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CHAPTER XI1V.

TENSION OR COMPRESSION COMPOUNDED WITH BENDING
CRUSHING BY BENDING.

172. General Formula for the Stress due to a Thrust or Pull in com-
bination with a Bending Moment.—The bars of a frame and the parts
of other structures are often exposed, not only to a pull or thrust
alone, or to a bending action alone, but to the two together; and
the total stress at any point of a transverse section is then the sum
of that due to each taken separately. That is to say, if H be the
thrust, reckoned negative if a pull, /' the bending moment, the
stress at any point distant y from the neutral axis of the bending
(see Art. 155), reckoned positive on the compressed side, must be
given by

H My H i it
p=g+ P12 @}
the notation being as in the article cited.

This formula shows how the effect of a thrust or pull is increased
by a bending action: it has many important applications, some of
which we shall now briefly indicate.

173. Strut or Tie under the Action of a Force parallel lo its Auxis in
cases where Lateral Flexure may be neglected.—Case I. Bar under the
action of a force in a principal plane parallel to its axis.

Let # be the distance from the axis of the line of action of the
force, then

M=Hz; p:%(l«r% %)
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For example, let the section be circular, then n= %, ¢=14, and we
find
H 8z
Pk

from whence it appears that a deviation from the axis of 4™ the dia-
meter of a rod increases the effect of a thrust or pull 50 per cent.
Similarly it can be shown that if the line of action of the force lie
outside the middle fourth of the diameter of a circular section, or the
middle third of a rectangular section, the maximum stress will be
more than double the mean, and at certain points the stress will be
reversed. In designing a structure, then, the greatest care must be
exercised that the line of action of a thrust or pull lies in the axis of
the piece which is subjected to it ; to effect which, the joints, through
which such straining actions are exerted, must be so designed that
the resultant stress at the joint is applied at the centre of gravity of
the section of the piece. This is a condition which cannot always be
satisfied, and allowance in any case must be made for errors in work-
manship. In practical construction it is the joints which require
most attention, being most often the cause of failure. In frames
which are incompletely braced the friction of pin joints causes the
line of action of the stress to deviate from the axis. (See Ch.
XVIIL)

The effect is increased in the case of a thrust and diminished in
the case of a pull by the curvature of the piece, which increases or
diminishes z Fig. 133 shows the axis of a column, Fig.133,
under the action of a weight /7, suspended from a A
short cross piece of length @. The column bends later- M %7 EiB
ally, as shown in an exaggerated way in the figure.
The inclination of 4B to the horizontal is so small
that the difference between the actual and the projected
length of 4 B may be disregarded ; the bending moment
at O is therefore 7/(a +8), where & is the lateral devia- o ™
tion 4N of the top of the pillar. This deviation
we will in the first instance suppose small compared with @, and then
determine the condition that this may actually be the case. Neglect-
ing it, the axis of the pillar is bent by the uniform bending moment
Wa into a circular arc of radius K, and as in Art. 163

§.2R=12,

| w
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substituting for R its value (Art. 155) we get
Mi*  Wal®

=FRI90L
whence we find
s Wi
a” 2E1

The condition, then, that the lateral deviation should be small is that
W should be much less than 2£7/i2, and if this condition be satisfied
the stress will not be much increased beyond that indicated by the
formula given above. The very important cases in which /7 is large
will be treated presently.

In the case of a pull this restriction on the use of the formula need
not be attended to, the effect of the deviation being to diminish the
stress.

174. Effect of a Thrust on a Loaded Beam.—Case II. Uniformly
loaded beam supported at the ends and subject to compression,
Let the load be // and the thrust H, then
H g i
=5 { Lt }
For example, let the section be rectangular, then ¢=1, n=-1;, and

we find
H T 3 W
f=a (it }

Let us further suppose the ratio of depth to span one sixteenth,

then
p=Z. (1 + 137”) __(12

which shows how greatly the effect of a thrust is increased by a
moderate bending moment.

If the deflection be supposed 1 inch in 100 feet then X will in
consequence produce an additional bending action at the centre equal
to H1/1200, which will be equivalent to an addition to /7" of H/150.
For safety H ought not to exceed 3/7, and the stress due to the
bending action of the uniform load on the beam will then be
increased about 25 per cent. by the effect of the thrust. This caleula-
tion shows why it is often necessary to support a beam at points not
too far apart by suitable trussing even when support is not required
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to give sufficient stiffness. Theoretically a proper “ camber” given
to the beam will counteract the bending action, and, conversely, a
small accidental deflection will increase it.

175. Remarks on the Application of the General Formula.—The
formula given above in Art. 172 is much used in questions relating to
the stability of chimneys, piers, and other structures in masonry and
brickwork. The stress on horizontal sections of such structures
varies uniformly or nearly so, and the formula then shows where the
stress is greatest and also where it becomes zero, tension usually not
being permissible. It must be borne in mind however that the
bending is frequently unsymmetrical, so that the axis of the bending
moment will not coincide with the neutral axis of the bending stress
on the section (Art. 162). The stability of blockwork and earthwork
structures is a large subject which will not be considered in this .
treatise.

176. Straining Actions due to Forces Normal to the Section.—The
reasoning of this section shows that when a structure is acted on by
forces some or all of which have components normal to a given section,
the straining actions due to the normal components will in general de-
pend on the relative yielding of the several parts of the section (Art.
42). These normal components however can always be reduced
to a single force, acting through any proposed point in the section,
and a couple, and if the point be properly chosen according to the
nature of the structure at the section that single force will be a
simple thrust or pull ; thus in the cases we have mentioned the point
is the centre of gravity of the section. Having done this the couple
will be so much addition to the bending action. An important example
of this is the case of a vessel floating in the water in which the horizon-
tal longitudinal component of the fluid pressure generally produces
bending, the arm of the bending couple being the distance of the
intersection of the line of action of the resultant with the section
considered, from the neutral axis of the “ equivalent girder.”

177 Macimum Crushing Load of o Pillar—When the compress-
ing force is sufficiently great it produces a strong tendency to bend
the pillar even though there be no lateral force. We have already
seen that the condition that this shall not be the case is that /#” shall
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be small compared with the quantity 2£7/P and we now proceed to
inquire the effect produced when 7 has a larger value. All these
cases come under the head of what is called Crushing by Bending,
and are very common and important in practice.

As in the case of the deflection of a beam the question is much
more simple when the pillar bends into an are of a circle, which it
will do in various cases explained in Art. 163. The case which we
select is that in which the sectional area remains constant and the
thickness varies. Such a pillar is of uniform strength when very
slightly bent, and when more bent the weakest point is at the base.
As the breadth becomes great at the summit this form could not be
practically applied without modification, but the conclusions derived
by considering it may be applied with slight modifications to the
cases which occur in practice. *

When the load is applied exactly at the centre the elevation of
such a pillar is a semi-ellipse with vertex at the summit ; when not
exactly at the centre the ellipse is truncated. For the present pur-
pose it is not necessary to consider this point further, as the form
is not intended for practical application.

Assuming then the form of the bent pillar to be a circular are we
have as before
_ e
- 2ET
but we have now, since we cannot neglect 3,

M =W(a+ ).
Hence by substitution we find
s Pla+dn
9BL
where I is the moment of inertia at the hase, from which we find

)

S

9ET_

This result shows that the pillar bends laterally more and more

*The case where the thickness is uniform has been considered by Dr. Young
in his Natural Philosoply (see Young’s works, Peacock’s edition, p. 139), who
shows that the outline is a circular arc, as follows at once from Art. 161.
The compressive stress however near the summit of the pillar is then very
great,
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as JV increases, and breaks with some value of 77 which we will
find presently by substitution in the formula of Art. 172,

First, however, observe that if @ =0, that is, if the line of action of
the load pass through the centre of the pillar at its summit, then
8=0 unless the denominator of the fraction be also zero, that is,
unless

=gl
l-
The interpretation of this is, that if W be less than the value just
given the pillar will not bend at all, but if disturbed laterally will
return to the upright position when the disturbing force is removed.
If 77 have exactly that value then, when put over into any inclined
position the pillar will remain there in a state of neutral equilibrium,
while the smallest increase of /7 above this limit will cause the

Fig.184.

Dillar to bend over indefinitely and so break. Thus the foregoing
equation may be regarded as giving the crushing load of the pillar
under certain conditions to be defined more exactly presently.

If the pillar had not bent into the arc of a cirele as has been
just supposed, we should have arrived at exactly the same formula
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except that the co-efficient 2 is replaced by a not very different
number depending on the circumstances of the particular case. If
the transverse section be uniform then the pillar bends into a curve
of sines and we must replace 2 by w%/4 or 2-47, thus obtaining

Tl ) L

iy

a formula which having been first obtained by Euler is known as
Euler’s Formula. It applies directly to a column fixed firmly in the
ground and entirely free at the upper end ; it can however easily be
modified to suit the cases more common in practice where the ends
of the column are constrained to lie in the same vertical line. There
will be three such cases shown in Figs. 134, 134a, 1345,

In the first the ends of the pillar are rounded and it bends laterally
in the curve BAB; each half 4B is then in the position of the pillar
originally considered, except that the base instead of the summit is
free to move laterally, hence to get the crushing load we have only
to replace I by L/2, where L is the whole height of the pillar. In the
third both ends of the column are flat, which has the effect of retain-
ing the axis in the vertical at top and bottom, so that lateral bending
takes place in the curve CBA4BC, being a curve with two points of
contrary flexure or “virtual joints.” Here the four pieces CB, B4,
AB, BC, are all in the same condition and must be of the same length;;
each is in the condition of the pillar originally considered; to get the
crushing load then we have only to replace I by L/4, where L is the
whole length. In the second the pillar bends into a curve BABC
which has one point of contrary flexure B, the other being at the
summit ; if this point were in the same vertical as the summit then
the pillar would be divided into three equal parts and we should get
the crushing load by writing L/3 for / in the original formula. As
the figure shows however, B must be a little out of the vertical, and
this slightly diminishes the crushing load which we get approximately
by writing Z/2 /2 for I

‘We thus obtain the three formulee,

Wt S W=t e Wit
for the three cases in question with a uniform section. If the pillar
be bent into a circle as described above, then =*is to be replaced
by 8.

=



CH. X1v. ART, 178] COMPRESSION AND BENDING. 347

178. Manner in which a Pillar erushes. Formula for Lateral Devia-
tion.—The value of /7 here found is the maximum load which a
pillar, free to deflect laterally, can sustain under any circum-
stances; but, in order that it may actually be sustained, the
pillar must be perfectly straight, the material must be perfectly
homogeneous, and the line of action of the load must be ex-
actly in the axis. These conditions cannot be accurately satis-
fied, and consequently a lateral deflection is produced, which
increases indefinitely as the load approaches the theoretical maxi-
mum. This may be expressed by supposing that o is not zero,
but some known quantity depending on the degree of accuracy with
which the conditions are satisfied, and which may be called the
« offective” deviation ; since, when the pillar is straight and homo-
geneous, it will be the actual deviation of the line of action of the
load from the axis. Let 77, be the theoretical maximum load as
caleulated from the preceding formule and 77 the actual load, then

@

5 L K :
= =0. 7, (p- 344.) ;
7

thus we see that a load of 3, §, # the theoretical maximum produces
a lateral deflection of la, 2a, 3a, increasing the deviation of the load
from the axis of the column to 2a, 3a, 4a. These numbers are only
exact when the pillar is so formed as to bend into the arc of a circle,
when this is not the case they follow a more complicated law of the
same general character depending on the type of pillar and the
nature of the deviation. For our purpose the simple case is sufficient.
It is convenient to express the load in pounds per square inch of the
area (A) of the pillar at its base, then we may write with the notation
of Art. 155 .

h?
. ‘Zzz )
for the case where the pillar is rounded at both ends, the number w2
being replaced by 27° or 4= in the two other cases of the last article.
Similarly writing p = 7#/4 for the actual load on the pillar, we geb
by substitution

— =g .k

PD:A

d=a. -—?_, or a+d=a. ol S
Po— P Po—P
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The deviation is accompanied by an increase in the maximum stress
(f) on the transverse section, which is given by the formula

H M
‘74(“% - (p. 340),
from which we get, replacing I by # and M by ¥(a + 8),

il e

a result which shows that f increases indefinitely as p approaches p,,
so that the pillar must break before the theoretical maximum is
reached, however small the original deviation is. The greatest
value of f must be the elastic strength, for as soon as this is past an
additional lateral deviation at the most compressed part will occur,
sooner or later accompanied by rupture.

The formula may be written in the more convenient form,

(-0(-2)-%
in which it is worth while to observe ‘that the right-hand side is
unity for the deviation necessary to produce double stress when the
pillar is so short that no sensible augmentation of the deviation is
produced by lateral bending. In materials like cast iron which have
a low tenacity, very long pillars give way by tension on the convex
side ; the formula then becomes

Zyo 40
+ 1)(1 —pu) Tk
where f” is the tensile stress at the elastic limit. The two formule
give the same result if

5 g%_
For loads greater than this the first formula applies, and for small
loads the second. In pillars flat, but not fixed at the ends, without
capitals f* may be zero.

179. We thus see that if a pillar were absolutely straight and
homogeneous it would erush, by direct compression if p, were greater
than f, and by lateral bending if p, were less than f, the crushing
load being the least of these two quantities; but that the smallest
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deviation will be augmented by lateral bending, so that the actual
crushing load will be less than the least of these quantities. FExperi-
ence confirms this conclusion. When a long pillar is loaded we do
not find that it remains straight till a certain definite load p, is
reached, and then suddenly bends laterally. We find, on the con-
trary, that a perceptible lateral deflection is produced by a small
load, which gradually increases as the load is increased, till rupture
takes place, showing, as we might anticipate, that some small
deviation existed originally. And as that deviation evidently de-
pends upon accidental circumstances it is impossible, from imperfec-
tion of data, to find the actual crushing load of a pillar for those
proportions of height to thickness, for which its effect is greatly
augmented by a small deviation. The augmentation is on the whole
greatest when

I
f:])uzwg.'n.E.zg}

L w2k
Tt v o
This gives, by taking the values of & and f from Table IL, Ch. XVIII.
Wrought Iron, L =38 ~/7n . h =30k (Circular Section).

that is, when

Soft Steel, L=29 w0 . h=23h -
Hard Steel, L=23nNan. h=18h 7
Cast Iron, L=20/zn . h=16h

»

In the case of cast iron there is a difficulty in determining the value
of f, but if we suppose that the elasticity of the material is not
greatly impaired at half the ultimate crushing load, we get the value
given. The case of timber is exceptional, and will be referred
to further on. For pillars fixed or half-fixed at the ends the number
72 is to be replaced by 42 or 27* as before.

Let us assume this condition satisfied, and let us imagine the pillar
loaded with three fourths the theoretical maximum crushing load,
then by substitution we find, ga/nh =1 . 1, or since n/g=% for a
circular section,

el

Lo 96’
from which it will be seen how small a deviation will cause the pillar
to crush under three fourths the theoretical maximum load, when the
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proportion of height to thickness is that just given. With a pillar
of double this height deviation has little influence, and with a pillar
of one third this height lateral flexure has little influence on the
resistance to crushing,

On the whole, then, it would seem that the most rational way of
designing pillars would be to calculate the theoretical maximum
load, and then adopt a factor of safety depending on the value of the
deviation found from the above formula ; it is obvious that in some
cases a much larger deviation may be considered likely than in
others. For the case of thin tubes see Ch. XVIIL

180. Gordon’s Formula.—The greater part of our experimental
knowledge respecting the strength of pillars is due to Hodgkinson.*
His results show that in cast-iron pillars with flat ends, the length
of which exceeds 100 diameters, the theoretical maximum is closely
approached, while with shorter lengths the strength falls off con-
siderably, as might be expected. In other respects the theoretical
laws are approximately fulfilled, the principal difference being that
columns with one or hoth ends rounded are somewhat stronger
relatively to columns with flat ends than theory would indicate, an
effect which may be partly due to imperfect fixing of the ends.
Various empirical formul® have been given to express the results of
experiment on the crushing of pillars. That which has been most used
is commonly known as Gordon’s. It is so constructed as to agree
in form with the theoretical formuls in the extreme cases in which
those formul give correct results. Asmodified by Rankine, only re-
placing 72 the square of the radius of gyration, by 2% in the notation
of this work the formula is

B e
i 1 +.ii’
cnh?
which becomes, when /l is small,
Wi=Af,

and when //k is large,

W= can'ia =L
l
while for intermediate values it gives intermediate results.

* Phil. Trans., 1840, Part II, An abridgment is given in Hodgkinson’s work
on Cast Iron, cited at the end of Chapter XVIII,
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If we compare this last with Euler’s formula for a column with flat
ends, we get
f}
and this may be called the *theoretical” value of the constant c.
The values actually used for ¢ are somewhat different, being deduced
from such experiments as have been made, and the results for differ-
ent forms of section are not always consistent. Rankine gives

c= 47

VALUE OF CONSTANTS.

Value of /. Value of e.
Wrought Iron, ; : : 36,000 36,000
Cast Iron, ; : : : 80,000 6,400
Dry Timber, . : ; g 7,200 3,000

These values refer to struts fixed at the ends and to the crushing
load. If one end be rounded, the value of ¢ must be divided by 2,
and if both ends are rounded, by 4. A large factor of safety must
be employed, for reasons already sufficiently indicated.

Rankine’s formula has been very extensively tested for the case of
wrought columns of large size of various transverse sections, con-
structed of riveted plates, and has been found to give good results.*

In the case of timber Hodgkinson found, from a limited number of
experiments on struts of oak and red pine of small dimensions, a
formula which agrees with the formula for the theoretical maximum
crushing load when the value of Z in that formula is taken as about
900,000 1bs. per square inch. It is possible that the low lateral
tenacity of this material increases its flexibility under a heavy crush-
ing Joad. The formula. gives a crushing stress greater than the
direct resistance to crushing of the material when Z is less than
20%, which seems hardly probable, and the lower values given
by Gordon’s formula appear preferable. In the case of steel the
value of f may be expected to be increased and the value of ¢
diminished in the ratio of the direct resistance to crushing of steel
and wrought iron respectively.

_ Calculations made by Gordon’s formula may be tested by calculat-
g the deviation @ by the formula on p. 348 ; the magnitude of this
Will be to some extent a measure of the safety of the proposed load.

* ¢ Minutes of Proceedings of the Institution of Civil Engineers,” vol. liv.
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In all cases of struts of large size subject to a heavy load, special care
is necessary in considering all the circumstances—if a deflection be
occasioned by the unsupported weight of the strut itself, or if, as is
often the case, it be constructed of riveted plates, a large margin of
safety is desirable. So also in pieces forming part of a machine in
which a bending action may be produced by inertia and friction, or
which are subject to shocks, the simple thrust alone is often a very
imperfect measure of the stress to which they are subject.

Returning to the case of a long slender column we observe
that the resistance to crushing depends solely on the stiffness and
not on the strength being proportional to the modulus of elasticity.
Hence a long column is stronger when made of wrought iron than
when made of cast iron, although with short columns the reverse is
true. It appears from Gordon’s formula that for a ratio of length to
diameter of about 264 the two materials are equally strong. In very
long columns steel is not stronger than iron, for its modulus of
elasticity is not very different ; in shorter lengths however the greater
resistance to direct crushing of steel gives it an advantage.

181. Collapse of Flues.— There are other cases of crushing by
bending. An important one is that of the yielding of a thin tube
under exfernal fluid pres-
sure, The strength of a
tube under external fluid
pressure is as different from
that of a tube under inter-
nal pressure as the strength
of a bar under compression
is different to its strength
under tension.

. i S, A t.ube perfectly uniform
L ™\ in thickness made of per-

fectly homogeneous hard
material and subject to perfectly uniform normal pressure exter-
nally, would theoretically maintain its form until it yielded by
the direct crushing of the material. But when the pressure ex-
ceeds a certain limit the tube is in a state of unstable equilibrium,
and any deviation from perfect accuracy in the above conditions will
cause the tube to yield by collapsing, the collapsing being accom-
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panied by bulging. If the tube is very long it will collapse in the
manner shown in Fig. 135, the circumference dividing itself up into
four arcs two of which are concave outwards and the other two
convex. A want of exactness in the construction will in practice
generally prevent the collapsing from being symmetrical. Each
portion of tube between the points .4 is under the action of forces
applied at the ends towards one another, which crush it by lateral
bending just as a long column is crushed. Just before collapsing, each
segment 4.4 (Fig. 136), of length s say, will be under the action of
a thrust P suppose, applied at the ends tangentially. Equilibrium is
maintained by fluid pressure of intensity p on the convex side. When
the pressure exceeds a certain limit the equilibrium is unstable, some
accidental circumstance determining the position of the point 4 of
contrary flexure, and the consequent length s of any arc.

The thrust per inch length of the tube may be taken as approxi-
mately proportional to p. Thus if = thickness of tube, we may expect
that the collapsing pressure would be given by a formula like that
which expresses the crushing load of a long slender rod of rectangular
section, namely, p = £'#*/s* where %' is an unknown co-efficient. All
other things being equal, the diameter alone varying, the length
s of an arc 4.4 would be proportional to the diameter of the tube d,
and, under those circumstances, the collapsing pressure would probably
Vary with #/d*. But the length of the tube, as well as the diameter,
influences the value of s. In all practical cases, as in all those on
which experiments were made, the ends of the tube are rigidly con-
structed, and very much support the tube in the neighbourhood from
collapsing ; thus the proximity of the ends has an important effect in
determining the length of the arcs into which the circumference
divides itself. If the length of the tube is decreased a limit will be
reached below which the tube on collapsing divides
itself up into six arcs, three concave and three con-

~vex, as shown in Fig. 137. Then the length of
each arc will bear a smaller proportion to the dia-
meter than in the long tube. A still shorter tube
will, when it collapses, divide it into eight ares,
and so on. Thus the length s is in some way dependent on
the length of the tube. The correctness of this reasoning is
borne out by experiments made by Fairbairn and others. In

Fairbairn’s experiments the tubes were made of riveted wrought-
7
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iron plates. The ends were made rigid by a strong stay placed
within the tube, keeping the ends apart. The tube thus constructed
was placed in a larger cylinder of wrought iron and external pressure
was applied by forcing water in. The pressure being gradually
increased the tube will at last suddenly collapse, making a mnoise
which indicates the instant of the occurrence. The results of the
experiments showed that the collapsing pressure may be approxi-
mately expressed by the formula

r= fn,d,

the dimensions being all in inches, the co-efficient % =9,672,000.
This formula must not be used for extreme cases nor for tubes of
thickness less than § inch.

Since a short tube is so much stronger than a long one, we have
an explanation of the advantage of riveting a T iron ring around a
hoiler furnace tube, which amounts to a virtual shortening of the
length of the tube. Other formul® have been proposed, some of
which represent the results of experiment more closely, but the
materials at present available do not admit of the construction of a
satisfactory formula. *

EXAMPLES.

1. Find the thickness of metal of a cast-iron column fixed at the ends, 1 foot mean
diameter, 20 feet high, to carry 100 tons. Factor of safety, 8. Ans.—Thickness 1",

2. Find the crushing load of a wrought-iron pillar 3" diameter, 10 feet high, free at
the ends. Ans.—Crushing load — 66,218 1bs. = 30 tons nearly.

8. If in last question the pillar were of rectangular section of breadth double the
thickness, what sectional area would be required for equal strength? Ans.—Sectional
area = 94 square inches instead of 7 square inches as before.

4. Find the collapsing pressure, according to Fairbairn’s formula, of a cylindrical
boiler flue 17" thick, 48" diumeter, and 30 feet long. .Ans.—Collapsing pressure - 107
Ibs.

5. In Ex. 1 caleulate the deviation of the line of action of the load from the axis
to produce a maximum stress of 10,000 lbs. per square inch. Ans.—1'8".

6. In Ex. 2 calculate the deviation to produce a maximum stress of 9,000 lbs. per
square inch with a load of 11,000 lbs. or of 22,000 Ibs. Ans.—1'2" or 74",

# See a paper by Professor W, C. Unwin, Minutes of the Proceedings of the
Institution of Civil Engineers, from which the preceding remarks are partly
taken. Some other cases of erushing by bending will be given in the Appendix.



