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CHAPTER XIII.
DEFLECTION AND SLOPE OF BEAMS.

1863. Deflection due fo the Mazimum Bending Moment.—It is not
only necessary that a beam should be strong enough to support the
load to which it is subjected, it is also necessary that its changes of
form should not be too great, or in other words, that it should be

i sufficiently stiff, and we next
i l S proceed to determine under
s e what conditions this will be
; . the case.
., ey The question is simplest
: i Figdsy. when the beam is bent into
; i "} an arc of a circle, we have
i then
j:" {T/j = f}{=§= constant.
Two cases may be especially
mentioned--
(1) Depth uniform. We

then have p constant, that
the beam is of uniform strength. (See Case 1 of Art. 161. )

(2) Sectional area uniform. We then have, since

o
M_RI—% B . A7z,

the depth of the beam varying as the square root of the bending
moment, as in Case 3 of the same article.

Let  be the length of the beam, i the angle its two ends make
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with one another, then since i is also the angle subtended by the
beam at the centre

_i_m
“REL

If the beam be supported at the ends iis twice the angle which
the ends make with the horizontal, an angle called the Slope at the
ends. Let 4B be the beam (Fig. 127), O the centre of the circle into
which it is bent, XZ the diameter of the circle through K the middle
point of the beam. Then KN is the deflection which is given by a
known proposition of Euclid

KN N L= AN,

Hence remembering that the diameter of the circle is very large * we
have, if 8 be the deflection,
Set
8R B8EI
This formula gives the deflection in any case where the curvature is
uniform,

When the transverse section is uniform the curvature varies. Unless
the bending moment be likewise uniform, the deflection curve is not
then a circle 4K B, but for the same maximum bending moment a
flatter curve 4’KB'. Thus the deflection is less than that calculated
by the above formula, which may be described as the “ deflection due
to the maximum moment.” The actual deflection may conveniently
?)e expressed as a fraction of that due to the maximum moment. It
1s possible to construct the deflection curve graphically by observing
that the curvature at every point is proportional to the bending
moment. We have then only to strike a succession of arcs with
radii inversely proportional to the ordinates of the curve of bending
mmoment. It is however more convenient to proceed by an analytical
method.+ The fraction is least when the beam is least curved,
Wwhich is evidently the case when it is loaded in the middle, and we
shall show presently that it is then two-thirds, while, when uni-
formly loaded, it is five-sixths.

* For clearness it is made small in the figure.
t Readers who have no knowledge of the Calculus may pass over the next
four articles,
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164. General Equation of Deflection Curve.—It was shown above
that
M
BT
If the bending moment vary, then we must replace / by an element
of the length s and i by the corresponding element of the angle; we
shall then have an equation

i i

di M
ds~ EI’
which by integration will farnish i. It will generally be convenient
to reckon i from a horizontal tangent and it then means the slope of
the beam at the point considered. To perform the integration it is
in most cases necessary to suppose the slope of the beam small, as it
actually is in most important cases in practice, and we may then
replace ds the element of arc by dz, the corresponding element of a
horizontal tangent 4N (Fig. 128) taken as axis of #, whence
L approximately
dy EI ;i
an equation which can generally be integrated because 4 is usually a
function of .

The deviation y of any point @ of the beam from the straight line
AN can now be found since dy/dz = i, from which we further obtain
the fundamental equation

d¥y M

da®  EI
which applies to all cases where the bending of the beam is occasioned
by a transverse load. We shall first give some elementary examples
of the determination of the deflection and slope of a beam and then
consider the question more generally.

Fig.128.

185. Elementary Cases of Deflection and Slope.—Cuse 1. Suppose a
beam supported at the ends and loaded in the middle.
In Fig. 128 (/D) is the beam resting on supports at €, ), and loaded
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in the middle with a weight /. Take the centre 4 as origin and
the horizontal tangent at 4 as axis of #, then if / be the whole length

ey _ o _H(l-2)

- 272
g T T 7El =
dJ i IJ’ 'E ‘1‘9)3)
T dw -—"'Ej‘—

is the slope of the beam at ¢, no constant being required since i is
zero when z = 0. i
If 2=1/2 we get the slope at the ends of the beam
g
T 16EI

Integrating a second time

As before no constant is required because y =0 when n = 0.

If now we put 2=1/2 we get the elevation of D above AN or,
what is the same thing, the depression of 4 below the level of the
supports. This is called the Deflection of the beam ; if we denote it
by 3,

178
° (sl -7
oy e T T

a result which we may also write

52 MP_2 o

where A/, is the maximum moment and 8, the deflection due to it.

Case II. Let the beam be supported at the ends and loaded
uniformly with w pounds per foot run. It will be sufficient to give
the results, which are obtained in precisely the same way, remember-
ing that the bending moment is now dw(a® - o*) where o is the half
span, We have

Srwat Lalvy et 5 wat_ 5 _@’
Y USET 94BT - W24 ET 384 ET
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The value of 3 may be expressed as in the previous case in terms of
the deflection due to the maximum moment. We have 8 — &8s

166. Beam propped in the Middle.—When a beam is acted on by
several loads the deflection and slope due to the whole is the sum of
those due to each load taken separately. An important example is

Case 111,  Beam supported at the ends and propped in the middle,
uniformly loaded. (Fig. 129.)

Here the deflection of the beam is the difference hetween the
downward deflection due to the uniform load and the upward deflec-

Fig.129.

S

b

tion due to the thrust @ of the prop. Hence we write down at once
for the deflection at the centre,
i b [ O
384" EI ~48ETr
an equation which may be used to determine the load ecarried by the
prop when its length is given, and conversely.
First suppose the centre of the beam propped at the same level as
the supports, then 6= 0, and
QB x 487
Bt
so that the prop in this case carries five-eighths of the weight of the
beam, the supports C, D only carrying three-cighths. Tach support-
ing force is %wi, I being as before the whole length of the beam ;
hence the bending moment at a point distant 2 from € is given by
the formula

=3,

M = ygwla — Jwa? = ywa(3l - z),
from which it appears that the beam is bent downwards until a
point Z is reached, such that
CZ=§1=340C.
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Here the bending moment is zero, that is, Z is a  point of contrary
flexure ” or  virtual joint.” (Compare Art. 38.)
Beyond Z the beam is bent upwards, and at the centre A4 we get,
by putting = 1/,
— My = Al
The case here discussed is also that of a beam one end of which is
fixed horizontally and the other supported at exactly the same level.
Let us next inquire what will be the effect of supposing the centre
of the beam propped somewhat out of the horizontal line through
the supports at the ends. Let us suppose 8 to be 1/a" the deflec-
tion of the beam when the prop is removed, then
§ WS R S Y R 0
n 384 EI 38%1 'EI 48ET
that is

Q=§LW(1 —?11)

a formula which gives the load on the prop. If, for example, n =5,
Q=1W,or if n= -5, Q=4 ; thus if the centre of the beam be
out of level, by as much as one-fifth the deflection when the prop is
Wholly removed, the load on the prop will vary hetween 477 and
£, a result which shows the care necessary in adjustment to obtain
a definite result.

‘167. Beam fived at the Ends—Case IV, Uniformly loaded beam,
‘With ends fixed at a given slope.

: In Fig. 130 4B is a uniformly loaded beam, with the ends 4, B
fixed not horizontally but for greater generality at a slope i. Here

Fig.130,

the central part of the beam will be bent downwards and the end
barts upwards ; at Z, Z there will be virtual joints ; let 0Z =r, then
taking 0 as origin the bending moment at any point between 0
and Z ig

M= w(rt—a2),
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a formula which will also hold for points beyond Z, as can be seen
from Art. 38, or proved independently. We have then

Py _ (o)

dz SR

- Fw(rir — 1a8)

BT

No constant is required, because i is zero at 0. Let ¢ be the half
span 04, or OB, then putting = a, we get for the slope at the
ends

i 3w(®a - 1ab)
; ET
a formula from which 7 can be determined if 1, be given, Ifr=gq,
we get the case where the ends are free ; let the slope then be Tg; W€
have

tl

wa?
0F 557
Now, assume the actual slope to be 1/a® of this, we get
1 we® _ lw(%—1a8)

n' 3EI Er 2

i as hefore (p. 329).

that is, i ;
ik

If the ends are fixed exactly horizontal, then
rE=207 ;

and by substitution we find for the bending moment at the centre
and the ends

My=twa®; M, =M,=Lwd?
If the ends were free, the bending moment at the centre would have
been $wa?, so that the beam will be strengthened in the proportion
3:2. The formula obtained above, however, shows that a small
error in adjustment of the ends will make a great difference in the
results.

It is theoretically possible so to adjust the ends that the bending
moments at the centre and the ends shall be equal, in which case the
beam will be strongest. For this we have only to put

‘ $wr? = Juw(a? - 12),
that is, r2=1%0?
whence by substitution we get

n=4;
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that is, the ends should be fixed at one fourth the slope which they
have when free, and the strength of the beam will then be doubled.

By proceeding to a second integration the deflection of the beam
can be found. In particular when the ends of the beam are horizontal
1t can be shown that the deflection is only one fifth of its value when
the ends are free.

The graphical representation of the bending moments in Cases IIL.,
IV., is easily effected, as in Fig. 42, p. 86. '

168. Stiffness of @ Beam.—The stiffness of a beam is measured by
the ratio of the deflection to the span. In practice, the deflection is
limited to 1 or 2 inches per 100 feet of span when under the working
load ; that is, the ratio in question is who to tF5o™ It appears
from what has been said that if 3/, be the maximum moment the de-
flection is given by

M2

‘8ET
where [ is a fraction, varying from two-thirds to unity, depending on
the way in which the beam is loaded. Hence the greatest moment

Which the beam will bear consistently with its being sufficiently
stiff is

o=l

8E8 T
i St
L ko1
If we express 7 as usual in terms of the sectional area and depth,
we get
M 0 = Sz A ’E:‘,
Where s is a co-efficient depending vn the material and on the admis-
sible deflection which may be called the ¢ Co-efficient of Stiffness.”
We thus obtain a value for the moment of resistance of a heam
which depends on its stiffness, not on its strength, and if that value
be'less than that previously obtained for strength (p. 314), we must
evidently employ the new formula in caleulating dimensions. On
comparing the two, we find that they will give the same result if
8o o bkl
K0 rettlos
that is to say, for a certain definite ratio of depth to span, and
If there is no other reason for fixing on this ratio, it will be best to
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choose the value thus determined. The two formulse then give
the same result. In large girders a greater depth is generally
desirable, then the strength formula must be used 5 while in small
beams it may often be convenient or necessary to have a smaller
depth, and then the stiffness formula must be employed.

169. General Graphical Method.—The foregoing simple examples
of the determination of the deflection and slope of a beam are perhaps
those of most practical use, but, by the aid of graphical processes,
there is no difficulty in generalizing the results which are of con-
siderable theoretical interest, We can, however, afford space only
for a hasty sketch. '

The general equations given in Art. 164 show that the angle (i)
hetween two tangents to the deflection curve of a beam is pro-
portional to the area of the curve of bending moments intercepted
between two ordinates at the points considered. Starting from the
lowest point of the deflection curve, let us now imagine a curve
drawn, the ordinate of which represents that area reckoned from the
starting point, then that curve will represent the slope of the beam
at every point, and may therefore properly be called the “ Curve of
Slope.”  But referring again to the general equations we see that the
ordinate of the deflection curve reckoned upwards from the horizontal
tangent at the lowest point, is connected with the slope in the same
way as the slope with the bending moment, and is consequently
proportional to the area of the curve of slope. Thus it appears, on
reference to Chapter IIL., that the curves of Deflection, Slope, and
Bending Moment are related to each other in the same way as the
curves of Bending Moment, Shearing Force, and Load. The five
curves, in fact, form a continuous series each derived from the next
succeeding by a process of graphical integration,

We now see that any property connecting together the second
three quantities must also be true for the first three, For example,
we know, from the properties of the funicular polygon, that two
tangents in the curve of moments intersect in a point vertically below
the centre of gravity of the area of the corresponding curve of loads
(see Arts. 31, 35). Tt must therefore be true that two tangents to the
deflection curve intersect vertically below the centre of gravity of the
corresponding area of the curve of moments, a useful property, which
can be proved directly without much difficulty.
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The deflection curve of a beam may therefore be constructed in
the same way that the funicular polygon is constructed in Art. 35,
the perpendicular distance () of the pole from the load line in the
diagram of forces being made equal to ZZ. To do this we have only
to divide the moment curve into convenient vertical strips and
regard each as representing a weight. Set down these ideal weights
as a vertical line and choose a pole at a distance from the line equal
to T, measured (on account of the largeness of E) on a scale less in
a given ratio. Now, construct the polygon and draw its closing line,
the intercept multiplied by the scaleratio is the deflection of the
beam. A parallel to the closing line in the diagram of forces gives
the slopes at the extremities of the beam which correspond to the
supporting forces of the loaded beam in the original case.

We have hitherto supposed the beam to be of uniform stiffness
throughout ; if not, let the quantity #Z, which is now variable,
be Z,I; at some datum section. Reduce the ordinates of the curve of
moments in the proportion £y, to £7, then the reduced curve is to
be employed in the way just described for the original curve.

170. Eramples of Graphical Method. Theorem of Three Moments.—
Let us now take some examples.

Case I.—Symmetrically loaded beam, of flexibility also symmetrical
about the centre. Let 4B(/
(Fig. 131) be the curve of
moments, reduced if neces-
sary, AOB the deflection
curve ; both curves, of
course, will he symmetri-
cal about the centre ver-
tical, then from what has
been said, tangents at 4, :
B to the deflection curve intersect the tangent at 0 in points 7' verti-
cally below the centres of gravity of the two equal areas 400, BCO.
Hence if § be the area of the whole curve of moments, z the
horizontal distance of either point 7' from the nearer end,

Fig.181.,

; S = S Sa2
""0=ﬁ;7; 8:3.‘1-02 TT

must be the slope of the ends of the beam and its deflection.
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Case I1. Beam continuous over several, spans loaded in any way,
(Fig. 132.) Tet ACO', BDO' be the moment curves due to the load
on two spans A(', BO' of a beam A0B, continuous over three sup-
ports 4, 0, B, of which the centre 0 is somewhat below the level of
A, B. Being continuous, there will be bending moments at 4, 0, B,
which are represented in the diagram by AZ, O'T, RF. Joining
£1L, FL, the actual bending moment at each point of the beam will be

represented by the intercept between the line ZZL# and the curves of
moments due to the load and corresponding supporting forces. (See
Art. 38.) The curve A0B is the deflection curve, 47, BT are the
tangents at 4, B and 707 is the tangent at 0, intersecting AT, BT
in the points 7.

Now, let i, be the angle between the tangents at O and .4, then, as
hefore,

1' — _‘Si
A E’I’
where S is the area of a curve representing the actual bending
moment at each point. In the present case S is the difference of
two areas, one the moment curve for the load, the other the trape-

zoid E(' for the moments A, 2.
Sy o Mt M

9

&

Ly

where 4 is the area of the moment curve 4C0’ and I, is the span
A0'.  Let the horizontal distance from 4 of the common centre of
gravity of the two curves be  ; then, as before, z is also the horizontal

distance of 7' from 4, and
Sz

= ar ™ hefore
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To find =, let 2, be the horizontal distance of the centre of gravity
of 4CB from A, then
L My—-M,
S

Se=Adz, - M|, . —él =

=Az,— M, . 12-%M,. 12
We have thus found 7, the distance of A4 from the tangent through
0 ; and 7, the corresponding distance of B, is written down by change
of letters.
Assuming now the depression of 0, the centre of the beam, below

the level of the two other supports to be 8, it appears from the
geometry of the diagram that

Lo #lis

B
Ya Jnl 1 }_ .
& L +8(1A z,,)’

hence dividing the values of y,, 7, by I, [, respectively, and adding
A‘E 8. 50 R+ 1) = L~ Ry = a( ) K.

This equation conneets the bending moments at three points of
support of a continuous beam, the centre support being below the
end supports by the small quantity 8. It can readily be extended to
the case where the flexibility of the beam is variable by reducing the
moment curves as previously explained, then the moments M, which
are the results of the caleculation, will, in the first instance, be
reduced, and can afterwards be increased to their true values.

The above equation is the most general form of the famous
Theorem of Three Moments, ormnally discovered by Clapeyron,
which is always employed in questions relating to continuous beams
—a somewhat large subject, on which we have not space to enter.

171. Resilience of a Bent Beam.—The work done in bending a
beam by a uniform bending moment Jf is evidently 1M/, where i is
the angle which the two ends of the beam make with each other, as
in Art. 163 ; ; hence by substitution for ¢ we find for the work U,

M2
O=ogr’
b'd
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and if the bending moment vary,

& fzu fe

An important case is when the beam is of uniform strength, then
we have

p= ‘_@_‘;l’ = constant = ﬂ%ﬂo’

0
where the suffix 0 refers to a datum section. Then
M el gl
38, )1,
Assuming now the section (), though varying, to remain of the

same type,

U= dz.

Ly

I, Ay

If, therefore, we call V" the volume of the beam,
Moser s e =so s

2Bl A, 0F Ag;

With the notation of Art. 155 this gives

[ n
U= i'E s P

For the resilience we have only to change p into f, the proof strength.
It thus appears that in beams of uniform strength with transverse
sections of the same type the resilience is proportional to the volume,
and less than that of a stretched or compressed bar, as might have
been foreseen from general considerations. The ratio of reduction is
¢ :m, being 3 : 1 in rectangular sections, 4 : 1 in elliptic sections.
When the beam is not of uniform strength the ratio of reduction
must be greater for the same type of section. The reduction is of
course least in 7 sections of uniform strength.

The funetion U is of great importance in the theory of continuous
beams and other similar structures, the relative yielding of the
several parts of the structure being always such that this function is
less than it would be for any other distribution of stress and strain.
It may be called the Elastic Potential, and when known all the
equations necessary to determine the distribution of stress may be
found by simple differentiation. (See Appendix.)

U =
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EXAMPLES.

L. If I be the length of an iron rod in feet, d its diameter in inches, just to carry
its own weight with a deflection of 1 inch per 100 feet of span, show that

1= /233"
Compare this result with that of Ex. 14, p. 324, and state what formula is to be used
Wwhen both stiffness and strength are required.
2. Find the ratio of depth to span in a beam of rectangular section loaded in the

middle, assuming stress = 8,000, &= 28,000,000, deflection = %%g. Ans. 1%5

3. A beam is supported at the ends and loaded at a point distant a, b from the
supports with a weight W, show that the depression of the weight below the points

Wa*h?
3EI(a+b)

4. In the last question deduce the work done in bending the beam, and verify the
result by direct calculation. (See Art. 20.)

5. A dam is supported by a row of uprights which take the whole horizontal
Pressure of the water. The uprights may be regarded as fixed at their base at the
bottom of the water, while their upper ends at the water level are retained in the
Vertical by suitable struts sloping at 45", the intermediate part remaining unsupported.
Find the bending moment at any point of the upright, and show that the thrust on
the struts is about two sevenths the horizontal pressure of the water.

of support is

6. A timber balk 20 feet long of square section supports 160 square feet of a floor,
find the dimensions that the deflection of the floor, when loaded with 60 Ibs. per
Square foot, may not exceed } inch.

7. A shaft carries a load equal to m times its weight (1) distributed uniformly, (2)
¢oncentrated in the middle. Considering it as a beam fixed at the ends, find the

distance apart of bearings for a stiffness of il Ans. If I be the distance apart

1200
in feet, d diameter in inches, then for a wrought iron or steel shaft
SopTan A
1) 1=10° Ztg o) =83 a2,
W 1-105a/ 2, @) 1-838/_2

8. A beam originally curved, as in Ex. 21, p. 325, is fixed at one end and loaded in
any way. If ¢ be the change of slope at any point and X, ¥ the displacements parallel
to axes of x, y of the point consequent on any load, prove that

di M dX |, dY

5™ BD dy =~
Apply these formul to find the straining actions at any point of one of the rings of
& chain of circular links.



