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CHAPTER XV.
SHEARING AND TORSION OF ELASTIC MATERIAL.

182. Distinction between Tangential and Normal Stress.—Equality of
Tangential Stress on Planes at Right Angles.—In the cases we have
hitherto considered of simple tension, compression, and bending, the
stress on the section under consideration has been at all points
normal to the section. But we may take our section inclined at any
angle to the stress, and the mutual action is then not normal to the
section. The particles on each side of the section partly act on one
another in the direction of the section itself, and so constitute a
stress analogous to friction, resisting the slid- Fig138
Ing of one portion relatively to the other. :
Such a stress is called fangential or shearing
stress, being the stress called into action by
shearing,

Let us return to the case of the stretched
bar carrying a load P (Fig. 138). On a trans-
Vverse section of the bar only a normal stress
18 produced. Now suppose we take an oblique
section, whose normal makes an angle 6 with
the axis of the bar, and let us resolve the force P into two com-
Donents, one perpendicular and the other parallel to the section.
The normal component P cos 6 tends to produce a direct separation
at the section, producing a tensile stress similar in character to that
On a transverse section, but of less intensity.

If 4 =area of transverse section of bar, then A sec f=area of
Obﬁque section ; the intensity of the normal stress

Pcos 0
s 2% =;§ c0s®0 =p cos?0, where p=—4

N

N,
“p.cosf

ping

]
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The other component P sin 6§ produces a tangential or shearing
stress of intensity

Psin 6 .
P = eecf=Dsinbcosb.

Similarly if the bar is subjected to a compressive instead of a tensile
load.

Many materials which offer great resistance to direct compression
yield by sliding across an oblique plane. Now p, is a maximum
when =45, this is therefore approximately the angle of separation.
The same maximum stress, the value of which is p/2, occurs on
another plane sloping the other way at an angle of 45°. We some-
times find fracture to occur across two oblique planes; sometimes
across one only.

If in p,=psin 0 cos @ we change 6 into 90 + 6, p, has the same
value ; so that the intensity of the tangential stresses on two planes
ab right angles to one another is the same. This is true generally in
all cases of stress, as will be seen presently.

183. Tangential Stress equivalent to a Pair of Equal and Opposite
Normal Stresses. Distorting Stress.—In the example we have just
Fig.189 considered we have both shearing and

TP ' normal stress; but there are cases in

| which there is only a shearing stress. Let
ABCD (Fig. 139) be a rectangular plate

1 of thickness . Over the surfaces BC
IP* and 4D suppose a tangential stress to
l
}

be applied of intensity p. Calling b and «
the length of the sides of the plate, the
total amount of the tangential stress on

S e __2. each side is
lp P=p, .U
To prevent the turning of the plate, suppose the forces P balanced
by the application of an uniform stress over the surfaces B4 and DC,
of intensity . The amount of the force on each of these sides,
D=p a0

Since equilibrium is produced, the moment of the couple P must be
equal to the moment of the couple .
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Lopobtoa=plioatub;

OT P, =Dt
that is, the intensity of the stress is the same on B.A as on AD.

Shearing therefore cannot exist along one plane only. It must be
accompanied by a shearing stress of equal intensity along a plane at
right angles. Such a pair of stresses unaccompanied by normal
stress constitute a Simple Distorting Stress, so called because it dis-
torts the elements of the body.

Let us now assume, for simplicity, the plate to be square (Fig. 140).
The effect of the forces is to produce a change of form, which, in
perfectly elastic bodies, is exactly pro-
portional to the shearing force which
produces it. The square 4BCD be- < Axmi—— <« <o

P Fig .140

comes a rhombus 4B'C"D, the angle 1 b e ¢ =y by
of distortion ¢ being proportional to 1 //‘/ ll
the stress p, We may write 1 ) /:r;_p ; l
pe=C4, 1 e |
where the co-efficient €' is a kind of 1 "/, 1
Modulus of Elasticity, but of a different D—“'—"*:::::/ (-1
nature from that previously employed. riz 1130' A

The volume of the elastic body 4 is in
general practically unaltered. TUnder the action of the forces it has
simply undergone a change of form or figure, and the co-efficient €'
Which connects the change of form with the stress producing it, is a
co-efficient of elasticity of figure. Tt is sometimes called the modulus
of transverse elasticity, but preferably the co-efficient of rigidity.

The ordinary (Young’s) modulus of elasticity £ connects the stress
and strain in a bar when it undergoes changes both of volume and
figure. The co-efficient of rigidity ¢ for metallic bodies is generally
less than 27, and for wrought-iron bars may be taken as 10 to
103 millions,

Let us now take a section of the square plate (Fig. 140) along one
of the diagonals and consider the forces which act on the two sides
of the triangular upper portion. Resolve these forces parallel and
Perpendicular to the diagonal. The components of the two P’s along
the diagonal balance one another, and there will be no tendency for
this triangular portion to slide relatively to the other ; that is to say,
there is no shearing stress on the diagonal section. But the other
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components, perpendicular to the diagonal, cause the upper triangular
portion to press on the lower with a force
12
2;7_2 = 120,
If we divide this force by the area of the diagonal section over
which it is distributed, we obtain the intensity of this normal
stress,

o e P

SagTE

pu

On the diagonal section 4C' which we have been considering, this
stress is compressive, but if we take the section along B, the other
diagonal, we find by the same reasoning a stress of the same
magnitude, but tensile.

Thus it appears that a shearing stress on any plane necessarily
involves tensile and compressive stresses of equal intensity on planes
at 45°, so that a simple distorting stress, which was

Fig.141.
) defined above as a pair of shearing stresses on planes
5, 11t . at right angles, may also be defined as a pair of
== “— normal stresses of equal intensity and of opposite
p s S
i = sign, as shown in Fig. 141,
el We now proceed with various examples of this
P

kind of stress, commencing with the case of torsion.

Torsion was mentioned as one of the five simple straining actions

to which a har as a whole may be exposed. It is produced by a

pair of equal couples applied at the ends of the bar, the axis of the
couples being the axis of the bar.

When we consider the nature of the elastic forces called into

Fig.142.

action amongst the particles of the bar, Torsion reduces to a case of
Shearing. To understand this,” we will begin with a simple case.
Imagine a thin tube (Fig. 142) with one end fixed, and the other
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acted on by a uniform tangential stress of intensity ¢. Let ¢ be the
thickness and d the mean diameter of the tube, then

Sectional area of tube = mdf approximately ;

Total shearing force = gwdt

and since the force on each unit of area of the section acts approxi-
mately at the same distance from the centre of the tube, the total
twisting moment = gwdf x §d = yqmd?®. This twisting moment is
balanced by the resistance to turning offered at the fixed end. At
any transverse section KK of the tube there will be produced a uni-
form stress of intensity ¢.

Let us now consider a small square traced on the surface of
the tube, with two sides on two transverse sections. If we take
the square small enough we may treat it as a plane square. To
balance the shearing stress g, which acts on the sides of the square
lying in the transverse planes, a shearing stress of equal intensity is,
as explained above, called into action on the other two sides of the
square, in the direction of the length of the tube, so that, if the
tube were cut by longitudinal slits, the power of resistance to torsion
would be as effectually destroyed as if it were cut by transverse slits.
But if we make spiral slits at an angle of 45°, as shown at S5 in Fig.
142 ; supposing the slits indefinitely fine, and no material removed,
the strength of the tube to resist torsion in the direction shown
would not be impaired. The material of the tube would then
be divided into spirally-bent ribands, which would be in tension
along their length, and in compression laterally, the ribands being
caused to press against one another. Along a second set of spirals
such as 88, longitudinal compression and lateral tension exist ;
the lateral forces are indicated in both cases by arrows in the
figure,

So much for the state of stress induced in the tube by the torsion.
Next as to the change of form which accompanies the stress. The
Square will be distorted into a rhombus. A straight line 4D, drawn
on the surface parallel to the axis of the tube passing through the
centre of the square, will be twisted into a spiral 4D’, the angle of
the spiral being the angle of distortion of the square. Let 6 be
that angle, then

q=C0, where (' is the co-efficient of rigidity.
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The effect of this is that, relatively to the end ., the end ) is
twisted round through an angle DOD'=1 suppose, called the angle

of torsion.
arc DD’

In circular measure i= (r = radius of tube). Also arc

DD'=16, 0 being a small angle. Therefore i=16/r. Since also 6=
q/C, we have the angle of torsion i=¢l/Cr, in terms of the stress.
From this we may express the angle of torsion in terms of the twist-
ing moment producing the torsion.

184. Torsion of a Shaft.—We now pass on to the consideration of
the torsion of a solid cylindrical shaft. First, let us imagine the
shaft to be made up of a number of concentric tubes exactly fitting
one another, and let us further imagine that at the end of each tube
a suitable twisting moment is applied, so that each tube is twisted
round through exactly the same angle. This effect will be produced
by applying over the section at the end of each elementary tube a
tangential stress, which is proportional to the radius of the tube. If
we make g¢/r=gq,/r,, where g; and r, refer to the outside tube, then
the angle of torsion will be the same for all the tubes, and they will
not tend to turn relatively to one another, but all together. We
may then suppose them united together again in a solid mass. If
the stress applied be proportional to the distance from the centre,
the shaft will twist just as if it were a set of tubes, each being
subjected to the same stress and strain as if it were an independent
tube.

Now in the actual case of the twisting of a solid shaft, all portions
from the outside inwards to the centre must turn through the same
angle, and hence the shearing stress at any point of the section of
the shaft must be proportional to its distance from the centre. This
is true except very near the point of application of the twisting
moment. Suppose, for example, the twisting moment is applied by
means of a wheel keyed on the shaft, then in the immediate
neighbourhood of the key-way, the stress will not be as stated,
but at a short distance along the shaft the stress distributes
itself in the manner described. This is another instance of the
general principle already employed in the case of stretching and
bending.

The total resistance to torsion of the solid shaft is the sum of the
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twisting moments of all the concentric tubes into which it may be
imagined to be divided. Thus
T =32m*y; in which g=7. %‘

1
o T =352ty Dt = DSr2mit . 1%,
T Ty
that is, the product of the sectional area of each tube multiplied by
the distance squared of the area from the axis of the shaft must be
taken and summed. The result is called the Polar Moment of
Inertia, which may be written Z. Its value is m{. Thus
T= gifz%ﬁ = 5 0k

It is not to be supposed that the strength of a shaft of any section
to resist torsion is proportional to the polar moment of inertia of
that section. In non-circular sections the stress is generally greatest
not at the points farthest away from the centre, but more often at
those which are nearest the centre. The cases of a rectangle, an
ellipse and various other forms have been investigated by M. St.
Venant who has obtained the annexed results.*

| RELATIVE STRENGTHS OF SHAFTS OF THE SAME SECTIONAL AREA.
FORM OF SECTION, ‘ STRENGTH. |
: [reTa T g
Circular, - - - E - 2 s | 1
Square, - - - - - - - ~ 8863
Rectangle with sides in the ration: 1, - \/L % 8863
| n+1/n
Ellipse with axes in the ration : 1, - - vn (n< 1)

Dropping the suffixes, taking r to be the outside radius, we can write
the moment of resistance to torsion of the shaft,

T = LnfiS, or Jyufd®;
where f is the co-efficient of strength of the material to resist shear-

* Diagrams and particulars with respect to M. St. Venant’s results will be
found in 8ir W, Thomson’s Treatise on Natural Philosoply, 1sted., vol. 1, p. 545.
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ing. Thus the strength under torsion is proportional to the cube of
the diameter. The formula shows that, assuming f to be the same in
each case, the strength of a shaft to resist a twisting mowent is
double its strength to resist a bending moment. Since i =¢l/Cr we
can eliminate ¢, and thus obtain

185. Diameter of Shaft to transmit a Given Power.—Having deter-
mined the diameter of shaft required to take a given twisting moment
we are now able to obtain a solution of the practical question, What
diameter of shaft is required to transmit a given horse-power at a
given number of revolutions per minute ?

Let 7o =mean twisting moment transmitted in inch-tons, then
T, x 2rN=work transmitted per minute in inch tons, where N =
revolutions per minute of shaft.

Let HP denote the horse-power to be transmitted, then

Ty 2miy - 33000512 1y

~ 23240
. 11=33000X12 HP.
0T 990X 9 N

Now the shaft must be strong enough to take not only the mean
but the maximum twisting moment.

We may express the maximum in terms of the mean by writing
T = KT,, where K is a co-efficient whose value is different in different
cases and 7' =maximum twisting moment, but

T i or & 1_‘5;
16 x 33000 x 12 K H.P.

NS =~
arx2240 f N’
and
SIKHP IIP
d=5:233
TS,V

The value of f depends in some measure on the fluctuation to which
the twisting moment is subject, but under ordinary circumstances
should not exceed 3} tons per square inch (Art. 221) for wrought
iron, or, probably, about 5 tons for steel, and 2} tons for cast iron.
The value of K, the ratio of maximum to mean twisting moment,
depends on the circumstances discussed in Chapter X. We may
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assume it equal to 1} under ordinary circumstances, allowing a small
addition for the bending due to the weight of the shaft. On substi-
tution we obtain for wrought iron

SHP:
ek \/ i
This formula agrees closely with the best practice in screw-propeller

shafting.

When the amount of bending to which the shaft is subject is
considerable, as in the case of crank shafts, the diameter determined
by this formula is too small. Tt will be seen hereafter that when all
the forces acting on the shaft are known, a value of K can be caleulated
which gives the effect of bending. If we assume K = 2, the co-efficient
4 in the above formula will be replaced by 4'5, and this agrees closely
with practice in the crank shafts of marine screw engines. In other
cases a still larger value may be necessary.

In the formula for the angle of torsion

il

=0
if we replace ¢ by its working value for wrought iron (7,200 lbs.), €'
by 10,500,000 Ibs., and i by the circular measure of 1°, we find

iy o

showing that under the working stress the shaft twists through 1°
for each 12§ diameters in its length. For many purposes this is
much too small, and the dimensions of a shaft then depend on stiff-
ness, not on strength, as in the case of beams (Art. 168). The
greatest angle of torsion permissible depends in great measure on the
irregularity of the resistance, and no general rule can therefore be
laid down for it. If the angle of torsion be given and the length, the
diameter will depend on the fourth root of the twisting moment, as
shown by the formula of Art. 184. In this, as in other cases where
dimensions depend on stiffness, not on strength, steel has no advan-
tage over iron, because the co-efficients of elasticity of the two
materials are the same, or nearly so. A hollow shaft is both stronger
and stiffer than a solid shaft of the same length and weight.

186. Distance apart of Bearings—The distance apart of the
bearings of a shaft depends on the stiffness necessary to resist
the bending due to the weight of the shaft itself, and of any pul-
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leys or wheels upon it, together with the tension of belts and
other similar forces. If the total load be equivalent to m times the
weight of the shaft itself uniformly distributed, the length between
bearings for a wrought iron or steel shaft d inches diameter will be
given approximately for a stiffness of ¢, by Ex. 7, p. 339.

When, as in serew propeller shafting, the bearings are liable to get
out of line, too great stiffness in a shaft will produce great straining
actions upon it.

187. Web of @ Beam of I Section.—Torsion is one of the few cases
in practice where a simple distorting stress occurs alone and not
in combination with other kinds of stress. It generally happens
that a normal stress is combined with it ; such, for example, is the
case in the web of a beam of I section, to which we next proceed to
direct our attention. Taking a transverse section, the normal stress
at a point distant y from the neutral axis is given by the formula

P M
vl
and is therefore the same for the same values of M and 7, whether
the web be thin or thick, while it will be shown presently that the
tangential stress is greater the thinner the web, and becomes the
most important element when the web is thin.
Let us suppose, for simplicity, the flanges equal, and also that the
beam is supported at the ends and loaded in the centre with a

weight /7.
As we have previously seen, the flanges will sustain the greater
W w
. : ' lig:l4
T 1Ky K, i g T!
= = ; ]
i 8 gt o]
T 1
Hy, & _qli H !
— - — ¥
P i “ %
I el :
eomm X pen

portion of the bending moment, the web carrying only a small por-
tion of it, §, if the area of the web equals the area of each flange.
For simplicity, let us imagine the flanges to take the whole of the
bending. Let K; and K, (Fig. 143) be two transverse sections of
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the beam at distances a, and a, from the centre of the beam, 2a being
the span of the beam, the bending moment at the first section,
M =L W(a—2)and at the 2nd My =} (a - z,).
Now, supposing the flanges to take the whole of the bending the
stress H produced on the flanges is given by the formula
HhM.%mM&mei=@%ﬁ,

and at K, we have ;= .?ﬂ;;};ﬁﬂ)’

and similar forces on the bottom flange only reversed in direction.
There will thus be a resultant force I, — H. tending to push the por-
tion K,K, of the flange to the left,

e

This force is balanced by the resistance of the web to shearing along
the line of junction with the flange.

Since H,H, is proportional to the length of KK, the shearing
force per unit of length of web= IW/2h. If we suppose ¢ to be the
thickness of the web, the intensity of the shearing stress will be

=EW
2
Thus, considering the portion of the web hetween the sections K,
and K, apart by itself, we see that on the upper and lower hori-
zontal edges of it, where it joins the flanges, it is subject to a shearing
stress of intensity g. Now, to balance this stress there must act on
the vertical sides KK a shearing stress of equal intensity ¢. Now,
the shearing force for the vertical sections KK is §W. Supposing
the web to be of rectangular section and of height %, then, assuming
the whole of the shearing force to be borne by the web, the intensity
of the shearing stress on the vertical sections is

w

9= o
Therefore the assumption that the flanges take the whole of the
bending moment is equivalent to supposing the web to take all the
shearing. Assuming this, we see that the shearing stress, being
uniformly distributed over the vertical section, will be accompanied
by an equal shearing stress on any horizontal section. When con-



366 STIFFNESS AND STRENGTH. [PART 1V.

sidered alone, the effect of these shearing stresses on planes at right
angles to one another is to produce tensile and compressive stresses
on the web in directions making an angle of 45° with the horizontal
and vertical planes; and thus the web may be superseded by an
indefinite number of diagonal bars inclined at an angle of 45°, thus
forming a lattice girder.

If the web is designed so as to be strong enough only to withstand
the shearing stress, replacing ¢ by f the co-efficient of strength
against shearing f, we find

pesalll]

2hf

The influence of the normal stress due to bending will be con-
sidered in the next chapter. Its effect is greatly to increase the
strain on the web (see Art. 202), which besides will in most cases
exhibit weakness on account of the compressive stress in one of
the diagonal directions. If the distance between the flanges is
great, the web will be liable to yield by buckling or lateral flexure
(see page 317). To prevent this, the web must be stiffened by
angle irons rivetted on it. But the girder would then be made
heavy, and it is therefore more economical to make large girders with
openwork diagonal bracing.

We have in this investigation supposed the beam loaded in the
middle, so that the shearing force is uniform throughout the length
of each half, and the problem was thus simplified. But the same
principles apply if the load be distributed in any manner. The
shearing force will then vary from point to point along the beam.

188. Distribution of Shearing Stress on the Section of o Beam.—In
beams of other types it is still true that the central parts of the beam
are subject to shearing, but the total amount of the shearing stress
being the same, its intensity is much less, because it is distributed
over a greater area. The intensity at the centre of the beam is
found as follows for a beam of uniform transverse section.

Suppose the beam supported at the ends and loaded in the middle as
before, and take section K K/, K,K,. Let NN be the neutral surface,
S8 the neutral axis (as in Fig. 122, Art. 153). Above the neutral
surface the beam is compressed and below it it is stretched by equal
forces. Lot these forces be H; for the section K K;, and H; for the
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section K,K;; then, reasoning as hbefore, the shearing force in the
neutral surface must be I, — I, and the intensity of that shearing
stress, if & be the breadth at the centre,

_h-H

1= NN b,
Now to find A we have, in the notation of Art. 154,
H=Ebz.p=? = Sb.y= il[.kA’g—r,

where %A is the area of that part of the section 4 which lies above
the neutral axis (SLS in Fig. 144), and v is the distance of its centre
of gravity (¢) from that axis. The same result
will be obtained if we take that part of the area
which lies below the axis. We now have, as
before, by substitution,

Diasa) b Ay

Figl4d L

Hy,— H, ey
whence, as usual, replacing I by n4%* we find
T ky
20" b

The total shearing stress on the section is §7/7, and therefore the
mean intensity is
ik
Jies &
Thus we obtain the ratio of the shearing stress on the neutral sur-
face to the mean shearing stress on the whole transverse section.

g4 kg

Yo Db mh'

In the present case where the beam is loaded in the middle the
shearing stress is the same at all points of the neutral surface, but in
other methods of loading this will not be the case. The formula
however in all cases gives the ratio in question correctly, which will
be found to be greater than unity. In fact it is not difficult to see
that the shearing stress must be greatest at the neutral surface, and
must diminish to zero as we. approach the external surface of the
beam. The formula then gives the maximum shearing stress on the
section,
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Let us for example take a rectangular section, then
A=bh:ik=}:n=7:y=1h
R
e
so that the greatest shearing stress is 1} times the mean. In like
manner in a circular section it may be shown to be as 4:3. Other
cases are given in the examples at the end of this chapter.

In all cases where a bar is subject to shearing and the sides of the
bar are free from tangential stress, the stress on the transverse section
will be increased in this way. In pin joints where the pin is an easy
fit the only tangential stress on the sides of the pin will be due to
friction and cannot be relied on.

189. Deflection due to Shearing.—A. certain part of the deflection
Fig.145 of a beam is due to the dis-
tortion of its central parts.
Returning to the beam of
I section, loaded in the
middle, suppose the flanges
hinged at the centres, and
let vertical stiffening pieces 4.4, BB, CC, be rigidly connected to the
web but hinged to the flanges, then distortion of the web takes
place as shown in a very exaggerated way in the figure (Fig. 145),
causing a deflection & of the beam such that

Y e

i C 2mC
where (' as before is the co-efficient of rigidity, and ¢ the shearing
stress is expressed as before.

o Ll
4hiC 20
For wrought iron take ¢ = 9,000 for the working load and

C = 9,000,000, then
l

8= BANA?

2000

which is about half the working deflection due to bending in ordinary
cases.

This calculation however greatly exaggerates the deflection due to

shearing even in a beam of I section, for the web cannot in general
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be so thin as to give a stress of 9,000 lbs. per square inch, and the
effect is much less for a uniformly distributed load. Nevertheless in
beams of this class the deflection due to shearing is a sensible part of
the whole, the more so as in rivetted girders the union of the parts
seldom renders them completely rigid. This is the principal reason
why large girders show a considerably smaller modulus of elasticity
when the deflection is calculated in the usual way than solid bars.
In bars this part of the deflection is insensible, the distorting stress
being small. ;

190. Wealkening of Beams by Insufficient Resistance to Longitudinal
Shearing of the Web.—If the central part of a beam be cut away as
shown at Z in Fig. 143, the strength of the beam will be diminished
and its deflection increased. This will be true even if there be only
a narrow longitudinal slot at the neutral surface, but the weakening
is the greater the more material is cut away, the condition of the
beam in an extreme case becoming that of an N girder (Art. 25)
without diagonal bracing. TImperfect union of the parts of the web
along either a longitudinal or vertical section will have the same
effect in a less degree. Wooden ships not unfrequently exhibit
weakness due to this cause, and to counteract it diagonal riders of
iron are introduced to take part of the shearing force. - The ordinary
formula for resistance to bending cannot be applied in such cases.

191. Joints and Fastenings.—Among the most important cases of
shearing are those which occur in joints and fastenings of all kinds.
Such questions are generally very complex, considered as purely
theoretical problems, and the direct results of experience are always
required at every step to interpret and confirm theoretical conclu-
sions,

When two pieces butt against each other the pressure is transmit-
ted by contact only, and fastenings are therefore required not for
transmission of stress but merely to retain the pieces in their relative
Positions. 'With tension it is otherwise ; it is still necessary to have
surfaces which press against one another, and these can only be
obtained by the introduction of fastenings which transmit stress later-
ally, and are therefore subject to shearing and bending. The parts
of a joint should be so proportioned as to be of equal strength. One

of the simplest examples is that of a pin joint connecting two bars
24
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in tension as in a suspension chain with bar links. Fig. 1. (Plate
VIIL) shows a pair of bars of rectangular section connected together
by links €' and D united as shown by pins passing through eyes at
their extremities. In suspension chains there are generally four or
five bars placed side by side, but the principle is the same in any
case. The pull on the chain is balanced by the resistance to shearing
of the pins, which have besides to resist bending. Let d be the
diameter of the pins, b the breadth, ¢ the thickness of one of the bars,
# the thickness, b’ the breadth of the links which for equality of
strength, that is to say, of sectional area, will be connected by the
equation
20t = Ut.

Let f be the co-efficient of strength for tension, then &f (Art. 224)
will be the co-efficient for shearing, whence remembering that the
maximum shearing stress exceeds the mean in the ratio 4:3 as
shown above,

P=tif=25 . 3 =37 fe.

According to this estimate the area for shearing should be five-thirds
the area for tension, but the true ratio is probably not so great: the
ealculation supposes that the sides of the pin are subject to normal
stress alone, whereas the tangential stress due to friction must be con-
siderable. Besides the strength of iron such as is used for pins is
greater than that of plates. As the calculation applies only to stress
within the elastic limit, it is impossible to test it by experiment. In
practice the areas are made nearly equal when nothing else is con-
sidered except resistance to shearing. When, however, such a joint
is actually pulled asunder it frequently gives way in quite a different
manner before shearing commences. Imagine a cylinder pressed
down into a semicircular hollow which it very exactly fits, and let
the material be elastic and soft compared with the cylinder, then,
reasoning as in Art. 115, p. 249, it appears that the stress hetween the
surfaces will be given by the equation

P =p,.cos 0,
and if P he the pressing force, / the length,
45
wdl
If the pin fits the eye exactly the pressure will follow this law so

P ymdl=P or p,=
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long as the tension is small. As the tension increases, however,
the pressure becomes more uniformly distributed over the semi-
cylinder, because the eye-hole tends to contract laterally as the links
of a chain of rings would do under tension. The other extreme
supposition would he to suppose it uniformly distributed, then
Dol =P orpl,:%
The actual pressure will be intermediate between these two values.
If p, be too great the metal crushes under the pressure. The
theoretical limit to p, will be considered hereafter (Art. 222); for the
present it will be sufficient to say that the experiments of Sir C. Fox™
have shown that the curved area should be at least equal to the
sectional area under tension, that is to say we ought to have
Sadl = bt = {537 d".
To satisfy these conditions we must have for the ordinary case where
the thickness of the eye is the same as that of the rest of the bar
d=2b:¢=2%) approximately.
The first of these gives the diameter of pin recommended by Sir C.
Fox and other authorities; the second gives the greatest thickness
of link for which this diameter gives sufficient resistance to shearing,
but the thickness in actual examples of suspension links is generally
considerably less. The pin has also to resist hending, but of small
amount in the present example. The sides and end of the eye are
subject to tension, but it is not uniformly distributed, the question
being similar to that of a thick hollow cylinder under internal fluid
pressure. The mode in which the eye crushes and then fractures
transversely by tension, is shown in Plate VIIL, and further described
in Chapter XVIII,

In rivetted joints the question is further complicated by the
i:l‘iction between the plates united by the rivets. On the subject of
Joints and fastenings the reader is referred to Prof. W. C. Unwin’s
work cited on page 134.

EXAMPLES.

1. Find the diameter of a shaft for a twisting moment of 1000 inch-tons ; stress
allowed being 33 tons per square inch. Ans. Diameter = 11°3",

2. ¥From the result of the previous question deduce the diameter of a shaft to
transmit 3000 H.P. at 70 revolutions per minute. Maximum twisting moment
=4§ the mean, dns. 157",

* Proceedings of the Royal Society, vol. xiv., p. 139.
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3. The angle of torsion of a shaft is not to exceed 1° for each 10 feet of length.
What must be the diameter for a twisting moment of 100 inch-tons—modulus of
transverse elasticity, 10,500,000

Compare the result with the diameter determined from consideration of strength,
taking a co-efficient of 3} tons, Ans, Diameter determined from consideration of
stiffness = 6°2”, Diameter from consideration of strength = 52",

4, Show that the resilience of a twisted shaft is proportional to its weight.
Volume
Gt

5. Compare the strengths of a solid wrought iron shaft and hollow steel shaft of
the same external diameter, assuming the internal diameter of the hollow shaft half
the external, and the co-efficient for steel 1} times that for iron.

Ans. Resilience =37 =-f_; x

6. The external diameter of a hollow shaft is double the internal. Compare its
resistance to twisting with that of a solid shaft of the same weight and material.

Ans. Strength is greater in the ratio 5—‘5—3 =1443.

7. A pillar, whose sectional area is 1} square feet, is loaded with two tons. Find in
1bs. per square inch the intensity of the tangential stress on a plane inclined at 15°
to the axis of the pillar. Ans. Tangential stress = 518 lhs.

8. In a single rivetted lap joint, the pitch of the rivets being three diameters or six
times the thickness of the plates, find, 1st, the mean stress on the reduced area;
2nd, the shearing stress on the rivets; and, 8rd, the mean direct stress between
rivet and plate: the tension of the joint being 4 tons per square inch of the
original area, and the friction hetween the two surfaces of the plate in contact
neglected.

Ans. Mean tension on reduced area - =6 tons.
Shearing stress on rivet - - =7'6 tons,
4 x pitch x thickness

M di tres i
S diameter x thickness

=12 tons per sq. in.

9, In a beam of I section with flanges and web which may be considered as rect-
angles, the thickness of each flange is one sixth the outside depth of the beam, and
the breadth twice the thickness. The thickness of the web is half that of the
flanges : find the ratio of maximum to mean shearing stress on the section. Ans. *.

10. In the last question find the fraction of the whole shearing force which is taken
by the web. Ans. 80 per cent.

11, If the sectional area of the web of a flanged girder be proportional to the
shearing force and the 7th power of the depth; find the most economical ratio of
span to depth and the limiting span.

If the web be (' and each flange 4, as on page 317, the whole sectional area is
('+2A4 =8 and the moment of resistance to bending is

M =fh{38 - 10).
Assuming now C' = ¢. k7, where ¢ is constant,
M, 1er =38,

i
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and therefore, for a given value of M, S is least when
r 35
=g i =,
5l i'w-l ik 2(r+ 1)
In a girder with lattice web the same formula for A holds good, but S = O(r + 1).
If now F' = f'(!, where F'is the shearing force and f' is a co-efficient much less than
the resistance to shearing on account of the necessary stiffening (Art. 187),

M-}, 412' Fh,

a formula which will give the required ratio (V) for any given load. If the load be
uniformly distributed
BT
5 F
It is probable that in most cases 7 = 2 nearly, but that the value of f/f’ will vary,
according to the type of girder, from 2 to 4, being greatest for a continuous web.
The limiting span of a girder of uniform section is readily shown to be
4r X
- Tk . Ex. 13, p. 324,
L e (Comp. Ex. 13, p. 324.)
The weight of a smaller girder of the same type is found as in Ch, IV.

On the influence of size on the strength of vessels, see papers by Mr. John and the
late Mr.Froude in the Zransactions of the Institutions of Naval Architects for 1874,

12. Show that the weight in Ibs. of a shaft to transmit a given horse power at a
given number of revolutions is
KoHP
AW—QI,ODO e T
the value of A being given as in Ch. XVIII, the proper co-efficient of resistance to
shearing being used. The rest of the notation is explained on page 362.

The distance to which power can be transmitted by shafting with a given loss by
friction is given by Ex. 18, p. 272, when the angle of torsion is immaterial, but in
Practice is generally limited by the necessity of having sufficient stiffness. The
bending and twisting of shafts is considered in Chapters XVII,, XVIII,



