tons
uniformly distributed? Span 20/, depth of beam 10" Co-efficient for compression 3
tons, and for tension 5 tons? Ans. Area=13T square inches.

11, If, in the last question, the flange is made equal to the web instead of being
proportioned for equal strength, show that to carry the same load the beam must be
about one quarter heavier.

12, In Example 8 find the moments of inertia and resistance on the supposition
that the flanges are concentrated at the centre lines, and thus by comparison with
previous results show the amount of the error involved in the assumption. Auns.
Moment of inertia = 8615 inch units. Moment of resistance =227 inch-tons.

18, Show that the limiting span (Art. 41) of a beam of uniform transverse section is
8n
L=\. N7
where IV is the ratio of span to depth, and the rest of the notation is the same as on
pages 90 and 314. Obtain the numerical result for a wrought iron beam of rect-
angular section, taking A from Table II., Ch. XVIIIL, and supposing N - 12, _dns.
L = 336 ft.; in an ordinary I section the result would be doubled. For the case of
large girders see page 372.

14, If 7 be the length of an iron rod in feet, d its diameter in inches, just to carry
its own weight when supported at the ends, show that when the stress allowed is 4
tons per square inch 7= /224 d,

15. If I, I, be the moments of inertia of two plane areas 4,, 4., about their neutral
axis which are supposed parallel at distance apart z, show that the moment of inertia
of their sum or difference about their common nentral axisis 7=7, + I, 2°. j;ﬁij 5

1t ds
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Apply this formula to the trapezoidal section of Question 3. dns, I=185 inch
units nearly.

16. Find the moment of resistance to bending of a beam of I section, each flange
consisting of a pair of angle irons 3} x 3 rivetted to a web "37"' thick and 16" deep
between them. Assuming it 24 feet span, find the load it would carry in the middle,
using a co-efficient of 3 tons per square inch, Ans. M =288 inch-tons. W= 4 tons.

17. If it be assumed that for constructive reasons the thickness of web of an I beam
with equal flanges must be a given fraction of the depth, show that for greatest
economy of material the sectional area of the web should be equal to the joint
sectional area of the flanges. Prove that in this case M=% f. Sk. (See p. 372.)

18. In a cast-iron beam of I section of equal strength for which f4 =2} fz; if it be
assumed that for constructive reasons the thickness of the web should be a given
fraction of the depth, show that for greatest economy of material the large flange,
the web, and the small flange should be in the proportion 25, 20, 4. Prove also that
the moment of resistance is given by the same formula as in Question 17 supposing

2[f=1/f4 +1/f5.

19. A beam of rectangular section of breadth one half the depth is bent by a couple
the plane of which is inclined at 45° to the axes of the section. Find the neutral
axis, and compare the moment of resistance to bending with that about either axis.
Ans. Ratio=24/2/3 and A/2/3.

20. If a beam be originally curved in the form of a circular are of radius R,, instead
of being straight, show that the neutral axis does not pass through the centre of
gravity of the section. In a rectangular section of depth / show that the deviation
18, approximately,

Lo

12R,

21. In the preceding question if R, is large show that the equations of hending are
P_pg(l 1) =

z=

Y By, B

5
REFERENCE.

For the graphical determination of moments of inertia the reader is referred fo
the treatises cited on page 82,



CHAPTER XIII.
DEFLECTION AND SLOPE OF BEAMS.

1863. Deflection due fo the Mazimum Bending Moment.—It is not
only necessary that a beam should be strong enough to support the
load to which it is subjected, it is also necessary that its changes of
form should not be too great, or in other words, that it should be

i sufficiently stiff, and we next
i l S proceed to determine under
s e what conditions this will be
; . the case.
., ey The question is simplest
: i Figdsy. when the beam is bent into
; i "} an arc of a circle, we have
i then
j:" {T/j = f}{=§= constant.
Two cases may be especially
mentioned--
(1) Depth uniform. We

then have p constant, that
the beam is of uniform strength. (See Case 1 of Art. 161. )

(2) Sectional area uniform. We then have, since

o
M_RI—% B . A7z,

the depth of the beam varying as the square root of the bending
moment, as in Case 3 of the same article.

Let  be the length of the beam, i the angle its two ends make
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with one another, then since i is also the angle subtended by the
beam at the centre

_i_m
“REL

If the beam be supported at the ends iis twice the angle which
the ends make with the horizontal, an angle called the Slope at the
ends. Let 4B be the beam (Fig. 127), O the centre of the circle into
which it is bent, XZ the diameter of the circle through K the middle
point of the beam. Then KN is the deflection which is given by a
known proposition of Euclid

KN N L= AN,

Hence remembering that the diameter of the circle is very large * we
have, if 8 be the deflection,
Set
8R B8EI
This formula gives the deflection in any case where the curvature is
uniform,

When the transverse section is uniform the curvature varies. Unless
the bending moment be likewise uniform, the deflection curve is not
then a circle 4K B, but for the same maximum bending moment a
flatter curve 4’KB'. Thus the deflection is less than that calculated
by the above formula, which may be described as the “ deflection due
to the maximum moment.” The actual deflection may conveniently
?)e expressed as a fraction of that due to the maximum moment. It
1s possible to construct the deflection curve graphically by observing
that the curvature at every point is proportional to the bending
moment. We have then only to strike a succession of arcs with
radii inversely proportional to the ordinates of the curve of bending
mmoment. It is however more convenient to proceed by an analytical
method.+ The fraction is least when the beam is least curved,
Wwhich is evidently the case when it is loaded in the middle, and we
shall show presently that it is then two-thirds, while, when uni-
formly loaded, it is five-sixths.

* For clearness it is made small in the figure.
t Readers who have no knowledge of the Calculus may pass over the next
four articles,
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164. General Equation of Deflection Curve.—It was shown above
that
M
BT
If the bending moment vary, then we must replace / by an element
of the length s and i by the corresponding element of the angle; we
shall then have an equation

i i

di M
ds~ EI’
which by integration will farnish i. It will generally be convenient
to reckon i from a horizontal tangent and it then means the slope of
the beam at the point considered. To perform the integration it is
in most cases necessary to suppose the slope of the beam small, as it
actually is in most important cases in practice, and we may then
replace ds the element of arc by dz, the corresponding element of a
horizontal tangent 4N (Fig. 128) taken as axis of #, whence
L approximately
dy EI ;i
an equation which can generally be integrated because 4 is usually a
function of .

The deviation y of any point @ of the beam from the straight line
AN can now be found since dy/dz = i, from which we further obtain
the fundamental equation

d¥y M

da®  EI
which applies to all cases where the bending of the beam is occasioned
by a transverse load. We shall first give some elementary examples
of the determination of the deflection and slope of a beam and then
consider the question more generally.

Fig.128.

185. Elementary Cases of Deflection and Slope.—Cuse 1. Suppose a
beam supported at the ends and loaded in the middle.
In Fig. 128 (/D) is the beam resting on supports at €, ), and loaded
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in the middle with a weight /. Take the centre 4 as origin and
the horizontal tangent at 4 as axis of #, then if / be the whole length

ey _ o _H(l-2)

- 272
g T T 7El =
dJ i IJ’ 'E ‘1‘9)3)
T dw -—"'Ej‘—

is the slope of the beam at ¢, no constant being required since i is
zero when z = 0. i
If 2=1/2 we get the slope at the ends of the beam
g
T 16EI

Integrating a second time

As before no constant is required because y =0 when n = 0.

If now we put 2=1/2 we get the elevation of D above AN or,
what is the same thing, the depression of 4 below the level of the
supports. This is called the Deflection of the beam ; if we denote it
by 3,

178
° (sl -7
oy e T T

a result which we may also write

52 MP_2 o

where A/, is the maximum moment and 8, the deflection due to it.

Case II. Let the beam be supported at the ends and loaded
uniformly with w pounds per foot run. It will be sufficient to give
the results, which are obtained in precisely the same way, remember-
ing that the bending moment is now dw(a® - o*) where o is the half
span, We have

Srwat Lalvy et 5 wat_ 5 _@’
Y USET 94BT - W24 ET 384 ET
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The value of 3 may be expressed as in the previous case in terms of
the deflection due to the maximum moment. We have 8 — &8s

166. Beam propped in the Middle.—When a beam is acted on by
several loads the deflection and slope due to the whole is the sum of
those due to each load taken separately. An important example is

Case 111,  Beam supported at the ends and propped in the middle,
uniformly loaded. (Fig. 129.)

Here the deflection of the beam is the difference hetween the
downward deflection due to the uniform load and the upward deflec-

Fig.129.

S

b

tion due to the thrust @ of the prop. Hence we write down at once
for the deflection at the centre,
i b [ O
384" EI ~48ETr
an equation which may be used to determine the load ecarried by the
prop when its length is given, and conversely.
First suppose the centre of the beam propped at the same level as
the supports, then 6= 0, and
QB x 487
Bt
so that the prop in this case carries five-eighths of the weight of the
beam, the supports C, D only carrying three-cighths. Tach support-
ing force is %wi, I being as before the whole length of the beam ;
hence the bending moment at a point distant 2 from € is given by
the formula

=3,

M = ygwla — Jwa? = ywa(3l - z),
from which it appears that the beam is bent downwards until a
point Z is reached, such that
CZ=§1=340C.
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Here the bending moment is zero, that is, Z is a  point of contrary
flexure ” or  virtual joint.” (Compare Art. 38.)
Beyond Z the beam is bent upwards, and at the centre A4 we get,
by putting = 1/,
— My = Al
The case here discussed is also that of a beam one end of which is
fixed horizontally and the other supported at exactly the same level.
Let us next inquire what will be the effect of supposing the centre
of the beam propped somewhat out of the horizontal line through
the supports at the ends. Let us suppose 8 to be 1/a" the deflec-
tion of the beam when the prop is removed, then
§ WS R S Y R 0
n 384 EI 38%1 'EI 48ET
that is

Q=§LW(1 —?11)

a formula which gives the load on the prop. If, for example, n =5,
Q=1W,or if n= -5, Q=4 ; thus if the centre of the beam be
out of level, by as much as one-fifth the deflection when the prop is
Wholly removed, the load on the prop will vary hetween 477 and
£, a result which shows the care necessary in adjustment to obtain
a definite result.

‘167. Beam fived at the Ends—Case IV, Uniformly loaded beam,
‘With ends fixed at a given slope.

: In Fig. 130 4B is a uniformly loaded beam, with the ends 4, B
fixed not horizontally but for greater generality at a slope i. Here

Fig.130,

the central part of the beam will be bent downwards and the end
barts upwards ; at Z, Z there will be virtual joints ; let 0Z =r, then
taking 0 as origin the bending moment at any point between 0
and Z ig

M= w(rt—a2),
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a formula which will also hold for points beyond Z, as can be seen
from Art. 38, or proved independently. We have then

Py _ (o)

dz SR

- Fw(rir — 1a8)

BT

No constant is required, because i is zero at 0. Let ¢ be the half
span 04, or OB, then putting = a, we get for the slope at the
ends

i 3w(®a - 1ab)
; ET
a formula from which 7 can be determined if 1, be given, Ifr=gq,
we get the case where the ends are free ; let the slope then be Tg; W€
have

tl

wa?
0F 557
Now, assume the actual slope to be 1/a® of this, we get
1 we® _ lw(%—1a8)

n' 3EI Er 2

i as hefore (p. 329).

that is, i ;
ik

If the ends are fixed exactly horizontal, then
rE=207 ;

and by substitution we find for the bending moment at the centre
and the ends

My=twa®; M, =M,=Lwd?
If the ends were free, the bending moment at the centre would have
been $wa?, so that the beam will be strengthened in the proportion
3:2. The formula obtained above, however, shows that a small
error in adjustment of the ends will make a great difference in the
results.

It is theoretically possible so to adjust the ends that the bending
moments at the centre and the ends shall be equal, in which case the
beam will be strongest. For this we have only to put

‘ $wr? = Juw(a? - 12),
that is, r2=1%0?
whence by substitution we get

n=4;
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that is, the ends should be fixed at one fourth the slope which they
have when free, and the strength of the beam will then be doubled.

By proceeding to a second integration the deflection of the beam
can be found. In particular when the ends of the beam are horizontal
1t can be shown that the deflection is only one fifth of its value when
the ends are free.

The graphical representation of the bending moments in Cases IIL.,
IV., is easily effected, as in Fig. 42, p. 86. '

168. Stiffness of @ Beam.—The stiffness of a beam is measured by
the ratio of the deflection to the span. In practice, the deflection is
limited to 1 or 2 inches per 100 feet of span when under the working
load ; that is, the ratio in question is who to tF5o™ It appears
from what has been said that if 3/, be the maximum moment the de-
flection is given by

M2

‘8ET
where [ is a fraction, varying from two-thirds to unity, depending on
the way in which the beam is loaded. Hence the greatest moment

Which the beam will bear consistently with its being sufficiently
stiff is

o=l

8E8 T
i St
L ko1
If we express 7 as usual in terms of the sectional area and depth,
we get
M 0 = Sz A ’E:‘,
Where s is a co-efficient depending vn the material and on the admis-
sible deflection which may be called the ¢ Co-efficient of Stiffness.”
We thus obtain a value for the moment of resistance of a heam
which depends on its stiffness, not on its strength, and if that value
be'less than that previously obtained for strength (p. 314), we must
evidently employ the new formula in caleulating dimensions. On
comparing the two, we find that they will give the same result if
8o o bkl
K0 rettlos
that is to say, for a certain definite ratio of depth to span, and
If there is no other reason for fixing on this ratio, it will be best to
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choose the value thus determined. The two formulse then give
the same result. In large girders a greater depth is generally
desirable, then the strength formula must be used 5 while in small
beams it may often be convenient or necessary to have a smaller
depth, and then the stiffness formula must be employed.

169. General Graphical Method.—The foregoing simple examples
of the determination of the deflection and slope of a beam are perhaps
those of most practical use, but, by the aid of graphical processes,
there is no difficulty in generalizing the results which are of con-
siderable theoretical interest, We can, however, afford space only
for a hasty sketch. '

The general equations given in Art. 164 show that the angle (i)
hetween two tangents to the deflection curve of a beam is pro-
portional to the area of the curve of bending moments intercepted
between two ordinates at the points considered. Starting from the
lowest point of the deflection curve, let us now imagine a curve
drawn, the ordinate of which represents that area reckoned from the
starting point, then that curve will represent the slope of the beam
at every point, and may therefore properly be called the “ Curve of
Slope.”  But referring again to the general equations we see that the
ordinate of the deflection curve reckoned upwards from the horizontal
tangent at the lowest point, is connected with the slope in the same
way as the slope with the bending moment, and is consequently
proportional to the area of the curve of slope. Thus it appears, on
reference to Chapter IIL., that the curves of Deflection, Slope, and
Bending Moment are related to each other in the same way as the
curves of Bending Moment, Shearing Force, and Load. The five
curves, in fact, form a continuous series each derived from the next
succeeding by a process of graphical integration,

We now see that any property connecting together the second
three quantities must also be true for the first three, For example,
we know, from the properties of the funicular polygon, that two
tangents in the curve of moments intersect in a point vertically below
the centre of gravity of the area of the corresponding curve of loads
(see Arts. 31, 35). Tt must therefore be true that two tangents to the
deflection curve intersect vertically below the centre of gravity of the
corresponding area of the curve of moments, a useful property, which
can be proved directly without much difficulty.
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The deflection curve of a beam may therefore be constructed in
the same way that the funicular polygon is constructed in Art. 35,
the perpendicular distance () of the pole from the load line in the
diagram of forces being made equal to ZZ. To do this we have only
to divide the moment curve into convenient vertical strips and
regard each as representing a weight. Set down these ideal weights
as a vertical line and choose a pole at a distance from the line equal
to T, measured (on account of the largeness of E) on a scale less in
a given ratio. Now, construct the polygon and draw its closing line,
the intercept multiplied by the scaleratio is the deflection of the
beam. A parallel to the closing line in the diagram of forces gives
the slopes at the extremities of the beam which correspond to the
supporting forces of the loaded beam in the original case.

We have hitherto supposed the beam to be of uniform stiffness
throughout ; if not, let the quantity #Z, which is now variable,
be Z,I; at some datum section. Reduce the ordinates of the curve of
moments in the proportion £y, to £7, then the reduced curve is to
be employed in the way just described for the original curve.

170. Eramples of Graphical Method. Theorem of Three Moments.—
Let us now take some examples.

Case I.—Symmetrically loaded beam, of flexibility also symmetrical
about the centre. Let 4B(/
(Fig. 131) be the curve of
moments, reduced if neces-
sary, AOB the deflection
curve ; both curves, of
course, will he symmetri-
cal about the centre ver-
tical, then from what has
been said, tangents at 4, :
B to the deflection curve intersect the tangent at 0 in points 7' verti-
cally below the centres of gravity of the two equal areas 400, BCO.
Hence if § be the area of the whole curve of moments, z the
horizontal distance of either point 7' from the nearer end,

Fig.181.,

; S = S Sa2
""0=ﬁ;7; 8:3.‘1-02 TT

must be the slope of the ends of the beam and its deflection.
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Case I1. Beam continuous over several, spans loaded in any way,
(Fig. 132.) Tet ACO', BDO' be the moment curves due to the load
on two spans A(', BO' of a beam A0B, continuous over three sup-
ports 4, 0, B, of which the centre 0 is somewhat below the level of
A, B. Being continuous, there will be bending moments at 4, 0, B,
which are represented in the diagram by AZ, O'T, RF. Joining
£1L, FL, the actual bending moment at each point of the beam will be

represented by the intercept between the line ZZL# and the curves of
moments due to the load and corresponding supporting forces. (See
Art. 38.) The curve A0B is the deflection curve, 47, BT are the
tangents at 4, B and 707 is the tangent at 0, intersecting AT, BT
in the points 7.

Now, let i, be the angle between the tangents at O and .4, then, as
hefore,

1' — _‘Si
A E’I’
where S is the area of a curve representing the actual bending
moment at each point. In the present case S is the difference of
two areas, one the moment curve for the load, the other the trape-

zoid E(' for the moments A, 2.
Sy o Mt M

9

&

Ly

where 4 is the area of the moment curve 4C0’ and I, is the span
A0'.  Let the horizontal distance from 4 of the common centre of
gravity of the two curves be  ; then, as before, z is also the horizontal

distance of 7' from 4, and
Sz

= ar ™ hefore
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To find =, let 2, be the horizontal distance of the centre of gravity
of 4CB from A, then
L My—-M,
S

Se=Adz, - M|, . —él =

=Az,— M, . 12-%M,. 12
We have thus found 7, the distance of A4 from the tangent through
0 ; and 7, the corresponding distance of B, is written down by change
of letters.
Assuming now the depression of 0, the centre of the beam, below

the level of the two other supports to be 8, it appears from the
geometry of the diagram that

Lo #lis

B
Ya Jnl 1 }_ .
& L +8(1A z,,)’

hence dividing the values of y,, 7, by I, [, respectively, and adding
A‘E 8. 50 R+ 1) = L~ Ry = a( ) K.

This equation conneets the bending moments at three points of
support of a continuous beam, the centre support being below the
end supports by the small quantity 8. It can readily be extended to
the case where the flexibility of the beam is variable by reducing the
moment curves as previously explained, then the moments M, which
are the results of the caleculation, will, in the first instance, be
reduced, and can afterwards be increased to their true values.

The above equation is the most general form of the famous
Theorem of Three Moments, ormnally discovered by Clapeyron,
which is always employed in questions relating to continuous beams
—a somewhat large subject, on which we have not space to enter.

171. Resilience of a Bent Beam.—The work done in bending a
beam by a uniform bending moment Jf is evidently 1M/, where i is
the angle which the two ends of the beam make with each other, as
in Art. 163 ; ; hence by substitution for ¢ we find for the work U,

M2
O=ogr’
b'd
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and if the bending moment vary,

& fzu fe

An important case is when the beam is of uniform strength, then
we have

p= ‘_@_‘;l’ = constant = ﬂ%ﬂo’

0
where the suffix 0 refers to a datum section. Then
M el gl
38, )1,
Assuming now the section (), though varying, to remain of the

same type,

U= dz.

Ly

I, Ay

If, therefore, we call V" the volume of the beam,
Moser s e =so s

2Bl A, 0F Ag;

With the notation of Art. 155 this gives

[ n
U= i'E s P

For the resilience we have only to change p into f, the proof strength.
It thus appears that in beams of uniform strength with transverse
sections of the same type the resilience is proportional to the volume,
and less than that of a stretched or compressed bar, as might have
been foreseen from general considerations. The ratio of reduction is
¢ :m, being 3 : 1 in rectangular sections, 4 : 1 in elliptic sections.
When the beam is not of uniform strength the ratio of reduction
must be greater for the same type of section. The reduction is of
course least in 7 sections of uniform strength.

The funetion U is of great importance in the theory of continuous
beams and other similar structures, the relative yielding of the
several parts of the structure being always such that this function is
less than it would be for any other distribution of stress and strain.
It may be called the Elastic Potential, and when known all the
equations necessary to determine the distribution of stress may be
found by simple differentiation. (See Appendix.)

U =
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EXAMPLES.

L. If I be the length of an iron rod in feet, d its diameter in inches, just to carry
its own weight with a deflection of 1 inch per 100 feet of span, show that

1= /233"
Compare this result with that of Ex. 14, p. 324, and state what formula is to be used
Wwhen both stiffness and strength are required.
2. Find the ratio of depth to span in a beam of rectangular section loaded in the

middle, assuming stress = 8,000, &= 28,000,000, deflection = %%g. Ans. 1%5

3. A beam is supported at the ends and loaded at a point distant a, b from the
supports with a weight W, show that the depression of the weight below the points

Wa*h?
3EI(a+b)

4. In the last question deduce the work done in bending the beam, and verify the
result by direct calculation. (See Art. 20.)

5. A dam is supported by a row of uprights which take the whole horizontal
Pressure of the water. The uprights may be regarded as fixed at their base at the
bottom of the water, while their upper ends at the water level are retained in the
Vertical by suitable struts sloping at 45", the intermediate part remaining unsupported.
Find the bending moment at any point of the upright, and show that the thrust on
the struts is about two sevenths the horizontal pressure of the water.

of support is

6. A timber balk 20 feet long of square section supports 160 square feet of a floor,
find the dimensions that the deflection of the floor, when loaded with 60 Ibs. per
Square foot, may not exceed } inch.

7. A shaft carries a load equal to m times its weight (1) distributed uniformly, (2)
¢oncentrated in the middle. Considering it as a beam fixed at the ends, find the

distance apart of bearings for a stiffness of il Ans. If I be the distance apart

1200
in feet, d diameter in inches, then for a wrought iron or steel shaft
SopTan A
1) 1=10° Ztg o) =83 a2,
W 1-105a/ 2, @) 1-838/_2

8. A beam originally curved, as in Ex. 21, p. 325, is fixed at one end and loaded in
any way. If ¢ be the change of slope at any point and X, ¥ the displacements parallel
to axes of x, y of the point consequent on any load, prove that

di M dX |, dY

5™ BD dy =~
Apply these formul to find the straining actions at any point of one of the rings of
& chain of circular links.



CHAPTER XI1V.

TENSION OR COMPRESSION COMPOUNDED WITH BENDING
CRUSHING BY BENDING.

172. General Formula for the Stress due to a Thrust or Pull in com-
bination with a Bending Moment.—The bars of a frame and the parts
of other structures are often exposed, not only to a pull or thrust
alone, or to a bending action alone, but to the two together; and
the total stress at any point of a transverse section is then the sum
of that due to each taken separately. That is to say, if H be the
thrust, reckoned negative if a pull, /' the bending moment, the
stress at any point distant y from the neutral axis of the bending
(see Art. 155), reckoned positive on the compressed side, must be
given by

H My H i it
p=g+ P12 @}
the notation being as in the article cited.

This formula shows how the effect of a thrust or pull is increased
by a bending action: it has many important applications, some of
which we shall now briefly indicate.

173. Strut or Tie under the Action of a Force parallel lo its Auxis in
cases where Lateral Flexure may be neglected.—Case I. Bar under the
action of a force in a principal plane parallel to its axis.

Let # be the distance from the axis of the line of action of the
force, then

M=Hz; p:%(l«r% %)
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For example, let the section be circular, then n= %, ¢=14, and we
find
H 8z
Pk

from whence it appears that a deviation from the axis of 4™ the dia-
meter of a rod increases the effect of a thrust or pull 50 per cent.
Similarly it can be shown that if the line of action of the force lie
outside the middle fourth of the diameter of a circular section, or the
middle third of a rectangular section, the maximum stress will be
more than double the mean, and at certain points the stress will be
reversed. In designing a structure, then, the greatest care must be
exercised that the line of action of a thrust or pull lies in the axis of
the piece which is subjected to it ; to effect which, the joints, through
which such straining actions are exerted, must be so designed that
the resultant stress at the joint is applied at the centre of gravity of
the section of the piece. This is a condition which cannot always be
satisfied, and allowance in any case must be made for errors in work-
manship. In practical construction it is the joints which require
most attention, being most often the cause of failure. In frames
which are incompletely braced the friction of pin joints causes the
line of action of the stress to deviate from the axis. (See Ch.
XVIIL)

The effect is increased in the case of a thrust and diminished in
the case of a pull by the curvature of the piece, which increases or
diminishes z Fig. 133 shows the axis of a column, Fig.133,
under the action of a weight /7, suspended from a A
short cross piece of length @. The column bends later- M %7 EiB
ally, as shown in an exaggerated way in the figure.
The inclination of 4B to the horizontal is so small
that the difference between the actual and the projected
length of 4 B may be disregarded ; the bending moment
at O is therefore 7/(a +8), where & is the lateral devia- o ™
tion 4N of the top of the pillar. This deviation
we will in the first instance suppose small compared with @, and then
determine the condition that this may actually be the case. Neglect-
ing it, the axis of the pillar is bent by the uniform bending moment
Wa into a circular arc of radius K, and as in Art. 163

§.2R=12,

| w
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substituting for R its value (Art. 155) we get
Mi*  Wal®

=FRI90L
whence we find
s Wi
a” 2E1

The condition, then, that the lateral deviation should be small is that
W should be much less than 2£7/i2, and if this condition be satisfied
the stress will not be much increased beyond that indicated by the
formula given above. The very important cases in which /7 is large
will be treated presently.

In the case of a pull this restriction on the use of the formula need
not be attended to, the effect of the deviation being to diminish the
stress.

174. Effect of a Thrust on a Loaded Beam.—Case II. Uniformly
loaded beam supported at the ends and subject to compression,
Let the load be // and the thrust H, then
H g i
=5 { Lt }
For example, let the section be rectangular, then ¢=1, n=-1;, and

we find
H T 3 W
f=a (it }

Let us further suppose the ratio of depth to span one sixteenth,

then
p=Z. (1 + 137”) __(12

which shows how greatly the effect of a thrust is increased by a
moderate bending moment.

If the deflection be supposed 1 inch in 100 feet then X will in
consequence produce an additional bending action at the centre equal
to H1/1200, which will be equivalent to an addition to /7" of H/150.
For safety H ought not to exceed 3/7, and the stress due to the
bending action of the uniform load on the beam will then be
increased about 25 per cent. by the effect of the thrust. This caleula-
tion shows why it is often necessary to support a beam at points not
too far apart by suitable trussing even when support is not required
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to give sufficient stiffness. Theoretically a proper “ camber” given
to the beam will counteract the bending action, and, conversely, a
small accidental deflection will increase it.

175. Remarks on the Application of the General Formula.—The
formula given above in Art. 172 is much used in questions relating to
the stability of chimneys, piers, and other structures in masonry and
brickwork. The stress on horizontal sections of such structures
varies uniformly or nearly so, and the formula then shows where the
stress is greatest and also where it becomes zero, tension usually not
being permissible. It must be borne in mind however that the
bending is frequently unsymmetrical, so that the axis of the bending
moment will not coincide with the neutral axis of the bending stress
on the section (Art. 162). The stability of blockwork and earthwork
structures is a large subject which will not be considered in this .
treatise.

176. Straining Actions due to Forces Normal to the Section.—The
reasoning of this section shows that when a structure is acted on by
forces some or all of which have components normal to a given section,
the straining actions due to the normal components will in general de-
pend on the relative yielding of the several parts of the section (Art.
42). These normal components however can always be reduced
to a single force, acting through any proposed point in the section,
and a couple, and if the point be properly chosen according to the
nature of the structure at the section that single force will be a
simple thrust or pull ; thus in the cases we have mentioned the point
is the centre of gravity of the section. Having done this the couple
will be so much addition to the bending action. An important example
of this is the case of a vessel floating in the water in which the horizon-
tal longitudinal component of the fluid pressure generally produces
bending, the arm of the bending couple being the distance of the
intersection of the line of action of the resultant with the section
considered, from the neutral axis of the “ equivalent girder.”

177 Macimum Crushing Load of o Pillar—When the compress-
ing force is sufficiently great it produces a strong tendency to bend
the pillar even though there be no lateral force. We have already
seen that the condition that this shall not be the case is that /#” shall
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be small compared with the quantity 2£7/P and we now proceed to
inquire the effect produced when 7 has a larger value. All these
cases come under the head of what is called Crushing by Bending,
and are very common and important in practice.

As in the case of the deflection of a beam the question is much
more simple when the pillar bends into an are of a circle, which it
will do in various cases explained in Art. 163. The case which we
select is that in which the sectional area remains constant and the
thickness varies. Such a pillar is of uniform strength when very
slightly bent, and when more bent the weakest point is at the base.
As the breadth becomes great at the summit this form could not be
practically applied without modification, but the conclusions derived
by considering it may be applied with slight modifications to the
cases which occur in practice. *

When the load is applied exactly at the centre the elevation of
such a pillar is a semi-ellipse with vertex at the summit ; when not
exactly at the centre the ellipse is truncated. For the present pur-
pose it is not necessary to consider this point further, as the form
is not intended for practical application.

Assuming then the form of the bent pillar to be a circular are we
have as before
_ e
- 2ET
but we have now, since we cannot neglect 3,

M =W(a+ ).
Hence by substitution we find
s Pla+dn
9BL
where I is the moment of inertia at the hase, from which we find

)

S

9ET_

This result shows that the pillar bends laterally more and more

*The case where the thickness is uniform has been considered by Dr. Young
in his Natural Philosoply (see Young’s works, Peacock’s edition, p. 139), who
shows that the outline is a circular arc, as follows at once from Art. 161.
The compressive stress however near the summit of the pillar is then very
great,



CH.XIV. ART. 177.] COMPRESSION AND BENDING. 345

as JV increases, and breaks with some value of 77 which we will
find presently by substitution in the formula of Art. 172,

First, however, observe that if @ =0, that is, if the line of action of
the load pass through the centre of the pillar at its summit, then
8=0 unless the denominator of the fraction be also zero, that is,
unless

=gl
l-
The interpretation of this is, that if W be less than the value just
given the pillar will not bend at all, but if disturbed laterally will
return to the upright position when the disturbing force is removed.
If 77 have exactly that value then, when put over into any inclined
position the pillar will remain there in a state of neutral equilibrium,
while the smallest increase of /7 above this limit will cause the

Fig.184.

Dillar to bend over indefinitely and so break. Thus the foregoing
equation may be regarded as giving the crushing load of the pillar
under certain conditions to be defined more exactly presently.

If the pillar had not bent into the arc of a cirele as has been
just supposed, we should have arrived at exactly the same formula
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except that the co-efficient 2 is replaced by a not very different
number depending on the circumstances of the particular case. If
the transverse section be uniform then the pillar bends into a curve
of sines and we must replace 2 by w%/4 or 2-47, thus obtaining

Tl ) L

iy

a formula which having been first obtained by Euler is known as
Euler’s Formula. It applies directly to a column fixed firmly in the
ground and entirely free at the upper end ; it can however easily be
modified to suit the cases more common in practice where the ends
of the column are constrained to lie in the same vertical line. There
will be three such cases shown in Figs. 134, 134a, 1345,

In the first the ends of the pillar are rounded and it bends laterally
in the curve BAB; each half 4B is then in the position of the pillar
originally considered, except that the base instead of the summit is
free to move laterally, hence to get the crushing load we have only
to replace I by L/2, where L is the whole height of the pillar. In the
third both ends of the column are flat, which has the effect of retain-
ing the axis in the vertical at top and bottom, so that lateral bending
takes place in the curve CBA4BC, being a curve with two points of
contrary flexure or “virtual joints.” Here the four pieces CB, B4,
AB, BC, are all in the same condition and must be of the same length;;
each is in the condition of the pillar originally considered; to get the
crushing load then we have only to replace I by L/4, where L is the
whole length. In the second the pillar bends into a curve BABC
which has one point of contrary flexure B, the other being at the
summit ; if this point were in the same vertical as the summit then
the pillar would be divided into three equal parts and we should get
the crushing load by writing L/3 for / in the original formula. As
the figure shows however, B must be a little out of the vertical, and
this slightly diminishes the crushing load which we get approximately
by writing Z/2 /2 for I

‘We thus obtain the three formulee,

Wt S W=t e Wit
for the three cases in question with a uniform section. If the pillar
be bent into a circle as described above, then =*is to be replaced
by 8.

=
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178. Manner in which a Pillar erushes. Formula for Lateral Devia-
tion.—The value of /7 here found is the maximum load which a
pillar, free to deflect laterally, can sustain under any circum-
stances; but, in order that it may actually be sustained, the
pillar must be perfectly straight, the material must be perfectly
homogeneous, and the line of action of the load must be ex-
actly in the axis. These conditions cannot be accurately satis-
fied, and consequently a lateral deflection is produced, which
increases indefinitely as the load approaches the theoretical maxi-
mum. This may be expressed by supposing that o is not zero,
but some known quantity depending on the degree of accuracy with
which the conditions are satisfied, and which may be called the
« offective” deviation ; since, when the pillar is straight and homo-
geneous, it will be the actual deviation of the line of action of the
load from the axis. Let 77, be the theoretical maximum load as
caleulated from the preceding formule and 77 the actual load, then

@

5 L K :
= =0. 7, (p- 344.) ;
7

thus we see that a load of 3, §, # the theoretical maximum produces
a lateral deflection of la, 2a, 3a, increasing the deviation of the load
from the axis of the column to 2a, 3a, 4a. These numbers are only
exact when the pillar is so formed as to bend into the arc of a circle,
when this is not the case they follow a more complicated law of the
same general character depending on the type of pillar and the
nature of the deviation. For our purpose the simple case is sufficient.
It is convenient to express the load in pounds per square inch of the
area (A) of the pillar at its base, then we may write with the notation
of Art. 155 .

h?
. ‘Zzz )
for the case where the pillar is rounded at both ends, the number w2
being replaced by 27° or 4= in the two other cases of the last article.
Similarly writing p = 7#/4 for the actual load on the pillar, we geb
by substitution

— =g .k

PD:A

d=a. -—?_, or a+d=a. ol S
Po— P Po—P
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The deviation is accompanied by an increase in the maximum stress
(f) on the transverse section, which is given by the formula

H M
‘74(“% - (p. 340),
from which we get, replacing I by # and M by ¥(a + 8),

il e

a result which shows that f increases indefinitely as p approaches p,,
so that the pillar must break before the theoretical maximum is
reached, however small the original deviation is. The greatest
value of f must be the elastic strength, for as soon as this is past an
additional lateral deviation at the most compressed part will occur,
sooner or later accompanied by rupture.

The formula may be written in the more convenient form,

(-0(-2)-%
in which it is worth while to observe ‘that the right-hand side is
unity for the deviation necessary to produce double stress when the
pillar is so short that no sensible augmentation of the deviation is
produced by lateral bending. In materials like cast iron which have
a low tenacity, very long pillars give way by tension on the convex
side ; the formula then becomes

Zyo 40
+ 1)(1 —pu) Tk
where f” is the tensile stress at the elastic limit. The two formule
give the same result if

5 g%_
For loads greater than this the first formula applies, and for small
loads the second. In pillars flat, but not fixed at the ends, without
capitals f* may be zero.

179. We thus see that if a pillar were absolutely straight and
homogeneous it would erush, by direct compression if p, were greater
than f, and by lateral bending if p, were less than f, the crushing
load being the least of these two quantities; but that the smallest
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deviation will be augmented by lateral bending, so that the actual
crushing load will be less than the least of these quantities. FExperi-
ence confirms this conclusion. When a long pillar is loaded we do
not find that it remains straight till a certain definite load p, is
reached, and then suddenly bends laterally. We find, on the con-
trary, that a perceptible lateral deflection is produced by a small
load, which gradually increases as the load is increased, till rupture
takes place, showing, as we might anticipate, that some small
deviation existed originally. And as that deviation evidently de-
pends upon accidental circumstances it is impossible, from imperfec-
tion of data, to find the actual crushing load of a pillar for those
proportions of height to thickness, for which its effect is greatly
augmented by a small deviation. The augmentation is on the whole
greatest when

I
f:])uzwg.'n.E.zg}

L w2k
Tt v o
This gives, by taking the values of & and f from Table IL, Ch. XVIII.
Wrought Iron, L =38 ~/7n . h =30k (Circular Section).

that is, when

Soft Steel, L=29 w0 . h=23h -
Hard Steel, L=23nNan. h=18h 7
Cast Iron, L=20/zn . h=16h

»

In the case of cast iron there is a difficulty in determining the value
of f, but if we suppose that the elasticity of the material is not
greatly impaired at half the ultimate crushing load, we get the value
given. The case of timber is exceptional, and will be referred
to further on. For pillars fixed or half-fixed at the ends the number
72 is to be replaced by 42 or 27* as before.

Let us assume this condition satisfied, and let us imagine the pillar
loaded with three fourths the theoretical maximum crushing load,
then by substitution we find, ga/nh =1 . 1, or since n/g=% for a
circular section,

el

Lo 96’
from which it will be seen how small a deviation will cause the pillar
to crush under three fourths the theoretical maximum load, when the
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proportion of height to thickness is that just given. With a pillar
of double this height deviation has little influence, and with a pillar
of one third this height lateral flexure has little influence on the
resistance to crushing,

On the whole, then, it would seem that the most rational way of
designing pillars would be to calculate the theoretical maximum
load, and then adopt a factor of safety depending on the value of the
deviation found from the above formula ; it is obvious that in some
cases a much larger deviation may be considered likely than in
others. For the case of thin tubes see Ch. XVIIL

180. Gordon’s Formula.—The greater part of our experimental
knowledge respecting the strength of pillars is due to Hodgkinson.*
His results show that in cast-iron pillars with flat ends, the length
of which exceeds 100 diameters, the theoretical maximum is closely
approached, while with shorter lengths the strength falls off con-
siderably, as might be expected. In other respects the theoretical
laws are approximately fulfilled, the principal difference being that
columns with one or hoth ends rounded are somewhat stronger
relatively to columns with flat ends than theory would indicate, an
effect which may be partly due to imperfect fixing of the ends.
Various empirical formul® have been given to express the results of
experiment on the crushing of pillars. That which has been most used
is commonly known as Gordon’s. It is so constructed as to agree
in form with the theoretical formuls in the extreme cases in which
those formul give correct results. Asmodified by Rankine, only re-
placing 72 the square of the radius of gyration, by 2% in the notation
of this work the formula is

B e
i 1 +.ii’
cnh?
which becomes, when /l is small,
Wi=Af,

and when //k is large,

W= can'ia =L
l
while for intermediate values it gives intermediate results.

* Phil. Trans., 1840, Part II, An abridgment is given in Hodgkinson’s work
on Cast Iron, cited at the end of Chapter XVIII,
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If we compare this last with Euler’s formula for a column with flat
ends, we get
f}
and this may be called the *theoretical” value of the constant c.
The values actually used for ¢ are somewhat different, being deduced
from such experiments as have been made, and the results for differ-
ent forms of section are not always consistent. Rankine gives

c= 47

VALUE OF CONSTANTS.

Value of /. Value of e.
Wrought Iron, ; : : 36,000 36,000
Cast Iron, ; : : : 80,000 6,400
Dry Timber, . : ; g 7,200 3,000

These values refer to struts fixed at the ends and to the crushing
load. If one end be rounded, the value of ¢ must be divided by 2,
and if both ends are rounded, by 4. A large factor of safety must
be employed, for reasons already sufficiently indicated.

Rankine’s formula has been very extensively tested for the case of
wrought columns of large size of various transverse sections, con-
structed of riveted plates, and has been found to give good results.*

In the case of timber Hodgkinson found, from a limited number of
experiments on struts of oak and red pine of small dimensions, a
formula which agrees with the formula for the theoretical maximum
crushing load when the value of Z in that formula is taken as about
900,000 1bs. per square inch. It is possible that the low lateral
tenacity of this material increases its flexibility under a heavy crush-
ing Joad. The formula. gives a crushing stress greater than the
direct resistance to crushing of the material when Z is less than
20%, which seems hardly probable, and the lower values given
by Gordon’s formula appear preferable. In the case of steel the
value of f may be expected to be increased and the value of ¢
diminished in the ratio of the direct resistance to crushing of steel
and wrought iron respectively.

_ Calculations made by Gordon’s formula may be tested by calculat-
g the deviation @ by the formula on p. 348 ; the magnitude of this
Will be to some extent a measure of the safety of the proposed load.

* ¢ Minutes of Proceedings of the Institution of Civil Engineers,” vol. liv.
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In all cases of struts of large size subject to a heavy load, special care
is necessary in considering all the circumstances—if a deflection be
occasioned by the unsupported weight of the strut itself, or if, as is
often the case, it be constructed of riveted plates, a large margin of
safety is desirable. So also in pieces forming part of a machine in
which a bending action may be produced by inertia and friction, or
which are subject to shocks, the simple thrust alone is often a very
imperfect measure of the stress to which they are subject.

Returning to the case of a long slender column we observe
that the resistance to crushing depends solely on the stiffness and
not on the strength being proportional to the modulus of elasticity.
Hence a long column is stronger when made of wrought iron than
when made of cast iron, although with short columns the reverse is
true. It appears from Gordon’s formula that for a ratio of length to
diameter of about 264 the two materials are equally strong. In very
long columns steel is not stronger than iron, for its modulus of
elasticity is not very different ; in shorter lengths however the greater
resistance to direct crushing of steel gives it an advantage.

181. Collapse of Flues.— There are other cases of crushing by
bending. An important one is that of the yielding of a thin tube
under exfernal fluid pres-
sure, The strength of a
tube under external fluid
pressure is as different from
that of a tube under inter-
nal pressure as the strength
of a bar under compression
is different to its strength
under tension.

. i S, A t.ube perfectly uniform
L ™\ in thickness made of per-

fectly homogeneous hard
material and subject to perfectly uniform normal pressure exter-
nally, would theoretically maintain its form until it yielded by
the direct crushing of the material. But when the pressure ex-
ceeds a certain limit the tube is in a state of unstable equilibrium,
and any deviation from perfect accuracy in the above conditions will
cause the tube to yield by collapsing, the collapsing being accom-
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panied by bulging. If the tube is very long it will collapse in the
manner shown in Fig. 135, the circumference dividing itself up into
four arcs two of which are concave outwards and the other two
convex. A want of exactness in the construction will in practice
generally prevent the collapsing from being symmetrical. Each
portion of tube between the points .4 is under the action of forces
applied at the ends towards one another, which crush it by lateral
bending just as a long column is crushed. Just before collapsing, each
segment 4.4 (Fig. 136), of length s say, will be under the action of
a thrust P suppose, applied at the ends tangentially. Equilibrium is
maintained by fluid pressure of intensity p on the convex side. When
the pressure exceeds a certain limit the equilibrium is unstable, some
accidental circumstance determining the position of the point 4 of
contrary flexure, and the consequent length s of any arc.

The thrust per inch length of the tube may be taken as approxi-
mately proportional to p. Thus if = thickness of tube, we may expect
that the collapsing pressure would be given by a formula like that
which expresses the crushing load of a long slender rod of rectangular
section, namely, p = £'#*/s* where %' is an unknown co-efficient. All
other things being equal, the diameter alone varying, the length
s of an arc 4.4 would be proportional to the diameter of the tube d,
and, under those circumstances, the collapsing pressure would probably
Vary with #/d*. But the length of the tube, as well as the diameter,
influences the value of s. In all practical cases, as in all those on
which experiments were made, the ends of the tube are rigidly con-
structed, and very much support the tube in the neighbourhood from
collapsing ; thus the proximity of the ends has an important effect in
determining the length of the arcs into which the circumference
divides itself. If the length of the tube is decreased a limit will be
reached below which the tube on collapsing divides
itself up into six arcs, three concave and three con-

~vex, as shown in Fig. 137. Then the length of
each arc will bear a smaller proportion to the dia-
meter than in the long tube. A still shorter tube
will, when it collapses, divide it into eight ares,
and so on. Thus the length s is in some way dependent on
the length of the tube. The correctness of this reasoning is
borne out by experiments made by Fairbairn and others. In

Fairbairn’s experiments the tubes were made of riveted wrought-
7
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iron plates. The ends were made rigid by a strong stay placed
within the tube, keeping the ends apart. The tube thus constructed
was placed in a larger cylinder of wrought iron and external pressure
was applied by forcing water in. The pressure being gradually
increased the tube will at last suddenly collapse, making a mnoise
which indicates the instant of the occurrence. The results of the
experiments showed that the collapsing pressure may be approxi-
mately expressed by the formula

r= fn,d,

the dimensions being all in inches, the co-efficient % =9,672,000.
This formula must not be used for extreme cases nor for tubes of
thickness less than § inch.

Since a short tube is so much stronger than a long one, we have
an explanation of the advantage of riveting a T iron ring around a
hoiler furnace tube, which amounts to a virtual shortening of the
length of the tube. Other formul® have been proposed, some of
which represent the results of experiment more closely, but the
materials at present available do not admit of the construction of a
satisfactory formula. *

EXAMPLES.

1. Find the thickness of metal of a cast-iron column fixed at the ends, 1 foot mean
diameter, 20 feet high, to carry 100 tons. Factor of safety, 8. Ans.—Thickness 1",

2. Find the crushing load of a wrought-iron pillar 3" diameter, 10 feet high, free at
the ends. Ans.—Crushing load — 66,218 1bs. = 30 tons nearly.

8. If in last question the pillar were of rectangular section of breadth double the
thickness, what sectional area would be required for equal strength? Ans.—Sectional
area = 94 square inches instead of 7 square inches as before.

4. Find the collapsing pressure, according to Fairbairn’s formula, of a cylindrical
boiler flue 17" thick, 48" diumeter, and 30 feet long. .Ans.—Collapsing pressure - 107
Ibs.

5. In Ex. 1 caleulate the deviation of the line of action of the load from the axis
to produce a maximum stress of 10,000 lbs. per square inch. Ans.—1'8".

6. In Ex. 2 calculate the deviation to produce a maximum stress of 9,000 lbs. per
square inch with a load of 11,000 lbs. or of 22,000 Ibs. Ans.—1'2" or 74",

# See a paper by Professor W, C. Unwin, Minutes of the Proceedings of the
Institution of Civil Engineers, from which the preceding remarks are partly
taken. Some other cases of erushing by bending will be given in the Appendix.



CHAPTER XV.
SHEARING AND TORSION OF ELASTIC MATERIAL.

182. Distinction between Tangential and Normal Stress.—Equality of
Tangential Stress on Planes at Right Angles.—In the cases we have
hitherto considered of simple tension, compression, and bending, the
stress on the section under consideration has been at all points
normal to the section. But we may take our section inclined at any
angle to the stress, and the mutual action is then not normal to the
section. The particles on each side of the section partly act on one
another in the direction of the section itself, and so constitute a
stress analogous to friction, resisting the slid- Fig138
Ing of one portion relatively to the other. :
Such a stress is called fangential or shearing
stress, being the stress called into action by
shearing,

Let us return to the case of the stretched
bar carrying a load P (Fig. 138). On a trans-
Vverse section of the bar only a normal stress
18 produced. Now suppose we take an oblique
section, whose normal makes an angle 6 with
the axis of the bar, and let us resolve the force P into two com-
Donents, one perpendicular and the other parallel to the section.
The normal component P cos 6 tends to produce a direct separation
at the section, producing a tensile stress similar in character to that
On a transverse section, but of less intensity.

If 4 =area of transverse section of bar, then A sec f=area of
Obﬁque section ; the intensity of the normal stress

Pcos 0
s 2% =;§ c0s®0 =p cos?0, where p=—4

N

N,
“p.cosf

ping

]
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The other component P sin 6§ produces a tangential or shearing
stress of intensity

Psin 6 .
P = eecf=Dsinbcosb.

Similarly if the bar is subjected to a compressive instead of a tensile
load.

Many materials which offer great resistance to direct compression
yield by sliding across an oblique plane. Now p, is a maximum
when =45, this is therefore approximately the angle of separation.
The same maximum stress, the value of which is p/2, occurs on
another plane sloping the other way at an angle of 45°. We some-
times find fracture to occur across two oblique planes; sometimes
across one only.

If in p,=psin 0 cos @ we change 6 into 90 + 6, p, has the same
value ; so that the intensity of the tangential stresses on two planes
ab right angles to one another is the same. This is true generally in
all cases of stress, as will be seen presently.

183. Tangential Stress equivalent to a Pair of Equal and Opposite
Normal Stresses. Distorting Stress.—In the example we have just
Fig.189 considered we have both shearing and

TP ' normal stress; but there are cases in

| which there is only a shearing stress. Let
ABCD (Fig. 139) be a rectangular plate

1 of thickness . Over the surfaces BC
IP* and 4D suppose a tangential stress to
l
}

be applied of intensity p. Calling b and «
the length of the sides of the plate, the
total amount of the tangential stress on

S e __2. each side is
lp P=p, .U
To prevent the turning of the plate, suppose the forces P balanced
by the application of an uniform stress over the surfaces B4 and DC,
of intensity . The amount of the force on each of these sides,
D=p a0

Since equilibrium is produced, the moment of the couple P must be
equal to the moment of the couple .
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Lopobtoa=plioatub;

OT P, =Dt
that is, the intensity of the stress is the same on B.A as on AD.

Shearing therefore cannot exist along one plane only. It must be
accompanied by a shearing stress of equal intensity along a plane at
right angles. Such a pair of stresses unaccompanied by normal
stress constitute a Simple Distorting Stress, so called because it dis-
torts the elements of the body.

Let us now assume, for simplicity, the plate to be square (Fig. 140).
The effect of the forces is to produce a change of form, which, in
perfectly elastic bodies, is exactly pro-
portional to the shearing force which
produces it. The square 4BCD be- < Axmi—— <« <o

P Fig .140

comes a rhombus 4B'C"D, the angle 1 b e ¢ =y by
of distortion ¢ being proportional to 1 //‘/ ll
the stress p, We may write 1 ) /:r;_p ; l
pe=C4, 1 e |
where the co-efficient €' is a kind of 1 "/, 1
Modulus of Elasticity, but of a different D—“'—"*:::::/ (-1
nature from that previously employed. riz 1130' A

The volume of the elastic body 4 is in
general practically unaltered. TUnder the action of the forces it has
simply undergone a change of form or figure, and the co-efficient €'
Which connects the change of form with the stress producing it, is a
co-efficient of elasticity of figure. Tt is sometimes called the modulus
of transverse elasticity, but preferably the co-efficient of rigidity.

The ordinary (Young’s) modulus of elasticity £ connects the stress
and strain in a bar when it undergoes changes both of volume and
figure. The co-efficient of rigidity ¢ for metallic bodies is generally
less than 27, and for wrought-iron bars may be taken as 10 to
103 millions,

Let us now take a section of the square plate (Fig. 140) along one
of the diagonals and consider the forces which act on the two sides
of the triangular upper portion. Resolve these forces parallel and
Perpendicular to the diagonal. The components of the two P’s along
the diagonal balance one another, and there will be no tendency for
this triangular portion to slide relatively to the other ; that is to say,
there is no shearing stress on the diagonal section. But the other
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components, perpendicular to the diagonal, cause the upper triangular
portion to press on the lower with a force
12
2;7_2 = 120,
If we divide this force by the area of the diagonal section over
which it is distributed, we obtain the intensity of this normal
stress,

o e P

SagTE

pu

On the diagonal section 4C' which we have been considering, this
stress is compressive, but if we take the section along B, the other
diagonal, we find by the same reasoning a stress of the same
magnitude, but tensile.

Thus it appears that a shearing stress on any plane necessarily
involves tensile and compressive stresses of equal intensity on planes
at 45°, so that a simple distorting stress, which was

Fig.141.
) defined above as a pair of shearing stresses on planes
5, 11t . at right angles, may also be defined as a pair of
== “— normal stresses of equal intensity and of opposite
p s S
i = sign, as shown in Fig. 141,
el We now proceed with various examples of this
P

kind of stress, commencing with the case of torsion.

Torsion was mentioned as one of the five simple straining actions

to which a har as a whole may be exposed. It is produced by a

pair of equal couples applied at the ends of the bar, the axis of the
couples being the axis of the bar.

When we consider the nature of the elastic forces called into

Fig.142.

action amongst the particles of the bar, Torsion reduces to a case of
Shearing. To understand this,” we will begin with a simple case.
Imagine a thin tube (Fig. 142) with one end fixed, and the other



cH, XV. ART. 183.] SHEARING AND TORSION. 359

acted on by a uniform tangential stress of intensity ¢. Let ¢ be the
thickness and d the mean diameter of the tube, then

Sectional area of tube = mdf approximately ;

Total shearing force = gwdt

and since the force on each unit of area of the section acts approxi-
mately at the same distance from the centre of the tube, the total
twisting moment = gwdf x §d = yqmd?®. This twisting moment is
balanced by the resistance to turning offered at the fixed end. At
any transverse section KK of the tube there will be produced a uni-
form stress of intensity ¢.

Let us now consider a small square traced on the surface of
the tube, with two sides on two transverse sections. If we take
the square small enough we may treat it as a plane square. To
balance the shearing stress g, which acts on the sides of the square
lying in the transverse planes, a shearing stress of equal intensity is,
as explained above, called into action on the other two sides of the
square, in the direction of the length of the tube, so that, if the
tube were cut by longitudinal slits, the power of resistance to torsion
would be as effectually destroyed as if it were cut by transverse slits.
But if we make spiral slits at an angle of 45°, as shown at S5 in Fig.
142 ; supposing the slits indefinitely fine, and no material removed,
the strength of the tube to resist torsion in the direction shown
would not be impaired. The material of the tube would then
be divided into spirally-bent ribands, which would be in tension
along their length, and in compression laterally, the ribands being
caused to press against one another. Along a second set of spirals
such as 88, longitudinal compression and lateral tension exist ;
the lateral forces are indicated in both cases by arrows in the
figure,

So much for the state of stress induced in the tube by the torsion.
Next as to the change of form which accompanies the stress. The
Square will be distorted into a rhombus. A straight line 4D, drawn
on the surface parallel to the axis of the tube passing through the
centre of the square, will be twisted into a spiral 4D’, the angle of
the spiral being the angle of distortion of the square. Let 6 be
that angle, then

q=C0, where (' is the co-efficient of rigidity.
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The effect of this is that, relatively to the end ., the end ) is
twisted round through an angle DOD'=1 suppose, called the angle

of torsion.
arc DD’

In circular measure i= (r = radius of tube). Also arc

DD'=16, 0 being a small angle. Therefore i=16/r. Since also 6=
q/C, we have the angle of torsion i=¢l/Cr, in terms of the stress.
From this we may express the angle of torsion in terms of the twist-
ing moment producing the torsion.

184. Torsion of a Shaft.—We now pass on to the consideration of
the torsion of a solid cylindrical shaft. First, let us imagine the
shaft to be made up of a number of concentric tubes exactly fitting
one another, and let us further imagine that at the end of each tube
a suitable twisting moment is applied, so that each tube is twisted
round through exactly the same angle. This effect will be produced
by applying over the section at the end of each elementary tube a
tangential stress, which is proportional to the radius of the tube. If
we make g¢/r=gq,/r,, where g; and r, refer to the outside tube, then
the angle of torsion will be the same for all the tubes, and they will
not tend to turn relatively to one another, but all together. We
may then suppose them united together again in a solid mass. If
the stress applied be proportional to the distance from the centre,
the shaft will twist just as if it were a set of tubes, each being
subjected to the same stress and strain as if it were an independent
tube.

Now in the actual case of the twisting of a solid shaft, all portions
from the outside inwards to the centre must turn through the same
angle, and hence the shearing stress at any point of the section of
the shaft must be proportional to its distance from the centre. This
is true except very near the point of application of the twisting
moment. Suppose, for example, the twisting moment is applied by
means of a wheel keyed on the shaft, then in the immediate
neighbourhood of the key-way, the stress will not be as stated,
but at a short distance along the shaft the stress distributes
itself in the manner described. This is another instance of the
general principle already employed in the case of stretching and
bending.

The total resistance to torsion of the solid shaft is the sum of the
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twisting moments of all the concentric tubes into which it may be
imagined to be divided. Thus
T =32m*y; in which g=7. %‘

1
o T =352ty Dt = DSr2mit . 1%,
T Ty
that is, the product of the sectional area of each tube multiplied by
the distance squared of the area from the axis of the shaft must be
taken and summed. The result is called the Polar Moment of
Inertia, which may be written Z. Its value is m{. Thus
T= gifz%ﬁ = 5 0k

It is not to be supposed that the strength of a shaft of any section
to resist torsion is proportional to the polar moment of inertia of
that section. In non-circular sections the stress is generally greatest
not at the points farthest away from the centre, but more often at
those which are nearest the centre. The cases of a rectangle, an
ellipse and various other forms have been investigated by M. St.
Venant who has obtained the annexed results.*

| RELATIVE STRENGTHS OF SHAFTS OF THE SAME SECTIONAL AREA.
FORM OF SECTION, ‘ STRENGTH. |
: [reTa T g
Circular, - - - E - 2 s | 1
Square, - - - - - - - ~ 8863
Rectangle with sides in the ration: 1, - \/L % 8863
| n+1/n
Ellipse with axes in the ration : 1, - - vn (n< 1)

Dropping the suffixes, taking r to be the outside radius, we can write
the moment of resistance to torsion of the shaft,

T = LnfiS, or Jyufd®;
where f is the co-efficient of strength of the material to resist shear-

* Diagrams and particulars with respect to M. St. Venant’s results will be
found in 8ir W, Thomson’s Treatise on Natural Philosoply, 1sted., vol. 1, p. 545.
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ing. Thus the strength under torsion is proportional to the cube of
the diameter. The formula shows that, assuming f to be the same in
each case, the strength of a shaft to resist a twisting mowent is
double its strength to resist a bending moment. Since i =¢l/Cr we
can eliminate ¢, and thus obtain

185. Diameter of Shaft to transmit a Given Power.—Having deter-
mined the diameter of shaft required to take a given twisting moment
we are now able to obtain a solution of the practical question, What
diameter of shaft is required to transmit a given horse-power at a
given number of revolutions per minute ?

Let 7o =mean twisting moment transmitted in inch-tons, then
T, x 2rN=work transmitted per minute in inch tons, where N =
revolutions per minute of shaft.

Let HP denote the horse-power to be transmitted, then

Ty 2miy - 33000512 1y

~ 23240
. 11=33000X12 HP.
0T 990X 9 N

Now the shaft must be strong enough to take not only the mean
but the maximum twisting moment.

We may express the maximum in terms of the mean by writing
T = KT,, where K is a co-efficient whose value is different in different
cases and 7' =maximum twisting moment, but

T i or & 1_‘5;
16 x 33000 x 12 K H.P.

NS =~
arx2240 f N’
and
SIKHP IIP
d=5:233
TS,V

The value of f depends in some measure on the fluctuation to which
the twisting moment is subject, but under ordinary circumstances
should not exceed 3} tons per square inch (Art. 221) for wrought
iron, or, probably, about 5 tons for steel, and 2} tons for cast iron.
The value of K, the ratio of maximum to mean twisting moment,
depends on the circumstances discussed in Chapter X. We may
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assume it equal to 1} under ordinary circumstances, allowing a small
addition for the bending due to the weight of the shaft. On substi-
tution we obtain for wrought iron

SHP:
ek \/ i
This formula agrees closely with the best practice in screw-propeller

shafting.

When the amount of bending to which the shaft is subject is
considerable, as in the case of crank shafts, the diameter determined
by this formula is too small. Tt will be seen hereafter that when all
the forces acting on the shaft are known, a value of K can be caleulated
which gives the effect of bending. If we assume K = 2, the co-efficient
4 in the above formula will be replaced by 4'5, and this agrees closely
with practice in the crank shafts of marine screw engines. In other
cases a still larger value may be necessary.

In the formula for the angle of torsion

il

=0
if we replace ¢ by its working value for wrought iron (7,200 lbs.), €'
by 10,500,000 Ibs., and i by the circular measure of 1°, we find

iy o

showing that under the working stress the shaft twists through 1°
for each 12§ diameters in its length. For many purposes this is
much too small, and the dimensions of a shaft then depend on stiff-
ness, not on strength, as in the case of beams (Art. 168). The
greatest angle of torsion permissible depends in great measure on the
irregularity of the resistance, and no general rule can therefore be
laid down for it. If the angle of torsion be given and the length, the
diameter will depend on the fourth root of the twisting moment, as
shown by the formula of Art. 184. In this, as in other cases where
dimensions depend on stiffness, not on strength, steel has no advan-
tage over iron, because the co-efficients of elasticity of the two
materials are the same, or nearly so. A hollow shaft is both stronger
and stiffer than a solid shaft of the same length and weight.

186. Distance apart of Bearings—The distance apart of the
bearings of a shaft depends on the stiffness necessary to resist
the bending due to the weight of the shaft itself, and of any pul-
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leys or wheels upon it, together with the tension of belts and
other similar forces. If the total load be equivalent to m times the
weight of the shaft itself uniformly distributed, the length between
bearings for a wrought iron or steel shaft d inches diameter will be
given approximately for a stiffness of ¢, by Ex. 7, p. 339.

When, as in serew propeller shafting, the bearings are liable to get
out of line, too great stiffness in a shaft will produce great straining
actions upon it.

187. Web of @ Beam of I Section.—Torsion is one of the few cases
in practice where a simple distorting stress occurs alone and not
in combination with other kinds of stress. It generally happens
that a normal stress is combined with it ; such, for example, is the
case in the web of a beam of I section, to which we next proceed to
direct our attention. Taking a transverse section, the normal stress
at a point distant y from the neutral axis is given by the formula

P M
vl
and is therefore the same for the same values of M and 7, whether
the web be thin or thick, while it will be shown presently that the
tangential stress is greater the thinner the web, and becomes the
most important element when the web is thin.
Let us suppose, for simplicity, the flanges equal, and also that the
beam is supported at the ends and loaded in the centre with a

weight /7.
As we have previously seen, the flanges will sustain the greater
W w
. : ' lig:l4
T 1Ky K, i g T!
= = ; ]
i 8 gt o]
T 1
Hy, & _qli H !
— - — ¥
P i “ %
I el :
eomm X pen

portion of the bending moment, the web carrying only a small por-
tion of it, §, if the area of the web equals the area of each flange.
For simplicity, let us imagine the flanges to take the whole of the
bending. Let K; and K, (Fig. 143) be two transverse sections of
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the beam at distances a, and a, from the centre of the beam, 2a being
the span of the beam, the bending moment at the first section,
M =L W(a—2)and at the 2nd My =} (a - z,).
Now, supposing the flanges to take the whole of the bending the
stress H produced on the flanges is given by the formula
HhM.%mM&mei=@%ﬁ,

and at K, we have ;= .?ﬂ;;};ﬁﬂ)’

and similar forces on the bottom flange only reversed in direction.
There will thus be a resultant force I, — H. tending to push the por-
tion K,K, of the flange to the left,

e

This force is balanced by the resistance of the web to shearing along
the line of junction with the flange.

Since H,H, is proportional to the length of KK, the shearing
force per unit of length of web= IW/2h. If we suppose ¢ to be the
thickness of the web, the intensity of the shearing stress will be

=EW
2
Thus, considering the portion of the web hetween the sections K,
and K, apart by itself, we see that on the upper and lower hori-
zontal edges of it, where it joins the flanges, it is subject to a shearing
stress of intensity g. Now, to balance this stress there must act on
the vertical sides KK a shearing stress of equal intensity ¢. Now,
the shearing force for the vertical sections KK is §W. Supposing
the web to be of rectangular section and of height %, then, assuming
the whole of the shearing force to be borne by the web, the intensity
of the shearing stress on the vertical sections is

w

9= o
Therefore the assumption that the flanges take the whole of the
bending moment is equivalent to supposing the web to take all the
shearing. Assuming this, we see that the shearing stress, being
uniformly distributed over the vertical section, will be accompanied
by an equal shearing stress on any horizontal section. When con-
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sidered alone, the effect of these shearing stresses on planes at right
angles to one another is to produce tensile and compressive stresses
on the web in directions making an angle of 45° with the horizontal
and vertical planes; and thus the web may be superseded by an
indefinite number of diagonal bars inclined at an angle of 45°, thus
forming a lattice girder.

If the web is designed so as to be strong enough only to withstand
the shearing stress, replacing ¢ by f the co-efficient of strength
against shearing f, we find

pesalll]

2hf

The influence of the normal stress due to bending will be con-
sidered in the next chapter. Its effect is greatly to increase the
strain on the web (see Art. 202), which besides will in most cases
exhibit weakness on account of the compressive stress in one of
the diagonal directions. If the distance between the flanges is
great, the web will be liable to yield by buckling or lateral flexure
(see page 317). To prevent this, the web must be stiffened by
angle irons rivetted on it. But the girder would then be made
heavy, and it is therefore more economical to make large girders with
openwork diagonal bracing.

We have in this investigation supposed the beam loaded in the
middle, so that the shearing force is uniform throughout the length
of each half, and the problem was thus simplified. But the same
principles apply if the load be distributed in any manner. The
shearing force will then vary from point to point along the beam.

188. Distribution of Shearing Stress on the Section of o Beam.—In
beams of other types it is still true that the central parts of the beam
are subject to shearing, but the total amount of the shearing stress
being the same, its intensity is much less, because it is distributed
over a greater area. The intensity at the centre of the beam is
found as follows for a beam of uniform transverse section.

Suppose the beam supported at the ends and loaded in the middle as
before, and take section K K/, K,K,. Let NN be the neutral surface,
S8 the neutral axis (as in Fig. 122, Art. 153). Above the neutral
surface the beam is compressed and below it it is stretched by equal
forces. Lot these forces be H; for the section K K;, and H; for the
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section K,K;; then, reasoning as hbefore, the shearing force in the
neutral surface must be I, — I, and the intensity of that shearing
stress, if & be the breadth at the centre,

_h-H

1= NN b,
Now to find A we have, in the notation of Art. 154,
H=Ebz.p=? = Sb.y= il[.kA’g—r,

where %A is the area of that part of the section 4 which lies above
the neutral axis (SLS in Fig. 144), and v is the distance of its centre
of gravity (¢) from that axis. The same result
will be obtained if we take that part of the area
which lies below the axis. We now have, as
before, by substitution,

Diasa) b Ay

Figl4d L

Hy,— H, ey
whence, as usual, replacing I by n4%* we find
T ky
20" b

The total shearing stress on the section is §7/7, and therefore the
mean intensity is
ik
Jies &
Thus we obtain the ratio of the shearing stress on the neutral sur-
face to the mean shearing stress on the whole transverse section.

g4 kg

Yo Db mh'

In the present case where the beam is loaded in the middle the
shearing stress is the same at all points of the neutral surface, but in
other methods of loading this will not be the case. The formula
however in all cases gives the ratio in question correctly, which will
be found to be greater than unity. In fact it is not difficult to see
that the shearing stress must be greatest at the neutral surface, and
must diminish to zero as we. approach the external surface of the
beam. The formula then gives the maximum shearing stress on the
section,
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Let us for example take a rectangular section, then
A=bh:ik=}:n=7:y=1h
R
e
so that the greatest shearing stress is 1} times the mean. In like
manner in a circular section it may be shown to be as 4:3. Other
cases are given in the examples at the end of this chapter.

In all cases where a bar is subject to shearing and the sides of the
bar are free from tangential stress, the stress on the transverse section
will be increased in this way. In pin joints where the pin is an easy
fit the only tangential stress on the sides of the pin will be due to
friction and cannot be relied on.

189. Deflection due to Shearing.—A. certain part of the deflection
Fig.145 of a beam is due to the dis-
tortion of its central parts.
Returning to the beam of
I section, loaded in the
middle, suppose the flanges
hinged at the centres, and
let vertical stiffening pieces 4.4, BB, CC, be rigidly connected to the
web but hinged to the flanges, then distortion of the web takes
place as shown in a very exaggerated way in the figure (Fig. 145),
causing a deflection & of the beam such that

Y e

i C 2mC
where (' as before is the co-efficient of rigidity, and ¢ the shearing
stress is expressed as before.

o Ll
4hiC 20
For wrought iron take ¢ = 9,000 for the working load and

C = 9,000,000, then
l

8= BANA?

2000

which is about half the working deflection due to bending in ordinary
cases.

This calculation however greatly exaggerates the deflection due to

shearing even in a beam of I section, for the web cannot in general



CH,XV.ART. 191.] SHEARING AND TORSION. 369

be so thin as to give a stress of 9,000 lbs. per square inch, and the
effect is much less for a uniformly distributed load. Nevertheless in
beams of this class the deflection due to shearing is a sensible part of
the whole, the more so as in rivetted girders the union of the parts
seldom renders them completely rigid. This is the principal reason
why large girders show a considerably smaller modulus of elasticity
when the deflection is calculated in the usual way than solid bars.
In bars this part of the deflection is insensible, the distorting stress
being small. ;

190. Wealkening of Beams by Insufficient Resistance to Longitudinal
Shearing of the Web.—If the central part of a beam be cut away as
shown at Z in Fig. 143, the strength of the beam will be diminished
and its deflection increased. This will be true even if there be only
a narrow longitudinal slot at the neutral surface, but the weakening
is the greater the more material is cut away, the condition of the
beam in an extreme case becoming that of an N girder (Art. 25)
without diagonal bracing. TImperfect union of the parts of the web
along either a longitudinal or vertical section will have the same
effect in a less degree. Wooden ships not unfrequently exhibit
weakness due to this cause, and to counteract it diagonal riders of
iron are introduced to take part of the shearing force. - The ordinary
formula for resistance to bending cannot be applied in such cases.

191. Joints and Fastenings.—Among the most important cases of
shearing are those which occur in joints and fastenings of all kinds.
Such questions are generally very complex, considered as purely
theoretical problems, and the direct results of experience are always
required at every step to interpret and confirm theoretical conclu-
sions,

When two pieces butt against each other the pressure is transmit-
ted by contact only, and fastenings are therefore required not for
transmission of stress but merely to retain the pieces in their relative
Positions. 'With tension it is otherwise ; it is still necessary to have
surfaces which press against one another, and these can only be
obtained by the introduction of fastenings which transmit stress later-
ally, and are therefore subject to shearing and bending. The parts
of a joint should be so proportioned as to be of equal strength. One

of the simplest examples is that of a pin joint connecting two bars
24
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in tension as in a suspension chain with bar links. Fig. 1. (Plate
VIIL) shows a pair of bars of rectangular section connected together
by links €' and D united as shown by pins passing through eyes at
their extremities. In suspension chains there are generally four or
five bars placed side by side, but the principle is the same in any
case. The pull on the chain is balanced by the resistance to shearing
of the pins, which have besides to resist bending. Let d be the
diameter of the pins, b the breadth, ¢ the thickness of one of the bars,
# the thickness, b’ the breadth of the links which for equality of
strength, that is to say, of sectional area, will be connected by the
equation
20t = Ut.

Let f be the co-efficient of strength for tension, then &f (Art. 224)
will be the co-efficient for shearing, whence remembering that the
maximum shearing stress exceeds the mean in the ratio 4:3 as
shown above,

P=tif=25 . 3 =37 fe.

According to this estimate the area for shearing should be five-thirds
the area for tension, but the true ratio is probably not so great: the
ealculation supposes that the sides of the pin are subject to normal
stress alone, whereas the tangential stress due to friction must be con-
siderable. Besides the strength of iron such as is used for pins is
greater than that of plates. As the calculation applies only to stress
within the elastic limit, it is impossible to test it by experiment. In
practice the areas are made nearly equal when nothing else is con-
sidered except resistance to shearing. When, however, such a joint
is actually pulled asunder it frequently gives way in quite a different
manner before shearing commences. Imagine a cylinder pressed
down into a semicircular hollow which it very exactly fits, and let
the material be elastic and soft compared with the cylinder, then,
reasoning as in Art. 115, p. 249, it appears that the stress hetween the
surfaces will be given by the equation

P =p,.cos 0,
and if P he the pressing force, / the length,
45
wdl
If the pin fits the eye exactly the pressure will follow this law so

P ymdl=P or p,=
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long as the tension is small. As the tension increases, however,
the pressure becomes more uniformly distributed over the semi-
cylinder, because the eye-hole tends to contract laterally as the links
of a chain of rings would do under tension. The other extreme
supposition would he to suppose it uniformly distributed, then
Dol =P orpl,:%
The actual pressure will be intermediate between these two values.
If p, be too great the metal crushes under the pressure. The
theoretical limit to p, will be considered hereafter (Art. 222); for the
present it will be sufficient to say that the experiments of Sir C. Fox™
have shown that the curved area should be at least equal to the
sectional area under tension, that is to say we ought to have
Sadl = bt = {537 d".
To satisfy these conditions we must have for the ordinary case where
the thickness of the eye is the same as that of the rest of the bar
d=2b:¢=2%) approximately.
The first of these gives the diameter of pin recommended by Sir C.
Fox and other authorities; the second gives the greatest thickness
of link for which this diameter gives sufficient resistance to shearing,
but the thickness in actual examples of suspension links is generally
considerably less. The pin has also to resist hending, but of small
amount in the present example. The sides and end of the eye are
subject to tension, but it is not uniformly distributed, the question
being similar to that of a thick hollow cylinder under internal fluid
pressure. The mode in which the eye crushes and then fractures
transversely by tension, is shown in Plate VIIL, and further described
in Chapter XVIII,

In rivetted joints the question is further complicated by the
i:l‘iction between the plates united by the rivets. On the subject of
Joints and fastenings the reader is referred to Prof. W. C. Unwin’s
work cited on page 134.

EXAMPLES.

1. Find the diameter of a shaft for a twisting moment of 1000 inch-tons ; stress
allowed being 33 tons per square inch. Ans. Diameter = 11°3",

2. ¥From the result of the previous question deduce the diameter of a shaft to
transmit 3000 H.P. at 70 revolutions per minute. Maximum twisting moment
=4§ the mean, dns. 157",

* Proceedings of the Royal Society, vol. xiv., p. 139.
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3. The angle of torsion of a shaft is not to exceed 1° for each 10 feet of length.
What must be the diameter for a twisting moment of 100 inch-tons—modulus of
transverse elasticity, 10,500,000

Compare the result with the diameter determined from consideration of strength,
taking a co-efficient of 3} tons, Ans, Diameter determined from consideration of
stiffness = 6°2”, Diameter from consideration of strength = 52",

4, Show that the resilience of a twisted shaft is proportional to its weight.
Volume
Gt

5. Compare the strengths of a solid wrought iron shaft and hollow steel shaft of
the same external diameter, assuming the internal diameter of the hollow shaft half
the external, and the co-efficient for steel 1} times that for iron.

Ans. Resilience =37 =-f_; x

6. The external diameter of a hollow shaft is double the internal. Compare its
resistance to twisting with that of a solid shaft of the same weight and material.

Ans. Strength is greater in the ratio 5—‘5—3 =1443.

7. A pillar, whose sectional area is 1} square feet, is loaded with two tons. Find in
1bs. per square inch the intensity of the tangential stress on a plane inclined at 15°
to the axis of the pillar. Ans. Tangential stress = 518 lhs.

8. In a single rivetted lap joint, the pitch of the rivets being three diameters or six
times the thickness of the plates, find, 1st, the mean stress on the reduced area;
2nd, the shearing stress on the rivets; and, 8rd, the mean direct stress between
rivet and plate: the tension of the joint being 4 tons per square inch of the
original area, and the friction hetween the two surfaces of the plate in contact
neglected.

Ans. Mean tension on reduced area - =6 tons.
Shearing stress on rivet - - =7'6 tons,
4 x pitch x thickness

M di tres i
S diameter x thickness

=12 tons per sq. in.

9, In a beam of I section with flanges and web which may be considered as rect-
angles, the thickness of each flange is one sixth the outside depth of the beam, and
the breadth twice the thickness. The thickness of the web is half that of the
flanges : find the ratio of maximum to mean shearing stress on the section. Ans. *.

10. In the last question find the fraction of the whole shearing force which is taken
by the web. Ans. 80 per cent.

11, If the sectional area of the web of a flanged girder be proportional to the
shearing force and the 7th power of the depth; find the most economical ratio of
span to depth and the limiting span.

If the web be (' and each flange 4, as on page 317, the whole sectional area is
('+2A4 =8 and the moment of resistance to bending is

M =fh{38 - 10).
Assuming now C' = ¢. k7, where ¢ is constant,
M, 1er =38,

i
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and therefore, for a given value of M, S is least when
r 35
=g i =,
5l i'w-l ik 2(r+ 1)
In a girder with lattice web the same formula for A holds good, but S = O(r + 1).
If now F' = f'(!, where F'is the shearing force and f' is a co-efficient much less than
the resistance to shearing on account of the necessary stiffening (Art. 187),

M-}, 412' Fh,

a formula which will give the required ratio (V) for any given load. If the load be
uniformly distributed
BT
5 F
It is probable that in most cases 7 = 2 nearly, but that the value of f/f’ will vary,
according to the type of girder, from 2 to 4, being greatest for a continuous web.
The limiting span of a girder of uniform section is readily shown to be
4r X
- Tk . Ex. 13, p. 324,
L e (Comp. Ex. 13, p. 324.)
The weight of a smaller girder of the same type is found as in Ch, IV.

On the influence of size on the strength of vessels, see papers by Mr. John and the
late Mr.Froude in the Zransactions of the Institutions of Naval Architects for 1874,

12. Show that the weight in Ibs. of a shaft to transmit a given horse power at a
given number of revolutions is
KoHP
AW—QI,ODO e T
the value of A being given as in Ch. XVIII, the proper co-efficient of resistance to
shearing being used. The rest of the notation is explained on page 362.

The distance to which power can be transmitted by shafting with a given loss by
friction is given by Ex. 18, p. 272, when the angle of torsion is immaterial, but in
Practice is generally limited by the necessity of having sufficient stiffness. The
bending and twisting of shafts is considered in Chapters XVII,, XVIII,



CHAPTER XVI.
IMPACT.

192. Preliminary Remarks.  General Equation of Impact.—Hitherto
the forces applied to the body or structure under consideration have
been imagined to have heen originally very small, and to have
increased gradually to their actual amount. This is seldom exactly
the case in practice, while it frequently happens that the load is
applied all at once, or that it has a certain velocity at the instant
it first comes in contact with the body. Such'cases may all be in-
cluded under the head of Inpact, and will form the subject of the
present chapter.

When a body in motion comes into contact with a second body
against which it strikes, a mutual action takes place between them,
which consists of a pair of equal and opposite forces, one acting on
the striking body, the motion of which it changes, the other on the
body struck which it in general moves against some given resistance.
Certain changes of figure and dimension, or, in other words, strains
are likewise produced in both bodies, in consequence of the stress
applied to them. -

The simplest case is where the impact is direct and the resistance
to inotion has some definite value, as, for example, where a pile is
driven by the action of a falling weight. Here let R be the re-
sistance which the pile offers to be driven ; that is to say, the load
which, resting steadily on the pile, would just cause it to commence
to sink ; let 77 be the falling weight, i the height from which it falls,
o the space through which the pile sinks in consequence of the
blow ; then the mutual action between the pile and the weight at the

instant of impact consists of a pair of equal and opposite forces I.
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The whole height through which the weight falls is A+, and the
space through which the resistance is overcome is « ; hence, equating
energy exerted and work done, we have
W{h +z)=Ex.

This equation shows that any resistance, however great, can be
overcome by any weight, however small ; and also, that the force of
the blow, as measured by the space the pile is driven, is proportional
to its emergy. We have however assumed that the whole energy
of the blow is employed in driving the pile, whereas some of it will
always he expended in producing vibrations and in damaging the
head of the pile and the bottom of the weight. As the pile is driven
deeper, the resistance to being driven increases and at length becomes
equal to the crushing stress of the material: the pile then sinks
no farther, the whole of the energy of the blow being wasted in
crushing, '

This last is also the case of impact of a flying shot against a soft
plastic substance, which exerts during deformation a definite force
uniform or variable which brings the weight to rest in a certain
space. Suppose /” the velocity of the shot, z the space, and £ the
mean resistance which the substance offers, then the kinetic energy
of the shot is #7V?2/2g, while the work done is Rx, equating which

B
29

Here the whole energy of the blow is spent in producing changes
of figure in the body struck ; but if the striking body had been soft,
and the body which is struck hard and immoveable, the energy of
the blow would have been employed in producing change in the
shape of the striking body. Thus we may write down as the
general equation of impact—

Energy of blow=Work done in overcoming the resistance to

movement of the body struck.

+ Work done in internal changes in the striking body

+ Work done in internal changes in the body struck.
Which of these three terms is the most important will depend on
the relative magnitude of the resistance to movement, and the
crushing stress of the materials of the two bodies. If either body
have g sensible motion after impact, the corresponding kinetic energy
must he taken account of in writing down the equation, as will he
seen farther on.
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193. Augmentation of Stress by Impact in Perfectly Elastic Muterial.
—We now proceed to apply the equation to the case which most
immediately concerns us, namely, that of impact on perfectly elastic
material, including in this the effect of a load which is applied
all at once.

We will suppose a structure or piece of material of any kind
resting on immoveable supports, and struck by a body harder than
itself, so that we may neglect all changes produced in the striking
body. Generally in both bodies there will also be produced vibra-
tions, of the nature of those constituting sound, which absorb a
certain amount of energy, but this we shall neglect. The whole
energy of the blow then is supposed expended in straining the
structure, or piece of material, struck by the blow.

Now the effect of impact is to produce a mutual action S, which
represents a force applied to the structure at some definite point.
In consequence of this the structure suffers deformation, and the
point of application moves through a space z. The resistance
to deformation is proportional to z, because the limit of elasticity
is not exceeded ; it therefore commences by being zero, and in-
creases gradually till the velocity of the striking body is wholly
destroyed. The mean value of the resistance is therefore one
half its maximum value. During the first part of the period oc-
cupied by the impact the mutual action S is greater than the
resistance, and during the second part less, as will be explained
fully presently ; but, when the maximum strain has been produced,
the mean value during the whole period must be exactly equal to
the mean resistance, the weight and the structure being at rest.
The state of rest is only momentary, for the strained structure
will immediately, in virtue of its elasticity, commence to return
to its original form ; but, for the moment, a strain has been pro-
duced, which is a measure of the effect of the blow, and which
must not exceed the powers of endurance of the material.

Let now R be the maximum resistance, and let the blow consist
in the falling of a weight /7, through a height % above the point
where it first comes in contact with the structure ; then & + z is
the whole height fallen through, and it follows from what has
been said that

Wih + z) = L.
The resistance /2 may also be described as the “equivalent steady
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load,” being the load which, if gradually applied at the point of
impact, would produce the same stress and strain which the struc-
ture actually experiences. We most conveniently compare it with
W by supposing that we know the deflection 8 which the structure
would experience if the striking weight //” were applied as a steady
load at the point of impact; we then have, since the limits of
elasticity are not exceeded,
e
; s W

Substituting the value of z we get

2R 0 18k

2 S T
Let the height % be n times the deflection &, then solving the
quadratic, the positive root of which alone concerns us,

R= W1+ /20 + 1),

an equation which shows how the effect of a load is multiplied by
impact.

194. Sudden Application of @ Load.—A particular case is when
h = 0, then B = 2/7. So that if a load # is suddenly applied to a
perfectly elastic body, from rest, not as a blow, it will produce a
Pressure just twice the weight. This case is so important that we
Will consider a special example in detail.

Let a long elastic string be secured at 4. If a gradually increas-
ing weight be applied the string will (A
stretch, and the weight descend. Let l
the load required to produce any given
extension he represented hy the ordin- By M,
ates of the sloping line B, NN, (Fig. 146).
Next, instead of applying a gradually
increasing load, let a weight 7V repre- ol M,
sented by B, be applied all at once to
the unstretched string. The string will
of course stretch, and the weight de- ! N,
scend. When it has reached B (Fig. By oriMs
146) the tension of the string pulling upwards, being repre-
sented by BN, will be less than 77 acting downwards. More-
over, in the descent B,B, an amount of energy has been exerted
by the weight represented by the area of the rectangle BM MB.

Fig.146

B \N__Im
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At the same time the work which has been done in stretching
the string is represented by the area of the triangle B,NB.
The excess of energy exerted over work done has been em-
ployed in giving velocity to the descending weight, and is
stored as kinetic energy in the weight.

On reaching B, the tension of the string is just equal to the weight,
but the stretching does not cease here. The weight has now
its greatest velocity, which corresponds to an amount of kinetic
energy represented by the triangle B,M,M,. Although any further
extension of the string causes the upward pull of the string to be
greater than the weight /7, yet the weight will go on descending
until the energy that it has exerted is equal to the work done in
stretching the string; then the kinetic energy will be exhausted
and the weight will be brought to rest.  This will occur when
the arvea of the triangle B,N,B, equals the area of the rectangle
By MM, B,, that is when B,N, = 2B,M,, or B,B, = 25,B,.

We thus see that the tension of the string produced by the sudden
application of the load is twice that due to the same load steadily
applied.

The string will not remain extended so much as B,B,, for now the
upward pull of the string, exceeding the weight, will cause it to rise.
On reaching B, it will have the same velocity upwards that it had on
first reaching B, downwards. This will carry it to B, from which it
will again fall, and so on. Practically, the internal friction due to im-
perfect elasticity, and the resistance of the air, will soon absorb the
energy and bring the weight to rest at B

195 Action of a Gust of Wind on a Vessel.-—Another interesting
example of the way in which the
sudden application of a load aug-
ments its effect is furnished by the
case of a vessel floating upright in
the water and acted on by a sudden
gust of wind, a question which,
though not strictly belonging to
this part of the subject, involves
exactly the same principle.

Ot Noils First, suppose no wind pressure,
hut that a gradually increasing couple is applied to heel the vessel.
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If along a horizontal line (Fig. 147) angles of heel be marked off,
such as ON, and for those points ordinates such as NL are set up
to represent on some convenient scale the magnitude of the couple
required to produce that angle of heel, a curve OL will be obtained,
which we have already (p. 198) called the curve of Statical Stability
of the ship.

Now suppose a steady wind pressure to be gradually applied. It
will produce on the masts and sails a definite moment, on account of
which the ship will incline to a certain angle, such that the ordinate
of the curve of stability corresponding to that angle will represent
the moment of the wind pressure. So long as the wind is constant,
she will remain inclined at that angle. Next suppose the same
wind pressure to be suddenly applied all at once, as by a gust to the
ship floating upright at rest. The ship will heel over, and until she
is inclined to some extent the wind moment will be greater than the
righting moment, and the excess will cause the ship to acquire an
angular velocity. Accordingly, when she arrives at the angle of
heel corresponding to the moment of wind pressure on the stability
curve, she does not come to rest, but inclines farther, until the
energy exerted by the wind pressure is all taken up in overcoming
the righting moment through the angle of inclination. The work
thus done is represented by the area of the curve of stability standing
above the angle of heel reached.

Let 07, represent the magnitude of the wind moment. The ship
will incline until the area 0L, N, = area O/, KN,, or area O/ L, =area
L,L,K ; that is, if the moment of wind pressure remains undiminished
as the ship heels, which will hardly be true in practice. Suppose
the moment of wind pressure 077 to be such that the area OW,L,=
the area I,L,L,. In this case the sudden gust of wind will carry the
ship to such an angle ON, that she will not again return; and the
smallest additional pressure of wind will capsize the ship, although
that same wind pressure applied gradually would incline the ship to
the angle ON; only.

196. Impact at High Velocities. Effect of TInertia.—Returning to
the general case of impact against a perfectly elastic structure (Art.
193), let us now take the other extreme case in which the height
through which the weight falls is great compared with the deflection
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8 due to the same weight gradually applied ; then, since n is great,
our equation becomes

R= AT =17\,
which may be written in either of the forms

DW= 575
T _5_-~/m,, (1); ora= J2hd (2.)

The first form shows that the stress produced by the impact is
proportional to the square root of the energy of the blow, and the
second, that the deflection occasioned by the fall of a given weight is
proportional to the square root of the fall, or, what is the same thing,
to the velocity of impact. These results are exact when the impact
is horizontal, and the last has been verified by experiment. It is to
be remembered that the limits of elasticity are supposed not to be
exceeded : when a rail or carriage axle is tested by a falling weight,
as is very commonly done, the energy of the blow is generally much
in excess, and the piece of material suffers a great permanent, set, the
resistance is then approximately constant instead of inereasing in
proportion to the deflection. The effect of the blow is then more
nearly directly proportional to its energy. It will be seen presently
how small a blow matter is capable of sustaining without injury to
its elasticity.

The effect of a blow, on a structure or piece of material as a whole,
is diminished, on account of its inertia, by an amount which is
greater the greater the velocity of impact, but which varies according to
the relative mass and stiffness of its parts. In the act of yielding the

i parts of the body are set in motion, and the force
% required to do this is frequently greater than
Fig.148 the crushing strength of the materials, so that
a part of the energy of the blow is spent in
% C v local damage near the point of impact.
- Figure 148 shows a narrow deep bar 4B, the
ends of which rest in recesses in the supports,
which prevent them from moving horizontally,
but do not otherwise fix them. The bar carries
Ve a weight ¢ in the centre, against which a second
weight /7 moving horizontally strikes with velocity 7. The bar
being very flexible horizontally, the weight ¢ at the first instant of
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impact moves as it would do if free; that is, the two weights move
onwards together with a common velocity » fixed by the considera-
tion that the sum of the momenta of the two weights is the same
before and after impact, so that :
WV = (W + Q).

The energy of the two weights after impact is

s PrasE g
showing that the energy of the blow has been diminished in the
proportion W : W + . The loss is due to the expenditure of
energy in damage to the weights.

If now, instead of a weight @ attached to the centre of a flexible
bar, we suppose the bar less flexible and of weight (), the effect of
the blow is diminished by the same general cause, but not to the
same extent : the diminution cannot be caleulated exactly, but may
be estimated by replacing @ in the preceding formula by 4@, where
k is a fraction to be determined by experiment. In a series of
elaborate experiments made by Hodgkinson on bars struck horizon-
tally by a pendulum weight, it was found that % was 1.

We are thus led to separate the energy of a blow into two parts :

Pl aiar L

W+EQ 29 SO+ kQ 29
The first of these strains the structure or piece of material as a
whole, and the second does local damage at the point of impact.
Hence the great difference which exists between the effect of two
blows of the same energy, one of which is delivered at a low, and the
other at a high velocity. At high velocities most of the energy is
expended in local damage; at low velocities most is expended in
Straining the structure as a whole.

If the body which is struck be in motion, instead of resting on im-
Mmoveable supports, as in Fig. 148, the encrgy of the blow will be
diminished. This case has been considered in Ch. XI., p. 280,
Where it is shown that the energy of the collision is

e

=70 3
Where 77 is the relative velocity of the bodies. Of this a part—
represented, as before, by replacing @ by k@Q—is spent in local
damage and the rest in straining the structure as a whole.
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The exceptional case where, as in the collision of billiard balls, the
limit of elasticity is not exceeded at the point of impact, need not be
here considered. The energy of local damage is, then, not wholly
dissipated in internal changes: a part is recovered during the restitu-
tion of form which oceurs in the second part of the process of impact,
and increases the action on the structure as a whole. In ideal cases
the whole may be thus recovered, but, in practice, a portion is
always employed in producing local vibrations, and finally dissipated
by internal friction. :

197. Vibrating Loads. Synchronism.—The load on a structure may
vary from time to time, continuously, or otherwise, and its effect
will then, in general, be greatly augmented. Some simple examples
will now be considered.

Returning to the case of the weight suspended from an elastic
string (Fig. 146, p. 377) ; suppose in the first instance the weight at
rost, then the corresponding extension (8) is ByB, in the figure and
the position of the weight is B, Next imagine the weight raised
vertically and suddenly released, it will oscillate about B, as a mean
position. In any position B the tension of the string is represented
by BN and the weight by B, so that NI represents an unbalanced
force which draws the weight downwards when it is above B, and
upwards when below. Now N is proportional to BB,, and the
weight therefore moves under a force always proportional to its
distance from B,.

This kind of motion is known as a “ simple harmonic motion” ; we
have already had an example in the case of a piston moving in its
eylinder ; for in Ch. IX., p. 235, it was shown that the force neces-
sary to move the piston varies as the distance from the centre of
the stroke. In fact Fig. 99, p. 234, may be taken to represent the
motion, the velocity of the weight in any position being represented
by QN. From the formule given in the article cited it is easy to
show that the time of a double vibration of the weight is given by

i=27r\/(},
q

being the same as that of the small oscillations of a pendulum of
length BBy It is dependent only on the elasticity of the string and
the magnitude of the weight, not on the extent of the vibration.

The vibrations of any structure may be distinguished into general
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and local, that is into the vibrations of the structure as a whole, and
the vibrations of its parts. All such vibratory motions are of the
same general character, as in the simple case just described they take
place in certain definite times depending on the inertia and elasticity
of the structure and its parts.

Next suppose the weight (Fig. 146) oscillating about B, and let B
be the extreme upward position. At the instant when the weight is
at B imagine a small downward force P applied; the effect of this
will be that the weight descends to a position B, before coming to
rest, such that B,B,> BB, instead of heing equal to BB, as wounld
otherwise be the case. Then suppose P removed, the weight will
rise to a point as much above B as B, B, is greater than BB,. Again
suppose £ applied, then the weight will descend below B,, and this
process may be continued indefinitely. Thus it appears that a load
P, however small, if applied and removed at intervals, corresponding
to the natwral period of wibration of the weight IV, will produce a vibra-
tion of continually increasing extent, thus augmenting indefinitely
the tension of the string, which will soon break, however small the
original load /7~ and its fluctuation P. If the weight P he applied
as before at B, but removed and replaced at a different interval, the
vibration will still augment, in the first instance, but the augmenta-
tion will be limited, and will be succeeded by a diminution, and so
on indefinitely.

In the foregoing simple example numerical results could readily
be obtained if necessary; in actual structures and machines the cir-
cumstances are much more complex, and caleulations are therefore
generally difficult, but the same general principles hold good.
Whenever the load on a structure fluctuates the stress due to it is
greater than that which corresponds to the maximum load : and the
augmentation is greater the more nearly the period of fluctuation
approaches the period of vibration of the whole structure, or of that
part of it immediately affected by the load. Vibrations of the same
period are often described as * synchronous.”

As examples of a fluctuating load may be mentioned—

(1) When a company of soldiers march in regular time over a
suspension bridge vibrations of the flexible structure are set up
which are constantly augmented by synchromism. On a girder
bridge the augmentation would be comparatively small, the period of
vibration of the bridge being generally very different,
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(2) In certain torpedo boats the vibration due to the action of the
screw is excessive at one particular speed. This is an effect of
synchronism between the revolutions of the screw and the period of
bending vibrations of the boat in a horizontal plane.

(3) When a ship rolls broadside on to a series of equal waves
the rolling is increased by the action of the waves, and is greatest
when the period of the waves is equal to the period of rolling of the
ship in still water.

One case of a fluctuating load can be completely worked out with-
out much difficulty, and the result has been applied to various
purposes. This is where the load fluctuates according to the
harmonic law already considered for an elastic string. The calcula-
tion cannot be given here, but it may be mentioned that it is in this
way that the late Mr. Froude arrived at his well known conclusions
respecting the rolling of ships amongst waves.®

198. Impact when the Limits of Elasticity are not Exceeded. Re-
silience.—The effect of impact on perfectly elastic material may also
be dealt with by considering the amount of energy stored up in the
body in consequence of the deformation which each of its elementary
parts have suffered. We have already seen that when a piece of
material is subjected to a simple uniform longitudinal stress of
intensity p, the amount of work U done by the stress is

— ﬂ.—2
U ok Volume.

Let w be the weight of a unit of volume of the material, and 7
the weight of the body considered, then we may write our equation
GES T TEE

where H is a certain height given by
2

=l

=3

and the whole elastic energy of the body may be measured by this

height, which is the distance through which the body must fall to do
an equivalent amount of work.

If for p we write f the elastic strength of the material, then we

obtain what we have already called the Resilience of the body, and H

becomes what we may call the “height due to the resilience,” which,

* Transactions of the Institution of Naval Architects, vol. ii,
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for each material, has a certain definite value, given in feet in
Table II, Ch. XVIIL, for various common materials.

Now in cases of impact where the limit of elasticity is not ex-
ceeded, the whole energy of the blow is spent in straining the
material or structure, and hence that energy must not, in any case,
exceed the resilience. Thus, on reference to the table, it will be
seen that in ordinary wrought iron the height is given as 2 ft. 2 in.,
from whence it follows that in the most favourable case a piece of
iron will not stand a blow of energy greater than that of its own
weight falling through twenty-six inches, without being strained be-
yond the elastic limit. If the parts of the body are subject to
torsion, about 50 per cent. may be added to these numbers,
but, on the other hand, they are subject to large deductions on ac-
count of the inequality of distribution of stress within the body.
Only a portion of the body is subjected to the maximum stress, the
rest is strained to a less degree, and consequently has absorbed a less
amount of the energy of the blow. Thus, for example, a heam or
cireular section, even though it be of «uniform strength” (Art. 161),
has only one fourth the resilience of a stretched bar of the same
weight, because it is only the particles on the upper and lower
surfaces which are exposed to maximum stress, the central parts
having their strength only partially developed.

We now draw two very general and important conclusions.

(I) When a body or structure is exposed to a blow exceeding that
tepresented by its own weight falling through a very moderate
height, a part, or the whole, is strained beyond the elastic limit.

(2) When a body or structure is not of uniform strength through-
out, the excess of material is a cause of weakness.

On reference to Table IL, Ch. X VIIL, it will be seen that exceptions
oceur to the first principle in the case of the hardest and strongest
steel, and in wood and some other substances of organic origin of
low specific gravity ; but, as a rule, the property of ductility or
Plasticity is essential to resistance to impact. Bodies which do not
DPossess it are generally brittle. In good ductile iron and soft steel
the non-elastic part of the resistance to impact will be seen hereafter
to be at least 1000 times the elastic part, assuming both equally
developed through all parts of the material. These remarks apply
to a single blow ; the effect of repetition will be considered hereafter.

As an example of the application of the second principle we may
2B
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mention the bolts for armour plates invented by the late Sir W.
Palliser. In these holts the shank is turned down to the diameter
of the base of the thread so as to be of equal strength throughout.
(See Ex. 4, p. 308.)

EXAMPLES.

1. A hammer weighing 2 lbs. strikes a nail with a velocity of 15 feet per 1 inch
driving % inch, what is the mean pressure overcome by the nail? Awns. 673 1bs,

9. If the load on a stretched bar is suddenly reversed so as to produce compression,
show that the stress will be trebled.”

Energy stored in stretched bar will on the release of the load be employed in com-
pression, and in addition the load will be exerted through a distance = original exten-
gion + compression. The two together must be equal to the work done in com-
pressing the bar,

Note —Such sudden reversal as is here supposed rarely if ever occurs in practice.

3. A load of 1000 Ibs. falls through 1" before commencing to stretch a suspending
rod by which it is carried. If the sectional area of the rod is 2 sq. in., length 100",
and modulus of elasticity 30,000,000, find the stress produced.

Stress = 17,828 1bs. per sq. in.

4. A load of 5000 Ibs. is carried by the rod of the preceding question, and an
additional load of 2000 1bs. is suddenly applied ; what is the stress produced ?
Stress = 4500 1bs. per sq. in.

5. A beam will carry safely 1 ton with a deflection of 1 inch ; from what height
may a weight of 100 lbs. drop without injuring it, neglecting the effect of inertia ?
Ans. 11'2 inches.

6. The maximum stability of a vessel is 4000 foot-tons. The curve of stability is
represented sufficiently approximately by a triangle, such that the angle of maximum
stability is 1/z the angle of vanishing stability. Find the moment which, applied
suddenly and of uniform amount to the ship upright and at rest, would just capsize
her.

Area OCD =area DAE. O0B=1N.ON, and AN = 4000;

oB _0¢ 4000 - O
D= N 3000 and DE = 03_@6 .

¢ the areas in terms of OC and 0B we get

= 40004/,
O(! the capsizing moment = TTQ%/r:L'

* This result which appears little known was pointed out to the writer by Mr.
Hearson. Some examples on impact will be found in Prof. Alexander’s treatise on
Applied Mechanies, part I.



CHAPTER XVII.
STRESS, STRAIN, AND ELASTICITY.

SECTION I.—STRESS.

199. Ellipse of Stress.—Stress consists, as we have said (Art. 147),
in a mutual action between two parts, into which we imagine a
‘body divided by an ideal section. If the section he plane, and if
the stress be uniform, the intensity and direction of the stress at
each point of the section are the same at all points of a given section,
and, for a given point, depend only on the position of the plane. In
a fluid the intensity is the same for all planes, and the direction is
Normal to the plane. In simple tension and compression the direc-
tion of the stress is the same for all planes, but its intensity varies,
becoming zero for planes parallel to the stress. In shearing the
intensity is the same for all planes perpendicular to a third given
Plane, but the direction varies: on one pair of planes it is normal, on
another tangential,

We now proceed to consider stress more generally, and we shall first
xamine the effect of combining together a pair of simple longitudinal
Stresses, the directions of which are at right angles and the intensities
of which are given. Let the plane of the paper be parallel to the direc-
tions of the stresses, and let us consider a piece of material of thick-
11685 unity. If the stress be uniform, the size and shape of the piece
are immaterial. Let us then imagine a rectangular block 4BCD
(Fig. 149) with sides perpendicular to the stresses p;, .. On the faces
4B, CD a stress, of intensity p;, and of total amount p, . 4B will act;
while on BC' and 4D there will be a stress of intensity ps, and of
total amount Py- BC.  Divide now the rectangle by a diagonal plane
AC; there will be a stress on that plane, which it is our object to de-
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termine in direction and magnitude. Let 6 be the angle which the
normal to the plane makes with the direction of p, ; by determining
rightly the ratio of the sides of the rectangle this angle may be made
what we please. Proceeding as in Art. 81, we find for the normal
stress

Do = P, - 0820 + p,. sin®0,
and for the tangential stress
P = (p, — ) sin 6. cos 6.

The resultant stress might be found in direction and magnitude by

Fig.149

compounding these results, but it is better to proceed by a graphical
construction. On the perpendicular set off 0@ to represent p, and
Og to represent p, ; also draw the ordinate )17 and ¢P parallel to p,
to meet it in . Then

AB
oM = 09Q. S S
Q cos 0 P 10’

. BC
PM=0p.8n8 = p. 22,
g . sin Pa 0

Whence it follows that the intensity of the stress on A4C due to p, is
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represented by OM, and that due to p, by PAM. If then we join OP
we shall obtain the resultant stress on 4C in direction and magni-
tude. Tt is easily seen that P lies on an ellipse of which Py, Ps are
the semi-axes. This ellipse is called the Ellipse of Stress.

If the pair of stresses p,, p, have opposite signs, then Og¢ = p, must
be set off on the opposite side of 0, and OF" the radius vector of the
ellipse lies on the other side of OM, but in other respects the con-
struction is unaltered. When pi, p, are equal the ellipse becomes a
circle ; if they have the same sign the stress is the same in all direc-
tions in magnitude and direction like fluid pressure; if they have
opposite signs, as in the chapter on Torsion, the intensity is the same,
but the angle of inclination /0@, called the “obliquity” of stress,
is variable, being always equal to QON.

200. Principal Stresses. Auwes of Stress—We now propose to show
that any state of stress in two dimensions (Art. 204) may always
be reduced to a pair of simple stresses such as we have just
considered.

For, drawing the same figure as in the last article, let us inquire
the effect of replacing p,, p, by other stresses of any magnitude and
in any directions. Whatever they be, they evidently must have
given tangential and normal components, of which, reasoning as in
the last chapter, we know that the tangential must be equal and
Opposite.

Let the equal tangential components be p, and the normal com-
ponents p, and p',.  Consider the equilibrium of the triangular por-
tion 4BC (Fig. 150), and let us >
determine under what conditions it r % p Fig.l50
is possible that the stress on 4C Al%fﬂ-:-ﬂ—ﬂmfﬁ B—tap

should be a normal stress only, 0 y
without any tangential component. —p
n
cﬂ

Resolve parallel to BC'; then, if P be
that normal stress,

p.AC.cos 8 =p,. BC + p,. AB;
or P.=p, = p,.tan 6,
Similarly resolving parallel to 4B,
P =P =p. cotb,
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whence, subtracting one equation from the other,

Do — P = p.. (cot @ — tan &) = 2p,. cot 20 ;

or tan 26 = jﬁ‘w, :

Da = Pa
This equation always gives two values of ¢ at right angles, showing
that two planes at right angles can always be found on which the
stress is wholly normal. The magnitude of the stress on these planes
is found by multiplying the equations together, when we get the
quadratic

(p = 2)p = P) = P4

the roots of which, p,, p,, are the stresses required. Having deter-
mined py, ps, the ellipse of stress can now be constructed by the
method of the last article.

Every state of stress in two dimensions then can always be
represented by an ellipse, the semi-axes of which are ealled Principal
Stresses, and their directions the Axes of Stress.

The particular case in which p’, is zero is one of constant oc-
currence in practical applications. If g be the shearing stress, the
equations may then be written

putan 20 =2¢ (1); plp-p)=¢ (2)-
Of the roots of the quadratic the greater has the same sign as that

of p,, and the other the opposite. Also, we find hy dividing the
two equations for p by one another,

tand =P~ Pn _ —gf,
P L
from which it appears that of the two values of ¢ furnished hy (1)
the one less than 45° must correspond to the greater value of p.
Hence, the major principal stress is of the same kind as p,, and in-
clined to it at an angle less than 45°,

201. Vurying Stress.  Lines of Stress.  Bending and Twisting of
Shaft.—In proving the two very important propositions just given,
we have assumed (1) that the stress was uniform, throughout the
region including the portion of matter we have been considering ;
(2) that gravity or any other force acting not on the bounding
surface, but on each particle of the interior, may be neglected. Tt
is however to be observed that by taking the portion of matter
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small enough, both these suppositions may be made, in general, as
nearly true as we please: the first, because any change of stress
must be continuous, and therefore becomes smaller the less the
distance between the points we consider ; the second, because any
internal force is proportional to the volume, while any force on the
boundary of a piece of material is proportional to the surface of the
piece. Now the volume of a body varies as the cube, and the surface
as the square of its linear dimensions, and it follows that the internal
force vanishes in comparison with the stress on the houndary when
the dimensions diminish indefinitely. Hence these propositions are
still true as respects the state of stress at any given point of a body,
even though the stress he variable, and notwithstanding the action
of gravity. When however we consider the variation of stress from
point to point, gravity must be considered. Thus, for example, in
the case of a fluid the action of gravity does not prevent the pressure
from being the same in all directions, but it does cause the pressure
to vary from point to point.

When the stress varies from point to point, both the intensity and
the direction may vary ; thus, for example, in a twisted shaft the
intensity of the stress at any point varies as the distance from the
axis, and the direction of the stress varies according to the position
of the point, the principal stresses making an angle of 45° with the
axis of the cylinder. The axes of stress in this case always touch
¢ertain lines which give, at each point they pass through, the direction
of the stress at that point. These lines are called Lines of Stress; in
a simple distorting stress, or, in other cases where the principal
stresses are of opposite signs, one is a Line of Thrust, the other a
Line of Tension.

In a twisted shaft of elastic material the lines of stress ave spirals
traced on a cylinder passing through the point considered, the spirals
being inclined at 45° to the axis. If the shaft be bent as well as
twisted, the maximum normal stress at any point of the transverse
section is given by the equation

i 'iﬂ_{q (Art. 155),
1m
where I is the bending moment and # the radius. The shearing
stress at the external surface due to a twisting moment 7 is given by

T (Art. 184).

1= 1o
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Combining these two together we get, by solving the quadratic for

the principal stresses,
_ M I
S e e
Ly
which gives the principal stresses at that point of the shaft where
the stress is greatest. The maximum stress is the same as would be
given by a simple twisting moment equal to M+ ~/M?+ T% which is
sometimes called the simple equivalent twisting moment. The minor
principal stress ought, however, also to be considered in caleulations
respecting strength, as will be seen hereafter.
The lines of stress here are spirals of variable pitch angle.

202. Straining Actions on the Web of an I Bewm.—Let us now
return to the case of an 7 beam with a thin weh, in which the web
resists nearly the whole of the shearing force F, and the flanges
nearly the whole of the bending moment M. The intensity of the
shearing stress ¢ is approximately

R
=
where & is the depth and 7 the thickness. The intensity of the
normal stress at a point distant y from the neutral axis is
M
Pu=TF ¥
The principal stresses and axes of stress are given by the equations

2
P(.p _Pn) o {{2; tan 20 =7,q,

From this it appears that, even when the web is very thin so that it
carries a very small fraction of the total bending moment, it cannot
he treated as resisting shearing alone, and if it is so treated will he
the most severely strained part of the beam. Let us, for example,
suppose the flanges to be subject to a stress of 4 tons per sq. inch at
a given section, and the web to a shearing stress also of 4 tons per
sq. inch : then at points in the web near the flanges, say, for example,
at a distance from the centre, of three fourths the half depth of the
beam, the normal stress will be 3 tons per sq. inca. Putting these
values in the formula, we get the quadratic equation

2(p - 38) =16;
p = 57, or — 2777,

whence
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a result which shows that the web is much more severely strained
than the flanges. The lines of stress are found from the equation
for . By a graphical method it is possible to draw the lines of
Stress approximately. As to this the reader is referred to a treatise
by Mr. Chalmers, cited on page 82.

203. Remarks on Stress in General.—We have hitherto been con-
sidering only the stress on planes at right angles to a certain primary
plane, to which we have supposed the stress on every plane to he
parallel. In most practical questions relating to strength of mate-
rials this is sufficient, since, though stress frequently exists on the
primary plane, it is usually normal and of relatively small intensity.
Thus, for example, in a steam boiler ‘there is stress on the internal
and external surface of the hoiler due to the pressure of the steam
and the atmosphere; but it is of small amount compared to the
stress on planes perpendicular to the surface. 'We therefore content
ourselves with a statement without demonstration of corresponding
Propositions in three dimensions.

(1) Any state of stress at a point within a solid may always be

reduced to three simple stresses on planes at right angles.

(2) The resultant stress on any plane due to the action of three

simple stresses at right angles to each other is always
represented in direction and magnitude by the radius
vector of an ellipsoid.

The first of these propositions may he regarded as the last step in
& process of analysis, by which we reduce all external forces acting
on a structure of any kind : first, into a set of forces acting on each
Piece of the structure ; and second, into forces acting on each of the
small elements of which we may imagine that piece composed ; and
lastly, into three forces at right angles acting upon the element, of
Which one in practical cases is usually small. All questions in
Strength of Materials, then, ultimately resolve themselves into a
consideration of the effects of forces so applied.

One method of conceiving the effect of three such forces is to
imagine each separated into two parts, one of which is the same for
all, being the mean value of the three ; while the other is com-
bressive for one and tensile for the two others, or wice verse. In
isotropic matter (Art. 207) the first set produces change of volume
only, and may be called the “volume-stress,” or, as no other stress
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can exist in fluid bodies at rest, a “fluid” stress. The second is
a distorting stress, consisting of three simple distorting stresses
tending to produce distortion in the three principal planes.

EXAMPLES.

1. A tube, 12 inches mean diameter and % inch thick, is acted on by a thrust of
20 tons and a twisting moment of 25 foot-tons. Find the principal stresses and lines
of stress,

Taking a small rectangnlar piece with one side in the transverse section, we find
one face acted on by a normal stress of 1'06 tons per square inch due to the thrust,
and a tangential stress of 2'66 tons due to the twisting. Substituting these values
for pm, pi, and observing that the stress on the other face is wholly tangential, we find
from the quadratie

Major principal stress = 324 (thrust) ;
Minor principal stress = 218 (tension).

Lines of stress are spirals, the lines of tension inclined at 503° to the axis, and

the lines of thrust at 395°.

2. A rivet is under the action of a shearing stress of 4 tons per square inch, and a
tensile stress, due to the contraction of the rivet in its hole, of 3 tons per square inch.
Find the principal stresses.

Ans. Major principal stress = 5°8 tons (tension).
Minor principal stress = 2°77 tons (thrust).

3. The thrust of a screw is 20 tons; the shaft is subject to a twisting moment of
100 foot-tons, and, in addition, to a bending moment of 25 foot-tons, due to the
weight of the shaft and its inertia when the vessel pitches. Find the maximum
stress and compare it with what it would have been if the twisting moment had
acted alone. Shaft 14 inches diameter.

Ans. Major principal stress = 29, Ratio = 1'32.
Minor principal stress = 1°6.

4, A half-inch bolt, of dimensions given in Ex. 6, page 271, is screwed up to a
tension of 1 ton per square inch of the gross sectional arca. Assuming a co-efficient of
friction of '16, find the true maximum stress on the bolt while being screwed up.
Ans. Principal stresses = 1'95 and 3 tons.

5. It has been proposed to construct eylindrical boilers with seams placed diagonally
instead of longitudinally and transversely. What is the object of this arrangement,
and what is the theoretical gain of strength? Ans. Increase of strength =26} per
cent.

G. A thick hollow cylinder is under the action of tangential stress, applied uni-
formly all over its internal surface in directions perpendicular to its axis, the eylinder
being prevented from turning by a similar stress, applied at the external surface.
Find the principal stresses and lines of stress. 4ns. The principal stresses are equal
and opposite, forming a simple distorting stress, of intensity varying inversely as the
square of the distance from the centre. Lines of stress equiangular spirals of
angle 45°,
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7. In Ex. 9, page 372, suppose the beam so loaded that the maximum stress due
o bending is 4 tons per square inch, and the total shearing force divided by the
sectional area of the web also 4 tons per square inch: find the prinecipal stresses at
points immediately below the flanges. .4ms. Principal stresses 4% and 19 tons per
square inch,

8. In any state of stress at a point in a body show that the sum of the normal
stresses on three planes at right angles is the same however the planes be drawn.

SECTION IL—STRAIN.

204. Simple Longitudinal Strain. Two Strains at Right Angles.—
We now go on to consider the changes of form and size which are
produced by the action of stress. Such changes, it has already been
said, are called Strains.

In uniform strain every set of particles lying in a straight line
must still lie in a straight line, and two lines originally parallel must
still be parallel. The lengths Fig.161

~of all parallel lines are © A

altered in a given ratio
1+e: 1, where ¢ is a quan- M 0
tity, in practical cases very e
small, which measures the £ zjIP
strain in the direction of
the line considered. Two
sets of parallel lines, how- o e’
ever, will not in general
remain at the same inclina- 7 :

D K ' G

i

B B

tion to each other, nor will
their lengths alter in the @
same ratio. Thus the sides
of a cube remain plane, and
Opposite sides are parallel,
but the parallelopiped is ©
not generally rectangular, and its sides are not equal.

The simplest kind of strain is a simple longitudinal strain in which
all lines parallel to a fixed plane in the body are unaltered in length,
while all lines perpendicular to that plane remain so: that is to say,
a simple change of length, the breadth, and thickness remaining
unaltered.

Fig. 151 shows an extensible band OBCD, in which OB is fixed,

—~

gl

F (4 c
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while D moves to ("I, the breadth being in the first instance un-
altered, and the length altered so that
CC' = ¢. BC.

If any line 4 EF be traced in the band parallel to BC, the points

EF will shift to &'F" positions in the same line, such that

EBE =¢.dF : FF' = ¢ . AF.

E'F = (1 + ¢)EF;

for since the strain is uniform the change of length of all parts of the
band is the same. If, however, we draw a line L inclined at an
angle 6 to BC, that line will shift to ('L, a position such that (L
has not increased in so great a ratio, and is not inclined to BC at
the same angle as before. We are about to determine the actual
change of length and angular position of @L by finding that of a
parallel 4P drawn through 4. It has been already remarked that
parallel lines in uniform strain must suffer the same strain. Now
AP shifts to 4P such that

PP =¢.BP =¢. AP, cosb.

If now the angle PAP" (= i) be so small that ¢ may be neglected

compared with i, and i compared with unity,
A= AR P — BB eonitis
and therefore !
AP = AP = PP cos0=g; 4P cos’t)
Thus the strain (¢) in the direction of 4P is
€ = ¢, .'c08%.

Also, it is clear that

e %=§%.smo = ¢,.5n 0. cos 6.
By these formule the changes of length and angular position of all
lines in the band are determined.

Next draw a line 4@ perpendicular and equal to 4P, and let AQ'
he the position into which it moves in consequence of the strain ;
we find for ¢, the extension of 4@,

€ = el RN 20
while the angle QA€ is

gi—re i EID U coBI0E=—
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Imagine now the square 4QL completed ; this square, in con
sequence of the strain, will have its sides altered in length by the
quantities ¢, ¢, and will have suffered a distortion given by

2i = 2¢,.8in 6. cos 0.

In this way the effect of a simple longitudinal strain is completely
determined, for we can calculate the changes taking place in any
portion of the band we please.

Next suppose the band to suffer a second simple longitudinal
strain ¢, in the direction of the breadth, and observe that since the
strains are very small, the effect of ¢, ¢, taken together must be the
sum of those due to each taken separately; then we find for the

change of length and position of any line AP,
€ = ¢.c08°0 + ¢,.8n% ;

i = (¢,— 6)sind. cos b,

results which may be applied as before to show the changes of
dimension and the distortion of a square traced anywhere in
the hand.
We have here regarded the angle i as a measure of the distortion
a square suffers in consequence of the strain. If, however, we drop
"M perpendicular to 4P, we have
. AM
AGM = 21 = g
Now 4M is the space through which the line 4’(’ has shifted
parallel to itself in consequence of the strain, and we see therefore
that the angle i also gives a measure of the magnitude of this
shifting. By some writers this is called sliding.” It is also called
“shearing strain,”

205. Comparison between Stress and Strain.—If we compare the
equations we have just obtained for strain with those previously
obtained in Art. 199 for stress, we find them identical; and hence it
appears that, so long at least as the strains are very small, all pro-
Positions respecting stress must also be true, mutatis mudandis, with
respect to strain. Thus, for example, a simple distortion must be
equivalent to a longitudinal extension accompanied by an equal
longitudinal contraction; and, again, every state of strain can
be reduced to three simple longitudinal strains at right angles to
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each other, and represented by an ellipsoid of strain. The simple
strains are called Principal Strains, and their directions Axes of
Strain. Strain, like stress, generally varies from point to point of
the body : but the relations here proved still hold good at each
point, and we have Lines of Strain just as we previously had Lines
of Stress.

SreTioN IIL—CONNECIION BETWEEN STRESS AND STRAIN.

906. Equations connecting Stress and Strain in Isotropic Matter.—So
far we have merely been stating certain conditions which stress must
satisfy in order that each element of a body may be in equilibrium,
and certain other conditions which strain must satisfy if the body is
continuous. We now connect the two by considering the way in
which stress produces strain, which differs according to the nature of
the material.

We first consider perfectly elastic material (see Art. 147), and sup-
pose that material to have the same elastic properties in all direc-
tions, in which case it is said to be isotropic. Metallic bodies are
often not isotropie, as will be seen hereafter (Ch. XVIIL). Suppose a
rectangular bar under the action of a simple longitudinal stress p,,
then there results (Art. 148) a longitudinal strain ¢, given by

i Eﬂu

where Z is the corresponding modulus of elasticity. Accompanying
the longitudinal extension we find a contraction of breadth that is a
lateral strain of opposite sign of magnitude 1/m™ the longitudinal
strain, where m is a coefficient. The contraction in thickness will
be equal, because the material is supposed isotropic. Hence the
effect of the simple longitudinal stress p, is to produce three simple
longitudinal strains at right angles,

St JH=tipis e M
i ey i el

Next remove g, and in its place suppose a simple stress p, applied in
the direction of the breadth of the bar; we have by similar reasoning
the three strains

s P2, by

G= — ¢ = O = ———
; 0 e R ml
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And similarly removing p, and replacing it by p, acting in the direc-
tion of the thickness,

Ps | (Vg Ds

o= = p= — o —
1 mk’ ml’ B

These three sets of equations give the strains due to p,, p., p;, each
acting alone ; and we now coneclude that if all three act together we
must necessarily have ;
¢ z'pl- "Bg‘i?'ﬂ,

E  mE
with two other symmetrical equations.

Hence it appears that the effect of three principal stresses, and
consequently of any state of stress whatever on isotropic matter, is
to produce a strain, the axes of which coincide with the axes of
stress, and in which the principal strains are connected with the
principal stresses by the equations just written down.*

207. Elasticity of Form and Volume.—The value of the constant
m may be found directly by experiment, though with some difficulty,
on account of the smallness of the lateral contraction which it
measures ; but it may also be found indirectly, by conneeting it with
the co-efficient employed in the last chapter to measure the elasticity
of torsion. For if we subtract the second of the three equations
just obtained from the first, we get

m+ 1
o—e=(p _P-.')_?'j:,]g )
or Ph=Pe= ?17173:71 . Fley - ).
Now referring to Arts. 31, 33 we find
Pe=(py—p,) sin @ cos 6,
-2i=2(e, — e,) sin 0. cos 6,
where p, is the tangential stress on a pair of planes inclined at angle
¢ to the axes, and 2i is the distortion of a square inclined at that
angle to the axes of strain. Since now the axes of strain coincide
with the axes of stress, we must have

B Py mo g

2 2e,—ey) “m+1°

*The form in which these equations are given is due to Grashof. For practical
applieation it is more convenient than any other,
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an equation which, compared with Art. 183, shows that the co-efficient
of rigidity ' must be

C=%

m+1

Experiment shows that in metallic bodies C'is generally somewhat
less than 2E, whence it follows that m lies between 3 and 4. In the
ordinary materials of construction the comparison cannot generally
be made with exactness, because such bodies are rarely exactly iso-
tropic. The value of m for iron is about 3}.

Again, if we add together the three fundamental equations, we
find

2
Eley+ e+ 65)= (1 - Ez)(p‘+p2+P3)'

Now the volume of a cube, the side of which is unity, becomes
when strained (1 +¢,)(1 +&)(1 +¢;), and therefore the volume strain
i8 ¢, + ¢, + ¢, when the strains are very small. Hence, if we separate
the stress into a fluid stress NV and a distorting stress (Art. 204), we

have
0

(m=2)"

N= 3 . E x Volume Strain,

and the co-efficient
m
P=sm-2)"
measures the elasticity of volume. The two constants C' and 2,
which measure elasticity of distinctly different kinds, may be re-

garded as the fundamental elastic constants of an isotropic body.
The ordinary Young’s modulus ¥ involves both kinds of elasticity.

9208. Modulus of Elasticity under various circumstances.  Elasticity
of Flexion.—When the sides of a bar are free the ratio of the longi-
tudinal stress to the longitudinal strain is the ordinary modulus of
elasticity #£; but the equations above given show that, when the
sides of the bar are subject to stress, the modulus will have a
different value. For example, let the bar be forcibly prevented from
contracting, either in breadth or thickness, by the application of a
suitable lateral tension, pa( = ps), then e, e; are both zero, and

Ee,=p, - ]7‘2 ; O=ps— _P ;Pe,
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whence we obtain for the magnitude of the necessary lateral stress

and for the corresponding extension of the har
m*—m— 2
pfr e
= 1
Hence the modulys of elasticity is now

- mm-1). s
(m+D)(m—2)

This constant 7 is what Rankine called the direct elasticity of the

substance : it is of course always greater than o'

E. For m=4, A=8E ; for m=3, A =2E. ;
If the bar be free to contract in thickness, but i

not in breadth, we have p; and e, zero, and the

equations become

whence we find '

e, = pl.m%f_,_]‘, i
o that the value of the modulus of elasticity is i :
m — K. In a similar way if ps, p; have eany g given A:: / ;
= el il
values the modulus can he found. 1
It will now be convenient to examine an impor- "_
. . S \s
tant point already referred to in the theory of
simple bending, that is to say the assumption
(Art. 153) that the modulus of elasticity  was the
Fig.152

same as in the case of simple tension, notwith-
standing the lateral connection of the elementary bars, into which
we imagined the whole beam split up. If these elementary bars
were prevented from contracting freely, as they would do if sepa-
rated from each other, the modulus could not be the same. In
fact, however, there is nothing in their lateral connection which
prevents them from doing so. Figure 152 shows, on a very ex-
aggerated scale, the form assumed by a transverse section 4CBD
originally rectangular, cutting a series of longitudinal sections

originally parallel to the plane of bending in the straight lines
20
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shown. Assuming the upper side stretched as in Fig. 122, page
309, these lines all radiate from a centre (' above the beam, which
bends transversely, while the originally straight horizontal layers are
cut in arcs of circles struck from the same centre. The upper side
of the beam contracts and the lower side expands, and reasoning ex-
actly in the same way as we did when we derived the principal
formula,

oy & S(Arh 158)
R

we find a corresponding formula for the transverse curvature,
_mY

p=m,
whence it follows immediately that

R =mh.
In order that this transverse curvature of the originally horizontal
layers shall not be inconsistent with the reasoning by which the
formula for bending is obtained, all that is necessary is that the de-
viation from a straight line shall be small as compared with the
distance of the layer from the meutral axis. Let @ be that devia-
tion, then (see Art. 163) if b be the breadth,

e
8R' 8mE 8mkEy
Now the stress being within the elastic limit p/Z is very small, for
example, take the case of wrought iron, for which p/E is not more
than 254", and suppose m =4,
b2

~ 38,400. ¥,
where 7, is the greatest value of y, say 4k, where / is the depth,
thus

€T

iz
* 7 19,2000
It is obvious that @ must be always very small compared with y,
except very near the meutral axis, and unless & be very large com-
pared with A. When then a beam is bent within the limit of
clasticity, the lateral conmection of the parts cannot have any
sensible influence on its resistance to bending, unless its breadth
he great as compared with its depth. The case of a broad thin
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plate has not been hitherto dealt with theoretically. Beyond the
limit of elasticity the lateral connection of the parts may greatly
increase the resistance to bending, but this is a matter for sub-
sequent consideration.

209. Thick Hollow Cylinder under Internal Pressure.—The equa-
tions connecting stress and strain in combination with suitable
equations expressing the continuity of the body and the equilibrium
of each of its elements are theoretically sufficient to determine the
distribution of stress within an elastic body exposed to given forces,
and in particular to determine the parts of the body exposed to the
greatest stress, and the magnitude of such stress. The most im-

1 Fig158a

)

&\\\\\\\\\\\“

7 11111 /////

/ﬁ 1' *“'

Portant cases hitherto worked out, in addition to those considered in
preceding chapters, are the torsion of non-circular prisms and the
action of internal fluid pressure on thick hollow cylinders and
spheres. For M. St. Venant’s investigations on torsion we must
refer to Art. 188, page 360, and the authorities there cited. We
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shall only consider the comparatively simple case of a homogenous
cylinder.

Fig. 153a shows a longitudinal section of a hollow cylinder open at
the ends, which are flat: the cylinder contains fluid which is acted
on by two plungers forced in by external pressure so as to produce an
internal fluid pressure p, Fig. 1535 shows the same cylinder in
transverse section: imagine a cylindrical layer of thickness 7
this thin cylinder will be acted on within and vithout by stress
which symmetry shows must he normal ; let these stresses be p and
7, and the internal and external radii of the thin cylinder he 7 and +,
Now, if p' the external pressure had existed alone, a compressive
stress ¢ would have been produced on the material of the cylinder
given by the equation (see Art. 150)

Y=g
and if the internal pressure had existed alone, we should have had a
tensile stress given by

o= gt;
hence when hoth exist together, we must have
X = =

where ¢ is the stress on the material of the cylinder on a radial plane
in the direction perpendicular to the radius reckoned positive when
compressive. Clearly ¢ = + ~ 7, and therefore proceeding to the limit
we may write the equation

) =g,
which is one relation between the principal stresses p, g at any point
of the cylinder. We now require a second equation, to get which
it is necessary to consider the way in which the cylinder yields
under the application of the forces to which it is exposed. The
simplest way to do this is to assume that the cylinder remains still
a cylinder after the pressure has been applied : if so, it at once
follows that points in a transverse section originally remain so, or,
in other words, that the longitudinal strain is the same at all points.
It is not to be supposed that there is anything arbitrary about this
assumption : no other, apparently, can he made if the ends of the
cylinder are free, the pressure on the internal surface exactly uniform,
and the cylinder be homogenous and free from initial strain.  For
when this is the case, there is no reason why the cylinder should bhe
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in a different condition in one part of its length than in another.
If the ends are not free, or if the pressure is greater in the centre,
the middle of the cylinder will bulge, but not'otherwise.

It is also clear that the total pressure on a transverse section must
be zero because the ends are free, and hence it is natural to suppose
that it is also zero at every point of the transverse section, an as-
sumption which we shall presently verify.

The equations connecting stress and strain therefore become

Bey = p—4.
St m’
T s {

e, = i

oAt e
n

where ¢, ¢,, ¢, are the strains in, the direction of the radius, the direc-
tion perpendicular to the radius in the transverse section, and, the
direction of the length, respectively. Of these the last is constant, as
just stated, and therefore
P + g = const, = 2¢;
is the second equation connecting p, ¢. Substituting for i, we find
d

¥ = 9¢ -
) +p =2 ;

/ ,
or ii_p; + 2p = 2¢,
Multiply by » and integrate, then

G
7:23
Where ¢, is a constant of integration. The two constants ¢,, ¢, are now
determined by consideration of the given pressures within and
without the cylinder. :

If w be the ratio of the external radius to the internal radius B, we
have at the internal surface

()
P = —>+¢, and consequently ¢ = ¢, -
o

P=n e " 3 G,
9'——3} LR el R’
and at the external surface

p =0 RSy & .,
r:ﬂ-R} "O_G‘+W€2’
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from which two equations we get

o = = ng_l_l, and ¢ = nf,f’f'l.faﬂ.

Substituting these values in the equation for ¢,

N TS L R
1 wf"alllkn'?'-'J’

the negative sign in this formula indicates that the stress is tensile,
as we might have anticipated. The formula shows that the stress

decreases from

n:+ L .p, at the internal surface to Efi‘— at the ex-
n?-1 n'—1
ternal surface. The mean stress is obtained from the equation
(Art. 150.)

qo(nlt — R) = pR;
hence the maximum stress is greater than the mean in the ratio
n* + 1 : m + 1, and it is clear that it can never be less than p,.

Verification of Preceding Solution.—The radial strain () and the hoop strain
(e,) are given by the above equations in terms of the stress. Now these changes of
dimension are not independent, but are connected by a certain geometrical relation
which it is necessary to examine in order to see whether it is satisfied by the values
we have found.

Returning to the diagram, suppose the internal radius of the ring BQ to increase
from 7 to s, and the external radius from # to §'; then

2mg=2mr(l +e5),
il 4] d82
2ms’ =2y (1 + ey + t‘%),

o S -s=(r"-7)(1+e)+ e A
dr

or since the thickness of the ring changes from ¢ to (1 +¢))t,

< ey
l+e ;‘f‘&g""f ar
&= a;{ﬁg 7).

This relation must always hold good, in order that the rings after strain may fit one
another, and should therefore be saftisfied by our results. On trial it will be found
that it is satisfied, and we conclude that the solution we have obtained satisfies all
the conditions of the problem, and is therefore the true and only solution, subject to
the conditions already explained. For further remarks on this question, see
Appendix.

210. Strengthening of Cylinder by Rings.  Effect of great Pressures.—
The stress within a thick hollow cylinder under internal fluid pres-
sure may be equalized, and the cylinder thus strengthened hy con-
structing it in rings, each shrunk on the next preceding in order of
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diameter. For a cylinder so constructed will be in tension at the
outer surface and compression at the inner surface before the pres-
sure is applied, and therefore after the pressure has been applied will
be subjected to less tension at the inner and more tension at the
outer surface than if it had been originally free from strain. It is
theoretically possible to determine the diameters of the successive
rings so that the pressure shall be uniform throughout. The prin-
ciple is important, and frequently employed in the construction of
heavy guns.

When the limit of elasticity is overpassed the formula fails, and
the distribution of stress becomes different. If the pressure be
imagined gradually to increase until the innermost layer of the
cylinder begins to stretch beyond the limit, more of the pressure is
transmitted into the interior of the cylinder, so that the stress
becomes partially equalized. If the pressure increases still further,
the tension of the innermost layer is little altered, and in soft
materials longitudinal flow of the metal commences under the direct
action of the fluid pressure. The internal diameter of the cylinder
then increases perceptibly and permanently. This is well known to
happen in the cylinders employed in the manufacture of lead piping,
which are exposed to the severe pressure necessary to produce flow
in the lead. The cylinder is not weakened but strengthened, having
adapted itself to sustain the pressure.  Cast-iron hydraulic press
cylinders are often worked at the great pressure of 3 tons per sq.
inch, a fact which may perhaps be explained by a similar equalization.

EXAMPLES,

1. ‘When the sides of a bar are forcibly prevented from contracting, show that the
necessary lateral stress is given by
3 P2=DBe,
*g-& . This constant B is what Rankine called the ‘‘lateral”
m2—m -2
elasticity of the substance.

where B =

2. With the notation of the preceding question and of Art. 106, prove that
-4-B
C T

3. In a certain quality of steel E = 30,000,000; ¢'=11,500,000: find the elasticity
of volume and the values of 4 and B, assuming the material to be isotropic. Amns.
=34 ; D= 25400,000.
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4. The cylinder of an hydraulic accumulator is 9 inches diameter. What thickness
of metal would be required for a pressure of 700 Ibs. per square inch, the maximum
tensile stress being limited to 2,100 lbs. per square inch? Also, find the tensile
stress on the metal of the cylinder at the outer surface. Ans. Thickness=1-84";
Stress = 1,400 1bs. per square inch.

5. If the cylinder in the last question were of wrought iron, proof resistance to
simple tension 21,000 lbs. per square inch, at what pressure would the limit of
clasticity be overpassed ? m =35, (See Art. 223, page 428.) Ans. 6400.

6. Find the law of variation of the stress within a thick hollow sphere under
internal fluid pressure. By a process exactly like that for the case of the cylinder
(page 404) it is found that the equation of equilibrium is

L—%‘(piﬂ) =2qn.
The equation of continuity is the same as that for a cylinder (Art. 209), and the

equations connecting stress and strain are now
2q

;
n

Eey=q- }_J;:';!] y

FEe=p-

We can now by elimination of ¢, reduction, and integration obtain
pmot ,%;
G .
{1 flltiy 987
the constants being found as in the cylinder.
7. The cylinder of an hydraulic press is 8 inches internal and 16 inches external
diameter. If the pressure be 3 tons per sq. inch find the principal stresses at the

internal and external circumference.
: - ¥ Major Stress =5 (Tension).
Ans. At inner clrcumfelence{ Minor Rivers =g {Thms t).

2 Major Stress = 2 (Tension).
At outer ” { Minor Stress=0,
8. In the last question find the *‘ equivalent simple tensile stress ™ (p. 428), assum-
ing n=35, Ans. 5'86and 2 tons.



CHAPTER XVIII.

MATERTIALS STRAINED BEYOND THE ELASTIC LIMIT,
STRENGTH OF MATERIALS.

211. Plastic Bodies—If the stress and strain to which a piece of
material is exposed exceed certain limits its elasticity becomes imper-
fect, and ultimately separation into parts takes place. We proceed
to consider what these limits are in different materials under differ-
ent cireumstances : it is to this part of the subject alone that the
title Strength of Materials ” is, strictly speaking, appropriate.

Reference has already been made (Art. 147) to a certain condition
in which matter may exist, called the Plastic state, which may he
regarded as the opposite of the Elastic state, which has been the
subject of preceding chapters. In this condition
the changes of size of a body are very small, as
hefore ; but if the stress be not the same in all ¥ig.154 ¥ P=pA
directions the difference, if sufficiently great,
Produces continuous change of shape of almost | 1 l l l 1 l 1
any extent. Some materials are not plastic at i v
all under any known forees, but many of the |i ¢t 11
most important materials of construction are Ai*FLit
50, more or less, under great inequality of
Pressure.

Fig. 154 shows a block of material which is
being compressed by the action of a load P
applied perfectly uniformly over the area A B.
Let the intensity of the stress be p, then so long as p is small the
Compression is small and proportional to the stress ; but when it
reaches a certain limit the block hecomes visibly shorter and thicker.

iy

C D D

0{"""‘-"""'



410 STIFFNESS AND STRENGTH. [PART 1V.

This limit depends on the hardness of the material, and the value of
p may be called the “co-efficient of hardness.” In an actual experi-
ment the friction of the surfaces between which the block is com-
pressed holds the ends together, so that it bulges in the middle, as
in Fig. 158, p. 419, which represents an experiment on a short cylin-
der of soft steel. In the ideal case the sectional area remains uniform,
changing throughout inversely as the height, as expressed by the
equation
A?j:A!%:

where 4 is the area and  the height of the block.

In a truly plastic body p the intensity of the stress remains con-
stant, and therefore the crushing load P varies as A, that is inversely
as 3. This is the same law as that of the compression of an elastic
fluid when the compression curve is an hyperbola, and we therefore
conclude (Art. 90) that the work done in crushing is

U=Py.logr=pdyloga=pV log.,

where r is the ratio of compression and 7 the volume. Certain
qualities of iron and soft steel will endure a compression of one-
fourth or even of one-half the original height, and amounts of
energy are thus absorbed which are enormous compared with the
resilience of the metal. To illustrate this, suppose that plasticity
begins as soon as the limit of elasticity f is overpassed, then for p we
must write f, and by Art. 96 the resilience for a volume 7 is

Resilience = % e

The ratio which the work just found hears to the resilience is
therefore

-

SO
Ratio="<=\loz: 7
i

DE

In wrought iron for a compression of one fourth the height (r=1-333)
this is about 800. The actual ratio must be much greater, because,
as we shall see presently, the hardness of the material increases
under stress.

If lateral pressure of sufficient magnitude be applied to the sides
of the block, the longitudinal force being removed, the effect is
elongation instead of compression, contraction of area instead of
expansion. The magnitude of the lateral pressure is found by
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imagining a tension applied both longitudinally and laterally of equal
intensity. Such a tension has no tendency to alter the form of the
block, being equivalent to fluid pressure, but it reduces the lateral
pressure to zero, while it introduces a longitudinal tension of the
same amount, which has the same value as the longitudinal com-
pression of the preceding case. We see then that in every case
a certain definite difference of pressure is required to produce change
of shape in a plastic body, the direction of the change depending on
the direction of the difference. The work done is found by the
same formula as before, 7 meaning now the ratio of elongation.

In the process of drawing wire the lateral pressure is applied by
the sides of the conical hole in the draw-plate, which are lubricated
to reduce friction, and the force producing elongation in the wire is
the sum of the tensile stress applied to draw the wire through the
hole and the compressive stress on the sides. The work done is
given Dby the same formula as before, p being now the sum in
question.

212. Flow of Solids—When a plastic body changes its form the
process is exactly analogous to the flow of an incompressible fluid,
which indeed may be regarded as a particular case. In the solid
the distorting stress at each point at which the distortion is going on
has a certain definite value which in the fluid is zero. The experi-
mental proof of this is fur- Fig. 155.
nished by the experiments of
M. Tresca, of which Fig. 155
shows an example. Twelve z
circular plates of lead are /”—
placed one upon another in a
cylinder, which has a flat =
bottom with a small orifice at
its centre.  The pile of plates being foreibly compressed, the lead
issues at the orifice in a jet, and the originally flat plates as-
sume the forms shown in the figure. The lines of separation,
indicating the position of particles of the metal originally in a
transverse section, are quite analogous to the corresponding lines
in the case of water issuing from a vessel through an orifice in
the bottom. Tresca’s experiments were very extensive, and showed
that all non-rigid material flowed in the same way. Lead ap-
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proaches the truly plastic condition; the difference of pressure
necessary to make it flow being always about the same. Tresca
ascribes to it the value of 400 kilogrammes per square centimetre,
or about 5,700 Ibs, per square inch;* but it is probably subject to
considerable variations.

The manufacture of lead pipes, the drawing of wire, and all the
processes of forging, rolling &e., by which metals are manipulated
in the arts, are examples of the Flow of Solids.

213. Preliminary Remarks on Materials. Stretching of Wrought
Iron and Steel.—Materials employed in construction may roughly
be divided into three classes. 'The first are capable of great
changes of form without rupture, and, when possessing sufficient
strength to resist the necessary tension, may be drawn into
wire. This last property is called ductility, and this word
may be used to describe the class which we shall therefore call
Ductile Materials. The second, being incapable of enduring any
considerable change of this kind, may be described as Rigid
Materials. The third are in many cases not homogenous, but may
be regarded as consisting of bundles of fibres laid side by side,
they may therefore be described as Fibrous Materials; they are -
generally of organic origin.

‘We shall commence with the consideration of ductile materials,
and more especially of

WroueHT IRON AND STEFL.

Accurate experiments on the stretching of metal arve difficult to
make, the extensions being very small and the force required great.
If levers are used to multiply the effect of a load or to magnify the
cxtensions, errors are easily introduced. If the levers are dispensed
with, a great length of rod is necessary and a heavy load the mani-
pulation of which involves difficulties. The best modern testing
machines operate by hydraulic pressure, and the elongations are
measured by micrometers. The experiment we select for description
was made by Hodgkinson on a rod of wrought iron *517 inch diameter,

#The co-efficient employed by Tresca, and called by him the ‘ co-efficient of
fluidity,” is half that used in the fext. It is the magnitude of the distorting stress
necessary to produce flow.
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49 feet 2 inches long, loaded by weights placed in a scale pan*
suspended from one end. The load applied was increased by equal
increments of 5 cwt. or 26675 lbs. per square inch of the original
sectional area of the bar; each application of the load being made
gradually, and the whole load removed between each. At each
application and removal the clongation was measured so as to test
the increment of elongation, both temporary and permanent, occa-
sioned by each load. If the rod were perfectly elastic the temporary
increments should be equal and the permanent elongations (usually
called “sets”) zero.

? STRETCHING OF A WrovGHT IrRON Rop, 49 FrET 2 IncHES Lox, l

! Loan. A | or Bronoamo, | PERMANENTSu.
|
26675x 1 26675 | ‘0485 | *0485 |
A R ‘1095 061 |
o X 3 8003 *1675 058 0015
it oA 101650 224 ‘0565 002
= x b 15138 2805 ‘ 0565 0027
(it o 6716005 337 0565 003 |
S 393 056 -004
e % 8140 ‘452 059 0075 i
X 924008 5155 0635 0195 ‘
e = 10: 988760 | ‘598 ‘0825 049 ‘
[ oy S *760 i ‘162 ‘1545 ‘
byt 12 821010 ’ 1310 550 667 |

The annexed table shows part of the results of this experiment, the
first column giving the load, the second the total elongation, the
third the successive increments of the elongation, the fourth the
total permanent set.

On examining the table we see that, after some slight irregularities
at the commencement due to the material not being perfectly
homogeneous, the increments of elongation are nearly constant till
we reach the eighth load of 21,340 Ibs. per square inch, after which
the increments show a rapid increase. Further, the permanent set,

* Being one of the best of its kind of old date this experiment has often been
Quoted. TFor the original description see the Report of the Commissioners appointed to
enguire into the Application of Iron to Railway Structures. For a notice of some
Important experiments on stretching recently made the reader is referred to the
Appendix,
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which at the commencement is very minute and increases very
slowly, at the same point shows a sudden increase indicating that the
observed increase is almost wholly due to a permanent elongation of
the bar, the temporary increase following approximately the same
law as before. Notwithstanding this the bar is not torn asunder till
a much greater load is applied. The table shows the results up to a
load of 32,000 lbs. per square inch, but rupture did not occur till a
load of 53,000 lbs. was applied. The extension at the same time
increased to nearly 21 inches, being more than forty times its
amount at the elastic limit.

‘We conveniently represent the results graphically by setting off
the elongations as abscissze along a base line with corresponding
ordinates to represent the stress, thus obtaining a curve of “ Stress
and Strain” (Fig. 156). The curve will be seen to be nearly straight
up to a stress of 22,000 lbs. and then to bend sharply, hecoming
nearly straight in a different direction. A curve of permanent
set may also be constructed which is seen to follow the same
general law.

i

53,000

Fig.l
21,340 a0

!
:
|

| e bR L LT P TR

452"

This experiment may he taken as a type of many hundreds
of such experiments which have been made on iron and the softer
kinds of steel, showing that in these materials a tolerably well-
defined limit exists, within which the material is nearly perfectly
elastic (compare Art. 127) ; the small deviations are more due to the
want of perfect homogeneity in the bar than to actual defect in the
elasticity. They usually diminish greatly if the experiment be tried a
second time on the same bar. The position of the limit of elasticity
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and the value of the modulus of course vary. Some examples will be
given presently.

Accompanying the increase of length of the bar we find a con-
traction of area ; within the elastic limit, however, this is so small as
to escape observation. Outside the limit it
becomes visible, consisting in the first instance E'
of a more or less uniform contraction at all or '
nearly all points, followed by a much greater :
contraction at one or sometimes two points ;
where there happens to be some local weak- |
ness.*  Within the elastic limit the density |
of the bar diminishes, but by an amount so |
small that the fact is rather known by reason- ;
ing than determined by experiment. Outside !
the limit there is a permanent diminution !
which is perceptible, though still very small. & E
Thus beyond the elastic limit the bar draws
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out, changing its form like a plastic body
without sensible change of volume. The bar
finally tears asunder at the most contracted
section, as shown by the annexed figure (Fig.
157) representing an experiment by Mr. Kir-
kaldy on a bar of iron 1 inch diameter, in
which the contraction of area was 61 per cent.,
and the elongation 30 per cent., ultimate
strength 58,000 Ibs. per square inch of original
area, 146,000 lbs. per square inch of fractured
area. The contraction of section in good iron
and soft steel is 50 or 60 per cent.

e ———— -—+---—-I--—-—--+---——--'Ly-é:

214. Real and Apparent Tensile Strength of
Ductile Metals.—Thus the process of stretching
an iron bar beyond the limit of elasticity
till it breaks is an example of the *flow of solids,” the iron behaving
to a certain extent like a plastic body. There is, however, this
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* On this point see Preliminary Expertments on Steel by a Committee of Civil
Engineers, London, 1868. On account of the uncertainty of the amount of con-
traction at various points, the ultimate extension is an imperfect measure of the
ductility of the iron, even when the pieces are of the same length and sectional ares.
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difference, that a constantly increasing stress is necessary to produce
continuous flow, which increase is supplied partly hy increase of the
stretching load, partly by the contraction of area. The actual stress
at each instant on the contracted area is much greater than the
apparent stress given in the table, which is merely the total load
divided by the original sectional area. Hence when contraction has
once begun at some point of local weakness it continues there, and
the process goes on till the stress per square inch of the reduced area
becomes greater than the metal will bear, when fracture takes place.
This stress may to a certain extent be regarded as a measure—
though a rough and imperfect one — of the true tenacity of the
metal, as distinguished from the “apparent” tenacity which is
reckoned per square inch of the original area. For many purposes
the “true” tenacity, in good iron more than double the apparent, is a
better test of the quality of the iron than the actual breaking load,
inferior iron often showing a high apparent tenacity but contracting
far less.

Hence it follows that if the form of the piece be such as partly or
wholly to prevent contraction the apparent strength will be increased.
For example, if two pieces of the same bar be taken and one turned
down to a certain diameter, while in the other narrow grooves are
cut so as to reduce the diameter to the same amount at the bottom
of the grooves, the strength of the grooved piece will be found to be
much greater than that of the piece the diameter of which has been
reduced throughout, and this can only be explained by observing that
the length of the reduced part of the grooved bar is insufficient to
permit contraction to any considerable extent. This is a point to be
noticed in considering experimental results.* The form of the specimen
tested may have much influence. Further, since the limit of elasticity
is the point at which flow commences, and since the flow is due to
difference of stress, it follows that the same causes musb raise the
limit of elasticity, and thus we are led to the conclusion that there
are two elements constituting strength in a material, first, tenacity
and, secondly, rigidity. In some materials, such as these we are now
considering, the tenacity is much greater than the rigidity, and
in them the limit of elasticity will depend on the rigidity, and will
have different positions according to the way the stress is applied.

* Qoo Experiments on Wrought Tron and Steel, by Mr. Kirkealdy, p. 74. 1st edition.
Glasgow, 1862,
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It will lie much higher, and the apparent strength will be much
greater when lateral stress is applied to prevent contraction.

215. Increase of Hardness by Stress beyond the Elastic Limit,— In clay
and other completely plastic bodies a certain definite difference
of pressure is sufficient to produce flow : in iron, copper, and pro-
bably other metals, however, as we have just seen, this is not
the case, the metal acquiring increased rigidity in the act of yielding
to the pressure. Thus the effect of stress exceeding the elastic limit
Is always to raise the limit, whether the stress be a simple tensile
stress or whether it be accompanied by lateral pressure. All processes
of hammering, cold rolling, wire drawing, and simple stretching have
this effect. If a bar be stretched by a load exceeding the elastic
limit and then removed, on re-application of a gradually increasing
load we do not find a fresh drawing out to commence at the original
elastic limit, but at or near the load originally applied.* If the load
be further increased drawing out re-commences. Hence, whenever
iron is mechanically “ treated” in any way which exposes it to stress
beyond the elastic limit, contraction is prevented and the apparent
strength is increased : for example iron wire is stronger than the rod
from which it is drawn; when an iron rod is stretehed to breaking
the pieces are stronger than the original rod. It is not certain that
the real strength of materials is always increased by such treatment;
Perhaps in some cases the contrary, for we know that the modulus of
elasticity and specific gravity are somewhat diminished.t On the
other hand there are cases in which the increase of strength is
greater than can be accounted for in this way. On annealing
the iron it is found to have resumed its original properties, a
circumstance which indicates that the increased rigidity is due to
& condition of constraint which is removed by heating the metal
Ull it has assumed a completely plastic condition. In consider-
ing the effect of impact, the diminution of ductility occasioned
by the application of stress beyond the elastic limit is a most
important fact to be taken into account (see Art. 226). Working

* Styfte On Iron and Steel, p. 68,

+ The raising of the limit of elasticity by mechanical treatment of various kinds
has long been known : in the case of simple stretching the effect appears to have been
fivst noticed by Thillen in a paper, a translation of which will be found in the Philo-

Sophical Magazine for September, 1865,
2D
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iron or steel hot has generally the effect of increasing both its
strength and its ductility.

218. Compression of Ductile Material.—In a perfectly elastic material
compression is simply the reverse of tension, the same changes of
dimengion being produced by the same stress, but in the reverse direc-
tion. Also in a plastic body a given difference of stress produces
flow, whether the stress be tensile or compressive; hence in ductile
metals we should expect to find the modulus of elasticity and the limit
of elasticity nearly the same in compression as in tension. These
conclusions are borne out by experiment. In the case of wrought iron
and steel experiments on the direct compression of a bar are more
difficult to carry out than experiments in tension, the bars are neces-
sarily of limited length, and must be enclosed in a trough to prevent
lateral bending; minute accuracy is therefore hardly attainable.
A considerable number have, however, been made, from which it
appears that the modulus of elasticity and the limit of elasticity
are nearly the same in the two cases.*

ExpERIMENT BY SIR W. FAIRBAIRN oN A Brock 72 INcn DIAMETER
oF SoFT BESSEMER STEEL.
‘ |
ToTAL LoAD HrrgaT OF BLock 1 CRUSE’NGPBTRESS
=P =1l | p= ,,y,,
| Ay
0 997 0
167 92 | 378
20°1 865 | 429
233 797 | 459
26°3 | 731 474
295 672 489
32:6 613 : 494
35°8 574 f 506
393 ~530 | b61-9
410 -505 | 508
|

E N = =

i Remarks.—The apparent ultimate tensile strength of this steel was
36 tons, its limit of elasticity 22 tons per square inch. Modulus of
elasticity 30,300,000 lbs. Ratio of contraction '41. Real tensile
strength 885 tons.

* Perhaps the best set of experiments are those made by the ‘“Committee of
Civil Engineers.” See their report already cited, p. 7-13.



CH. XVIII, ART. 216.] STRENGTH. 419

The metal yields beyond the limit by a process of flow of the same
character as in tension, but expanding laterally instead of contract-
ing. This is especially seen in experiments made by the late Sir W.
Fairbairn in 1867, and somewhat earlier by Mr. Berkeley, on the
compression of short blocks of steel. In both, the blocks were pieces
of round bars, of height somewhat greater than the diameter, and the
results were very similar.

The annexed table gives the results of one of Sir W. Fairbairn’s
experiments. Column 1 gives the actual load laid on; column 2 the
corresponding height of the block, both given directly by the experi-
ments. Column 3 is caleulated by dividing the product of load and
height by the original sectional area and height, and represents the
crushing stress per square inch of the mean
sectional area. If the block did not bulge in
the centre on account of friction holding its
ends together (Fig. 158), this would be the
actual crushing stress, which, however, must in
fact be less. The table shows that after a |
compression of about one-third the crushing
stress remains nearly constant at about 50 tons
per square inch.  The experiment terminated at a compression
of one-half. This kind of steel then is perfectly elastic up to
22 tons per square inch, is partially plastic between 2 and 50,
and behaves as a plastic body under a difference of stress of 50
tons per square inch.

In ductile materials fracture takes place under compression by
longitudinal cracks as shown in Fig. 158, which represents an experi-
ment on a different quality of steel. The amount of compression
which different materials will bear is very different according to
their malleability; it is generally difficult to fix upon the ultimate
strength, as it depends on the mode in which the experiment is
made. In iron and steel it is somewhat less than the apparent
tensile strength.

The compression of iron blocks has been less thoroughly studied
than that of steel, but it is known that the results are similar
although the strength and the ultimate ratio of compression are much
less.  Set becomes sensible at about 10 tons per square inch, and the
ultimate strength is from 40 to 50,000 Ibs. per square inch if lateral
flexure be prevented.
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21'7. Bending beyond the Elastic Limit.—Since wrought iron and
steel are nearly perfectly elastic when the stress applied is not too
great, it follows that the formula already obtained for the moment
of resistance to bending of a bar must be true for these materials
so long as the stress does not exceed the elastic limit determined by
tension experiments of the kind just described. Experience fully
confirms this conclusion, for the deflection obtained by experiment
agrees well with that found from formule previously given with
the same value of the modulus. As soon, however, as the maximum
stress exceeds this limit, it is no longer true that the stress at
different points of the transverse section varies as the distance from
the neutral axis. It does not increase so fast, because the extension
and compression at points near the surface is not accompanied by a
proportional increase of stress. Hence, a partial equalization of
stress takes place over the transverse section, and consequently
the maximum stress for a given moment of resistance is not so
great.

Again, it has been repeatedly explained in the earlier part of this
book that the lateral connection of the several layers into which we
imagine a beam divided has no influence on the stress produced by
bending so long as the limit of elasticity is not exceeded. But when
the limit is passed, the connection between those layers which are
most stretched and compressed with those layers which have not yet
lost their elasticity prevents their contraction and expansion, and so
raises the limit of elasticity in accordance with the general principle
explained in Art. 215. Thus, the limit of elasticity lies higher, and
the apparvent strength is greater in bending than in tension. In
Fairbairn’s experiment quoted above the same steel was tested
in tension, compression, and bending. The elastic limit in bending
was 30 tons, in tension 22 tons. The magnitude of the difference
will depend on the form of transverse section, and on the duectility of
the material. According to Mr. Barlow it may reach 50 per cent. in
a rectangular section.* The case of cast iron will be referred
to farther on.

Putting aside the effect of lateral connection, it may be interesting
to make a caleulation of the effect of equalization, by supposing that
under a hending moment very slowly and steadily applied beyond
the elastic limit, the metal behaves like a truly plastic material

* Phil. T'rans., 1855-57,
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throughout the transverse section, so that the stress-is uniform.
Referring to the formula on page 313, we have

Zpybt =M,
in which we must now, instead of assuming that p varies as i,
suppose p a constant. Then

M=2p. 4y,
where A is the area of the part of the section which lies on either side
of the neutral axis and y the distance of its centre of gravity from
that axis. For the same value of the modulus this gives a moment
of resistance in a rectangular section 50 per cent. greater than if the
material had been elastic. How far any apparent increase of
strength due to equalization or lateral connection may be regarded
in practice is uncertain. A failure of elasticity must have taken
place at certain points in order that there may be any increase at
all, and in cases where the load is frequently reversed the bar must
be weakened. (See Art. 225.)

CAST TRON AND OTHER RIGID MATERIALS.

218. Stretching of Cust Iron—The phenomena attending rupture
by tension of cast iron are essentially different from those described
above for the case of ductile metals.
This will be sufficiently shown by an o
experiment, also made by Hodgkinson,
on a bar of this material 50 feet long,
1159 inch diameter. The experiment
was made in the same way as that
already described on the wrought-iron
rod,* and the results are shown in the
annexed table. The first four loads 5308
were applied as before, by increments
of 5 cwt., here equivalent to 531 lbs.
per square inch ; the whole load, after |
measurement of the elongation, being 266
completely removed, and the permanent set measured. After
the fourth load the increment was 10 cwt., and this was carried
on till the bar broke at a stress of 16,000 Ibs. per square inch.

Fig.159

* Report of Commissioners on the Application to Railway Structures, p. 51,
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The third column as before shows the increments of elonga-
tion, which, after a stress of 5,308 lbs. per square inch, or
% the breaking load, has been reached, show a gradual increase
till actual rupture occurs. The results of the experiments are
graphically exhibited in the annexed diagram (Fig. 159) of stress,
strain, and permanent set. The form of the curve is different
from that of wrought iron, showing no point of maximum curvature,
because in this material the bar does not draw out.

STRETCHING OF A CAsT-IRON BAR 50 FEET LoNg, 1°'159 1NCH DIAMETER.
LoAD IN LBS. PER | ELONGATION IN INCREMENT OF >l
SQUARE INCH. | INCHES. LLLONGATION. EREl
‘ 11 531 } 024 | 1024 x2="048 l Perceptible.
| 2. 1,062 | 0495 | 0255x2=-051 | 0015
3. 1,692 | ‘0735 024 x2='048 | ‘002
4, 2,123 | 09828 | 0247 x2= 0514 0045
| 8. 3,185 | 1485 | ‘0503 | 0105
6. 4,246 | *200 0bl6 | ‘0155
7. " 5308 | 255 055 | 022
86370 *313 058 | -028
9. 7,431 i 374 061 | 037
10. 8,493 435 061 | 046
11, 9554 ‘ 504 069 | 056
12. 10,616 012 ‘068 067
13. 11,678 ‘648 ‘076 0795
14. 12,739 728 -080 095 ;
| 15. 13,801 816 ‘088 | ‘1115 |
[ 16. 14,863 912 096 | ‘132 5

{ 17. 15,924 | 1-000 ‘088 —

Hodgkinson experimented on a large variety of different kinds of

iron, and expressed his results by a formula, which may he written
P =Ee(l - le),
where, as before (Art. 148), p is the stress, e the extension per unit
of length, £ the ordinary modulus of elasticity, and % a constant.
The term ke here expresses the defect of elasticity of the bar. From
the results of his experiments we find the average values
E=14,000,000 ; = 209.

Clast iron, however, is a material of variable quality, and the value
of these constants may have a considerable range. Up to one third
the breaking load it may be regarded as approximately perfectly
elastic, but the limit is by some authorities placed much higher.
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219. Crushing of Rigid Materials.—In the ductile metals the
effects of compression are nearly the reverse of those of extension,
as has been sufficiently shown in previous articles, but in cast iron
this is by no means the case. Hodgkinson experimented in this
question with great care and accuracy, testing pieces of iron of
exactly the same quality under compression and tension to enable a
comparison to be made. The bars were enclosed in a frame and
tested by direct compression. Hodgkinson expressed his results by
a formula, which may be written

p=Ee(l - ke),
the symbols having the same meanings as before, and the values

may be taken as
£ =13,000,000 ; %=40.

The smaller value of £ indicates that the elasticity under compres-
sion is much less imperfect under the same stress. Short cylinders
of the metal were also crushed, and the crushing load found to be
five times the tensile strength or more.

It thus appears that in compression cast iron is six times stronger
than in tension, and this is true not merely of the ultimate resist-
ance, but in great measure also of the elastic Fig. 160,
resistance, for the elasticity of the metal is not i
sensibly impaired until one third the crushing
load is reached.

The manner in which crushing occurs is shown
in the accompanying figure ; instead of bulging
out like a ductile metal, oblique fracture takes
place on a plane inclined at 45° or rather less to
the axis, being (approximately) the plane on
which the shearing stress is a maximum (Fig.
160).

Great resistance to compression, as compared
with tension, and sudden fracture by shearing obliquely or by split-
ting longitudinally are characteristics of all non-ductile materials, of
which cast iron may be taken as a type. They are in fact materials
the tenacity of which is much less than the rigidity.

220. Breaking of Cast-Iron Beams.—When a cast-iron bar is bent
till the tensile stress at the stretched surface exceeds one third
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the tensile strength of the material, the defective elasticity of the
metal causes a partial equalization of stress on the transverse
section as in the case of wrought iron. Besides this, the elasticity
being much more perfect under compression than under tension,
the equalization is greater on the stretched side than on the
compressed side, and the neutral axis moves towards the compressed
edge of the beam. For both these reasons the moment of resistance
to bending is greater for a given maximum tensile stress than it
would be if the material were perfectly elastic. Thus it follows
that if the co-efficient in the ordinary formula for bending be
assumed equal to the tensile strength of the material, the calculated
moment of resistance will be less than the actual moment of rupture
of the beam by an amount which is greater for a rectangular section
than for an I section. The discrepancy is found by experiment
to be very great, the caleulated moment for a rectangular section
being less than one half, while for an I section it is about equal
that found by experiment. The causes just pointed out only
partially account for this, especially as Mr. Barlow’s experiment
cited above appears to show that no considerable deviation of the
neutral axis takes place, and it is probable that the lateral con-
nection of the several layers of the beam has (near the breaking
point) a sensible influence on the strength of the parts of the beam
exposed to tensile stress, a question we shall return to farther on.

SHEARING AND TorsioN. COMPOUND STRENGTH.

221. Shearing and Torsion.—We now pass on to cases where the
ultimate particles of the material are subject not to a simple
longitudinal stress, but to stress of a more complex character. The
simplest case is that of a simple distorting stress where the stress
consists of a pair of shearing stresses (Fig. 140) on planes at right
angles, or what is the same thing (Art. 183) of a pair of equal and
opposite longitudinal stresses (Fig. 141) on planes at right angles.
Examples of this kind of stress occur in shearing, punching, and
twisting. Experiments on shearing are subject to many difficulties
and are often not conducted in such a way as to satisfy the
conditions necessary for uniformity of distribution of stress on the
section. Moreover they necessarily give the ultimate resistance
only without reference to the limit of elasticity. The whole process
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of shearing and punching is very complex, being at the commence-
ment of the operation usually accompanied by a flow of the metal
similar to that already referred to. Thus, when a hole is punched
in a thick plate the punch sinks deep into the plate before the
actual punching takes place, the metal being displaced by lateral
flow, and the piece ultimately punched out being of less height than
the thickness of the plate.*

Separation takes place in the first instance by the formation
of fine cracks inclined at 45° to the plane of shearing. In soft
materials the surfaces slide past each other and separate, but in
harder materials there is a strong tendency to the formation of an
oblique fracture. In wrought iron and steel the ultimate resistance
to shearing is probably about three fourths the ultimate resistance
to tension of the same material. The question of a theoretical
connection between the elastic strengths in the two cases is con-
sidered further on.

Experiments on torsion are not numerous, and many of those
which exist are mot experiments on simple twisting, but on a
combination of bending and twisting. Such experiments would be
of great value if accompanied by corresponding experiments on

“simple twisting and bending made on similar pieces of material.
It is known however that in the ductile metals the elastic resistance
to torsion is less than the resistance to tension. A series of
experiments on torsion made by Prof. Thurston give some interesting
results.f Curves are drawn the abscisse of which represent angles
and the ordinates twisting moments, and the form of these curves
shows that in some cases defective homogencity causes a great
deficiency in the elasticity at small angles of torsion. In general,
however, the curves closely resemble the ordinary curve of stress
and strain, already given for a stretched bar, being nearly straight
up to a certain point and then curving towards the axis.

In twisting, as in bending, after passing the elastic limit, the stress
ab each point of the section, instead of varying as the distance from
the centre as it must do in perfectly elastic material, varies much

* On this subject see M. Tresca’s paper cited above, and two articles in the Jeurnal
of the Franklin Institute,

T See Paper on Materials of Machine Construction, read before the American
Society of Civil Engineers, 1874, No diameters are given, except for the woods, so
that the stress corresponding to the limit of elasticity cannot be found.
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more slowly so as to become partially equalized. Hence the
twisting moment corresponding to a given maximum stress is
greater than it would be if the elasticity were perfect. In the
case where the equalization is perfect it is easy to show that the
twisting moment is increased in the proportion 4 : 3, a result first
given in 1849 by Prof. J. Thomson. The curves given by Thurston
show that in many cases an approximately constant twisting moment
was reached indicating that nearly complete equalization must have
existed. On the case of cast iron see Art. 223.

222. Theories of Compound Strength.—A simple distorting stress is
included in the more general case of three simple longitudinal stresses
of any magnitudes acting on planes at right angles. To this, indeed,
all cases of stress can be reduced, and if we knew the powers of
resistance of a material to three such stresses simultaneously, all
questions relating to strength of materials could (at least theoretically)
at once be answered. Unfortunately experiments fitted to decide the
question have not hitherto been made, and in consequence hypotheses
have explicitly or implicitly been resorted to.

First, it is often tacitly supposed that the powers of resistance of a
material to a simple longitudinal stress are unaffected by the existence
of a lateral stress. For example, if a material bears 10 tons per
square inch under a simple stretching force, it iy assumed that when
formed into a pipe and exposed to internal fluid pressure it would
also bear 10 tons on the square inch if the pipe were homogeneous
and free from joints, notwithstanding the fact that the material
is exposed to stress (Art. 150) tending to tear it transversely as well
as longitudinally. Tt is, however, far from probable that this can be
the case, at any rate as regards the elastic strength. In duectile
materials, the limit of elasticity of which depends as we have seen on
rigidity, any lateral force must raise or lower the elastic limit accord-
ing as it acts in the same direction as the longitudinal stress or in the
opposite direction.

Secondly, it may be supposed that the maximum elongation or con-
traction of a material in a given direction must be a certain definite
quantity, irrespective of any elongation or contraction in any other
direction. This theory leads to results which are more probable than
the preceding, and as it has been much employed by Continental
writers we shall give some examples.
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Let us take a piece of wrought iron and imagine that when exposed
to a simple stretching force its limit of elasticity corresponds to a
stress of 10 tons per square inch, accompanied by an elongation
of y55th of its length. The second theory asserts that the maxi-
mum admissible elongation is still ;4555th, even though the sides of
the bar be acted on by any force, the effect of which will be that quite a
different longitudinal stress will be required to produce that elongation.

The relations between stress and strain are expressed hy the
equations (Art. 206)

2+ Pa.
E(:’I _ljl ]’?n)..’_.’
Pt Py
EG._, =pa— :p_]?’%,
5 + P
E63=p3_£-_1_1.

The first theory supposes that p, can never exceed 10 tons, and
the second that ¢, can never exceed y.5th (or Ee, 10 tons), what-
ever py, pyare. In the case of a thin pipe under internal fluid pressure
Py=0 (nearly), py=4p (Art. 150); thus assuming m=4 we have

on the second theory
10 5 %, or, p,—11+43,

so that the material will bear under these circumstances a stress of
11-43 tons per square inch as safely as it bears 10 tons under simple
tension, and this value, therefore, may be assumed for the co-efficient
in the formula which gives the corresponding internal pressure. In
like manner in the case of a thin sphere the material will bear a stress
of 13} tons per square inch, being an increase of 30 per cent.

223. Conmection between the Co-efficients of Strength for Shearing and
Tension.—On either theory the resistance to a simple distorting stress
may be found in terms of the resistance to simple tension, for such
a stress consists (p. 358) of a pair of equal and opposite simple stresses
of equal intensity. In the first case the resistances to tension and
shearing ought to be equal, in the second since, writing p, = p,, we find

Ee=p, +§-;,

m
on, = lEe,,
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or about four

it follows that the resistance to shearing is mﬂ_: i
fifths the resistance to tension, a result on the whole horne out by ex-
perience. It should be remarked that the theory only professes to give
a connection between the elastic resistances in the two cases, the
equations only holding good for perfectly elastic material, which,
moreover, must be supposed isotropic. The ultimate resistance
to torsion of cast iron is much greater than its resistance to tension,
which is probably due to the same causes as in the case of bending.

Now, rigid materials on this theory are imagined to give way to
longitudinal compression, when the lateral expansion produced by
the compression is the same as would be produced by a simple tensile
stress; from which it appears that the elastic resistance to compression
should be from three to four times the elastic resistance to tension,
as may easily be supposed to be the case.

A third theory, more easily conceivable @ priori, is to suppose
that each material is capable of enduring, without injury to its
elasticity, a certain definite change of volume and a certain definite
change of shape. 'We thus have two co-efficients of elastic strength
analogous to the two fundamental constants which express the other
elastic properties of isotropic matter. On this theory, if the
resistance to a simple distorting stress in any plane be independent
of the existence of any other kind of stress whether fluid or other-
wise, as in fact is the case before the limit is reached, it would
follow that this resistance must be one half the resistance to a
longitudinal stress. It is probable that some theory of this kind
may ultimately prove to be the true one; but, in the absence of
the [necessary experimental data, the second theory may be pro-
visionally assumed, as its results have not as yet been contradicted
by experience. It is applied by first finding the principal stresses
as in Ch. xvii,, and then deducing the principal strains as just now
explained. The greatest of these strains multiplied by £ may be
described as the “ equivalent simple tensile stress,” and should not
exceed the limit prescribed by the strength of the material.

REPETITION AND IMPACT.

224. Willer's Eaperiments on Alternate Bending amd Twisting.—
In bodies which satisfy the definition of perfect elasticity a load
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within the elastic limit produces no permanent change, unless
perhaps some thermodynamic effect, and it follows from this that
after removal the body is completely uninjured, so that the load
may be repeated indefinitely. Experience confirms this conclusion.
The balance spring of a watch bends and unbends more than a
million times a week for years together : and the parts of a machine
if originally sufficiently strong, remain so to all appearance for
an indefinite time. But, if the load be beyond the elastic limit,
permanent changes are produced, and there is every reason to
believe that a slow deterioration of strength, due perhaps to some
kind of internal abrasion, is ultimately destructive. The most
definite information on this point is furnished by the experiments
of M. Wahler published in 1870. Bars were loaded in various
ways and the load wholly or partially removed: the process was
repeated till the bar broke: the number of repetitions necessary
for this purpose being counted was found to depend, first, on the
maximum stress and, secondly, on the fluctuation of stress.

First suppose the stress alternately tensile and compressive of
equal intensity. Wohler tried this both in bending and in twisting.
Figure 161 represents a round bar DE, with one end enlarged and
fitted into a socket in a revolv-

S Fig.161

ing shaft S. At the free end D 3
E aload P was applied, which %i B =
produced at D, the point of lp

maximum bending, a stress of

intensity found by the usual formula. The shaft being set in motion
the piece of material was bent alternately backwards and forwards
once in each revolution. A number of pieces being tried successively
with gradually diminishing loads, the revolutions necessary to produce
fracture were found to increase as shown by the annexed table for the
case of wrought iron. The pieces broken were exactly similar, and we
therefore find a regular increase in the number of revolutions necessary
to produce fracture as the stress diminishes, It is already very large
at 18,700 Ibs. per square inch, and at 16,600 the piece cannot be
broken at all. We may therefore place the resistance to alternate
bending of this kind of iren at about 17,000 Ibs. per square inch,
while for cast steel of various qualities it was found to range from
25,000 to 30,000, and for copper 10,400. These results do not
differ much from the limit of elasticity of the materials in question
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as determined in the usual way by experiments on tension. Indeed
we have here the most satisfactory definition of the limit of
elasticity. If we attempt to define the elastic limit as the stress
ab which the material ceases to possess the properties of a perfectly
elastic body, we are embarrassed by the small and variable deviations
which we find under almost any load, which only gradually and
at very different loads under different circumstances pass into the
large differences characteristic of the non-elastic state. The resist-
ance to unlimited alternate stress however is a definite quantity
which, so far as we know, is independent of the causes which
produce these variations. :

|
ALTERNATE BENDING OF A BAR 0F AXLE TRON FURNISHED BY

THE PEENIX CoMPANY IN 1857,

S':'S lgfi IFN{:";S‘ REVOLUTIONS. REMARKS,
33,300 56,430 The last of these pieces
31,200 99,000 was unbroken after more
29,100 183,145 than 132 million revolu-
27,000 479,490 tions.
25,000 908,800 The ultimate tensile
23,000 3,632,588 strength of this iron was
20,800 4,918,000 47,000 lbs. per square
18,700 19,187,000 inch and the elongation
16,600 e about 20 per cent.

Similar experiments were made with a different apparatus on
alternate twisting. They were less extensive, but led to the im-
portant conclusion that the strength of the qualities of steel for
which they were tried was four fifths that of the same steel under
alternate bending. From this it is inferred that the proof resistance
to shearing is four fifths the proof resistance to tension, as required
by a theory of strength already referred to. (See Art. 223.)

225. Influence of Fluctuation of Stress.—It had already been shown
by Prof. J. Thomson, in a paper published in 1848,* that twisting
or bending a bar beyond its elastic limit in one direction must
increase its powers of resistance to a second strain in the same
direction, and diminish it to a strain in the opposite direction.

* Cambridge and Dublin Mathematical Journal.
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Accordingly we find that when a bar is strained in one direction
only its powers of resistance to unlimited repetition are greatly
increased. Wohler made very extensive experiments on stretching,
bending, and twisting of pieces of iron and steel to a given maxi-
mum stress, the load being wholly or partially removed at each
repetition. The number of repetitions necessary for fracture was
found to vary, not only according to the magnitude of the maximum
stress, but also according to the fluctuation. It was greater when
the load was only partly removed than when it was wholly removed.
Some results are given in the annexed table, which shows the limits
between which the stress varied when fracture was just not produced
by unlimited repetition.

RESISTANCE T0 UNLIMITED REPETITION OF BENDING.

FLUCTUATION OF STRESS.

NATURE OF FLUCTUATION. e R

IRON. STEEL.
Alternating, ... .| +17,000; —17,000 | -+29,000; —29,000
Load wholly removed, ; 31,000 ; 0 50,000 ; 0

Load partially removed, | 45,0005 25,000 |  83,000; 36,500

ReMARK.—The ultimate tensile strength of the iron was 47,000,
and of the steel, 106,000.

greater maximum stress with the given fluctuation, produced frac-
ture. Experiments on stretching and twisting led to similar results,
and it should be especially noticed that in cases of unlimited re-
petition the resistance to stretching is the same as the resistance to
bending, but the resistance to twisting less. In the case of cast iron
the resistance to stretching with complete removal of load was found
to be 10,400, but no experiments on bending or twisting were made.

Thus it appears that the ultimate strength of a material is very
different according to the fluctuation in the load to which it is
exposed ; the same iron, which will bear only 17,000 Ibs. per square
inch when bent alternately backwards and forwards, will bear
31,000 when bent in one direction only, and 45,000 when the
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stress varies between 25,000 and 45,000. Several formule have
been devised to represent the results of the experiments, of which
one will now be given.* Let p, be the ultimate tensile strength
of a material and A the fluctuation, then the actual ultimate strength
under unlimited repetition will be

p=3A+ Jpy(p - 28).

When A=2p we get the case of alternate stress with which we
commenced, where p=%p, and when A=p we have the case of
repeated stress in one direction with complete removal at each
repetition. The formula gives the same results as the experiments
in the extreme cases, and may be expected to be approximately
correct in intermediate cases.

92926. Impact.—In Wiohler's experiments the load was applied
without shock. In cases of impact also there is reason to believe
that within the limit of elasticity a material will bear unlimited
repetition. Thus in Hodgkinson’s experiments on beams struck
by a pendulum weight, it was found that if the blow produced less
than one third the ultimate deflection, the beam would sustain
more than 4,000 blows without apparent injury, a plate of lead
being introduced to prevent local damage.

In most cases of impact, however, the elastic limit is exceeded,
and the destructive effect of repetition is then much greater than

when the load is gradually
v/ @ __—  applied. In the ductile metals"
the resistance to impact is ab
first very great, as has al-
ready been sufficiently ex-
0 Fig.162 plained ; but every time the
limit of elasticity is over-
passed the hardness of the
metal is increased, so as to
e, o make it less able to resist
the second blow. This may be illustrated by a diagram in
which 0Q@ is a curve of stress and strain,  the original
elastic-limit, @'N the stress produced by the first blow, so
that the arvea OQ@'N represents the energy of that blow. The

* Flements of Mackine Design, by Prof, W. C. Unwin, p. 25.
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effect of the blow is to raise the limit from the stress QM to the
stress ¢V nearly. Hence the curve of stress and strain now he-
comes O)S, where 7 is the new limif, and the material will only
bear a blow the energy of which is the triangle OFK, without the
original stress @'V being exceeded. Thus by constant repetition of
blows, which originally only produced a stress not much exceeding
the elastic limit, a much greater stress may be produced. It is
believed that this is in the main the explanation of the destructive
effect of repeated blows and continuous severe vibration : pieces of
material exposed to which are found to have a short life. The effect
may be further augmented by synchronism (Art. 197, p. 382).

CO-EFFICIENTS OF STRENGTH AND FACTORS OF SAFETY,

227. Factors of Safety and Co-efficients of Working Strength.—Before
we can apply theoretical formule to the determination of the
dimensions of actual structures and machines, it is necessary to
know the value of the co-efficients of strength to be used, and this
is always a matter which requires great care and attention to the
circumstances under which certain dimensions are found to be
sufficient by long practical experience. In the first instance it
depends on the ultimate strength of the material, and may be
expressed by dividing that quantity by a Factor of Safety. But
the ultimate strength varies as we have seen, and the word *factor
of safety ” is used with various meanings,

The primary meaning of the expression is the divisor necessary
to provide a margin of strength for unknown contingencies such as
the following.

(1.) The ultimate strength of a piece of material is uncertain, for
two pieces of material of the same description and manufacture are
not always equally strong. The liability to variation is much
greater in some materials than others, for example in cast iron
than in wrought iron. The strength of stone varies so much that, in
carrying out any important work, experiments are frequently made
on the stone to be employed in it.

(2.) The piece of material may be subject to corrosion or other
influence, which in course of time diminishes its strength.

(3.) Errors of workmanship are unavoidable, and in some in-

stances may greatly increase the stress to which the material is
25
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exposed. This, for example, is the case in pillars, the factor of
safety for which must always be greater than for other parts of a
structure.

(4.) The magnitude of the load and its mode of application is
generally more or less uncertain. This however may be provided
for by assuming a maximum load.

The factor required to provide for contingencies such as these
may be called the “real” factor of safety, but by an addition to
its value it may be made to provide against contingencies which can
if necessary be exactly foreseen and calculated. Assuming all the
forces acting on a structure to be known it is possible to find the
stress on each part of it, but the caleulation may be too complex
to be often used, or its result may be known approximately under
similar circumstances. Hence it often happens that the dimensions
of a piece are determined by a formula involving only part of the
straining forces which act on it, and the rest are provided for by an
increased factor of safety. Thus the real stress on the metal of a
screw bolt, when the effect of screwing up is taken into account, is
double the total tension per square inch of the gross sectional area.
If that bolt be used for a cylinder cover exposed to steam pressure
the total tension will be much greater than that due to the pressure
of the steam. These two circumstances taken together may be
taken into account by the use of a factor of safety three or four
times greater than the real one. Such cases are common in practice,
but the factor to be used must then be determined by comparison
with good examples under similar circumstances.

Again, it is necessary that a piece should be stiff enough as well
as strong enough, and when formule for strength are used in such
cases it is often necessary to employ very large and very arbitrary
factors of safety. Here however the difficulty arises from an
erroneous method of caleulation.

998. Values of Co-gfficients.— In parts of machines subject to
alternating straining actions we know by Wohler’s experiments that
the ultimate strength is somewhat less than the elastic strength
under simple tension, being for wrought iron and soft steel about -
one third the ultimate tensile strength. The load on such parts
will rarely be applied without shock, the effect of which cannot
precisely be determined. In ‘ordinary cases it will be sufficient to
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treat this case as if the load were suddenly applied by using a
further divisor of 2. We thus obtain the working strength by
using a total factor of safety of 6. For wrought iron this gives a
co-efficient of 4 tons, or 9,000 lhs. per square inch, which is known
by experience to give sufficient strength where all the straining
actions are taken into account. In long struts a factor of 8 or more
must be used for reasons already sufficiently explained, and this is
also necessary where, as has been the case, till lately with steel, the
material is not completely reliable.  For timber the usual factor is
10. The co-efficient for shearing and torsion is to be taken pro-
visionally as four-fifths that for tension and bending, that is for
wrought iron 3} tons per square inch ; but from the incompleteness
of experimental data it is not certain that this value is not too
large.

In structures the fluctuation of the straining actions is in general
much less, and the ultimate strength by Wohler’s experiments is
much greater. Yet the working strength employed is not very
different. In the first place, it is rarely permissible to exceed the
elastic limit on account of the permanent deformation which ensues.
In the second place, the whole of the straining actions on each piece
of the structure, especially the effect of imperfect joints, are rarely
included in calculations. For example, the friction of pin joints
may, under unfavourable circumstances, add 60 per cent. to the
maximum stress on the links of a suspension chain (Ex. 4, p. 440).
Hence the working strength for wrought iron rarely exceeds 4% or 5
tons per square inch. In reckoning the load Rankine recommended
that the “dead” load should be divided by 2 and added to the
“live” load in order to obtain the effective live load. More recently
on the strength of Wiohler’s experiments it has been proposed to find
the ultimate strength of each piece under the maximum stress and
fluctuation of stress to which it is subject, and divide by a constant
factor of safety. There can be no doubt that a smaller co-efficient
is necessary the greater the fluctuation, but the principle of a
constant factor is open to question: it appears to lead either to
co-efficients which are smaller than are known to be safe, or else
to values above the limit of elasticity.

229. Fibrous Materials. Ropes.—Fibrous materials are those which
may he regarded as made up of fibres, usually of organic origin, more
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or less closely united by cohesion or interlacing. The relative move-
ments of the fibres are hindered by forces of the nature of friction,
which are much less than the molecular forces to which the tenacity
of a homogeneous solid hody is due. Hence the strength and stiff-
ness of a piece of material are much less than those of the fibres of
which it is made up.

In most kinds of woods the fibres are arranged longitudinally, and
the material is therefore especially characterized by its low resistance
to division into parts longitudinally. Thus the resistance to longi-
tudinal shearing of fir timber is only 600 Ibs. per square inch, whereas
its tenacity is about 20 times this amount, approaching that of cast
iron.  So, again, crushing takes place by longitudinal splitting under
a stress little more than half the tenacity. Further, the condition of
the material greatly influences the lateral cohesion of the fibres and
thus affects its strength and elasticity. In timber which has been
artificially dried the elasticity is nearly perfect up to the breaking
point, whereas in the green state the elasticity is imperfect and the
strength greatly reduced. Hence the importance of seasoning
timber so as to be moderately dry.

The ordinary formule, however, will apply in all cases where the
stress is a simple longitudinal stress, the direction of which is that of
the fibres ; that is to say, in tension, compression, and ordinary cases
of bending. They will only fail when the bending is accompanied by
crushing and shearing of considerable intensity, as when short pieces
are acted on by transverse forces.

In cloth and similar materials two sets of fibres at right angles are
united by interlacing. Resistance to tension is thus obtained with
almost complete flexibility.

In ropes of all kinds the fibres are ranged in spiral curves in the
process of manufacture, and their tension then produces lateral
pressure, the friction arising from which is sufficient for union. The
strength of a rope, though very great compared with its weight, is
only one third that of the yarn of which it is spun, and on a similar
principle the strength of large cables is less than that of the smaller
ropes called “hawsers” of which they are made up. The strength of
2 rope is usually expressed by the formula

Cﬁ:’.

=‘E,

where (' is the girth of the rope in inches, 7' the tension in tons, and
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k a constant.
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The old rule in the navy was to take £ =5 to obtain

the breaking weight of a rope, but the table now employed gives

k= 3:3, that is, a strength 50 per cent. greater.
The safe working load is not more than one sixth the
In iron wire ropes k=1, or for ropes above 6 inches

be even less.
breaking load.
girth somewhat more.

doubled by the employment of steel.

In small ropes & may

The strength of wire ropes is more than

taken as one fifth their breaking load.

The safe working load may be

TaprLe [.—WEIGHT AND WORKING STRENGTH OF VARIOUS MATERIALS,

WORKING STRENGTH. 4 WE'GBTOI:JR&EA“ I
‘ Working
MATERIAL, i ‘ 0y Per Stx}‘l?n;.;thfin
iyt 5 Stress in Tons [Area in Square  Per Ton of ’ eet ol
per Square | Inches %cr | Stress under Si]l‘:f'i‘lc Material.
[ Inch. Ton. [Working Load.| /¢ =
g C. i85 G} ! T i | Aveas| AT, C:
it Tron 15 |45 | oor| 222l6 |2 | 9 |1120] 3360
| Wrought Tron, ... |45 | 4% 222 | -222| 2:22 | 222 | 10 3024 | 3024
| Ordinary Soft Steel 7 7 143 | 143|143 | 143 | 10 4700 | 4700
| Ordinary Steel W'lre 13 iyl B T 8 el B )] 9000 | ...
Copper Wire, | 4 25 | 2:9 | .. |11:5 | 2320
Deal, 5 SN 3'3 15 20 75| 4480 | 2700
Oalk, 5 45 11'33 | 2:22 | 1:33 | 2:22 1 5040 | 3024
Gruui.te, 3 333 e i I 35 576
Brickwork, . L 1] e e b T asa 208 160
Hemp Royes 6 e BT E T e 1'5 | 2700
Iron Wire Ropes, ... | 2 b [ 26 | 525 2600
,Steel Wire Ropes, | b & ‘ el 55 | 6000
|

TapLe II.—Erastiorry AND RESILIENCE.

Buasme Sasori e

Marenisr. Stress in Tons PFW%. ! Heil h:

al Y , PPy u in Fee

e e Moduths, REIEY. hor Cublel ana

T o & | T i S (cesHoptSLuchies

Cast Iron, 3| 9| ..| 000375 001125 8000 | .. | 18 4"
g"rought Tron, 9| 9| 7| -0007 |-0007 |-0014| 13000 | 5000 | 1060 | 227
oft Steel, .. 15|15 | 12| 0012 |-0012 |-0024| 13000 | 5200 | 2000 | 6
Hard Steel, 25 | 25| 20|00z |-002 |-004 | 13000 | 5200 | 8000 | 1676
Tempered Steel, 3 s - | o |1socoy| .. | 34500 | 72
Strongest Steel Wire, [150 0115 13000 | .. | 276000 577"
Lk Y 1% 0021 700 35 | 2150 | 58
Oak, 3 0028 700 | 35 | 4300 |86
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TaprLe TII.—ULTIMATE STRENGTH AND DUCTILITY.

Stomgin | B

en, 13 onga- : $

MATERIAL. in Tong per | tion %er Tension x Blongation
Square Inch. [ Cent. 2
Mhosigt =8,

Iron Bars, ... ool 2501 92| 18 20 250

Iron Plates, e b R R 10 110

Soft Steel (*15 to '3 per cent. of carbon), 30 | ... | 225 25 375

Medium Steel ("3 to 5 per cent. of carbon)| 35 | ... | 27 | 15 262

Hard Steel (5 to *75 per cent. of carbon),| 45 | ... | ... 8 180

Cast Iron, ... ... v | Th | 45|12

Lead, e ST | A

Sheet Copper, ... .. | 134

Cast Copper, e | B3

Oak, saei| D 1

230. Tables of Strength.—For a detailed account of the properties
of materials the reader is referred to the authorities cited above and
at the end of this chapter. A.convenient summary is given in Ran-
kine’s Useful Rules and Tables. It will be here sufficient to give a
few examples.

Table I. gives the weight and working strength of a variety of
materials. From what has been said in preceding articles it appears
that the working strength varies according to circumstances. Hence
the values given in the table may be exceeded, and sometimes
greatly exceeded when special care is taken in the selection of
material, in the estimation of strains, and in the execution of the
work. On the other hand cases occur in which they are too large,
and, it may be, greatly too large if due care is not exercised. The
first two columns give the safe load in tons per square inch of
sectional area, the second two the area necessary to sustain a load of
1 ton, in tension (T) and compression (C) respectively. The next two
give the weight of 1 yard length of a bar which will sustain 1 ton, and
the numbers therein given are therefore the comparative weights of
bars of equal strength. The same comparison is effected in a
different way in the last two columns, which give the length in feet
of a bar or column the weight of which is equal to the working load
on its transverse section. It is on this quantity, which is denoted
by A in Arts. 40, 41, pp. 90, 92, that the limiting dimensions of a
structure depend. It is used for this purpose in Ex. 13, p. 324, and
Ex. 11, p. 372. It will be observed that weight for weight timber
ig sironger than wrought iron.
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Table II. gives the elastic properties of certain materials in tension
(T), compression (C), and shearing (S). It has been sufficiently ex-
plained in preceding chapters.

Table III. shows the ultimate strength and ductility of materials
in common use. The first three columns give the ultimate resistance
to tension, compression, and shearing. The fourth gives the elonga-
tion expressed as a percentage of the original length, which, if the
length of the pieces experimented on be a constant multiple of the
diameter, forms a measure of the ductility. The ultimate strength
and ductility of steel vary according to the amount of carbon it
contains in such a way that the sum of the two remains nearly
constant, other things being equal. Thus in the examples given in
the table the sum is about 53. In steel compressed in a fluid state
by Sir J. Whitworth’s process the constant sum is about one third
greater. The last column gives half the product of the ultimate
tensile stress and the elongation, a quantity which is sometimes used
as a measure of the powers of resistance to impact. The actual
amount of work done in stretching a bar till it breaks is much
greater than this, as is seen on considering the form of the curve of
stress and strain. A more exact measure of the resistance to impact
would be furnished by an experiment on a short block such as that
described on page 418.

EXAMPLES.

1. Show that the modulus of rupture of a material is 18 times the load which will
break a bar of the material 1 inch square and 1 foot long : the bar being supported
at the ends and the load applied at the centre.

N.B.—The modulus of the rupture is the value of the co-efficient in the ordinary
formula for bending when the load is that found by experiment to break the beam.

2. A haleony, 6 feet long and 4 feet broad, is supported by a pair of cast-iron beams
fixed in the wall at one end. The beams are of rectangular section, 2 inches broad, and
depth near the wall 4 inches. What load per square foot will the balcony bear, the
stress on the iron being limited to 1 ton per square inch? Also, how should the
depth vary for uniform strength along the length of the beam ?

Ans. Equating the greatest bending moment to the maximum moment of resis-
tance to bending we find the load which the balcony will bear

= 415 1bs. per square foot.
As to the depth of the beam: for uniform strength jffy must be constant from

which we find that the depth at any point of the beam must be proportional to the
distance from the outer end of the beam ; so that the lower side of the beam should
be a sloping plane.
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3. A paddle shaft is worked by a pair of engines with cranks at right angles.
Supposing the steam pressure constant, and the resistance of each wheel equal and
uniform, and obliquity of connecting rod neglected; compare the co-efficients of
strength to be used in calculating the diameter of the paddle and intermediate
shafts.

Ans. The uniform moment of resistance of the paddle wheel = % the mean turning
moment of the two engines. The twisting moment of the paddle shaft, when either
crank is on the dead centre, = & maximum twisting moment of one engine. At the
same instant this is the twisting moment on the intermediate shaft. When the
other crank is on the dead centre the twisting moment on intermediate shaft is the
same in magnitude, but reversed in direction, and when the two cranks make angles
of 45° with the dead centres the twisting of the paddle shaft=% the maximum com-
bined twisting moment of the two engines, that is +/2 times its amount when either
crank is on the dead centre; but the twist is in the same direction always. There-
fore on the paddle shafts the stress alternates between @ and /2, and on the inter-
mediate shaft between z and - .

Hence applying formula

b=+ Vodpo - §B);
we have for paddle shaft,
p=dldz; p=14ldx; ;. p=-292p;
substituting, we obtain
p="888 p,.
For intermediate shaft, p =23 p=; p=2p; and p = 4p,.

If the stress on the paddle shaft alternates to zero, by the wheels rolling out of the

water, or by the stopping of the engine, then p = "6p,.

4, A suspension chain is constructed with bar links united by pin joints; the
diameter of the pins is two-thirds the breadth of the link (p. 371). If the bridge
vibrate show that the maximum stress on the links may be increased by deviation
(p. 341) due to friction of pins (p. 248) in the ratio 1+2f: 1, where f is the co-efficient
of friction.

AUTHORITIES ON STRENGTH OF MATERIALS.

In addition to the works expressly cited in this chapter may be mentioned—

HoDGRINSON. Experimental Researches on the Strength and other Propertics
of Cast Iron. Weale, 1846.

‘WEYRAUCH. [Tron and Steel. New York. 1877.
Barrow. Strength of Materials. Lockwood.
REeED. Shipbuilding in Lron and Steel, Murray.

The literature of the subject is however very extensive, much information being
gcattered in various memoirs, of which two need only be mentioned here as having
been much employed in the preparation of this treatise—
FAIRBAIRN., Mechanical Properties of Steel. Report of the British Associa-
tion for 1867.

WOoHLER. Die Festigheits-Versuche, Berlin, 1870,
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DESCRIPTION OF PLATE VIIL

To illustrate various questions considered in Chaps. XII. and XV. Plate VIIL has
been drawn.

Figs. 1, 2 represent the pin joint connecting two bars in tension, discussed in
Art. 191, p. 369. Figs. 3, 4, b show the way in which the joint yields when the pins
are too small. In Tig. 4 the original dimensions of the eye and eyehole are shown
by dotted lines, while the full lines show what they become after yielding. Fig. 3
gives transverse sections of the eye before and after failure, showing the thinning out
due to lateral contraction during stretehing beyond the elastic limit. After this
contraction has reached a certain limit the metal tears asunder, as shown in Fig. 4.
The longitudinal section (Fig. 5) shows the corresponding spreading oub at the top of
the hole due to compression beyond the elastic limit. This lateral expansion is
partially prevented in riveted joints, and (p. 410) this may be the reason why direct
stress in them is of less importance. The failure of pin joints in this way furnishes
a good example of the ““flow of solids.”

The remaining figures of this plate are intended to give some idea of the manner in
which iron girders are constructed. Figs. 6, 7, 8, 9are transverse gections of *‘ H iron,”
“channel iron,” *“ teeiron,” and ‘‘angle iron .” these are rolled in one piece and, in com-
bination with plates, form the materials from which large girders are built up. Forsm all
heams such as floor joists H iron or tee iron of therequisite depth and sectional area may
be used. Figs. 10, 12 are sections of two of the commonest forms of built-up girders.
In the first the web is a single plate to which angle irons are riveted to form the
flanges, further strength being obtained by an additional covering plate. The
second is similar, but the web consists of a pair of plates, a form known as a ““box
beam.” Fig. 11 is commonly used in shipbuilding as a deck beam or otherwise: a
“ bulb iron” here forms the web and lower flange, while the upper flange is formed
by a pair of angle irons as hefore. Figs. 13, 14 give examples of girders of more
complex construction employed where greater strength is necessary : one flange only
is shown in section in each case, For further details the rcader is referred to the
treatises by Mr. Hutchinson and Sir E. Reed, cited on pages 60 and 440.



