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CHAPTER XVII.
STRESS, STRAIN, AND ELASTICITY.

SECTION I.—STRESS.

199. Ellipse of Stress.—Stress consists, as we have said (Art. 147),
in a mutual action between two parts, into which we imagine a
‘body divided by an ideal section. If the section he plane, and if
the stress be uniform, the intensity and direction of the stress at
each point of the section are the same at all points of a given section,
and, for a given point, depend only on the position of the plane. In
a fluid the intensity is the same for all planes, and the direction is
Normal to the plane. In simple tension and compression the direc-
tion of the stress is the same for all planes, but its intensity varies,
becoming zero for planes parallel to the stress. In shearing the
intensity is the same for all planes perpendicular to a third given
Plane, but the direction varies: on one pair of planes it is normal, on
another tangential,

We now proceed to consider stress more generally, and we shall first
xamine the effect of combining together a pair of simple longitudinal
Stresses, the directions of which are at right angles and the intensities
of which are given. Let the plane of the paper be parallel to the direc-
tions of the stresses, and let us consider a piece of material of thick-
11685 unity. If the stress be uniform, the size and shape of the piece
are immaterial. Let us then imagine a rectangular block 4BCD
(Fig. 149) with sides perpendicular to the stresses p;, .. On the faces
4B, CD a stress, of intensity p;, and of total amount p, . 4B will act;
while on BC' and 4D there will be a stress of intensity ps, and of
total amount Py- BC.  Divide now the rectangle by a diagonal plane
AC; there will be a stress on that plane, which it is our object to de-
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termine in direction and magnitude. Let 6 be the angle which the
normal to the plane makes with the direction of p, ; by determining
rightly the ratio of the sides of the rectangle this angle may be made
what we please. Proceeding as in Art. 81, we find for the normal
stress

Do = P, - 0820 + p,. sin®0,
and for the tangential stress
P = (p, — ) sin 6. cos 6.

The resultant stress might be found in direction and magnitude by

Fig.149

compounding these results, but it is better to proceed by a graphical
construction. On the perpendicular set off 0@ to represent p, and
Og to represent p, ; also draw the ordinate )17 and ¢P parallel to p,
to meet it in . Then

AB
oM = 09Q. S S
Q cos 0 P 10’

. BC
PM=0p.8n8 = p. 22,
g . sin Pa 0

Whence it follows that the intensity of the stress on A4C due to p, is
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represented by OM, and that due to p, by PAM. If then we join OP
we shall obtain the resultant stress on 4C in direction and magni-
tude. Tt is easily seen that P lies on an ellipse of which Py, Ps are
the semi-axes. This ellipse is called the Ellipse of Stress.

If the pair of stresses p,, p, have opposite signs, then Og¢ = p, must
be set off on the opposite side of 0, and OF" the radius vector of the
ellipse lies on the other side of OM, but in other respects the con-
struction is unaltered. When pi, p, are equal the ellipse becomes a
circle ; if they have the same sign the stress is the same in all direc-
tions in magnitude and direction like fluid pressure; if they have
opposite signs, as in the chapter on Torsion, the intensity is the same,
but the angle of inclination /0@, called the “obliquity” of stress,
is variable, being always equal to QON.

200. Principal Stresses. Auwes of Stress—We now propose to show
that any state of stress in two dimensions (Art. 204) may always
be reduced to a pair of simple stresses such as we have just
considered.

For, drawing the same figure as in the last article, let us inquire
the effect of replacing p,, p, by other stresses of any magnitude and
in any directions. Whatever they be, they evidently must have
given tangential and normal components, of which, reasoning as in
the last chapter, we know that the tangential must be equal and
Opposite.

Let the equal tangential components be p, and the normal com-
ponents p, and p',.  Consider the equilibrium of the triangular por-
tion 4BC (Fig. 150), and let us >
determine under what conditions it r % p Fig.l50
is possible that the stress on 4C Al%fﬂ-:-ﬂ—ﬂmfﬁ B—tap

should be a normal stress only, 0 y
without any tangential component. —p
n
cﬂ

Resolve parallel to BC'; then, if P be
that normal stress,

p.AC.cos 8 =p,. BC + p,. AB;
or P.=p, = p,.tan 6,
Similarly resolving parallel to 4B,
P =P =p. cotb,
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whence, subtracting one equation from the other,

Do — P = p.. (cot @ — tan &) = 2p,. cot 20 ;

or tan 26 = jﬁ‘w, :

Da = Pa
This equation always gives two values of ¢ at right angles, showing
that two planes at right angles can always be found on which the
stress is wholly normal. The magnitude of the stress on these planes
is found by multiplying the equations together, when we get the
quadratic

(p = 2)p = P) = P4

the roots of which, p,, p,, are the stresses required. Having deter-
mined py, ps, the ellipse of stress can now be constructed by the
method of the last article.

Every state of stress in two dimensions then can always be
represented by an ellipse, the semi-axes of which are ealled Principal
Stresses, and their directions the Axes of Stress.

The particular case in which p’, is zero is one of constant oc-
currence in practical applications. If g be the shearing stress, the
equations may then be written

putan 20 =2¢ (1); plp-p)=¢ (2)-
Of the roots of the quadratic the greater has the same sign as that

of p,, and the other the opposite. Also, we find hy dividing the
two equations for p by one another,

tand =P~ Pn _ —gf,
P L
from which it appears that of the two values of ¢ furnished hy (1)
the one less than 45° must correspond to the greater value of p.
Hence, the major principal stress is of the same kind as p,, and in-
clined to it at an angle less than 45°,

201. Vurying Stress.  Lines of Stress.  Bending and Twisting of
Shaft.—In proving the two very important propositions just given,
we have assumed (1) that the stress was uniform, throughout the
region including the portion of matter we have been considering ;
(2) that gravity or any other force acting not on the bounding
surface, but on each particle of the interior, may be neglected. Tt
is however to be observed that by taking the portion of matter
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small enough, both these suppositions may be made, in general, as
nearly true as we please: the first, because any change of stress
must be continuous, and therefore becomes smaller the less the
distance between the points we consider ; the second, because any
internal force is proportional to the volume, while any force on the
boundary of a piece of material is proportional to the surface of the
piece. Now the volume of a body varies as the cube, and the surface
as the square of its linear dimensions, and it follows that the internal
force vanishes in comparison with the stress on the houndary when
the dimensions diminish indefinitely. Hence these propositions are
still true as respects the state of stress at any given point of a body,
even though the stress he variable, and notwithstanding the action
of gravity. When however we consider the variation of stress from
point to point, gravity must be considered. Thus, for example, in
the case of a fluid the action of gravity does not prevent the pressure
from being the same in all directions, but it does cause the pressure
to vary from point to point.

When the stress varies from point to point, both the intensity and
the direction may vary ; thus, for example, in a twisted shaft the
intensity of the stress at any point varies as the distance from the
axis, and the direction of the stress varies according to the position
of the point, the principal stresses making an angle of 45° with the
axis of the cylinder. The axes of stress in this case always touch
¢ertain lines which give, at each point they pass through, the direction
of the stress at that point. These lines are called Lines of Stress; in
a simple distorting stress, or, in other cases where the principal
stresses are of opposite signs, one is a Line of Thrust, the other a
Line of Tension.

In a twisted shaft of elastic material the lines of stress ave spirals
traced on a cylinder passing through the point considered, the spirals
being inclined at 45° to the axis. If the shaft be bent as well as
twisted, the maximum normal stress at any point of the transverse
section is given by the equation

i 'iﬂ_{q (Art. 155),
1m
where I is the bending moment and # the radius. The shearing
stress at the external surface due to a twisting moment 7 is given by

T (Art. 184).

1= 1o
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Combining these two together we get, by solving the quadratic for

the principal stresses,
_ M I
S e e
Ly
which gives the principal stresses at that point of the shaft where
the stress is greatest. The maximum stress is the same as would be
given by a simple twisting moment equal to M+ ~/M?+ T% which is
sometimes called the simple equivalent twisting moment. The minor
principal stress ought, however, also to be considered in caleulations
respecting strength, as will be seen hereafter.
The lines of stress here are spirals of variable pitch angle.

202. Straining Actions on the Web of an I Bewm.—Let us now
return to the case of an 7 beam with a thin weh, in which the web
resists nearly the whole of the shearing force F, and the flanges
nearly the whole of the bending moment M. The intensity of the
shearing stress ¢ is approximately

R
=
where & is the depth and 7 the thickness. The intensity of the
normal stress at a point distant y from the neutral axis is
M
Pu=TF ¥
The principal stresses and axes of stress are given by the equations

2
P(.p _Pn) o {{2; tan 20 =7,q,

From this it appears that, even when the web is very thin so that it
carries a very small fraction of the total bending moment, it cannot
he treated as resisting shearing alone, and if it is so treated will he
the most severely strained part of the beam. Let us, for example,
suppose the flanges to be subject to a stress of 4 tons per sq. inch at
a given section, and the web to a shearing stress also of 4 tons per
sq. inch : then at points in the web near the flanges, say, for example,
at a distance from the centre, of three fourths the half depth of the
beam, the normal stress will be 3 tons per sq. inca. Putting these
values in the formula, we get the quadratic equation

2(p - 38) =16;
p = 57, or — 2777,

whence
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a result which shows that the web is much more severely strained
than the flanges. The lines of stress are found from the equation
for . By a graphical method it is possible to draw the lines of
Stress approximately. As to this the reader is referred to a treatise
by Mr. Chalmers, cited on page 82.

203. Remarks on Stress in General.—We have hitherto been con-
sidering only the stress on planes at right angles to a certain primary
plane, to which we have supposed the stress on every plane to he
parallel. In most practical questions relating to strength of mate-
rials this is sufficient, since, though stress frequently exists on the
primary plane, it is usually normal and of relatively small intensity.
Thus, for example, in a steam boiler ‘there is stress on the internal
and external surface of the hoiler due to the pressure of the steam
and the atmosphere; but it is of small amount compared to the
stress on planes perpendicular to the surface. 'We therefore content
ourselves with a statement without demonstration of corresponding
Propositions in three dimensions.

(1) Any state of stress at a point within a solid may always be

reduced to three simple stresses on planes at right angles.

(2) The resultant stress on any plane due to the action of three

simple stresses at right angles to each other is always
represented in direction and magnitude by the radius
vector of an ellipsoid.

The first of these propositions may he regarded as the last step in
& process of analysis, by which we reduce all external forces acting
on a structure of any kind : first, into a set of forces acting on each
Piece of the structure ; and second, into forces acting on each of the
small elements of which we may imagine that piece composed ; and
lastly, into three forces at right angles acting upon the element, of
Which one in practical cases is usually small. All questions in
Strength of Materials, then, ultimately resolve themselves into a
consideration of the effects of forces so applied.

One method of conceiving the effect of three such forces is to
imagine each separated into two parts, one of which is the same for
all, being the mean value of the three ; while the other is com-
bressive for one and tensile for the two others, or wice verse. In
isotropic matter (Art. 207) the first set produces change of volume
only, and may be called the “volume-stress,” or, as no other stress
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can exist in fluid bodies at rest, a “fluid” stress. The second is
a distorting stress, consisting of three simple distorting stresses
tending to produce distortion in the three principal planes.

EXAMPLES.

1. A tube, 12 inches mean diameter and % inch thick, is acted on by a thrust of
20 tons and a twisting moment of 25 foot-tons. Find the principal stresses and lines
of stress,

Taking a small rectangnlar piece with one side in the transverse section, we find
one face acted on by a normal stress of 1'06 tons per square inch due to the thrust,
and a tangential stress of 2'66 tons due to the twisting. Substituting these values
for pm, pi, and observing that the stress on the other face is wholly tangential, we find
from the quadratie

Major principal stress = 324 (thrust) ;
Minor principal stress = 218 (tension).

Lines of stress are spirals, the lines of tension inclined at 503° to the axis, and

the lines of thrust at 395°.

2. A rivet is under the action of a shearing stress of 4 tons per square inch, and a
tensile stress, due to the contraction of the rivet in its hole, of 3 tons per square inch.
Find the principal stresses.

Ans. Major principal stress = 5°8 tons (tension).
Minor principal stress = 2°77 tons (thrust).

3. The thrust of a screw is 20 tons; the shaft is subject to a twisting moment of
100 foot-tons, and, in addition, to a bending moment of 25 foot-tons, due to the
weight of the shaft and its inertia when the vessel pitches. Find the maximum
stress and compare it with what it would have been if the twisting moment had
acted alone. Shaft 14 inches diameter.

Ans. Major principal stress = 29, Ratio = 1'32.
Minor principal stress = 1°6.

4, A half-inch bolt, of dimensions given in Ex. 6, page 271, is screwed up to a
tension of 1 ton per square inch of the gross sectional arca. Assuming a co-efficient of
friction of '16, find the true maximum stress on the bolt while being screwed up.
Ans. Principal stresses = 1'95 and 3 tons.

5. It has been proposed to construct eylindrical boilers with seams placed diagonally
instead of longitudinally and transversely. What is the object of this arrangement,
and what is the theoretical gain of strength? Ans. Increase of strength =26} per
cent.

G. A thick hollow cylinder is under the action of tangential stress, applied uni-
formly all over its internal surface in directions perpendicular to its axis, the eylinder
being prevented from turning by a similar stress, applied at the external surface.
Find the principal stresses and lines of stress. 4ns. The principal stresses are equal
and opposite, forming a simple distorting stress, of intensity varying inversely as the
square of the distance from the centre. Lines of stress equiangular spirals of
angle 45°,
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7. In Ex. 9, page 372, suppose the beam so loaded that the maximum stress due
o bending is 4 tons per square inch, and the total shearing force divided by the
sectional area of the web also 4 tons per square inch: find the prinecipal stresses at
points immediately below the flanges. .4ms. Principal stresses 4% and 19 tons per
square inch,

8. In any state of stress at a point in a body show that the sum of the normal
stresses on three planes at right angles is the same however the planes be drawn.

SECTION IL—STRAIN.

204. Simple Longitudinal Strain. Two Strains at Right Angles.—
We now go on to consider the changes of form and size which are
produced by the action of stress. Such changes, it has already been
said, are called Strains.

In uniform strain every set of particles lying in a straight line
must still lie in a straight line, and two lines originally parallel must
still be parallel. The lengths Fig.161

~of all parallel lines are © A

altered in a given ratio
1+e: 1, where ¢ is a quan- M 0
tity, in practical cases very e
small, which measures the £ zjIP
strain in the direction of
the line considered. Two
sets of parallel lines, how- o e’
ever, will not in general
remain at the same inclina- 7 :

D K ' G

i

B B

tion to each other, nor will
their lengths alter in the @
same ratio. Thus the sides
of a cube remain plane, and
Opposite sides are parallel,
but the parallelopiped is ©
not generally rectangular, and its sides are not equal.

The simplest kind of strain is a simple longitudinal strain in which
all lines parallel to a fixed plane in the body are unaltered in length,
while all lines perpendicular to that plane remain so: that is to say,
a simple change of length, the breadth, and thickness remaining
unaltered.

Fig. 151 shows an extensible band OBCD, in which OB is fixed,

—~

gl

F (4 c
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while D moves to ("I, the breadth being in the first instance un-
altered, and the length altered so that
CC' = ¢. BC.

If any line 4 EF be traced in the band parallel to BC, the points

EF will shift to &'F" positions in the same line, such that

EBE =¢.dF : FF' = ¢ . AF.

E'F = (1 + ¢)EF;

for since the strain is uniform the change of length of all parts of the
band is the same. If, however, we draw a line L inclined at an
angle 6 to BC, that line will shift to ('L, a position such that (L
has not increased in so great a ratio, and is not inclined to BC at
the same angle as before. We are about to determine the actual
change of length and angular position of @L by finding that of a
parallel 4P drawn through 4. It has been already remarked that
parallel lines in uniform strain must suffer the same strain. Now
AP shifts to 4P such that

PP =¢.BP =¢. AP, cosb.

If now the angle PAP" (= i) be so small that ¢ may be neglected

compared with i, and i compared with unity,
A= AR P — BB eonitis
and therefore !
AP = AP = PP cos0=g; 4P cos’t)
Thus the strain (¢) in the direction of 4P is
€ = ¢, .'c08%.

Also, it is clear that

e %=§%.smo = ¢,.5n 0. cos 6.
By these formule the changes of length and angular position of all
lines in the band are determined.

Next draw a line 4@ perpendicular and equal to 4P, and let AQ'
he the position into which it moves in consequence of the strain ;
we find for ¢, the extension of 4@,

€ = el RN 20
while the angle QA€ is

gi—re i EID U coBI0E=—
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Imagine now the square 4QL completed ; this square, in con
sequence of the strain, will have its sides altered in length by the
quantities ¢, ¢, and will have suffered a distortion given by

2i = 2¢,.8in 6. cos 0.

In this way the effect of a simple longitudinal strain is completely
determined, for we can calculate the changes taking place in any
portion of the band we please.

Next suppose the band to suffer a second simple longitudinal
strain ¢, in the direction of the breadth, and observe that since the
strains are very small, the effect of ¢, ¢, taken together must be the
sum of those due to each taken separately; then we find for the

change of length and position of any line AP,
€ = ¢.c08°0 + ¢,.8n% ;

i = (¢,— 6)sind. cos b,

results which may be applied as before to show the changes of
dimension and the distortion of a square traced anywhere in
the hand.
We have here regarded the angle i as a measure of the distortion
a square suffers in consequence of the strain. If, however, we drop
"M perpendicular to 4P, we have
. AM
AGM = 21 = g
Now 4M is the space through which the line 4’(’ has shifted
parallel to itself in consequence of the strain, and we see therefore
that the angle i also gives a measure of the magnitude of this
shifting. By some writers this is called sliding.” It is also called
“shearing strain,”

205. Comparison between Stress and Strain.—If we compare the
equations we have just obtained for strain with those previously
obtained in Art. 199 for stress, we find them identical; and hence it
appears that, so long at least as the strains are very small, all pro-
Positions respecting stress must also be true, mutatis mudandis, with
respect to strain. Thus, for example, a simple distortion must be
equivalent to a longitudinal extension accompanied by an equal
longitudinal contraction; and, again, every state of strain can
be reduced to three simple longitudinal strains at right angles to
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each other, and represented by an ellipsoid of strain. The simple
strains are called Principal Strains, and their directions Axes of
Strain. Strain, like stress, generally varies from point to point of
the body : but the relations here proved still hold good at each
point, and we have Lines of Strain just as we previously had Lines
of Stress.

SreTioN IIL—CONNECIION BETWEEN STRESS AND STRAIN.

906. Equations connecting Stress and Strain in Isotropic Matter.—So
far we have merely been stating certain conditions which stress must
satisfy in order that each element of a body may be in equilibrium,
and certain other conditions which strain must satisfy if the body is
continuous. We now connect the two by considering the way in
which stress produces strain, which differs according to the nature of
the material.

We first consider perfectly elastic material (see Art. 147), and sup-
pose that material to have the same elastic properties in all direc-
tions, in which case it is said to be isotropic. Metallic bodies are
often not isotropie, as will be seen hereafter (Ch. XVIIL). Suppose a
rectangular bar under the action of a simple longitudinal stress p,,
then there results (Art. 148) a longitudinal strain ¢, given by

i Eﬂu

where Z is the corresponding modulus of elasticity. Accompanying
the longitudinal extension we find a contraction of breadth that is a
lateral strain of opposite sign of magnitude 1/m™ the longitudinal
strain, where m is a coefficient. The contraction in thickness will
be equal, because the material is supposed isotropic. Hence the
effect of the simple longitudinal stress p, is to produce three simple
longitudinal strains at right angles,

St JH=tipis e M
i ey i el

Next remove g, and in its place suppose a simple stress p, applied in
the direction of the breadth of the bar; we have by similar reasoning
the three strains

s P2, by

G= — ¢ = O = ———
; 0 e R ml
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And similarly removing p, and replacing it by p, acting in the direc-
tion of the thickness,

Ps | (Vg Ds

o= = p= — o —
1 mk’ ml’ B

These three sets of equations give the strains due to p,, p., p;, each
acting alone ; and we now coneclude that if all three act together we
must necessarily have ;
¢ z'pl- "Bg‘i?'ﬂ,

E  mE
with two other symmetrical equations.

Hence it appears that the effect of three principal stresses, and
consequently of any state of stress whatever on isotropic matter, is
to produce a strain, the axes of which coincide with the axes of
stress, and in which the principal strains are connected with the
principal stresses by the equations just written down.*

207. Elasticity of Form and Volume.—The value of the constant
m may be found directly by experiment, though with some difficulty,
on account of the smallness of the lateral contraction which it
measures ; but it may also be found indirectly, by conneeting it with
the co-efficient employed in the last chapter to measure the elasticity
of torsion. For if we subtract the second of the three equations
just obtained from the first, we get

m+ 1
o—e=(p _P-.')_?'j:,]g )
or Ph=Pe= ?17173:71 . Fley - ).
Now referring to Arts. 31, 33 we find
Pe=(py—p,) sin @ cos 6,
-2i=2(e, — e,) sin 0. cos 6,
where p, is the tangential stress on a pair of planes inclined at angle
¢ to the axes, and 2i is the distortion of a square inclined at that
angle to the axes of strain. Since now the axes of strain coincide
with the axes of stress, we must have

B Py mo g

2 2e,—ey) “m+1°

*The form in which these equations are given is due to Grashof. For practical
applieation it is more convenient than any other,
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an equation which, compared with Art. 183, shows that the co-efficient
of rigidity ' must be

C=%

m+1

Experiment shows that in metallic bodies C'is generally somewhat
less than 2E, whence it follows that m lies between 3 and 4. In the
ordinary materials of construction the comparison cannot generally
be made with exactness, because such bodies are rarely exactly iso-
tropic. The value of m for iron is about 3}.

Again, if we add together the three fundamental equations, we
find

2
Eley+ e+ 65)= (1 - Ez)(p‘+p2+P3)'

Now the volume of a cube, the side of which is unity, becomes
when strained (1 +¢,)(1 +&)(1 +¢;), and therefore the volume strain
i8 ¢, + ¢, + ¢, when the strains are very small. Hence, if we separate
the stress into a fluid stress NV and a distorting stress (Art. 204), we

have
0

(m=2)"

N= 3 . E x Volume Strain,

and the co-efficient
m
P=sm-2)"
measures the elasticity of volume. The two constants C' and 2,
which measure elasticity of distinctly different kinds, may be re-

garded as the fundamental elastic constants of an isotropic body.
The ordinary Young’s modulus ¥ involves both kinds of elasticity.

9208. Modulus of Elasticity under various circumstances.  Elasticity
of Flexion.—When the sides of a bar are free the ratio of the longi-
tudinal stress to the longitudinal strain is the ordinary modulus of
elasticity #£; but the equations above given show that, when the
sides of the bar are subject to stress, the modulus will have a
different value. For example, let the bar be forcibly prevented from
contracting, either in breadth or thickness, by the application of a
suitable lateral tension, pa( = ps), then e, e; are both zero, and

Ee,=p, - ]7‘2 ; O=ps— _P ;Pe,
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whence we obtain for the magnitude of the necessary lateral stress

and for the corresponding extension of the har
m*—m— 2
pfr e
= 1
Hence the modulys of elasticity is now

- mm-1). s
(m+D)(m—2)

This constant 7 is what Rankine called the direct elasticity of the

substance : it is of course always greater than o'

E. For m=4, A=8E ; for m=3, A =2E. ;
If the bar be free to contract in thickness, but i

not in breadth, we have p; and e, zero, and the

equations become

whence we find '

e, = pl.m%f_,_]‘, i
o that the value of the modulus of elasticity is i :
m — K. In a similar way if ps, p; have eany g given A:: / ;
= el il
values the modulus can he found. 1
It will now be convenient to examine an impor- "_
. . S \s
tant point already referred to in the theory of
simple bending, that is to say the assumption
(Art. 153) that the modulus of elasticity  was the
Fig.152

same as in the case of simple tension, notwith-
standing the lateral connection of the elementary bars, into which
we imagined the whole beam split up. If these elementary bars
were prevented from contracting freely, as they would do if sepa-
rated from each other, the modulus could not be the same. In
fact, however, there is nothing in their lateral connection which
prevents them from doing so. Figure 152 shows, on a very ex-
aggerated scale, the form assumed by a transverse section 4CBD
originally rectangular, cutting a series of longitudinal sections

originally parallel to the plane of bending in the straight lines
20
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shown. Assuming the upper side stretched as in Fig. 122, page
309, these lines all radiate from a centre (' above the beam, which
bends transversely, while the originally straight horizontal layers are
cut in arcs of circles struck from the same centre. The upper side
of the beam contracts and the lower side expands, and reasoning ex-
actly in the same way as we did when we derived the principal
formula,

oy & S(Arh 158)
R

we find a corresponding formula for the transverse curvature,
_mY

p=m,
whence it follows immediately that

R =mh.
In order that this transverse curvature of the originally horizontal
layers shall not be inconsistent with the reasoning by which the
formula for bending is obtained, all that is necessary is that the de-
viation from a straight line shall be small as compared with the
distance of the layer from the meutral axis. Let @ be that devia-
tion, then (see Art. 163) if b be the breadth,

e
8R' 8mE 8mkEy
Now the stress being within the elastic limit p/Z is very small, for
example, take the case of wrought iron, for which p/E is not more
than 254", and suppose m =4,
b2

~ 38,400. ¥,
where 7, is the greatest value of y, say 4k, where / is the depth,
thus

€T

iz
* 7 19,2000
It is obvious that @ must be always very small compared with y,
except very near the meutral axis, and unless & be very large com-
pared with A. When then a beam is bent within the limit of
clasticity, the lateral conmection of the parts cannot have any
sensible influence on its resistance to bending, unless its breadth
he great as compared with its depth. The case of a broad thin
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plate has not been hitherto dealt with theoretically. Beyond the
limit of elasticity the lateral connection of the parts may greatly
increase the resistance to bending, but this is a matter for sub-
sequent consideration.

209. Thick Hollow Cylinder under Internal Pressure.—The equa-
tions connecting stress and strain in combination with suitable
equations expressing the continuity of the body and the equilibrium
of each of its elements are theoretically sufficient to determine the
distribution of stress within an elastic body exposed to given forces,
and in particular to determine the parts of the body exposed to the
greatest stress, and the magnitude of such stress. The most im-

1 Fig158a

)

&\\\\\\\\\\\“

7 11111 /////

/ﬁ 1' *“'

Portant cases hitherto worked out, in addition to those considered in
preceding chapters, are the torsion of non-circular prisms and the
action of internal fluid pressure on thick hollow cylinders and
spheres. For M. St. Venant’s investigations on torsion we must
refer to Art. 188, page 360, and the authorities there cited. We
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shall only consider the comparatively simple case of a homogenous
cylinder.

Fig. 153a shows a longitudinal section of a hollow cylinder open at
the ends, which are flat: the cylinder contains fluid which is acted
on by two plungers forced in by external pressure so as to produce an
internal fluid pressure p, Fig. 1535 shows the same cylinder in
transverse section: imagine a cylindrical layer of thickness 7
this thin cylinder will be acted on within and vithout by stress
which symmetry shows must he normal ; let these stresses be p and
7, and the internal and external radii of the thin cylinder he 7 and +,
Now, if p' the external pressure had existed alone, a compressive
stress ¢ would have been produced on the material of the cylinder
given by the equation (see Art. 150)

Y=g
and if the internal pressure had existed alone, we should have had a
tensile stress given by

o= gt;
hence when hoth exist together, we must have
X = =

where ¢ is the stress on the material of the cylinder on a radial plane
in the direction perpendicular to the radius reckoned positive when
compressive. Clearly ¢ = + ~ 7, and therefore proceeding to the limit
we may write the equation

) =g,
which is one relation between the principal stresses p, g at any point
of the cylinder. We now require a second equation, to get which
it is necessary to consider the way in which the cylinder yields
under the application of the forces to which it is exposed. The
simplest way to do this is to assume that the cylinder remains still
a cylinder after the pressure has been applied : if so, it at once
follows that points in a transverse section originally remain so, or,
in other words, that the longitudinal strain is the same at all points.
It is not to be supposed that there is anything arbitrary about this
assumption : no other, apparently, can he made if the ends of the
cylinder are free, the pressure on the internal surface exactly uniform,
and the cylinder be homogenous and free from initial strain.  For
when this is the case, there is no reason why the cylinder should bhe
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in a different condition in one part of its length than in another.
If the ends are not free, or if the pressure is greater in the centre,
the middle of the cylinder will bulge, but not'otherwise.

It is also clear that the total pressure on a transverse section must
be zero because the ends are free, and hence it is natural to suppose
that it is also zero at every point of the transverse section, an as-
sumption which we shall presently verify.

The equations connecting stress and strain therefore become

Bey = p—4.
St m’
T s {

e, = i

oAt e
n

where ¢, ¢,, ¢, are the strains in, the direction of the radius, the direc-
tion perpendicular to the radius in the transverse section, and, the
direction of the length, respectively. Of these the last is constant, as
just stated, and therefore
P + g = const, = 2¢;
is the second equation connecting p, ¢. Substituting for i, we find
d

¥ = 9¢ -
) +p =2 ;

/ ,
or ii_p; + 2p = 2¢,
Multiply by » and integrate, then

G
7:23
Where ¢, is a constant of integration. The two constants ¢,, ¢, are now
determined by consideration of the given pressures within and
without the cylinder. :

If w be the ratio of the external radius to the internal radius B, we
have at the internal surface

()
P = —>+¢, and consequently ¢ = ¢, -
o

P=n e " 3 G,
9'——3} LR el R’
and at the external surface

p =0 RSy & .,
r:ﬂ-R} "O_G‘+W€2’
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from which two equations we get

o = = ng_l_l, and ¢ = nf,f’f'l.faﬂ.

Substituting these values in the equation for ¢,

N TS L R
1 wf"alllkn'?'-'J’

the negative sign in this formula indicates that the stress is tensile,
as we might have anticipated. The formula shows that the stress

decreases from

n:+ L .p, at the internal surface to Efi‘— at the ex-
n?-1 n'—1
ternal surface. The mean stress is obtained from the equation
(Art. 150.)

qo(nlt — R) = pR;
hence the maximum stress is greater than the mean in the ratio
n* + 1 : m + 1, and it is clear that it can never be less than p,.

Verification of Preceding Solution.—The radial strain () and the hoop strain
(e,) are given by the above equations in terms of the stress. Now these changes of
dimension are not independent, but are connected by a certain geometrical relation
which it is necessary to examine in order to see whether it is satisfied by the values
we have found.

Returning to the diagram, suppose the internal radius of the ring BQ to increase
from 7 to s, and the external radius from # to §'; then

2mg=2mr(l +e5),
il 4] d82
2ms’ =2y (1 + ey + t‘%),

o S -s=(r"-7)(1+e)+ e A
dr

or since the thickness of the ring changes from ¢ to (1 +¢))t,

< ey
l+e ;‘f‘&g""f ar
&= a;{ﬁg 7).

This relation must always hold good, in order that the rings after strain may fit one
another, and should therefore be saftisfied by our results. On trial it will be found
that it is satisfied, and we conclude that the solution we have obtained satisfies all
the conditions of the problem, and is therefore the true and only solution, subject to
the conditions already explained. For further remarks on this question, see
Appendix.

210. Strengthening of Cylinder by Rings.  Effect of great Pressures.—
The stress within a thick hollow cylinder under internal fluid pres-
sure may be equalized, and the cylinder thus strengthened hy con-
structing it in rings, each shrunk on the next preceding in order of
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diameter. For a cylinder so constructed will be in tension at the
outer surface and compression at the inner surface before the pres-
sure is applied, and therefore after the pressure has been applied will
be subjected to less tension at the inner and more tension at the
outer surface than if it had been originally free from strain. It is
theoretically possible to determine the diameters of the successive
rings so that the pressure shall be uniform throughout. The prin-
ciple is important, and frequently employed in the construction of
heavy guns.

When the limit of elasticity is overpassed the formula fails, and
the distribution of stress becomes different. If the pressure be
imagined gradually to increase until the innermost layer of the
cylinder begins to stretch beyond the limit, more of the pressure is
transmitted into the interior of the cylinder, so that the stress
becomes partially equalized. If the pressure increases still further,
the tension of the innermost layer is little altered, and in soft
materials longitudinal flow of the metal commences under the direct
action of the fluid pressure. The internal diameter of the cylinder
then increases perceptibly and permanently. This is well known to
happen in the cylinders employed in the manufacture of lead piping,
which are exposed to the severe pressure necessary to produce flow
in the lead. The cylinder is not weakened but strengthened, having
adapted itself to sustain the pressure.  Cast-iron hydraulic press
cylinders are often worked at the great pressure of 3 tons per sq.
inch, a fact which may perhaps be explained by a similar equalization.

EXAMPLES,

1. ‘When the sides of a bar are forcibly prevented from contracting, show that the
necessary lateral stress is given by
3 P2=DBe,
*g-& . This constant B is what Rankine called the ‘‘lateral”
m2—m -2
elasticity of the substance.

where B =

2. With the notation of the preceding question and of Art. 106, prove that
-4-B
C T

3. In a certain quality of steel E = 30,000,000; ¢'=11,500,000: find the elasticity
of volume and the values of 4 and B, assuming the material to be isotropic. Amns.
=34 ; D= 25400,000.



408 STIFFNESS AND STRENGTH. [PART IV. CHAP. XVIL]

4. The cylinder of an hydraulic accumulator is 9 inches diameter. What thickness
of metal would be required for a pressure of 700 Ibs. per square inch, the maximum
tensile stress being limited to 2,100 lbs. per square inch? Also, find the tensile
stress on the metal of the cylinder at the outer surface. Ans. Thickness=1-84";
Stress = 1,400 1bs. per square inch.

5. If the cylinder in the last question were of wrought iron, proof resistance to
simple tension 21,000 lbs. per square inch, at what pressure would the limit of
clasticity be overpassed ? m =35, (See Art. 223, page 428.) Ans. 6400.

6. Find the law of variation of the stress within a thick hollow sphere under
internal fluid pressure. By a process exactly like that for the case of the cylinder
(page 404) it is found that the equation of equilibrium is

L—%‘(piﬂ) =2qn.
The equation of continuity is the same as that for a cylinder (Art. 209), and the

equations connecting stress and strain are now
2q

;
n

Eey=q- }_J;:';!] y

FEe=p-

We can now by elimination of ¢, reduction, and integration obtain
pmot ,%;
G .
{1 flltiy 987
the constants being found as in the cylinder.
7. The cylinder of an hydraulic press is 8 inches internal and 16 inches external
diameter. If the pressure be 3 tons per sq. inch find the principal stresses at the

internal and external circumference.
: - ¥ Major Stress =5 (Tension).
Ans. At inner clrcumfelence{ Minor Rivers =g {Thms t).

2 Major Stress = 2 (Tension).
At outer ” { Minor Stress=0,
8. In the last question find the *‘ equivalent simple tensile stress ™ (p. 428), assum-
ing n=35, Ans. 5'86and 2 tons.



