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CHAPTER XIX,
ELEMENTARY PRINCIPLES OF HYDRAULICS.

232. Velocity due to a Given Head.—When the level of the surface
of the water in a reservoir is above surrounding objects, a HEAD of
water is said to exist, the magnitude of which is measured, relatively
to any point, by the depth (%) of the point below the surface. Ifthe
water extend to this point a pressure is produced there which, so
long as the water is at rest, is given in lbs. per sq. ft. by the formula

P =wh,

where w is the weight of a cubic foot of water, that is to say, about
624 1bs. for fresh water, or 64 Ibs. for salt. Since the above formula
may be written

A=t

w

it appears that a pressure may be measured in terms of the head
which would produce it. The fluid is usually water, for which % is
reckoned in feet ; and 1 Ib. per sq. inch is equivalent to 23 feet of
fresh, or 2:25 feet of salt water. For some purposes, however, mer-
cury is employed, in which case the unit is generally 1 inch. One
inch of mercury is equivalent to about 49 Ib. per sq. inch, that is,
to a head of 1'1 feet of sea water, or 1:135 of fresh water.

If the surface of the water be exposed to the atmosphere, the
pressure p will be in excess of the atmospheric pressure, which must
be added to obtain the absolute pressure. The mean value of the
atmospheric pressure is 14-7 Ibs. per sq. inch, which corresponds to a
head of about 33 feet for salt, or 34 feet for fresh water.

A head of water is a source of energy which may be employed in
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doing work of various kinds, or in simply transferring the water
from one place to another, Let us take the second case, and imagine
that, by means of a pipe, channel, or passage of any description, the
water is delivered at B (Fig. 163), while at the same time, by a stream
or otherwise, the surface of the water in the reservoir is kept con-
stantly at the same level 4.4, so that the head /& remains unchanged.

Fig.168,

=

e

-_%\

The motion is then described as Steady, and consists simply in the
transfer in each second of a certain weight of water from the stream
to the reservoir, while an equal weight traverses the passage, and is
delivered at B, the whole mass of water between 44 and B remaining
constantly in the same condition. The delivery at B may be sup-
posed found by actual measurement ; it is usually estimated in gal-
lons per minute or cubic feet per second, as to which it need only be
remarked that the gallon weighs 10 Ibs., so that a cubic foot per
second is about 375 gallons per minute. For large quantities,
however, the cubic metre, which weighs about 1 ton, is also
employed.

On delivery the water is moving with a certain velocity, but the
definition and measurement of this quantity is not so simple. We
must now suppose that the centre of gravity of the water delivered
in some given time is observed and its velocity noted. This velocity
will be the same whatever the time be, and will be a measure of the
velocity of the mass of water considered as a whole. In some cases
all particles of the water may be moving with this velocity, but in
general this is not the case : it is then the mean velocity, and may be
described as the « Velocity of Delivery.” If the water be discharged
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by a channel which, near the exit, is of uniform transverse section 4,
this velocity may also be defined by the equation
Q W

S AT wa
where () is the discharge in cubic feet per second, and /7 the weight
of this quantity.
The energy of motion of the water may now be separated into two
parts, one external and the other internal (Art. 134, page 278), of
which the first is

Energy of Translation = 52%”2’

while the second is due to the motions of the particles of water
amongst themselves, and will be further considered as we proceed..

The whole energy of motion has been generated by the exertion
of an amount of energy #7 due to the descent of the water from the
level 4.4 to the level B ; and, in cases where the internal energy may
be neglected, we have, neglecting also friction,

7
5 =,
where / the head is measured to the centre of gravity of the issuing
water (page 194).

It hag been here supposed that the surface of the water in the
reservoir, and after delivery at B, is exposed to the atmosphere,
but this is not always the case. Suppose in the figure the reservoir
filled to the level C'C' only, but that the pressure on the surface has
any value p, instead of being simply that of the atmosphere, This
pressure p may he produced by filling up the reservoir to the level
A A where

h=2+2L
w

and as the reservoir is supposed large so that the water is sensibly at
rest, except very near the exit, this can produce no change in the
motion, which as before is given by

2 9gh = P

v*=2gh 29(2+ = )

In other words, in addition to the actual head z, we have a wirtual
head p/w, due to the difference of pressure p, thus giving a total
head A,



CH. XIX. ART. 233.] ELEMENTARY PRINCIPLES. 447

The jet of water has been supposed to issue into the atmosphere,
but the nature of the medium into which the discharge takes place
has little influence, provided its pressure be duly taken into account.
It has been proved by experiment that if the pressure of the atmo-
sphere be artificially increased or diminished, the velocity is given by
the same formula, modified as explained in the next article. This
is also true if the efflux take place into a vessel of water.

933. Frictional Resistances in General.—The actual velocity »* with
which the water is delivered is less than the value v just found,
because a certain part of the available energy is always employed in
overcoming certain resistances of the nature of friction, the origin of
which we shall see gradually as we proceed. They are measured in
two ways : (1) by comparing the actual velocity of delivery with that
due to the head ; (2) by considering how much energy is employed
in overcoming them. In the first method we have only to introduce
a co-efficient ¢ given by

9'= ¢,

which is called the Co-efficient of Velocity. It is of course always
less than unity, and its value is found by experiment in each special
case. In the second we write '
’ o2
h=h = 5
where // is the “loss of head” due to friction. The value of
is most conveniently expressed by conmnecting it with the actual
velocity »* with which the water issues. For this purpose we replace

h by +%/2¢g and v by /¢, and thus obtain
sy (e L
A= ﬁ_l)@_ﬂ%s
where F is a new co-efficient called the Co-efficient of Resistance

connected with the previous one by the equation

1
F—g -1

It is found by experience that the values of these co-efficients depend
mainly on the form and nature of the bounding surfaces within which
the water moves, and, subject to proper limitations, not on the pres-
sure or velocity of the water—a fact which may be expressed by the
following law of hydraulic resistance: The energy lost by frictional
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resistances is a fired multiple of the emerqy of motion of the water, This
multiple is the co-efficient # which is sometimes fractional, but is often
very large, as we shall see farther on. The physical meaning of this
law will be seen hereafter, and the apparent deviations from it which
frequently occur will be accounted for.

234. Discharge from Small Orifices.—Fig. 164 shows a vessel of
water discharging through a circular hole in the bottom which is flat.
The hole is small, and its circumference is chamfered below to a
sharp edge at the upper surface.

——
= —~

il

On observing the jet of water which issues we see that it is nearly
cylindrical but of diameter less than the diameter of the hole. The
contraction is complete, so far as can be judged by the eye, at a
distance of d/2 from the vessel; and by measurement is found to he
in the ratio 4:5, that is, the sectional area of the jet is to the
sectional area of the hole in the ratio 16 : 25.

If the hole he made in the vertical side of the vessel a contracted
jet issues in the same way, but under the action of gravity it forms a
curve which is very approximately parabolic in form, each particle
moving nearly in the same way as a projectile in vacuo. This enables
us to find the velocity of the efflux (+') by observing a point through
which the jet passes, and we thus obtain experimentally the value of
the co-efficient ¢, which appears to be about ‘97. The discharge is
now given by the formula

Q=d,. o =ckd N 2gh,

where A, A4 ave the contracted and actual areas of the orifice, and #
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is their ratio which is a fraction called the Co-efficient, of Contraction.
The discharge therefore depends on the product of the two co-:
efficients ¢ and %, which may be replaced by

C=ck,

a quantity called the Co-efficient of Discharge.

The value of €' can also be determined by direct measurement of
the discharge, an observation which can be made with much greater
accuracy than those of contraction and velocity on which it depends.
In the present case it is found to be 62, agreeing well with the
product ‘97 x ‘64 of the values given above.

With other forms of orifice the same co-efficients are used, but their
numerical values are quite different. In the figure two cases are
represented : on the right side of the vessel the water issues through
a short pipe the entrance to which from the vessel is square-edged ;
on the left a similar pipe is employed but it projects inwards instead
of outwards. When the pipe projects outwards the water is found to
issue in a jet the full diameter of the pipe, that is, & is unity ; while,
on the other hand, the velocity is much diminished, the value of ¢
being only -815. When it projects inwards the jet contracts greatly,
the value of & being ‘5 while the velocity is about the same as in a
simple orifice. Thus (' instead of being 62 is ‘815 and *5 in the two
cases. The causes of these remarkable differences will be seen here-
after, the results are only given here to illustrate the meaning of the
co-efficients under consideration.

235. Incomplete Contraction.—The contraction of the issuing jet
depends on the average angle at which the moving particles converge
towards the orifice before reaching it, and this is the reason why it is
50 great in the case of a short
Pipe projecting inwards. If
the circumstances be such that
the convergence is small the —
tontraction diminishes. Fig, E
165 shows a pipe of some size
through an orifice in the flat end AB of which water is being
forced, ipsuing into the atmosphere. The co-efficient % is found to
depend on the proportion which the area of the original orifice 4

bears to that of the pipe S, because the smaller § is, the less is
2rF
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the angle of the convergence. This has been expressed by an
empirical formula due to Rankine which may be written

1 A2

i \/2 618 -1 GISS*’
which will be found to give %= ‘618 when S is infinite, as is nearly
the case for a simple orifice as explained above, while for smaller
values / increases, becoming unity as it should when S= 4.

In a similar way if an orifice be near a corner of the vessel the

contraction will be diminished. In these cases the contraction is
usually described as ¢ incomplete.”

936. Discharge from Large Orifices in a Vertical Plane—When the
orifices are large, compared with the head and the vessel from which
the discharge takes place, the question is more complicated.

If the plane of the orifice be vertical the velocities of the several
parts of the fluid are not the same as is the case, so far as can be
judged by the eye, when the orifice is small. On the contrary the
velocity of that part of the stream which issues from the lower part
of the orifice is visibly greater than that proceeding from the upper
part. Hence it follows that the centre of gravity of the fluid issuing
in a given time, to which the head is measured, is not on the same
level as the centre of gravity of the contracted section, but lies below
it. The corresponding point on the section may be described as
the Centre of Flow. Also the internal energy of motion of the
jet is of sensible magnitude and cannot be neglected.

By supposing that each part flows independently of the rest the discharge can be
found for an orifice of any shape. For example, take

Sl the case of a rectangular orifice ABCD (Fig. 166) from
E 3 T L which water is being discharged from a reservoir, the
v v level from which the head is measured being LL. The
A }" -] jet contracts on efflux, and the contracted section may
; a "E be supposed rectangular. The position and dimensions
i i
g

of this section it will be necessary to suppose known
! by experiment ; let its breadth be b, and let its upper

Id=ma S| & and lower sides be at depths ¥;, ¥, below LZ. Divide
D the area into strips, and consider any one at depth ,
then the velocity will be given by the formula (neglecting friction),

2% =2gy.
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The quantity discharged per second will be given by
7 T
an bu.dy=b20] Ny dy,
¥ A

which by integration gives
— 3 #
Q=3b.A/%. (Vs - i°),

which determines the discharge.
The energy of motion of the water discharged per second will be

o)

£ 2 8
U=w{ = b :)j}, . dy= b!c\/:zg] ¥ .dy,
o "1 =

L
which by integration gives
5 5
U=3ubn/Z . (V' - V1),

By dividing U by w@ we get the depth of the centre of gravity of the fluid dis.
charged per second below L L, that is to say, the head 7 is given hy the formula

The velocity of delivery is

and the energy of translation on delivery is
wov?

Uy= o
a quantity less than the whole energy WQh by the energy due to internal motions.
A common method of treating the question is to measure the head to the centre of
the section and then employ the formula

V2=2h

with a proper co-efficient of discharge. This method is not exact, for it underesti-
mates both the head and the energy of motion of the water ; but its errors partially
compensate one another, and its results are made to agree approximately with experi-
ment by the employment of a variable co-efficient. To apply the exact formule it is
necessary to know the dimensions and position of the contracted section for which
the existing experimental data are insufficient. For further particulars on this sub-
ject, the reader is referred to Professor Unwin’s work cited on page 481.

Again, if the dimensions of the orifice be not small compared with
the surface of the water in the vessel from which the discharge takes
place, this surface will sink with a velocity # which is of sensible
magnitude. If the area of the surface be S and that of the contracted
section A, the discharge will be

Q=Aw=_87,
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an equation which determines 7. The water will now have a vel-
ocity ¥ before descending through the height %, and the equation of
energy is therefore

o — P =2gh,
This may be written if we please

v? %6

s I+ 3

showing that in addition to the actual head / we must consider the
virtual head P?/2g due to the initial velocity of the water. In many
hydraulic questions it is inconvenient or impossible to measure the
head from still water. It is then measured from some point where
the water is approaching the orifice with a velocity V determined by
observation. The actual head & must then be increased by the
height due to this velocity.

937. Head velatively to Moving Orifices.—The passages through
which the water is moving may be attached to a ship, locomotive, or
other moving structure, in which case the velocity must be reckoned
velatively to the structure, and the height due to the velocity must
be reckoned as part of the head. If for example in the bow of a
vessel moving through the water with velocity 7 an orifice be opened
at the surface level, the water will enter through it, and if unacted on
will move within the vessel with velocity 7 and will possess rela-
tively to the vessel the energy 7%/2g per unit of weight. If it be
acted on during entrance by the head due to any difference of level
or pressure, so that its velocity is changed from 7~ to #, the corre-
sponding change of energy will measure the work which is done, and
therefore the equation »* — ¥*=2gh applies as before.

938. Steady Flow through Pipes.  Conservation of Energy—Fig.
167 represents a vessel of water discharging through a large pipe, the
section of which varies according to any law. If the pipe “runs full,”
that is, if it be always completely filled with water, the discharge is

Q= Ay, = A,
where u,, u, are the velocities through two sections the areas of which
are A,, A4, Hence the velocity is always inversely as the sectional

area, and in an ordinary pipe in which the section is uniform must
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be the same throughout. Let the pressures be py, p,, and the actual
head, that is to say, the depths below the water surface CC, hy, h, then
it appears from Art. 234 that

2 et
£3/seeir g e = P,U,

i
B - :
2¢ ) w

where 7, is the pressure on the surface CC.
Take now some convenient line D at a depth Z bhelow the water

. Po

c H’il“ c Fig.167.

surface (/C; and let z, z, be the elevation of the section above this
datum level so that

2t =2 =24y
then the above equations may be written

’“LQ +£1 + 2= Z+ Po_ !i:'? s + Za
20 w w 29 w
This result shows that if u, p, 2 be the velocity, pressure, and eleva-
tion for any section of the pipe,
Z +2 4 = Constant.
29 w
Each of the terms of this equation represents a particular kind of
energy : the first is energy of motion, the third energy of position,
the second is energy due to pressure, the origin of which will be further
explained in the next chapter. The equation therefore shows that
the total energy of the water remains constant as it traverses the
pipe, and is accordingly the algebraical expression of the Principle of
the Conservation of Energy. It supposes that no energy is lost by
frictional resistances, and that any change in the internal motions of
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the particles amongst themselves may be disregarded. The word
“head,” the origin of which we have already seen, is frequently
employed for the energy per unit of weight. (See Appendix).

An important consequence of this principle is that where the sec-
tional area of the pipe is least, and consequently the velocity greatest,
there the pressure is least. Hence it follows that the velocity cannot
exceed a certain limiting value u, found by putting p=0. At an
elevation z above datum level

u? = 2g(Z— # +%‘;)

At a greater velocity a negative pressure would be required to pre-
serve the continuity of the fluid mass, and under these circumstances
the water breaks up with consequences to be hereafter considered.
It further appears that water can flow through a closed passage
against a difference of pressure, provided the area of the passage vary
50 as to permit a corresponding reduction of velocity. An example
of this occurs in the case of the discharge through a trumpet-shaped
mouthpiece. In Fig. 168 water enters from a vessel at KK, an ori-
fice provided with a mouthpiece, which first con-
tracts to DD, and then expands to KX where
- the jet enters the atmosphere. The pressure at
EE is that of the atmosphere, and therefore at
~= DD is less than that of the atmosphere, that
is, less than it would be if the trumpet were
cut off at the neck. Hence the discharge is increased by the
addition of the expanded portion. If the water issued into a vacuum
the jet would not expand to fill the wide mouth of the trumpet, which
would not in that case have any influence on the discharge. The
increased discharge and partial vacuum at D0 have been verified by
experiment.

Fig.168,

- 239. Distribution of Energy in an Undisturbed Stream. Vortex
Motion.—If the reservoir in the last article be imagined to supply a
stream running in a channel of any size either closed or open, that
stream, if undisturbed by any of the causes mentioned hereafter,
may be supposed made up of an indefinite number of elementary
streams, each of which moves as it would do in a closed pipe, as just
described, without in any way intermingling with the rest. The
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forms of these ideal pipes depend solely on the form of the channel
in which the stream is confined. The equation

ey

Wtlyg=g+10

2¢ w

applies to the motion in every pipe, and from it we may draw two
important conclusions. In the first place, it may be written in the
form

—Po_ 1 u?
s e
and therefore, the pressure at any point is less than if the waler were at
rest by the height due to the velocity at that point. Again, the equation
interpreted as in the last article shows that the energy of all parts of
the fluid is the same, or, as we may otherwise express it, the energy
of the fluid is uniformly distributed.

From either way of stating the result it appears that the pressure
is greatest where the velocity is least, and conversely. Now, if the
water move in curved lines in a horizontal plane, each particle of
water is at the instant moving in a circle, and to balance its centri-
fugal force (Art. 132) the pressure on its outer surface must be
greater than that on its inner. It follows therefore that, if a
channel is curved so as to alter the direction of the stream, the
pressure increases as we go from the inner side of the channel
to the outer ; while, on the other hand, the velocity is greatest at
the inner side and least at the outer. The change is the greater
the sharper the bend, for the centrifugal force is greater. In open
channels the change at the surface where the pressure is constant is
in elevation instead of in pressure.

The magnitude of the change can be calculated in certain cases
(see Appendix), of which we can only here consider one which
is of special importance. If the particles of water describe circles
about a common vertical axis, the elementary streams will form uni-
form rings, the centrifugal force of which can be calculated as in
Art. 145, pp. 293-4. The resultant force on the half ring is—em-
ploying the notation of the article cited—given by

Dbl
g

This is balanced by an excess pressure on the outer surface of the
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half ring, and if that excess be Ap the corresponding resultant force
is Ap . 2r, as shown on p. 305. Equating this to P
WA
Ap = o i
The ring is supposed of breadth unity, and for 4 we may write the
thickness of the ring, which may be called Ar. Dividing by this,
and proceeding to the limit
dp_w V*
dr g v’
an equation from which the pressure can he found if the law of
velocity be given. If the fluid rotated ahout the axis like a solid
mass, J” would vary as #; but the case now to be examined is that in
which 7 varies inversely as 7, as expressed by the equation

Vir=Constant =7.
Substitute and integrate, then replacing % by F7, it will be found
that

?_ + K2= Po = Eﬂ‘i

ik P
where the suffix refers to a given point where the pressure is p, and
the velocity /5. This result shows that the energy is uniformly dis-
tributed, and we infer that if the direction of a moving current is
changed so that the particles of water describe concentric circles, the
velocity varies inversely as the distance from the centre.

A mass of rotating fluid is called a ““ vortex,” and in the case just
considered the vortex is described as “free,” because the motion is
that which is naturally produced (comp. Art. 261). A free vortex is
necessarily hollow, for to hold the water together a negative pressure
would be required near the axis of rotation, but the hollow may be
filled up by water moving according to a different law.

240. Fiscosity.—When the motion of a mass of water is free from
sudden changes of direction, loss of energy takes place only through
the direct action of viscosity, a property of fluids which it will
now be necessary briefly to consider. In Fig. 154, p. 409, a block
of plastic material is represented, and it was explained that to
produce change of form a certain difference of pressure was
necessary, depending on the hardness of the material. In a fluid
a similar difference of pressure is necessary to produce a change
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of form al a given rate, and the magnitude of the difference is pro-
portionate to the rate. If u be the rate at which the height of the
block is diminishing and the breadth increasing, each reckoned per
unit, of dimension,

P = 2cU,

where ¢ is a co-efficient called the “co-efficient of viscosity.” Or to
express the same thing differently, if » be the rafe at which a small
rectangular portion of the fluid is distorting, as in Fig. 140, p. 357, ¢
the corresponding distorting stress,

g::{,'.(t).

Hence, when a fluid moves, any change of form requires an amount
of work to be done which is proportionate to the speed at which the
change takes place. In a free vortex the rate of distortion is equal to
the angular velocity of the particles round the axis, and varies
inversely as the square of the distance; the changes of shape are
therefore very rapid near the centre, and energy is consequently
dissipated much more rapidly than in the stream from which the
vortex is produced.

In the case of water the viscosity is so small that such changes of
form as occur in an undisturbed stream are not rapid enough to
absorb any large amount of energy. For example, in the discharge
from orifices in a thin plate the loss of head is only 5 or 6 per cent.
It is only when the water is disturbed by the neighbourhood of a
rough surface over which it moves, or otherwise, that large
quantities of energy are dissipated and frictional resistances of
great magnitude produced.

241, Swrface Friction in General.—We now proceed to study
experimentally some of the more important causes of frictional
resistance.

Fig. 169 shows a thin flat plate 4B with sharp edges com-

pletely immersed in the water. The Fig.169.

plate is moving edgeways through the A

Wa-i.:er with velocity 7, then a certain v -
resistance £ is experienced which must

be overcome by an external force. This 2

resistance consists in a tangential action between the plate and the
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water, and so far is analogous to the friction between solid surfaces

but it follows quite different laws, which may be stated as follows:—
(1) The friction is independent of the pressure on the plate.
(2) It varies as the area of the surface in contact with the water.
(8) It varies as the square of the velocity.

These laws are expressed by the formula

R=fST,

where f is a co-efficient which, as in the friction of solid surfaces, is
described as the “ co-efficient of friction.” The value of this co-effi-
cient depends on the degree of smoothness of the plate. Thus, for
example, in some experiments, to be described presently, on thin
boards moving through water it was found that the co-efficient was
-004 for a clean varnished surface, and *009 for a surface resembling
medium sand paper, the units being pounds, feet, and seconds.

There are certain limitations to the truth of these laws, as in the
case of solid surfaces. In the first place, if the velocity be below a
certain limit the water adheres to the surface, and its velocity rela-
tively to the surface is some continuous function of the distance from
the surface so that the stream does not break up. This will be
further referred to hereafter; for the present it is sufficient to say
that the resistance then follows an entirely different law, varying
nearly as the velocity instead of -the (velocity)®’. The limiting
velocity, however, at which this is sensibly the case is so low that in
most practical applications the effect may be disregarded. In the
second place, it is supposed that the water glides over all parts of the
surface, with the same velocity; but if the surface be any considerable
length the friction of the front portion of the surface on the
water furnishes a force which drags the water forward along with the
surface and so diminishes the velocity with which it moves over the
rear portion. The friction is thus diminished, and in large surfaces
very considerably diminished. Thus Mr. Froude experimenting on a
surface 4 feet long, moving at 10 feet per second, found the value of
f given above, but when the length was 20 feet and upwards, those
values were diminished to ‘0025 and 005 respectively. Increasing
the length beyond a certain amount produces very little change, and
within a certain limiting length the effect is insensible. These limits
must depend on the speed, but no exact observations have been made
on this point. The power of the speed to which the friction is pro-
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portional has, however, been found to be diminished on long smooth
surfaces, as shown below. The skin friction of vessels on which, as
we shall see hereafter, the resistance chiefly depends at low speeds,
is much diminished by the effect of length.

Experiments on surface friction were made by Colonel Beaufoy.
They formed part of an elaborate series of experiments on the
resistance of bodies moving through water, carried out during many
years in the Greenland Dock, Deptford. Beaufoy employed the
formula

Ik
to represent his results, and for the index = obtained the values
1:66, 1-71, 19 in three series of experiments. The standard experi-
ments on the subject are however due to the late Mr. Froude: they
were made on boards 3 inch thick, 19 inches deep, towed edgeways
through the water. The boards were coated with various substances
so as to form the surface to be experimented on.

The following table gives a general statement of Froude’s re-
sults. In all the experiments in this table, the boards had a fine
cutwater and a fine stern end or run, so that the resistance was
entirely due to the surface. The table gives the resistances per square
foot in pounds, at the standard speed of 600 feet per minute, and
the power of the speed to which the friction is proportional, so that
the resistance at other speeds is easily calculated.

Length of Surface, or Distance from Cutwater, in Feet.

Nutioe of Surtace. 2 Feet. 8 Feet. 20_ _Fr._‘.et. 50 Feet.

T T o (R o [ i G g B s B
Varnish, ... 200 -41|°390(1'85| 325 | 264 1'85i‘278 *240 [ 1:83 | '250 | ‘226
Paraffin, ... 1-05| °38|:370(1°04|-314|°260|193| 271|237 | ... | ... | ...
Tinfoil, 2:16| *30('295|199| ‘278 | *263 1'90\ 262 | *244 | 183 | -246 | 232
Calico, ... 1-03| 87|725|1-92| 626 | 504 [1-89 531 | *447 |1'87 | *474| *423
Fine Sand, ... [2'00| *81|°690|2:00 ‘583|450 9-00 | *480 | *384 | 206 | *405 | 337
Medium Sand, |2°00| *90|'730(2°00| ‘625 | 488|200 | 534 *465 | 2°00 | *488 | 456
Coarse Sand, ... |2'00|110] ‘880 2‘00i'714 520/|2:00 | *B88 | “490/| ... | oo | e

Columns A give the power of the speed to which the resistance is
approximately proportional.
Columns B give the mean resistance per square foot of the whole
surface of a board of the lengths stated in the table.
Columns C give the resistance in pounds of a square foot of surface
at the distance sternward from the cutwater stated in the heading.
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2492, Surface Friction of Pipes—When water moves through a
pipe the friction of the internal surface causes a great resistance
to the flow.

Fig. 170 shows a pipe of uniform transverse section (not neces-
sarily circular) provided with two pistons, 4B, 4'B’, at a distance ,

Fig.170. enclosing between them a

mass of water. The pistons

g —r and included water move
—=p mmmmmm X mmm———- . ;

forward together with veloc-

ity v under the action of a

force R, required on account of the friction of the pistons and of the

water on the pipe. Omitting piston friction the force £ will be

given by

R0 s2=ficans,

where S is the wetted surface and s the perimeter.

If we imagine the pipe full of water moving through it with
velocity v, the force B is supplied by the difference of the pressures
7, ¢ on the pistons, and, therefore, if 4 be the sectional area

p=y=f. _%l a2
The quantity /s may be replaced by m and is described as the
« hydraulic mean depth ” of the pipe, a term derived from the case of
an open channel to be considered hereafter. In the ordinary case of
a cylindrical pipe m=J}d. Further, we may reduce the pressures to
feet of water by dividing by w, and thus obtain for the difference of
pressure &'

W= fi"*_“_f_ g

m w m ...J'

where £ is a co-efficient connected with f by the equation
f=r"3
i

The value of w, the weight of a cubic foot of water, differs so little
from 2g¢ that it is unnecessary, for our present purpose (Art. 283),
to distinguish between f and f', especially as the value of f is always
determined by special experiment on pipes.

This formula for the head necessary to overcome surface friction
is continually in use. The formula gives directly the head necessary
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for a length  of the pipe, when the water, by being enclosed between
pistons, is constrained to move over the surface with a given
velocity : when the pistons are removed and the water flows freely
it represents the facts very imperfectly. The central parts of the
stream move quicker than the parts in immediate contact with the
pipe, and besides, though the circumstances are different, we cannot
be sure that the velocity over the internal surface is not affected in
the same way as in the case of a moving surface. The value of f has
therefore to be obtained by special experiment, and the result of such
experiments are by no means always in accordance with each other.
Tt is found, however, that f lies between the limits ‘005 and -01
according to the condition of the internal surface, and partly also on
the diameter and velocity, the value being greater in small pipes than
large ones, and at low velocities than high ones. For the present we
assume ‘0075 as roughly representing the facts when there is no
special cause for increased resistance. For a pipe of circular section,
length 7, we have therefore

: bt
=l T

where for 4f we commonly assume the value ‘03.

943, Discharge of Pipes.—The velocity v is the actual velocity with
which the water moves, so that +2/2g is the energy of motion of each
pound of the water. The loss of energy by friction is the same as
that of raising the water through a height #', and is therefore equal
to the energy of motion when

%}F 33 nearly,

that is, a length of pipe equal to 33 diameters absorbs an amount of
energy equivalent to the whole energy of motion of the water. In
pipes of any length, therefore, the effect of friction is very great, so
much so that the size of a pipe is principally fixed by the loss of head
which can be permitted. It is easily seen that to deliver water with
a given velocity the loss varies inversely as the diameter, and that to
deliver a given quantity it varies inversely as the fifth power of the
diameter; thus, the smallest permissible diameter is fixed almost
entirely by the value of /', which may be supposed already known,

-~
=
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The quantity discharged per second is given us by the formula

Q=dAv= ;:dw,

and on substitution this becomes

g [

A

2f N

All dimensions are here in feet and @ is in cubic feet per second. If
we require gallons per minute for a diameter of @ inches, the formula

will be
= s
G_G.,J?--d,

where (' is a constant the value of which, for 4f=-03, is 30, but
which is often taken somewhat less (say 27) to allow for con-
tingencies.

i

244. Open Channels—Returning to Fig. 170, suppose the pipe,
instead of being horizontal, is laid at an angle ¢ (see Fig. 171
next page), so that the difference of level of the two ends is y=
1.sin 6, then the difference of pressure-head is

e e R
w f : m ‘2 g J’

and therefore may be made zero if the slope of the pipe be

sin =f. 1 ""_2=‘i”’
m 29 1

But if the pressure be constant we may remove the upper surface of
the pipe and thus obtain the case of an open channel. The quantity
m is now the sectional area of the channel divided by the wetted
perimeter, and is therefore the actual depth in a very broad shallow
channel, but in other cases less in a ratio dependent on the form of
section. As before stated it is described as the “hydraulic mean
depth ” of the channel.

We can now find the velocity and discharge of a stream of given
dimensions and fall, provided that we know the value of f, or con-
versely the size of channel for a given discharge and fall. The value
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of f, however, varies for the same reasons as in pipes which indeed
apply with still greater force, so that the limits of variation are wider.
The average value does not differ very widely from 0075, already
adopted for pipes; but to obtain results of even moderate accuracy a
special study of the experiments on the subject is necessary, which
will not be attempted in this treatise.

245. Virtual Slope of a Pipe.—If the pipe be laid at any other
angle the pressure will not be constant, and the mode in which it
varies is best seen by a graphical construction.

Suppose small vertical pipes Aa, Bb to be placed at the end of 4,
B of the pipe we are considering (Fig. 171), then (if they enter the
water square, without being bent towards the direction of motion)
the water will rise in Fig.171.
them to a level re-
presenting the press-
ure in feet of water
at these points. If
therewerenofriction
the level would be
the same in both,
and the difference
(bt in the figure)
therefore represents the loss by friction. Now draw a horizontal line
through &, and take ¢ on it, so that ac= AB =1, then the angle calNV
is given by the equation

s Ay
: sin i= 7>
and is therefore the slope of a channel of the same length and
hydraulic mean depth which would give the same discharge. This
angle is therefore called the VIRTUAL SLOPE of the pipe. At any
point P in the pipe, the water would rise to the level of the corre-
sponding point p in the virtual channel, found by taking ap = AP.
The construction would of course fail if 2’ were equal to, or greater
than /, but this case does not ocecur in practice ; on the contrary, in
pipes as in channels the angle i is nearly always small. The virtual
slope is frequently one of the data of the question. The line ac is
variously described as the *pressure line,” “line of virtual slope,” or
“hydraulic gradient.”
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The pipe need not be straight ; it may be curved or be laid in
sections at different slopes, there will still be a continuous hydraulic
gradient, provided the diameter be the same throughout; but if the
sections be of different diameters each section will have its own slope.
In practice care must be taken that the pipe does not rise above its
hydraulic gradient, for otherwise there will be a partial vacuum:
the pipe then acts as a syphon, which is liable to fail on account of
leakage and the presence of air in the water.

2486. Loss of Energy by Eddies and by Broken Water.—We now
proceed to consider other causes of frictional resistance.

In Fig. 172 two streams of water, moving with different velocities,
converge towards each other and unite into one. Kach stream, so
far as can be judged by the eye, moves originally without disturb-
ance in the manner described in Art. 241. On union, however, near

the junction indicated by the dotted
Fig.172, line 85 in the figure, small depres-
sions are observed, which move for

and then disappear. On examina-
tion these depressions are found
to consist of small portions of the
fluid in a state of rotation, the
speed of rotation being greatest at the centre and gradually dying
away towards the circumference. A motion of this kind was called
a “vortex” in Art. 241, and in the present case is also described as
an “eddy”; it is independent of the general motion of the stream,
and its energy is therefore of the internal kind. The disappearance
of the eddies thus formed is due to viscosity, the effect of which is
much greater in the eddy than in the stream as already explained.
After the eddies have disappeared the two streams are found to have
become a single one, moving with a velocity intermediate hetween
those of the streams which form it, but possessing less energy.
Theoretically there is nothing to prevent two streams of a perfect
fluid from moving side by side with different velocities, but such a
motion is always unstable, and will not long continue without the
formation of eddies by a sudden change of direction (Art. 239) in
small portions of the fluid which separate from the rest. The
instability is greater the more nearly perfect the fluid is. When-
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ever thenm water in motion intermingles with water at rest, or
moving with a different velocity, internal motions of a complex kind
are produced, representing a considerable amount of energy of the
internal kind which is virtually lost even before its final dissipation
by fluid friction.

Again, in order that a mass of water may form a continuous whole,
sufficient pressure must exist on the bounding surface to prevent the
pressure at any point within the mass from becoming zero, as ex-
plained in Art. 240. If this condition is not satisfied the water
breaks up more or less completely, and the result is a confused mass
with complex internal motions rapidly disappearing as before by
fluid frietion. When waves break on a beach, or when paddles strike
the water and drive it upwards in a mass of foam, the process takes
place on a large scale before our eyes; but the same thing occurs in
most cases where the velocity of a mass of water is suddenly changed,
and of this we will now consider some examples.

Fig. 173a shows a jet of water filling a tank. Here the water pour-
ing in possesses the kinetic energy /772/27 due to the original velocity
of the water, and the height from which it falls into the tank. If it
be of some size as compared with the tank the
water will be completely broken up; if it be < \ Le L
small it will penetrate the water in the tank N
without much apparent disturbance at the surface: )
in either case the result is a mass of water at rest
as a whole, so that its energy is all of the internal
kind. If the jet be shut off the water rapidly settles down to rest,
the whole energy is then dissipated by fluid friction.

Fig. 173b shows a bucket moving horizontally, bottom foremost,
with velocity 77, while a horizontal jet moving with greater velocity
strikes it centrally: the
bucket is then filled with
broken water which
pours out under the ___
action of gravity. In
water-wheels a series
of buckets are filled in
succession, and the bro-
ken water carried on with the wheel. Here if the bucket were at

rest the loss of energy would be, as before, /77%2g ; but as it is
2a

Fig.l’?ab
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moving with velocity 7, the striking velocity on which the breaking
depends will be »— 77, and the loss of energy is

F V)

U=w (_Qg_ :
where /7 is the weight of water acted on in the time considered.
Both these cases may be treated as examples of the collision of two
hodies considered on page 280, one of the hodies being indefinitely
great. The energy of collision is employed in breaking up the
water. It is represented in the first instance by internal motions,
and subsequently dissipated by fluid friction.

Fig. 174 represents a pipe which is suddenly enlarged from the

diameter cd to the diameter ab. The water is moving through the
small part of the pipe with velocity », and, on passing through cd

Fig.174,

spreads out so as to fill the larger part. At some distance from the
enlargement it moves in a continuous mass with velocity 7, but in
its immediate neighbourhood we have hroken water, as in the case of
the bucket, from which it only differs in the enclosure of the water
in a casing. The loss of enmergy per unit of weight may be
expected to be the same (Art. 252) as before, and is therefore
s QW)
o (Tg
a formula which gives us the “loss of head.” If the sectional areas
of the two parts of the pipe be 4, @ the discharge is
Q=AV =ay,
so that if m he the ratio of areas,
= J2 11242
W =(m-1) 2 _(1 _5})_2‘0_
The co-efficient of resistance is therefore (m — 1) or (1 — 1/m)2, accord-
ing as the velocity to which it is referred is that in the large pipe or
that in the small one, .

3
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Instead of the water moving from a small pipe into a large one, we
may have the converse case of a suddenly contracted pipe as in Fig.
175. " The loss here is due to precisely the same cause, namely a
sudden enlargement, which is produced as follows. In the figure the
stream of water moving with velocity u contracts on passing through

Fig.176.

cd nearly as it would if the small part of the pipe were removed, as
in Fig. 165, p. 449, until it reaches a contracted section KK, and is
then moving with a velocity » which is greater than « in the ratio of
the area of the large pipe to the confracted avea KK, The loss of
head in this part of the process is not large. After passing KK,
however, an expansion takes place to the area of the small pipe, and
this is accompanied by breaking up, the space between the contracted
Jet and the pipe being filled up with broken water.

In Fig. 176 we have the extreme case, in which the large pipe is a
vessel of any size. We
thus obtain the case of a
pipe with square edged
entrance which has already
been referred to in Art.
236.  Another modifica-
tion is that of a diaphragm
in a pipe, as in Fig. 177.
The small pipe is here
larger than the orifice
through which the water
enters, and in the figure we have simply a single pipe divided into
parts by a diaphragm with an orifice in the centre. The stream of
Water, after passing the contracted section KK, expands to fill the pipe.
In cocks when partially closed, a loss of head of the same kind occurs,
Wwhich may be increased to any extent by closing the cock further.

In all these cases the loss of head may be calculated approxi-
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mately by means of the formula for a sudden enlargement, but the
ratio of enlargement is not known exactly, on account of the uncer-
Fig,177. tainty of the value of

K the co-efficient, of con-

= — traction tobeassumed.
———— Y Losses of head of this
kind are indeed al-

ways subject to varia-

tion within certain

limits from accidental causes; in general and on the average
the quantity of water broken up will bear a certain propor-
tion to the whole quantity passing, and in consequence we have the
general law of hydraulic resistance stated on page 447, but the ratio
may vary from time to time, and cannot be stated with precise accuracy.
The causes of this uncertainty will be clearly understood on consider-
ing somewhat more closely the manner in which the loss takes place.
In Figs. 175, 177 two plane surfaces at right angles meet at @,
forming an internal angle, through which water is flowing. The
particles of water there describe curves which are all convex to-
wards @, and in conformity with the general principle explained in
Art. 239, the pressure must increase and the velocity diminish on
going towards @. The water then moves slowly and quietly round
the angle without disturbance. But when compelled by the general
movement of the stream to move round an external angle such as
kea in Fig. 174, the case is very different ; the particles then describe
curves which are concave round ¢; and consequently the pressure
diminishes in going towards ¢, while the velocity increases. To hold
the particles of water in contact with the surface, an infinite pressure
would be required in the other parts of the fluid. The particles of
water therefore leave the surface at ¢, and describe a path ea’, regain-
ing the surface farther on; es’ is then described as a  surface of
separation,” as it separates the moving mass of water from a portion
enclosed within it which is in a state of violent disturbance. Such
are the surfaces shown in Figs. 171-178. It is not, however, to be
supposed that these surfaces are sharply defined, and that they per-
manently separate different masses of water. On the conftrary, no
such equilibrium is possible ; the surfaces are continually fluctuat-
ing, and a constant interchange takes place between the so-called
“dead” water and the stream. TIn this intermingling eddies.are




CH, XIX, ART. 248.] ELEMENTARY PRINCIPLES. 469

produced nearly as in the comparatively simple case of two streams
given on page 464. The process is always essentially the same, and
consists in sudden changes of direction being communicated to
parts of the stream which become detached from the rest.

247. Bends in a Pipe. Surface Friction—In some other cases the
process of breaking up by which energy is lost is less obvious, and
the ratio is subject to greater variations.

When a pipe has a bend in it, if the internal surface of the pipe
were perfectly smooth and free from discontinuity of curvature,
there would be no disturbance of the current of water, which would
flow as described in Art. 241. These conditions, however, are not
satisfied by actual bends in pipes, and there is always a loss of head
due to them in addition to the loss by surface friction. This loss can
only be determined by experiment, but it is easy to conjecture that the
loss will be proportional to the angle through which the pipe is bent,
and that it will be greater the quicker the bend, that is, the smaller
the radius of the bend is as compared with the diameter of the pipe.
The extreme case of a bend is a knee, but the loss is not in this case
proportional to the angle of the knee, but follows a complex law.
For details respecting bends and knees the reader is referred to the
treatises cited at the end of this chapter, but some common examples
are given in the table (p. 470).

In the case of surface friction the loss of energy is represented in
the first instance by eddies formed at the surface and thrown off.
In almost all practical cases of the motion of water in pipes and
channels, even when to all outward appearance quite undisturbed,
the fluid is in fact in a state of eddy motion througl:out, and dissipa-
tion of energy at every point is going on much more rapidly than
would be the case if the motion were of the simple kind described in
Art. 241. The quantity of water broken up, however, is not gene-
rally in a fixed proportion to the quantity passing, for reasons which
are sufficiently indicated in Art. 242,

248. Summation of Losses of Head.—The total loss of energy due
to a number of hydraulic resistances of various kinds is found by
adding together the losses of head due to each cause taken sepsrately.
The velocity of the water past each obstacle will not generally be
the same for all, and it is then necessary to select some one velocity
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from which all the rest can be found by multiplication by a suitable

factor for each obstacle. If 7 be this multiplier the loss of head will be
2
b =ZFn? g
=
where 7 is the velocity selected for reference. The value of /7 is
then found for motion under a given head I7 by the formula

2
(1 +ZFn?) ‘)V—g=H.

The various values of 7 already given are collected with some addi-
tions in the annexed table :—

Co-EFFICIENTS OF HYDRAULIC RESISTANCE.
NATURE OF OBSTACLE. VALUE oF F. REMARKS.
Orifice in a Thin Plate. 06
Square-edged Entrance 5
of a Pipe.

Sudden Enlargement of a (m=1) Referred to Velocity through
Pipe in the ratio o : 1. large part of Pipe.
Bend at Right Angles S Radius of Bend =3 x Diame-

in a Pipe. ter of Pipe.
Quick Bend at Right -3 Radius of Bend = Diameter
Angles. of Pipe.
o Handle turned through 15°,
Commonc%:;lglpm gty 75, 5°5, 31 30°, 45° from position when
fully open.

i s S Fora clean Iron Pipe d inches

b“f}‘::‘iigﬁflg? gl;ilc]i’llpe i diameter, according to Darcy,
is  times the diameter. 4 f=02 (1 i é )

In Bends the co-efficient is pro-

Knee in a Pipe at Right Unit portional to the Angle of
Angles. v the Bend, but in Knees the

law is much more complex.
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249. Resistance of deeply Immersed Bodies.  Ships at Low Speeds.—
The subject of the resistance of ships is outside the limits of this
treatise, for the ship moves on the surface of water, exposed to the
atmosphere,on which waves are produced; whereas in the branch of me-
chanics now under consideration, the water is supposed to move within
fixed boundaries. A certain part of the subject, however, may pro-
perly be considered as belonging to Hydraulics. If a body be deeply
immersed in a fluid, that part of the Huid alone which is in its
immediate neighbourhood will be affected by its motion, and the
question is not essentially different from the cases already considered
of the movement of water in pipes and channels.

Fig. 178 shows a parallelopiped abed moving through water in the
direction of its length, the face ¢d being foremost. To an observer
whose eye travels along with the body the water will appear to move
past the solid in a stream of indefinite extent. At some distance
away the action of the solid is insensible,
but it becomes increasingly great as the solid
is approached, and is greatest for that part
of the water which moves in immediate
contact with it. At ¢ and d eddies are f
formed in passing round the corners exactly ||
as is the case at the same points in Figs.
175, 176—the stream in fact is suddenly
contracted in the same way as in passing
from a large pipe to a small one, the
diminution of area in this case being the
transverse section of the solid. After this
the water moves in actual contact with
the solid until it reaches the corners ad,
Wwhen it describes the curves 48,55, meeting
in S, after which it forms a continuous
Stream as before. The two curves enclose |
between them a mass of eddying water ex-
actly similar to the eddies at « and bin Fig. 174—the stream, in fact,
suddenly expands, just as in passing from a small pipe to a large
one, the increase of area being in this case the sectional area of the
solid. The eddies thus formed during the passage of the solid through
the water absorb energy, which must be supplied by means of an
external force, which drags the hody through the water. The eddies

i
|
|

¥
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at ¢d represent an increased pressure on the front face ed of
the solid, while those at @S, S diminish that at the rear. This kind
of resistance to the movement of a body through water is called Eddy
Resistance, and may be almost entirely avoided by employing ¢ fair ”
forms, that is, by avoiding all discontinuity of curvature in the solid
itself, and in the junction of its surface with the direction of motion.

A general formula for eddy resistance is derived thus. Asalready
stated the water suffers no sensible disturbance at a certain distance
from the solid. If then we imagine a certain plane area 4 attached
transversely to the solid, and moving with it, all the water affected by
the solid will pass through this plane, and its quantity will be

Q=4V,
where /7 is the velocity. In similar solids this area must be propor-
tioned to the sectional area S of the solid, so that we write .4 = ¢S,
where ¢ is a constant depending on the form. Of this water a cer-
tain fraction will be disturbed by eddies, and the velocity of each
particle of water will be some fraction of the velocity of the solid.
Hence it follows that the energy U generated per second in the pro-
duction of eddies must be-
2 3
U=cw@ . 2{ = cg'ws . ‘g:

where ¢'is a co-efficient. Now this amount of energy is generated by
means of a force which drags the solid through the water, at the rate
of 7 feet per second, notwithstanding an equal and opposite resist-
ance . 'We have then

8
RV =ccuwS. ;I)-/—,
29

or dividing by 7, and replacing ¢¢' by a single constant £,
B=rkws . QKZ :
g
The co-efficient % is to be determined by experiment for each form of
solid. In the case of the parallelopiped shown in the figure, the value
of % depends little on the length, unless it be so short that the eddies
at the corners cd coalesce with those in the rear of the solid, and it
then becomes the same as that of a plate moved flatwise. TFurther
it is nearly the same, if the transverse section be circular instead of
square, and does not greatly differ from unity. For the flat plate it
is greater and may he taken as 1-25. It must be remarked, however,
that resistance of this kind is very irregular, and may vary con-
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siderably in the course of the same experiment. Different results are
therefore obtained by different experimentalists. By some author-
ities much larger values are given. The same remarks apply to the
case of a sphere for which the value may be taken as about 4.

In all cases the value of [ is independent of the units employed.
It is also to a great extent independent of the kind of fluid, being
approximately the same for example in air as in water; but this
would not hold good for fluids of very different viscosity ; nor is it
true for high speeds in air, because the compressibility of the air
affects the question. The same remarks apply to the co-efficient (#)
of hydraulic resistance employed above. It has been found that
co-efficients of surface friction are greater in salt water than in fresh
in the ratio of the densities of these fluids, as we might anticipate,
since surface friction is a kind of eddy resistance.

In well-formed ships the eddy resistance should not be more than
10 per cent. of the total resistance at low speeds, and is frequently
less ; the principal cause of resistance here is surface friction, which
is given by the formula stated in Art. 241. The surface to be con-
sidered is the wetted surface, which can be found by direct measure-
ment. It is convenient, however, to have a formula which gives the
resistance in terms of the displacement (A) of the vessel. If R be
the resistance, 7 the speed, the formula will be

R=K.AS 1,

where K is a co-efficient which for speed in knots per hour, displace-
ment in tons, and resistance in lbs., may be taken from 55 to ‘85
according to the type of vessel, if the bottom be in good condition.
The speed, however, must not exceed a certain limit on account of
the wave resistance, which increases at a much more rapid rate. At
low speeds the value of this resistance is small, and it may approxi-
mately be considered as compensating for the somewhat slower rate
at which the surface friction increases (Art. 241), but at high speeds
it becomes a principal part of the resistance, and has to be separately
considered. The speed of a wave is proportional to the square root
of its length, and the magnitude of the resistance in similar ships
depends on the proportion hetween the length Z of the ship, and the
length of waves which travel at the same speed. The limit in
question is therefore given by the equation

Ve JIL
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where for lengths in feet and speeds in knots per hour the co-efficient
K’ may be taken from 6 to 7. (See Appendix.)

Not only is the speed limited to which the resistance formula
given above applies, but it must be further remarked that it sup-
poses that the vessel is towed by an external force. If the vessel be
propelled by steam power on board, the effective resistance is much
greater, because the action of the propeller has (probably always) the
effect of increasing the resistance. In screw propulsion this augmen-
tation is very great, being at the rate of 20 to 40 per cent. ; the
larger value is of common occurrence. In reckoning the engine
power required, the resistance must be taken at its augmented value,
and the formula of Art. 128, p. 269, employed for the efficiency of
the mechanism, which is much less at low speeds than at high speeds,
as the formula shows.

250. Direct Impulse and Reaction.—The generalized form of the
second and third laws of motion, described as the Principle of
Momentum in Chapter XI. of this work, may be employed with great
advantage when the motion of water in large masses is under con-
sideration, because the total momentum of a fluid mass depends
solely on the motion of the centre
of gravity (p. 277), and not on the
very intricate motions of the parts
of the fluid amongst themselves.
Further, the energy dissipated by
frictional resistances is accounted
for by these internal motions, or
by the mutual actions of the fluid
particles, and the total momentum
is therefore independent of these
resistances. Hence it follows that
results may be obtained which are
truenotwithstanding any frictional
resistances, and in some -cases
the loss of energy by them may be determined @ priori. Also the
pressures on fixed surfaces may be found which do no work, and to
which therefore the principle of work does not directly apply.

Fig. 179 shows a jet of water striking perpendicularly a fixed
plane of infinite extent, and exerting on it a pressure P. The
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magnitude of this pressure is found by considering that the plane
exerts an equal and opposite pressure on the water, which changes its
velocity. The water, originally moving with velocity », spreads out
laterally; and any motion which it possesses is parallel to the plane.
In time ¢ the impulse is /%, and the change of momentum is M/,
where J/ is the mass of water delivered per second. Equating these
we have

peiv="v,
g

where J/ is the weight of water delivered per second.

If the plane be smooth, and gravity be neglected, the motion of
the water will be continuous; but if
it be rough to any extent, so that ,
breaking-up occurs, the result will
still be correct, provided only the
roughness be symmetrical about the
axis of the jet. And the action of
gravity parallel to the plane does not
affect the question.

In Fig. 180 we have the con-
verse case of water issuing from a
vessel with a lateral orifice. Here the water, which originally was at
rest, issues with velocity », and the momentum generated in time # is
Mvt.  To produce this momentum a corresponding impulse is
required, which is derived from the resultant horizontal pressure 2
of the sides of the vessel upon the water. We have as hefore

Py =2,
g

Fig.180,

A pressure equal and opposite to P is exerted by the water on the
vessel : this is described as the “reaction” of the water; and, if the
vessel is to remain at rest, must be balanced by an external force
supplied by the supports on which it rests.

A remarkable connection exists between the change of pressure on the sides of the
vessel consequent on the motion and the co-efficients of contraction and resistance.

First, suppose the water at rest, the orifice being closed, then the value of P is zero,
and the pressure on the area of the orifice iz w. A4 . &, the notation being as in Art.
236. When the orifice is opened the pressure on that side is diminished, first, by the
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quantity w. 4 . I ; secondly, by an unknown diminution S due to the motion of the
water (p. 455) over the surface near the orifice. Now

P=S+w.Ad. h=3&g°”'_2= 2wd, (k- 1),
the notation still being as in the article cited. Replacing A, by k4 we obtain

v ‘ I 2k
S=wd {2k (k- 1) -k} =wAl (1_+_F- 1).

Since S is always positive the least value of ¥ is
p-itF

2

If there be no frictional resistances £ = *5, and this is the smallest value & can have
under any circumstances, For a small pipe projecting inwards as in Fig. 164, p. 448,
these conditions are approximately realized, the water being at rest over the whole
internal surface of the vessel.

251. Obligue Action. Curved Surfaces.—-When a jet impinges
obliquely on an indefinite plane (Fig. 181), the water spreads out
laterally as before, but the quantity varies according to the direction.

In the absence of friction the
7/ velocity of individual particles
is the same as that of the jet in
whatever direction the water
passes. At the same time the
velocity of the whole mass of
water parallel to the plane can-
not he altered by the action
of the plane, and is therefore
v . cos 0, where @ is the angle the jet makes with the plane. It im-
mediately follows that any small portion of water diverging from K
the centre of the jet at an angle ¢ with the jet must be balanced
by another portion diverging in the direction immediately opposite,
and the quantities so diverging must be in the ratiol — cos¢ : 1 + cos¢,
being inversely as the changes of velocity parallel to the plane. But
if the circumstances be such that breaking-up takes place, the motion
of the water parallel to the plane will be undetermined, and in general
there will be a tangential action on the plane of the nature of
friction.

The normal pressure on the plane is in all cases the same, being

given by the formula
P=My. sin 9=£’q’f. 0. sin'6,
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If the surface on which the water impinges be curved it is necessary
to know the average direction and magnitude of the velocity with
which the water leaves the surface. In the absence of friction, as al-

ready noticed, the velocity of the individual Fig.189,
particles is unaltered unless the water be enclosed B c

in a pipe so that the pressure can bhe varied—a o
case for subsequent consideration; the direction, v /

however, will depend on the way in which the
water is guided. In cases which occur in practice A
it will generally be found either that the whole
of the water is guided in some one direction, or that it leaves the
surface in all directions symmetrically.

Taking the first case, suppose the original velocity (v) of the water
to be represented by 04 (Fig. 182), and the final velocity to be
diminished to 7 by friction, and altered in direction so as to be repre-
sented by OB. Then the change of velocity in the most general
sense of the word (p. 275) is represented by 4 B. If this be denoted
by 7 the change of momentum per second is

[e] (TR0}

g

The resultant pressure on the surface is parallel to 4B and
numerically equal to P.

In applications to machines the curved surface is frequently a vane
which is not fixed, but moves with a given velocity ; the pressure
can then be found by a simple addition to the diagram. Through
O draw 00, representing the velocity (x) of the moving surface in
direction and magnitude, then (/4 represents the velocity with which
the water strikes the surface. Considering the vane as fixed, the
velocity is now estimated with which the water would leave it, and
OB’ drawn to represent it ; the change is now 4B instead of 4B.
If the absolute velocity is required with which the water leaves the
surface, it may be found simply by joining OB, which will com-
Pletely represent it: the change of velocity being 4B, whether
the velocities are absolute or relative to the moving surface.

The cup vane 4C.A (Fig, 183), against which a small jet of water
Impinges centrally, may be taken as an example where the water
spreads in all directions symmetrically. If 0.4 be tangent to the
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vane at 4, making an angle € with the centre line of the jet, the
water leaves the vane in
the direction 0.4 with un-
altered velocity (neglect-
ing friction).  The result-

v

Fig.183,

% 1, /a p ant pressure P is in the
e T W i direction of the jet, and
N the velocity in that direc-

tion is altered from » to
» cos ¢ in the opposite
> / direction, so ‘that the

change of velocity is

#(1 + cos ). Thus we have
s (1 + cos 0).

252. Impulse and Reaction of Water ina Closed Passage.—When the
water is moving in a closed passage the resultant pressure to be con-
sidered in applying the principle is not merely that on the sides of
the passage, but also that on the ideal surfaces which separate the
mass of water we are considering from the complete current. 1In the
previous cases the pressure of the atmosphere on the free surface
bounding the fluid was the same throughout, and was balanced by
an equal pressure of the surface against which it impinges, which is
not included in the preceding results. Thisis now no longer the case.

An important example is that of the sudden enlargement in a pipe
already referred to in Art. 246. In TFig. 174, page 466, take ideal
sections KK, kk of the large and small portions of the pipe, and con-
sider the whole mass of water between them. This mass is acted on
(1) by the pressure (p) on the transverse section &k, (2) by the pres-
sure (P) on the transverse section KK, and (3) by the pressure of the
sides of the pipe. If we resolve in the direction of the length of the
pipe, the only part of (3) which we need consider is the pressure (3')
on the annular surface ac, bd, the area of which is 4 —a, and the
whole resultant pressure is therefore P4 — pa — p’ (A — @) in the direc-
tion opposite to the motion of the water. Now let /7~ be the weight of
water delivered in one second, then in that space of time J/” passes
from the small pipe, where its velocity is #, to the large pipe, where
it has a velocity 7/, so that if we equate the resultant pressure to
diminution of momentum

PAd-pa-p(a-a)=L-p) 0ATT),
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a formula which may be written

w o w

ST D rpa -,

m being as in Art. 246 the ratio of enlargement. Let now H be the
total head in the large pipe and % in the small one, then subtracting
(v* = I®)/2¢ from both sides and re-arranging the terms

g (w=F) Sl el
h IfMT+(fJ 7)1 m).

Comparing this result with that obtained in the article cited, it ap-
pears that the value of the loss of head there given is a necessary
consequence of supposing p =p/, but cannot otherwise be correct.
That the pressure in the broken water at ac, bd is nearly equal to the
pressure in the small pipe may be considered probable a priori, inde-
pendently of the experimental verification which the formula has
received.

EXAMPLES,

1. The injection orifices of the jet condenser of a marine engine are b feet below
the surface of the sea, and the vacuum is 27 inches of mercury: with what velocity
Wwill the water enter the condenser, supposing three-fourths the head lost by frictional
resistances? Also find the co-efficients of velocity and resistance and the effective
area of the orifices to deliver 100,000 gallons per hour. Ans. Velocity =236’ per
second ; Area = 27 sq. inches.

2, Water is discharged under a head of 25' through a short pipe 1" diameter
with square-edged entrance ; find the discharge in gallons per minute. Ans. 663.

3. Water issues from an orifice the area of which is *01 sq. feet in a horizontal
direction and strikes a point distant 4' horizontally and 3’ vertically from the orifices.
The head is 2’ and the discharge 25 gallons per min.; find the co-efficients of velocity,
resistance, contraction, and discharge. Ans. ¢="816, F'="5, k=57, €= '57.

4. The wetted surface of a vessel is 7,500 sq. feet, find her skin resistance at 8 knots
and the H.P, required to propel her, taking the resistance to vary as ¥* with a co-effi-
cient of ‘004. Ans. Resistance=5,600 Ibs., H.P, = 137,

5. The diameter of a serew propeller is 18/, the pitch 18/, and the revolutions 91 per
min, Neglecting slip find the H.P, lost by friction per sq. feet of blade at the tips,
taking a co-efficient "008 to include both faces of the blade. .Ans, Friction =65 Ibs,
per sq, feet. H.P.-106.

6. Two pipes of the same length are 3" and 4" diameter respectively : compare the
losses of head by skin friction (1) when they deliver the same quantity of water, (2)
when the velocity is the same. ~Ans. Ratio=-4'21 and 1:33.

7. Water is to he raised to a height of 20’ by a pipe 30' long 6" diameter:
what is the greatest admissible velocity of the water if not more than 10 per cent.
additional power is to he required in consequence of the friction of the pipe? Ans,
8% per see,
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8. Two reservoirs are connected by a pipe 6” diameter and three-fourths of a mile
long. For the first quarter mile the pipe slopes at 1 in 50, for the second at 1 in 100,
while in the third it is level. The head of water over the inlet is 20 feet and that
over the outlet 9 feet. Neglecting all loss except that due to surface friction, find
the discharge in gallons per min., assuming f="0087. Ans, v=3'43" per sec, Dis-
charge = 253 gallons per min.

9. A river is 1000’ wide at the surface of the water, the sides slope at 45° and the
depth is 20'; find the discharge in cubic feet per sec. with a fall of 2’ to the mile, as-
suming f = '0075. Ans. 154,000.

10. A tank of 250 gallons capacity is 50’ above the street. It is connected with
the street main, the head in which is 52 by a service pipe 100’ long : find the diameter
of the pipe that the tank may be filled in 20 min. What must the head in the main
be to fill the tank in 5 min, with this service pipe? Ans, d=1'6". Head in main
=82/,

11. Water is discharged by a vessel from a long pipe: show that the discharge is
the same for all pipes of the same length with the discharging extremity in the same
horizontal line. Draw the hydraulic gradient and examine the case of a syphon.

12. In question 2 suppose the pipe instead of being short to be 25” long, find the
discharge, assuming for surface friction f=°01. Ans. 52,

13. A horizontal pipe is reduced in diameter from 3” to 4" in the middle, the reduc-
tion being very gradual, The pressure head in the pipe is 40/, what would be the
greatest veloeity with which water could flow through it, all losses of head being
neglected ? Aus. 1'4' per sec,

14, A pipe 2” diameter is suddenly enlarged to 3”. If it discharge 100 gallons per
min., the water flowing from the small pipe into the large one, find the loss of total
head and the gain of pressure head at the sudden enlargement, State the two values
of the co-efficient of resistance.

Ans. Loss of head =8}, F=159 or ‘31,
Gain of pressure =1’ 2",

15. In the last question suppose the water to move in the reverse direction. Find
the loss of head and the change of pressure consequent on the sudden contraction,
assuming the co-efficient of contraction to be *66.

Ans. Loss of head =T73".
Diminution of pressure=2' 53",

16. A horizontal pipe 30’ long is suddenly enlarged from 2” to 3” and then
guddenly returns to its original diameter. Length of each section =10", Draw the
hydraulic gradient when the pipe is discharging 100 gallons per min. into the atmo-
gphere, assuming as coefficient of surface friction 4 f= 03, TFind the total loss of head.
Ans. Total loss of head = 10" 24",

17. A pipe contains a diaphragm with an orifice in it the area of which is one-fifth
the sectional area of the pipe. Find the co-efficient of resistance of the diaphragm,
assuming the contraction on passing through the orifice the same as that on efflux
from a vessel through a small orifice in a thin plate. Ans. F=46,

18. Find the loss of head in inches due to a bend through 45° of radius 6” in a
pipe 2" diameter, the velocity of the water being 12 per sec. Ans. 2",

19. A plane area moves perpendicularly through water in which it is deeply im-
mersed ; find the resistance per sq. feet at a speed of 10 miles per hour, Deduce the
pressure of a wind of 20 miles per hour using the same co-efficient. Ans. Resis-
tance = 269 1bs. Wind pressure = 1°312 Ibs,
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20. Compare the resistance of an area moving flatwise through the water with its
resistance moving edgewise so far as due to surface friction, the co-efficient for which
is ‘004. Ams. Ratio =312,

21. In question 1 suppose the ship moving at 10 knots and the orifice of entry so
arranged as to cause no additional resistance: find the velocity of delivery. Aus,
Additional head =442 ; velocity = 25’ per sec.

22. Water is supplied by a scoop to a locomotive tender at a height of 7/ above
the trough. Assuming half the head lost by frictional resistances, what will be the
velocity of delivery when the train is running at 40 miles per hour, and what will
be the lowest speed of train at which the operation is possible ? Ans. 39’ per see.;
14% miles per hour.

23. A stream of water delivering 500 gallons per min. at a velocity of 15 feet per
sec, strikes an indefinite plane (1) direct, (2) at an angle of 30°; find the pressure on the
plane.

24. Employ the principle of momentum to prove the formula on page 455 for the
resultant centrifugal force of one-half a rotating ring of fluid.
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