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CHAPTER XII.

SIMPLE TENSION, COMPRESSION, AND BENDING OF
PERFECTLY ELASTIC MATERIAL.

SEcTIoN I—TENSION AND COMPRESSION.

148. Simple Tension.—The effect of forces acting on a bar has
already been explained in Chapter II. to consist in the production
of certain straining actions which we called Tension, Compression,
Bending, Shearing, and Twisting, and we now go on to consider the
changes of form and size which the bar undergoes and the stress
produced at each point on the supposition that
the material of the bar is perfectly elastic.

Let 4B (Fig. 119) be a bar subjected to the
action of equal and opposite forces applied at
the ends in the same straight line. At any trans-
verse section KK there will be a tendency to
separate into two parts 4, B, which is counter-
acted by a mutual action between the parts at
each point of the section, which, in accordance
with our previous definitions, is called the Tensile
Stress at the point. The total amount of the
stress will be P ; but the intensity will depend on
the avea of the section (), so that P/4 is the
mean intensity of stress or the stress per unit of
area. The stress may be the same at all points
of the section. We then say it is uniformly distributed, and the
intensity at all points = P/A.

In order that the intensity of the stress may be the same at every
point of every transverse section of the bar, it is theoretically necessary
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that the load P should be applied in a uniformly distributed manner
all over the end B. Then if the material is perfectly homogeneous
each elementary portion of KB will be strained alike, and the
uniformly distributed load at B will be balanced by a uniformly
distributed stress over any section KK. In such a case the line of
action of the resultant of the applied load P passes through the
centre of gravity or centre of position of the transverse section KK.
Unless it does so the equilibrium of the portion KB is not possible
by means of a uniformly distributed stress over the section. But
from experience it appears that for uniformity of stress it is mnot
absolutely necessary for the load to be applied in this distributed
manner, It may be applied for instance by pressure on a project-
ing collar; and yet if the line of application of the load traverses the centre
of grawity of the sectional area, the material, if homogeneous, will so
yield as practically to produce at a section a little distant from the
place of application of the load a stress of uniform intensity. This
is a particular case of a principle which will be further referred to
hereafter.

If the applied load is increased, the stress on the section is pro-
portionately increased, until at last the material yields under it and
the bar breaks. If /77 = breaking load, the corresponding stress
measured by /4 is a quantity which depends on the nature
of the material. If we call it f, then the breaking or ultimate
load = A4f.

Accompanying the application of the load producing a tensile
stress, an increase of length and diminution of transverse dimension
is observed. In metallic bodies the alterations are exceedingly small
if the limit of elasticity is not exceeded (see Table II., page 437),
and therefore in estimating the stress on the section it is not worth
while to take account of the slight alteration in the area of the trans-
verse section. Under the same load the change of length is
proportional to the length. If @ be the total change of length, and
1 the original length, then the extension per unit of length is
e
=
On account of the smallness of ¢ it is immaterial whether 7 is taken
as the original or altered length of a metallic bar.

As already stated (Art. 147), it is usual to restrict the word strain to
mean the alteration of the dimension and form which bodies undergo

(4
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and to use the word sfress when referring to the elastic forces which
accompany the strain. Thus ¢ is a measure of the tensile strain pro-
duced in the bar, whilst p is a measure of the accompanying tensile
stress. Since by Hooke's law the extension of the bar is proportional
to the force producing it, it follows that the strain is proportional
to the accompanying stress. Thus p and ¢ may be connected by
some constant the value of which depends on the nature of the
material. We may write
p=1Fe,
in which Z is called the modulus of elasticity of the material, which,
when the stress p is expressed in pounds per square inch, has for
wrought iron a value of about 28,000,000.
Putting for ¢ its value #/l, we have the general relation,

22
Rl
The transverse strain, that is, the contraction per unit of transverse

dimension, is from one third to one fourth the longitudinal strain.

149. Work done in Stretching o Rod.—Having found the relation
between the tensile stress and strain, we will now consider how
much work must be done in order to stretch it.

Let a load of gradually increasing amount be applied to the bar,
the bar will stretch equal amounts for equal increments of
load : or the elongation of the bar will for all loads be
proportional to the load. This may be represented graphi-
cally. Suppose the load P’ produces the extension shown,
greatly exaggerated, by BB’ (Fig. 120), and we set off an
ordinate B'N’ to represent /' on some scale, and do that
for any number of loads, taking, for example, BN to
represent P, which produces the extension B,B=x; then
all the points N will lie on the sloping line passing
through B, Having done this, the area of the triangle
ByBN will represent the quantity of work done on the bar in
stretching it the amount BB = 2. Thus

Work done = 1 Pa.
The energy thus exerted is stored up in the stretched bar, and may
be recovered if the bar is allowed under a gradually diminished load
to contract. In the perfectly elastic bar the contraction will be
exactly the same as the extension, and there will be no loss of




304 STIFFNESS AND STRENGTH. [PART IV.

energy in stretching it. In other words the elastic forces are ¢ re-
versible.” But if the elasticity is imperfect, some of the energy
expended in stretching the bar is employed in producing molecular
changes, as for example, change of temperature. ~On contraction
this amount of energy will not be restored. :

We can express the work done in stretching the bar otherwise.
For P put its value = p4, and for  its value = pl/E. The substitu-
tion of these values of P and = will give

Work done = fp4 %E = % ‘%ﬁ = ]; %X % volume.
Thus the work required to produce a given stress p is proportional
to the volume, or, what is the same thing, to the weight, of the bar.

If the stress produced is increased up to the elastic limit, or, as it
Tie : Volume
¥ 2
presses the greatest amount of work which can be done on, and
stored in the bar without injuring it or impairing its elasticity.

This is called the resilience of the har. The quantity f*/E, the value
of which depends on the nature of the material, is called the modulus of
resilience, and, as we shall see hereafter, furnishes a measure of the
resistance of the material to impact in those cases in which the
limits of elasticity are not exceeded (Chap. XVL). A table of co-
efficients of strength and elasticity for materials commonly used in
construction will be found at the end of Chapter XVIII.

is often called, the proof stress, so that p = f, then ex-

150. Thin Pipes and Spheres under Internal Fluid Pressure.—We
now pass on to consider an important case of simple tension: that
of a thin eylindrical shell subjected to internal fluid pressure. A cyl-
inder with rigid ends and a sphere are cases of a vessel under internal
fluid pressure which tends to preserve its form. The equilibrinm in
these two cases is stable, for if the vessel suffers deformation the
internal pressure tends to make it recover its original true form.
Vessels the sides of which are flat tend, by hulging, to assume these
forms, and the tendency must be resisted by staying the surfaces in
some way. If, as generally happens, there is acting also an ex-
ternal fluid pressure less than the internal, then, in what follows, the
intensity of the internal pressure must be taken to be the excess of
the internal over the external pressure,
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Let p be the intensity of the fluid pressure in pounds per square
inch, d the diameter, ¢ the thickness of the shell, and I the length of
the cylinder. Suppose in some way that the ends are maintained
perfectly rigid, and for convenience let them be flat. There are two
principal ways in which the strength of the shell can be estimated.

First, consider the tendency to tear asunder longitudinally, parallel
to the axis of the cylinder. Imagine the cylinder divided into two
parts by a plane passing through the axis of the cylinder. On each
half cylinder there is a pressure P due to the resultant fluid pressure
on that half which tends to produce a separation at the section im-
agined. The separation is prevented by the resistance to tearing
which the metal of the shell offers, calling into action a uniform ten-
sile stress at the two sections made by the imaginary plane through
the axis of the cylinder. ;

Let ¢ = intensity of tensile stress produced; then the area over
which the stress acts being 24, the
total resistance to tearing is ¢ x 24,
which must also be the tendency to
tear = P.

In a transverse section take two
points B, B’ (Fig. 121) near to-
gether. The surface of the shell,
BE x 1, is acted upon by a normal
Pressure p per unit of area. The
pressure p. BE'. ! may be taken to
act in a radius drawn to the middle
point of BB, making an angle 6 with the direction of the resultant
force P. The resolved part of this pressure in the direction of P

=pl .BB'.cos 0 = pl. NV,

NN" being the projection of BB’ on the plane of section. Sum-
ming up the pressures on all the small ares BB, composing the
semicircle, we obtain the total separating force,

P=pl.ZNN' =p.l.d,

Fig.121,

- 298 = pld,
d

thus the tcnsﬂe stress is directly proportional to the diameter, and
U
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inversely proportional to the thickness of the cylindrical shell. For
greatest accuracy d should be taken as the mean of the internal and
external diameters. The formula just obtained is true only when the
thickness is small compared with the diameter. If ¢ is large, the
stress is not uniform over the section ; the formula will then give the
mean stress if d be understood to mean the internal diameter.

We next consider the tendency for the cylinder to tear across a
transverse section. The total pressure on each end of the cylin-
drical shell is the separating force, and the resistance to separation
is due to the tensile stress, ¢’ suppose, called into action over the
annular area md . f of the transverse section.

' , 1
. wdl. g =Ed2 oy =%.

This is just half the stress on the longitudinal section. If the
vessel is spherical in form, the stress produced on all sections of the
sphere through the centre is the same as ab the transverse section
of the cylinder. It should be observed that we have here assumed
“that the transverse stress has ‘no influence on the resistance to
longitudinal tearing (Art. 222), and that the pressure on the ends is
not provided against by longitudinal stays.

The formula just obtained is used to estimate the strength of a
boiler which is more or less cylindrical ; but since the boiler is made
up of plates overlapping each other, connected together at the edges
by rivets, and since also a line of rivets in a longitudinal section is
generally found only for a portion of the length of the boiler, the
question of strength is complicated. But a longitudinal section
through the greatest number of rivet holes is the weakest section,
and if for ¢ we write £, where f is a co-efficient of strength to be
determined from experience, the value of it depending, amongst
other things, on the form of joint, then the formula

i g{‘];é, Qe — e
may be used as a semi-empirical formula to determine the greatest
pressure which can be employed in a given boiler, or the thickness
of metal required to sustain a given pressure. The value of the co-
efficient for iron boilers with single rivetted joints is about 4,000 Ibs.
per square inch, or, when double rivetted, as is usual in large boilers,
5,500. With steel the value is about one-third greater.
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181. Remarks on Tension.—The results obtained in the present
section are, strictly speaking, only applicable when the piece of
material considered is of uniform transverse section, but they never-
theless may be used when the transverse section is variable, provided
the rate of variation be not too great and the other conditions men-
tioned are strictly fulfilled. The intensity of the stress is then
different at different parts of the bar, varying inversely as the trans-
verse section, and in determining the elongation this must be taken
into account.

In many cases of tension the effect of the weight of the tie and
other circumstances introduces an additional stress, the amount of
which is often imperfectly known. This is allowed for either by
making a certain addition to the theoretical diameter or by the use
of a factor of safety adapted to the particular case. On the other
hand it also often happens, as in the case of ropes for example, that
the strength of the material is greater in small sizes than large ones
for reasons connected with the mode of manufacture.

182. Simple Compression.—When the forces applied to the ends of
a bar act in a direction towards one another the bar is in a state of
compression. If the bar is long compared with its transverse dimen-
sions, then any slight disturbance from uniformity will cause it to
bend sideways under the compressive force, and we have then, nof
simple compression, but compression compounded with bending,
an important case to be considered hereafter. To obtain simple
compression the ratio of length to smallest breadth should not exceed
certain limits which depend on the nature of the material, viz., cast
Iron 5 to 1, wrought iron 10 to 1, steel 7 to 1. Further, it is neces-
sary that the material be perfectly homogeneous and that the line of
action of the load should be in the axis of the bar. Then the results
Wwe have obtained for simple tension apply to this case of simple
compression

=F
b ‘21
and the strength of the column is given by P =_Af, where f is the

co-efficient of strength. The compression z which the column under-
8oes is connected with the stress by the equation

o

=L 7
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The modulus of elasticity £ would, in a perfectly elastic body, be the
same as for tension. In actual materials it sometimes appears to be
less ; but within the elastic limit only slightly less.

EXAMPLES.

1. A rod of iron 1 inch in diameter and 6 feet long is found to stretch one sixteenth
inch under a load of 74 tons. Find the intensity of stress on the transverse section
and the modulus of elasticity in 1bs. and fons per square inch.

Stress=21,382 1bs. = 9°55 tons.
Modulus of elasticity = 24,631,855 lbs, = 109964 tons.

9. What should be the diameter of the stays of a boiler in which the pressure is
30 1bs. per square inch, allowing one stay to each 14 square feet of surface and a stress
of 3,500 1bs. per square inch of section of the iron? Ans. 1} inches.

3. In example 1 find the work stored up in the rod in foot-pounds. .Ans. 433

4, If in the last question the rod were originally 2 diameter and half its length
were turned down to a diameter of 1", Compare the work stored in the rod with
the result of the previous question.

Ratio = §.

5. In Example 1 assume the given load of 74 tons to be the proof load; find the

modulus of resilience. Ans. 1856 in inch-1b. units.

6. Find the thickness of plates of a cylindrical hoiler 4' 2" diameter to sustain a
pressure of 50 Ibs. per square inch, taking the co-efficient of strength of plate at
4,000 1bs, Ans. "

7. A spherical shell 4' diameter 1" thick is under internal fluid pressure of 1000
Ibs. per square inch. Find the intensity of stress on a section of the sphere taken
through the centre. Ans. 48,000 1bs. per square inch.

8, Find the necessary thickness of a copper steam pipe 4" diameter for a steam
pressure of 100 pounds above the atmosphere, the safe stress for copper being taken
as 1000 Ibs. per square inch., Ans, ‘2",

9. A circular iron tank, diameter 16 feet, with vertical sides 3" thick, is filled with
water to a depth of 12 feet : find the stress on the sides at the bottom. How should
the thickness vary for uniform strength throughout? .4ns. 1024 lbs., per square
inch.

10. What length of iron suspension rod will just carry its own weight, the stress
being limited to 4 tons per square inch, and what will be the extension under this
load? Ans. 2,700 feet,

11. The end of a beam 10" broad rests on a wall of masonry ; if it be loaded with
10 tons what length of bearing surface is necessary, the safe crushing stress for stone
being 150 1bs. per square inch. Ans, 15",

19, Find the diameter of bearing surface at the base for a column carrying 20 tons,
the stress allowed being as in the last question. Ans. 20" nearly.

13. Compare the weight of the shell of a cylindrical boiler with the weight of
water it contains when full, Ans, Ratio=>55p[f.
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SecTIioN II.—SIMPLE BENDING.

1563. Proof that the Stress at each Point varies as ils Distance from
the Neutral Awis.—The nature of the straining action producing
bending has been sufficiently explained in the third section of Chapter
II., and we shall now consider the kind of stress which results on the
ultimate particles of a solid bar of uniform transverse section and of
perfectly elastic material. The bar is supposed symmetrical about
a plane through its geometrical axis, and the bending is supposed
to take place in this plane which may be called the Plane of Bending.

In the first instance the bending is supposed to be “simple,” that
18, it is not combined with shearing as is most often the case in
Practice, but is due to a uniform bending moment (see Art. 21). The
curvature of the beam is then uniform, that is to say, it is bent into
a cireular are.  The investigation consists of three parts.

Fig. 122 shows a longitudinal section 4B and a transverse section
LL through the centre of the beam ; by symmetry it follows that if
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the bending moment be applied to both ends in exactly the same
way, that transverse section, if plane before bending, will be still plane
after bending, for there is no reason for deviation in one direction
rather than another. It will be seen presently that if the bending
moment be applied to the ends of the beam in a particular way all
transverse sections will be in the same condition, and we may there-
fore assume that not only the central section, but any other sections
KK we please to take, will remain plane notwithstanding the bending
of the beam. All such sections, if produced, will meet in a line the
intersection of which by the plane of bending will be a point 0 which
is the common centre of the circular ares KL, PP, NN, &c., formed
by the intersection of the same plane with originally plane longitu-
dinal layers. These layers after bending have a double curvature,
one in the plane of bending, the other in the transverse plane; the
transverse bending however need not be considered at present, and
the transverse section of the layers may be treated as straight lines.
Before bending the layers were all of the same length, being cut off
by parallel planes, but now they will vary in length since they lie
between planes radiating from an axis 0. We shall find presently
that some layers must be lengthened and some shortened, an inter-
mediate layer, NV in the figure, being unaltered in length. This
layer is called the Neutral Surface and the transverse section of that
layer SS is called the Neutral Axis, the last expression being always
used in reference to a fransverse section, not a longitudinal section.
Let the radius of the neutral surface he R. The more the beam is
bent, that is the less R is, the greater will be the stress produced by
the bending action ; and the first step in the investigation is to obtain
the relation between the stress produced at any point of a transverse
section and the radius of curvature B. If we bisect SS in NV and
draw LNL at right angles to SNS, it is necessary that the section of
the beam should be symmetrical on each side of LNL; with this
restriction the section may be any shape we please.

Now consider any layer PP of the beam between the planes LL and
KK which is at the distance y from the neutral surface VAV or neutral
axis SNS. This layer will be curved to a circle whose radius is £+,
and it must undergo an alteration of length from XNV which it had
before bending, to PP which it now has. Thus the alteration of

PP- NN

- length per unit of length, that is, the strain e= = but since
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J . s PP B4y
arcs are proportional to radii V=R
; : PP—NN_y
.. the strain ¢ = e
If the layer we are considering is taken below the neutral surface,
the strain, which will then be compression, will be given by the
same expression e¢=/R, ¢ and y both being negative.
Accompanying the longitudinal strain just estimated there must
be a longitudinal stress proportional to the strain. Let p be the

intensity of that stress, then
p=2DEe,
where £ is a modulus of elasticity. If we imagine the beam divided
into elementary longitudinal bars, and if we imagine each of those
bars independent of the others, it will follow that £ is the same
modulus of elasticity as we have previously employed in Section I.
of this chapter. This, however, implies that the bar can freely con-
tract and expand laterally when stretched and compressed, and we
therefore could not be sure a priori that the union of the bars into a
solid mass would not cause the value of £ to be different from that
for simple stretching, and to vary for different layers of the heam.
It will be seen hereafter, however, that there are good reasons
for the assumption.
Accordingly we write
ZoaT) Y
P =ch: »
Where 7 is the ordinary (also called Young’s) modulus of elasticity.
If y is taken below the neutral axis then 2 is negative, signifying
that the stress is now compressive. In perfectly elastic material the
value of Z is the same for compression as for tension, and so, within
the limits of elasticity, the same equation will apply for all parts of
the transverse section.
Thus the stress at any point of the transverse section of the
bar is proportional to its distance from the neutral axis.

. 184. Determination of Position of Neutral Awis—The second step
Il the investigation is to find the position of the neutral axis.
That position is deduced by dividing the bheam into two portions,
4 and B, by a section LI, and considering the horizontal equili-
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brium of either portion, say B. The external forces acting trans-
versely to the beam balance one another, but being vertical have no
resultant in the horizontal direction of the length of the beam.

We have next to take account of the internal molecular forces
which act at the section LL. Above the neutral axis the action of
LA is a tendency to pull B to the left; but below the neutral axis,
the tendency is to thrust B to the right. In order that it may
remain in equilibrium, and not move horizontally, it is necessary
that the total pull should equal the total thrust; or the total
horizontal force at the section must be zero. To estimate the
horizontal force, consider the force acting on a thin strip of the
transverse section, of breadth &, and thickness #, distant y from the
neutral axis. The thrust or pull on this elementary strip = p. 5. £.

Summing the forces on all the strips composing the sectional area,
we must have

205 bt =08

but p = Ey/R where E and R are the same for all strips of the
section.
5y B

That is to say, the sum of the products of each elementary area into
its distance from the neutral axis must be zero.

This can be true only if the axis passes through the centre of
gravity of the section ; for it is the same thing as saying that the
moment of the area about the neutral axis is to be zero.

2ht.y = 0.

166. Delermination of the Moment of Resistance—The third and
last step in the investigation is to obtain the connection hetween
the bending moment applied, and the stress which is produced by it.
Again, considering either portion, 4L or BL, of the beam, say AL,
the external forces on 4 produce a bending moment or couple, M,
which has to be resisted by the internal stresses called into action at
the section K'; so that the total moment of these stresses must
be equal to M. The moment of the resisting stresses, being a
couple, may be estimated about any axis with the same result.
For convenience we will estimate it about the neutral axis of the
section.

Let us again consider the elementary strip of area 3f, distant ¥
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from neutral axis, on which the intensity of stress is p, the force,
pull, or thrust, on this strip being pbf. The moment of the force
=p.bt.y. Seeing that forces on all elementary strips, whether pull
or thrust, all tend to turn the piece AL the same way, the total
moment of the stresses will be found by summing all terms, p . by,
for the whole area of the section.

M= Zp. by

Since p = Ey/R, substitute, and remember that E/R is the same for
all strips, then

M:%Eb.t.a‘i

In this formula the area of each strip has to be multiplied by the
square of its distance from the neutral axis and the sum of the pro-
ducts taken. This, or an analogous sum, is of constant occurrence in
mechanics, and has a name assigned toit. Zbfy is the simple moment
of an area about an axis. =bfy® may be called the moment of the
second degree, but the common name is the Moment of Inertia; be-
cause a similar sum (differing only from this in involving the mass)
occurs in dynamics under that name. To distinguish the two cases
area-moment and mass-moment, the former is sometimes called the
geometrical moment of inertia.

Let I denote the moment of inertia, so that 7 = Shty?, the value
of which for any form of section can be obtained by geometry, then

B M _E

e T oh et

RS S

thus connecting the curvature of the beam with the moment
Producing it. Having previously found p/y = E/R, we can now
connect the moment with the stress by writing

et

s

This equation may be employed to determine the strength of
a beam to resist bending. The limit of strength is reached when
either the greatest safe tensile stress on one side of the neutral axis,
or the greatest safe compressive stress on the other side of the
neutral axis is called into action. Thus in the equation p/y=M/I
We must put p = f, the co-efficient of strength under tension, or
P=F, the co-efficient of strength under compression ; and for 7, either
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7, the distance of the most remote point on the stretched side, or .,
the distance of the most remote point on the compressed side, so
that

M= J:’I, or f"I
% Ya

The strength of the beam, or maximum moment of resistance to
hending, is measured by the least of these quantities.

9 or y, is readily determined from geometry, the form of the
section of the beam being given. It may be most conveniently ex-
pressed as a fraction of the depth of the beam. Thus #, or 7 may
be put = ¢h, where the co-efficient ¢ has different values. In a rect-
angular section ¢ = }, in a triangular section ¢ =  or £, and so on.

Next to express the value of . It will be found that whatever be
the form of the section, / may always be written = n.44% A being
the area of the section of the beam, % the depth in the direction of
bending, and n a numerical co-efficient, the value of which depends
on the form of the section.

For a rectangular section,

= 15, 80 that I = ;4%
» elliptical or circular ,,
n =1 w4 = Fadl?,
s triangular
n = vy " I= T‘EA]”;‘:
and so on.
Therefore assuming ¢ and # known, we can write

M= ;_;LnAiﬁ = £ Ah,

a formula which shows that for sections in which n/g is the same, the
moment of resistance to bending is proportional to the product of
the area and depth of the beam. Sections with the same n and g
are said to be of the sume fype. They are often, but not correctly,
said to be similar.

In estimating the numerical value of M, care must be taken with
the units. It is generally advisable to use the inch unit throughout.

166. Remarks on Theory of Bending.—In the foregoing theory of
simple bending it is supposed



CH, XII ART, 157.] BENDING. 315

(1) That the bar is homogeneous and of uniform transverse
section and perfectly elastic ;

(2) That sections plane before bending are plane after bending,
for which it is theoretically necessary that the bending moment
should be uniform, and applied at the ends of the bar in a particular
way ;

(3) That longitudinal layers of the beam expand and contract
laterally in the same way, as if they were disconnected from each
other (see pp. 303, 401).

These assumptions are not obvious @ priori, and require justifica-
tion, which at the present stage of the subject we are not in a
position to give: for the present it may be stated that if the
material be homogeneous and perfectly elastic, the equations hold
good even though the transverse sections and the curvature vary
and however the bending moment is applied. The strenglh of the
material, however, is not generally the same as if the layers were dis-
connected, and co-efficients of strength require therefore to be
determined by special experiment on transverse strength (Art. 217).

157. Caleulation of Meoments of Inertin—We have frequently to
deal with beams of complex section, in which case to determine I it
is convenient to divide the section up into simple areas, the I of
each of which is known, and the total moment of inertia of the
section will be the sum of these I's. In employing this process we
require to know the relation between the moments
of inertia of an area about two axes parallel to
one another, one being the neutral axis. We make —S{-—i—p—}8-
use of a general theorem which may be thus proved.

Let 4 be an area of which we know the moment
of inertia about the neutral axis, SS (Fig. 123),
and we require to know the moment of inertia _X
about any parallel axis, XX, distant 9, from SS. Dividing the area
into strips of breadth b, and thickness ¢,

Moment of Inertia required I = =b. ¢. (y + )%

= 20y + 2,20 .y + 9,°Zb . ¢.

Now Zbfy* = moment of inertia about neutral axis, Zbf.y = 0,
because the neutral axis passes through the centre of gravity of the
section, and 2bf = Area A.

RS TR S

Fig.128,

.

X
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The moment of inertia of an area about any axi& is, therefore,
determined by adding to the moment of inertia of the area about
a parallel axis through the centre of gravity the product of the
area into the square of the distance between the two axes.

This theorem, together with previously quoted values of 7, will
enable us to determine the following results, which will be usetul in
application to beams—

Rectangle about its base, I = %4y

Triangle i o L = %4y

Triangle about a parallel to its base ’ohroufrh vertex, I = 34y

Many other forms will divide up into rectangles or triangles, or
both ; for example, the moment of inertia of a trapezoid about the
neutral axis may be readily determined by taking, for the area
above the neutral axis, the I for a rectangle about one end, and tri-
angles about the base. For the area below, a rectangle about one
end and triangles about the vertex, and add the results.

158. Beams of I Section with Equal Flanges.—The case of a beam
of I section is very important.
First, suppose the flanges of equal breadth and thickness, and the
web of uniform thickness ', the depth being
F--3"==>=-= I, b being the breadth of the flange, and %
: thL whole depth of the beam. The moment
of inertia of the section may be taken as
the difference of the moments of inertia of
two rectangles (see Fig. 124).
e I =bL08 — &0 — B)he
This is the accurate value of [, and when the flanges are thick
this expression for I must be used ; but if the flanges are thin com-
pared with the depth, a very close approximation can be obtained
with less trouble by supposing each flange to be concentrated in its
centre line, and taking for the depth of the beam the distance ,
to the centre of flanges.
If A4 = area of each flange and (' = area of web,

o

& emmesa-

Fommmm T ememe

Bl
»

) 4/;;////9 =

k

i thenI=Ak—"2+Ah_°Q+Tl_2_C]L2_ho (A )
ii,, (5 4 4 6

Putting p = f and 5 =1k, in the fo_rmula,;/ = l."ff,

v

A
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ékn (A +Z)=fh(4+ ﬁ)

This shows that, area for area, the web has only one-sixth the power
resisting bending that the flanges have.
We previously deduced an approximate expression for the strength
of an I beam, viz.,
M=Hh=fhd (see Art. 27),

in which the effect of the web in resisting bending was neglected,
the whole of the bending action being supposed to be taken by the
flanges. The present formula shows the amount of the error involved
in that assumption. In using this approximation when /4 the effective
depth is reckoned from centre to centre of the flanges, two errors are
made, one in supposing the resistance to bending of the web
neglected, and the other, often much greater, in supposing the mean
stress on the flange equal to the maximum, hence it is better to take
for the effective depth
= ’;—",,

where 7' is the outside depth and %, the depth from centre to centre
of flanges.

169. Ratio of Depth to Span in I Beams—The formula just
obtained for the moment of resistance of a beam of I section shows
that the greater the depth of the beam and the thinner the web the
stronger will the beam be for the same weight of material, or in
other words that the best distribution of material is as far away
from the neutral axis as possible. The practical limitation to this is
that a certain thickness of web is necessary to hold the flanges
together and give sufficient power of resistance to lateral forces and
to the direct action of any part of the load which may rest on the
upper flange. Hence the weight of web rapidly increases as the
depth increases, and a certain ratio of depth to span is best as regards
economy of material (see Ex. 17, page 325). This is especially im-
portant in large girders in which economy of material is the
primary consideration. In smaller beams the proper ratio of depth
to span is generally in great measure a question of stiffness, a part
of the subject to be considered in Chapter XIII. The moment of
resistance of I sections of practical proportions is generally about
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double that of a rectangular section of equal area. The straining
actions on the web will be considered in Ch. XV.

180. Proportions of I Beams for Equal Stremgth.—Materials in
general are not equally strong under tension and compression, so
that a beam whose section is symmetrical above and below the
neutral axis will yield on one side before the material on the other
side of the neutral axis has reached its limiting stress. Accordingly
we might obtain a more economical distribution of material if we
were to take some from the stronger side and put it on the weaker,
so that the limiting tensile on one side and the limiting compressive
stress on the other may be produced simultaneously. The section
of the beam will be different above and below the neutral axis, which
will not now be at the centre of depth of the beam, but in such a
position that the distances to the top and bottom of the heam are
in the proportion of the greatest allowed stresses to one another.
The neutral axis in all cases must pass through the centre of gravity
of the section.

Let fy, f» be the co-efficients of strength under compression and
tension respectively, v,, ¥, distances of the most strained layer from
neutral axis, then the beam will be strongest when

Yo _Ys _Yit¥s . h

Ja fB f‘:‘l:}ca Ja +f1:
For simplicity of calculation we will consider a beam (Fig. 125) in
which the web is of uniform thickness
throughout the depth, and so of rectangular
section, and each flange also of rectangular

I . St

R e

y,
Fig.125.C iA section, and determine the relation which
N7 -~-a;'=---f~—- - should hold between the areas of flanges and
i web for maximum strength of beam, and
B ////% e

the moment of resistance to bending where
this condition is satisfied. We will further suppose each flange to
be concentrated in its centre line.

Let A = area of compressed flange, B = area of stretched flange,
¢ = area of web. Since the neutral axis is at the centre of gravity
of the section, we obtain, by taking moments about that axis,

Ay, +U1j‘:- = Bys ;
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or, substituting the previously given values of 7, and ¥,
Afu s 0BT B,

Sapposing f, and f; known, 4, B, and ¢ must be such as to satisfy
this relation. We have some liberty of choice between these
quantities, and frequently find one of the flanges omitted, so pro-
ducing a beam of T or L section.

In a cast-iron heam, where the resistance to compression is
greater than for tension, the compressed flange 4 may be omitted.
Putting 4 = 0 we get € = s B, and supposing L 40 =

e Iz
2B, or B=1LC. In a wroughtiron beam on the other hand f,/f,

is about ¢, and the stretched flange B is the area to be omitted.
Putting B = 0, we find 4 = fff_);ffdo e
=4
Otherwise we may assume the depth and thickness of the web to
be given (Art. 159), then the equation

af, + 0L ts o gy,

furnishes a relation between the areas of the flanges. For example,
in cast iron, if we assume f, = 4f,, we find

Bt Sgc

Having decided on the proportions between the parts of the
section we can now calculate the moments of inertia and resistance.
Still considering the flanges concentrated in their centre lines,

I=4dy? + By + 1C. /}‘ e+ 3C. 1"” STr

— Ay, + Byt + 30, 4t ; i

a result which admits of ready calculation. Further

Ml felwlfadits
digosy o0z b
whence we obtain

M= (f, + fi.

The caleulation just now made is one which has been frequently
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given in dealing with beams of I section,* but in applying it to
actual examples it should be remembered that the results ave ob-
tained on the supposition that the flanges are concentrated in their
centre lines, and are consequently only approximate when the co-
efficients f,, f, mean the intensities of the stress at those centre lines,
not at the surface of the beam where the stress iz greatest. If, for
example, F, be the maximum stress on the flange 4
By st
Y

where ¢, is the thickness of the flange. The difference is especially
great in the case of the larger flange of cast-iron beams, and the
true ratio of maximum compressive and tensile stress is much less
than it appears in the preceding article. On the other hand, in
extreme cases, such as we are now considering, the stress may not
be uniformly distributed along a line parallel to the neutral axis.

Extensive experiments were made on cast-iron beams by Hodgkin-
son, with the object of determining the best proportions between the
flanges, with the result that rupture always took place by tearing
asunder of the lower flange, unless it was at least six times the size
of the compressed flange. This proportion is rarely adopted in
practice, from the difficulties of obtaining a sound casting, and the
necessity of having sufficient lateral strength. Nor is it certain that
the proportions which are best for resisting the ultimate load are
also best in the case of the working load ; it is, in fact, probable
that a smaller proportion is better even on the score of strength.
If we take f, = 2%f5, instead of 4f,, we find

: B =214 + 40,
which agrees more closely with practice. The ratio of maximum
compressive and tensile strength is in this case about 2, which, ac-
cording to some authorities, is the ratio of elastic strengths in the
two cases.

In wrought-iron beams the areas of the flanges are usually equal,
and this is correct if the elastic strength, and not the ultimate
strength, is regarded as fixing the proper proportions, and if
there be sufficient provision against the yielding of the top flange
by lateral flexure. Small-sized beams of this kind are rolled
in one piece, while large girders are constructed of iron or steel

* Sce Rankine's Civil Engineering, page 257,
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plates and angle irons, rivetted together. Some of the forms they
assume are shown in Plate VIII., Ch. XVIII.

In making caleulations respecting girders, approximate methods may
be used for preliminary tentative calculations, but should be checked
by a subsequent accurate determination of the neutral axis and
moment of inertia. A previous reduction of the section to an equi-
valent solid section is required when, as is often the case, all parts of
the section do not offer the same elastic resistance to the stress
applied to them, either because they are not sufficiently rigidly con-
nected or from the material being different. This is especially the
case in determining the resistance to the longitudinal bending of a
vessel occasioned by the unequal distribution of weight and buoyancy
already considered in Chapter III.  On this important question the
reader is referred to a treatise on Naval Architecture by Mr. W. H.
White. In many cases of built-up girders the shearing action which
generally exists has considerable influence, a matter for subsequent con-
sideration (Ch. XV.). The effect of the weight of the girder itself has
been considered in Ch.IV.  (See also Ex. 13,p. 324, and Ex. 11,p.372.)

181. Beams of Uniform Strengih.—A beam of uniform strength is
one in which the maximum stress is the same on all sections. For
beams of the same transverse section throughout this can only be the
case when the bending moment is uniform, but, by properly varying
the section, it is possible to satisfy the condition however the bend-
ing moment vary. For this purpose we have only to counsider the
equation

M- f. % Ah,

which must now be satisfied at all sections. Suppose
A = kbh,
Where % is a numerical factor depending on the type of section, then

M ”;_’” b,

All sections of the beam being supposed of the same type we have
only to make 4% or bh2 vary as M, that is as the ordinates of the
curve of bending moments. The principal cases are—

(1) Depth uniform. Here the breadth must vary as the bending
moment, whence it is clear that the eurve of moments may be taken

48 representing the half plan of the beam.
X
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(2) Sectional Area uniform. Here the depth must vary as the
bending moment, that is, the curve of moments may be taken to
represent the elevation or half elevation of the heam.

(3) Breadth uniform. Here the elevation or half elevation of the
beam must be a curve, the co-ordinates of which are the square roots
of the co-ordinates of the curve of moments,

(4) Ratio of breadth to depth constant. Here the half plan and
half elevation are each curves, the ordinates of which are the cube
roots of the ordinates of the curve of moments.

The first, third, and fourth of these cases are common in practice
with some modifications occasioned by the necessity of providing
strength at sections of the beam where the hending moment vanishes,
as it usually does at one or both ends,

162. Unsymmetrical Bending.—It occasionally happens that the
plane of the bending moment is not a prineipal plane of the beam, as
for example when a vessel heels over, the plane of longitudinal bend-
ing will not coincide with the plane of symmetry of the vessel which
is obviously the plane of the masts. The neutral axis does not now
coincide with the axis of the bending couple, though in other respects
the theory of bending still holds good.

Y

Fig.126,

In Fig. 126 let MM be the axis of the bending moment, J/ inelined
ab an angle 6 to the principal axis of inertia X, GY of the plane
section. Then the couple M/ may be resolved into two components
M cos @ and M sin 6, each of which will produce stress at any point
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P as if the other did not exist. Let p be the stress, #, 7 the co-ordi-
nates of P referred to the axes G'X, G'Y, the moments of inertia
about which are I, I,, then
P=M.cos 6.?{+ﬂ{.sil‘£.m-
1, 1
The position of the neutral axis NN is found by putting p =0,
then the angle ¢ which it makes with GX is given by

1

I tan g
7 - tan

This equation shows that the neutral axis is parallel to a line
Joining the centres of the circles into which the beam would be bent
by the component couples supposed each to act alone,

The neutral axis being thus determined and laid down on the
diagram the points can be found which lie at the greatest distance
from that axis. At these points the stress will be greatest, and if
X, ¥ be their co-ordinates, still referred to the axes GX, @Y, the
moment of resistance will be determined by the equation

Y.cos X.sin 6]
=M { — = T L,
/ 1 Lo
For a different method of expressing the moment of resistance see
Rankine’s Applied Mechanics, p. 314. '

tan ¢ = —g:

EXAMPLES.

1. A bar of iron 2” diameter is bent into the arc of a circle 372’ diameter, Find in
tons per square inch, 1st, the greatest stress at any point of the transverse section;
2nd, the stress on a line parallel to the neutral axis half an inch from the centre,
E being taken = 29,000,000. Ans. Maximum stress =58, Stress at 4" from
centre = 2°0,

2. Find the diameter of the smallest circle into which the bar of the last question
can be bent; the stress being limited to 4 tons per square inch. 4ns, Diameter
= 540 feet.

3. Find the position of the neutral axis of a trapezoidal section ; the top side being
8", bottom 67, and depth 8”. Also find the ratio of maximum tensile and com-
bressive stresses, .4ns. Neutral axis 3:56 inches from bottom. Ratio of stresses
5 to 4, 3

4. A cast-iron beam is of I section with top flange 3" broad and 1 thick and bottom
flange 8" broad and 2" thick; the web is trapezoidal in section 4 thick at top and 1”
at bottom ; total outside depth of beam 16", Find the position of the neutral axis
and the ratio of maximum tensile and compressive stresses. Ams. Neutral axis
481 inches from bottom, Ratio of stresses 3 to 7.
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5. A wrought iron beam of rectangular section is 9" deep, 3" broad, and 10 feet
long. Find how much it will carry loaded in the centre, allowing a co-efficient of 3
tons per square inch, Also deduce the load the same beam will bear when set flat-
ways. Ans, When upright load =405 tons. When set flatways load = 1'35 tons.

6. A piece of oak of uniform circular section is 16” diameter and 12 feet long. It
is supported at the two ends and loaded at a point 5 feet from one end. How great
may the load be, allowing a stress of 4 ton per square inch? Ans, Load may be
5'74 tons,

7. In Example 5 suppose the same weight of metal formed into a beam of I section,
each flange being equal to the web; what load will the beam carry? Ans. Load
may then be 9°45 tons.

8. Find the moment of resistance to bending of the section given in Example 4,
the co-efficient for tension being 1 ton per square inch. A4ns. I =798 inch units.
Moment of resistance to bending =166°4 inch-tons.

9, Suppose the skin and plate deck of an iron vessel to have the following dimen-
sions at the midship section, measured at the middle of the thickness of the plates.
Find the position of the neutral axis and moment of resistance to bending. Breadth
48 and depth of vertical sides 24/, the bilges being quadrants of 12’ radius, Thick-
ness of plate §” all round, and co-efficient of strength 4 tons in compression, Ans.
Neutral axis 14" above centre of depth. Moment of resistance to hogging = 40,000
ft.-tons,

10, What should be the sectional area of a T beam of wrought iron to carry 4 tons
uniformly distributed? Span 20/, depth of beam 10" Co-efficient for compression 3
tons, and for tension 5 tons? Ans. Area=13T square inches.

11, If, in the last question, the flange is made equal to the web instead of being
proportioned for equal strength, show that to carry the same load the beam must be
about one quarter heavier.

12, In Example 8 find the moments of inertia and resistance on the supposition
that the flanges are concentrated at the centre lines, and thus by comparison with
previous results show the amount of the error involved in the assumption. Auns.
Moment of inertia = 8615 inch units. Moment of resistance =227 inch-tons.

18, Show that the limiting span (Art. 41) of a beam of uniform transverse section is
8n
L=\. N7
where IV is the ratio of span to depth, and the rest of the notation is the same as on
pages 90 and 314. Obtain the numerical result for a wrought iron beam of rect-
angular section, taking A from Table II., Ch. XVIIIL, and supposing N - 12, _dns.
L = 336 ft.; in an ordinary I section the result would be doubled. For the case of
large girders see page 372.

14, If 7 be the length of an iron rod in feet, d its diameter in inches, just to carry
its own weight when supported at the ends, show that when the stress allowed is 4
tons per square inch 7= /224 d,

15. If I, I, be the moments of inertia of two plane areas 4,, 4., about their neutral
axis which are supposed parallel at distance apart z, show that the moment of inertia
of their sum or difference about their common nentral axisis 7=7, + I, 2°. j;ﬁij 5

1t ds
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Apply this formula to the trapezoidal section of Question 3. dns, I=185 inch
units nearly.

16. Find the moment of resistance to bending of a beam of I section, each flange
consisting of a pair of angle irons 3} x 3 rivetted to a web "37"' thick and 16" deep
between them. Assuming it 24 feet span, find the load it would carry in the middle,
using a co-efficient of 3 tons per square inch, Ans. M =288 inch-tons. W= 4 tons.

17. If it be assumed that for constructive reasons the thickness of web of an I beam
with equal flanges must be a given fraction of the depth, show that for greatest
economy of material the sectional area of the web should be equal to the joint
sectional area of the flanges. Prove that in this case M=% f. Sk. (See p. 372.)

18. In a cast-iron beam of I section of equal strength for which f4 =2} fz; if it be
assumed that for constructive reasons the thickness of the web should be a given
fraction of the depth, show that for greatest economy of material the large flange,
the web, and the small flange should be in the proportion 25, 20, 4. Prove also that
the moment of resistance is given by the same formula as in Question 17 supposing

2[f=1/f4 +1/f5.

19. A beam of rectangular section of breadth one half the depth is bent by a couple
the plane of which is inclined at 45° to the axes of the section. Find the neutral
axis, and compare the moment of resistance to bending with that about either axis.
Ans. Ratio=24/2/3 and A/2/3.

20. If a beam be originally curved in the form of a circular are of radius R,, instead
of being straight, show that the neutral axis does not pass through the centre of
gravity of the section. In a rectangular section of depth / show that the deviation
18, approximately,

Lo

12R,

21. In the preceding question if R, is large show that the equations of hending are
P_pg(l 1) =

z=

Y By, B

5
REFERENCE.

For the graphical determination of moments of inertia the reader is referred fo
the treatises cited on page 82,



