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When J. Tate introduced rigid spaces in [T ], he was influenced by Grothendieck’s
idea of associating a generic fibre to a formal scheme satisfying certain finiteness
conditions. After Tate’s notes [T] had been communicated, considerable efforts
were made, for example by the school of Grauert and Remmert, to develop rigid
geometry in terms of analytic methods, in analogy to complex analysis. On the
other hand, it was Raynaud [R] who suggested to view rigid spaces entirely within
the framework of formal schemes. Both approaches have their advantages. Most
notably, the approach through formal geometry allows the application of powerful
methods from algebraic geometry, thus leading to rigorous solutions of various
problems which, from a strictly analytic point of view, can only be dealt with in an
ad-hoc-manner.

Apart from the colloquium talk [R], the approach to rigid geometry via formal
schemes is not well-documented. It is our intention to elaborate the ideas of
Raynaud in order to pave the way for accessing some interesting applications. The
present paper is of introductory nature. Its purpose is to motivate and explain
Raynaud’s definition of the category of rigid spaces as a localization of the
appropriate category of formal schemes by admissible formal blowing-ups. This
way it is possible to define rigid spaces over complete noetherian rings, not just
over complete valuation rings.

In Sects. 1 and 2 the basic results and constructions concerning admissible
formal schemes are explained, among them the technique of admissible formal
blowing-up. Then, in Sect. 3, we define rig-points of admissible formal schemes,
which later on are interpreted as points of rigid spaces. In some sense, they provide
the link between an admissible formal scheme and its associated rigid space. After
having gathered these technical prerequisites, we show in Sect. 4 how to interpret
classical rigid spaces in terms of formal schemes, in the way it was indicated by
Raynaud in [R]. Finally, in Sect. 5 the approach is extended to Raynaud’s relative
rigid spaces over a global noetherian base.

One can start now and generalize classical rigid geometry to the relative case.
The point of departure for any activity in this field is the basic result of Raynaud
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asserting that a flat rigid morphism admits a flat formal model. This theorem,
which allows a foundation of rigid spaces different from the one given by Tate, will
be the subject of the second part [FII] of this paper.

1 Admissible formal schemes

Let R be a ring with a finitely generated ideal I < R such that R is complete and
separated with respect to the J-adic topology. Then J is contained in the Jacobson
radical of R, in particular, each maximal ideal of R is open. Writing
3 =(9:1,...,9,), we define the ideal of J-torsion in R as

(3-torsion)g = {r €R; 3"r = 0 for some n e N};

it equals the kernel of the canonical homomorphism
R—[] R[g7"].
i=1

We will generally assume that R has no 3-torsion. The latter is equivalent to the
fact that the open subscheme of Spec R, which is complementary to the closed
subscheme V/(3J), is schematically dense in Spec R; for the notion of schematic
closure see [EGA I,.,,, 6.10]. Furthermore, if R has no J-torsion, there is no
associated prime ideal p € Ass R which belongs to the closed subscheme V(3J) of
Spec R. Conversely, the latter property implies that R has no 3-torsion if R is
noetherian, cf. [EGA 1V, 5.10.2]; for the notion of associated prime ideals see [AC,
Chap. IV, Sect. 1].

Using rings of the above type as base rings, we will restrict ourselves to the
following two cases:

(I) The classical rigid case. R is a valuation ring of Krull dimension 1, complete
(and separated) with respect to the 3-adic topology generated by a principal ideal
3 = (m) = R where n is some non-zero element of the maximal ideal of R. The
situation is induced from a complete non-trivial height 1 valuation on the field of
fractions Q(R).

(IT) The noetherian case. R is a noetherian ring which is complete and separated
with respect to the J-adic topology given by some ideal 3 < R. Included as
a particular case is the case of (I) where R is a complete discrete valuation ring and
where 3 coincides with the maximal ideal m = R.

If §=(,...,¢&) is a system of variabless, we denote by
R{&) = R{Ey, . . ., &,) the R-algebra of strictly convergent power series (in the
terminology of [BGR, 1.4]) or restricted formal power series in ¢ (in the termino-
logy of [AC, Chap. III, Sect. 4, no. 2]); it consists of all formal power series
2 ¢,8" € R[[£]] whose coefficients ¢, satisfy limc, = 0. The algebra R{&) is
noetherian if R is noetherian; use [AC, Chap. III, Sect. 2, no. 10, Corollary 5].
Furthermore, we claim that, in the above cases (I) and (II), R{&) is flat over R. In
the classical rigid case, this follows from the fact that R{¢) has no R-torsion,
whereas in the noetherian case it is a consequence of the Bourbaki criterion of
flatness; cf. [AC, Chap. IIL, Sect. 5, no. 2, Theorem 1]. In other cases, where R is not
noetherian, it is difficult to decide whether or not R{ &) is flat over R. In addition to
the flatness we will need to know that R{¢) is a coherent ring; see 1.3. Since the
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class of rings R satisfying these two properties for any set of variables ¢ does not
seem to be easily accessible, we have chosen to restrict ourselves to the two cases
listed above.

An R-algebra A is called of topologically finite type (tf type) if it is isomorphic to
a quotient R{¢£)/a, where ¢ is a finite set of variables and where a = R{&) is an
ideal. If, in addition, a is finitely generated, we call A of topologically finite
presentation (tf presentation). For an R-algebra A of tf type, the fact that a is finitely
generated is independent of the choice of the isomorphism A ~ R{&)/a, as is easily
seen. An R-algebra of tf presentation is called an admissible R-algebra if it has
no 3-torsion. Of course, in the noetherian case, there is no difference between
R-algebras of tf type and tf presentation. Furthermore, we will show in the classical
rigid case, see 1.1(c) below, that any R-algebra of tf type without 3-torsion is of tf
presentation and, thus, admissible. For example, R {£) is admissible, and A{¢&) is
admissible if A is admissible. Also note that, in the classical rigid case, an R-algebra
of tf type or presentation is admissible if and only if it has no R-torsion, i.., if and
only if it is flat over R. Morphisms between R-algebras of the above type are
defined as R-algebra homomorphisms in the usual sense. Such morphisms are
automatically continuous with respect to J-adic topologies.

Proposition 1.1. Let A = R{&)/a be an R-algebra of tf type, and consider the 3-adic
topology on A.

(a) A is complete.

(b) Ifais finitely generated, ais closed in R (). In particular, any R-algebra of tf
presentation is complete and separated with respect to the 3-adic topology.

(c) If A has no 3-torsion, a is finitely generated. In particular, any R-algebra of tf
type with no 3-torsion is admissible.

(d) In the noetherian case, A is noetherian.

Proof. Assertion (a) is trivial. Furthermore, in the noetherian case, assertion (b) is
easily verified using the Lemma of Artin-Rees, whereas (c) and (d) are clear. To
settle assertions (b) and (c) in the classical rigid case, we make use of Lemma 1.2
below. Since R{¢) is J-adically separated, assertion 1.1(b) follows from 1.2(a)
and 1.2(b). Furthermore, assertion 1.1(c) follows from 1.2(c), since A having no
J-torsion implies that the ideal a = R<{¢&) is saturated. O

Lemma 1.2. In the classical rigid case, let A be an R-algebra of tf type, let F be
a finite free A-module, and let M < F be a submodule.

(a) The 3-adic topology on F restricts to the 3-adic topology on M.

(b) If M is finitely generated, it is complete. If, in addition, M or A are separated,
M is closed in F.

(c) If M is saturated in the sense that an element fe F belongs to M as soon as
rfe M for some non-zero r € R, then M is finitely generated.

Proof. Since assertion (c) cannot be obtained using easy ad-hoc arguments, we
choose to refer to the existing literature. Assuming 4 = R<¢) for some finite set of
variables ¢, and tensoring over R with the field of fractions K = Q(R), the assertion
follows from [B, Satz 2.1], or [BGR, 5.2.7/7]. In [B], probably giving the most
elementary access to the problem, the argumentation is based on suitable or-
thonormal bases of K{¢), whereas Weierstral division is used as a method in
[BGR]. Alternatively, tensoring the situation with R/3J, one can apply [RG, 3.4.6],
to the A-module F/M which is flat over R, thus obtaining a proof in terms of
flatness and in the spirit of the flattening techniques to be presented in [FII].
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Assertion (b) is trivial. So it only remains to verify assertion (a). Let e R be
a generator of the ideal I = R and consider the saturation

M, = {feF; n"fe M for some n > 1}

of M in F. By the definition of M,,,, the J-adic topology of F restricts to the J-adic
topology of M,,. Since M, is finitely generated, as we have seen in (c), there is an
integer neN satisfying "M, =« M. Consequently, just as for M, the J-adic
topology of F restricts to the J-adic topology of M.

Dealing with modules over admissible R-algebras and thinking of the non-
noetherian case, it is convenient to use the notion of coherent modules; see [EGA
I,ew> Chap. 0, Sect. 5.3, and Chap. I, 1.4.3], for a version in terms of sheaves. Recall
that a finitely generated A-module M is called coherent if all its submodules of
finite type are of finite presentation. In particular, M itself is then of finite
presentation. We mention the basic fact, [EGA 1., Chap. 0, 5.3.2], that all three
modules of a short exact sequence

O-M->M->M"->0

are coherent as soon as two of them have this property. From this it follows that
sums and intersections of coherent modules are coherent, that image, kernel, and
cokernel of homomorphisms between coherent modules are coherent and that
M® 4N and Hom, (M, N) are coherent if M and N have this property. The ring
A itself is called coherent if it is coherent as an 4-module.

Proposition 1.3. Let A be an R-algebra of tf presentation. Then A is a coherent ring,;
in particular, each A-module of finite presentation is coherent.

Proof. We have only to look at the classical rigid case. Assuming first that A is
admissible, consider a finitely generated ideal a = 4 and a presentation

0O-M->F->a—-0

with a free 4-module F of finite type. Since A is admissible, 4 and a have no
3-torsion. So M is saturated in F, and thus, finitely generated by 1.2(c). It follows
that A is a coherent ring. In the general case, 4 is a quotient of the coherent ring
R{&) by a finitely generated and, thus, coherent ideal. But then A is coherent. [

For later use we add an assertion on the coherence of annulators and torsion
modules.

Lemma 1.4. Let A be an R-algebra of tf presentation. Let a = A be a coherent ideal,
and let M be a coherent A-module. Then:

(@) Anny(M) = {ae A; aM = 0} is a coherent ideal in A.

(b) Anny(a) = {me M; am = 0} is a coherent submodule of M.

(c) (S-torsion)y = {meM; I"m = 0 for some ne N}, the A-module of I-torsion
in M, is coherent.

Proof. Assertions (a) and (b) follow from the fact that 4 is a coherent ring. Namely,
Ann,(M) is the kernel of the homomorphism 4 — Hom (M, M) mapping an
element a€ A onto the multiplication by a on M. There is a similar homomorphism
M - Homy(a, M) to settle assertion (b). Finally, to verify assertion (c), we have
only to show that the A-module N of 3-torsion in M is finitely generated. The latter
is clear in the noetherian case. In the classical rigid case, N is saturated by its
definition. Reducing to the case where M is a finite free A-module, the assertion
follows from 1.2(c). O
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In order to deal with formal schemes, we have to interpret R-algebras of
the type considered above as projective limits. Writing R, = R/J3**! for AeN,
we have 4 = limA®gR, for any R-algebra A which is 3-adically complete and
separated.

Lemma 1.5. Let A be an R-algebra which is complete and separated with respect to
the 3-adic topology for some ideal I = R. Then A is of tf type if and only if AQ g R} is
an R;-algebra of finite type for each A € N. The latter is the case if and only if AQ g Ro
is an Rg-algebra of finite type.

Similar assertions are valid for finitely generated ideals in A and, more generally,
for finitely generated A-modules.

Proof. (See also [AC, Chap. III, Sect. 2, no. 11, Proposition 14]). If 4 is of tf type,
there is a surjective R-homomorphism ¢: R{¢> — A for a finite set of variables ¢&.
Tensoring with R; over R yields a surjection ¢;: R;[(] - A ®z R; so that each
R,-algebra A®gR; is of finite type.

Conversely, assume that 4, = A®gR, is an Ry-algebra of finite type. Then, for
a finite set of variables ¢, there is an epimorphism @q: Ry [£] — 4o, and we can
choose a lifting ¢ : R{&) — A. The surjectivity of ¢, implies

A=ime¢ + 34,
and iteration yields
A=imo+3Iime+ ... +3J*ime +3I**14

for all 2 e N. Using a limit argument, we see that ¢ is surjective and, hence, that 4 is
of tf type. The assertion on A-modules is dealt with similarly. |

Lemma 1.6. Let ¢ : A — B be a morphism of R-algebras, where A is of tf presentation,
and where B is of tf presentation or, more generally, of tf type and separated.
Furthermore, let M be a coherent B-module.

Then M is flat over A if and only if M® g R, is flat over AQ R, for all A e N.
The same assertion is true replacing “flat” by “faithfully flat”.

In the noetherian case, the assumptions on A and B can be relaxed; J-adic
completeness of B is enough.

Proof. We claim that the flatness assertion is a consequence of the proof of the
Bourbaki criterion [AC, Chap. III, Sect. 5, no. 2, Theorem 1]. The only-if-part of
the assertion is trivial. In order to justify the if-part, we need to know the following
two facts for each finitely generated ideal a < A:

(1) the 3-adic topology on A restricts to the J-adic topology on a.

(2) a® 4 M is separated with respect to the J-adic topology.

In the noetherian case, (1) follows from the lemma of Artin-Rees, whereas in
order to justify (2), we can consider a® 4,M as a finite B-module. Since 3B is
contained in the Jacobson radical of B, the B-module a® M is IB-adically
separated due to Krull’s intersection theorem.

Next, let us consider the classical rigid case. Condition (1) is settled by 1.2(a).
Furthermore, since A4 is a coherent ring by 1.3, the ideal a is of finite presentation.
Thus, to justify condition (2), it is enough to show that each B-module M of finite
presentation is J3-adically separated. Consider a finite presentation of M

0-L->F->M-0
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where F and L are finite B-modules and where F is free. Then, by 1.1(b) and 1.2(b),
Lis closed in F with respect to the 3-adic topology of F and, hence, M is separated.
This settles the assertion of 1.6 as far as flatness is concerned.

If M is a faithfully flat A-module, M, = M ®xR; is faithfully flat over
A; = A®gR,; foreach A by [AC, Chap. I, Sect. 3, no. 3, Proposition 5]. Conversely,
assume that M, is faithfully flat over A, for all 1. Then M is a flat A-module, as we
have seen. Furthermore, consider a finitely generated A-module N such that
N®pgrM = 0. Tensoring with R; over R yields N;® 4, M; = 0 and, since M is
a faithfully flat 4;-module, N; = 0 for all 4. Using this for 4 = 0, we get N = 3N
and, hence, N = 0, since 34 is contained in the Jacobson radical of 4. This shows
that M is a faithfully flat A-module. O

For the notion of formal schemes we refer to [EGA 1, Sect. 10]. An affine formal
R-scheme is called of tf presentation (resp. admissible) if it is of type X = Spf A4 for
some R-algebra A of tf presentation (resp. for some admissible R-algebra A4; the
class of admissible R-algebras in our sense must not be confused with the class of
admissible rings as considered in [EGA L, Sect. 10]). We may write

X =1im X®xz R,
and identify X with the direct system (X ) consisting of the ordinary schemes
X,=X®zR; =Spec AQrR; = Spec A/3*"'A

For elements f €A, the associated basic open subscheme X, < X equals by
definition the affine formal R-scheme SpfA<{f~'> where A(f™ ')
= 11m (4/3* T A)[ f~1]is the complete localization of 4 by f. An easy argument
on pro_]ectlve limits shows A{f ™'Y = AD/(1 — f{) and, furthermore, that
A f~1) is the J-adic completion of the ordinary localization A[ f ~!]. We need
to know that the property of X = Spf A to be of tf presentation or to be admissible
is local on X.

Proposition 1.7. Let A be an R-algebra which is complete and separated with respect
to the 3-adic topology, and let (Spf B;);; be an affine open covering of Spf A. Then
the following are equivalent:

(a) A4 is an R-algebra of tf presentation (resp. an admissible R-algebra).

(b) B, is an R-algebra of tf presentation (resp. an admissible R-algebra) for each i.

Furthermore, if one of these conditions is satisfied, the canonical maps A — B; are
flat and the injection A1 B; is faithfully flat.

Proof. We may assume that i varies over a finite index set. Using 1.5, 4 is of tf type
if and only if the B; are. Furthermore, the B; are of tf presentation if 4 is. In order to
show the converse, assume that all B; are of tf presentation. Since A4 is of tf type,
there is an exact sequence

0-a->R{¢Y—->A4-0

with a finite set of variables £. Dividing by a power 3**! of the ideal of definition
3 < R, yields the exact sequence

0—a/an IR > R;[E] > A4,-0,

and the assumption on the B; implies that each A; is locally of finite presentation
over R;. But then, using [EGA 1,.,, 6.2.9], 4, is of finite presentation over R, and,
thus, a/a N J**1RE) is a finitely generated ideal in R;[&]. Since the J-adic
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topology on R<{¢&) restricts to the J-adic topology on a, see 1.2(a), it follows that
a/3a is a finitely generated Ro[¢]-module. Hence, using a limit process as in the
proof of 1.5, we see that a is a finitely generated ideal in R{&). So, A4 is of tf
presentation, and the equivalence of (a) and (b) is clear for R-algebras of tf
presentation. In order to extend the equivalence to admissible R-algebras, it is
enough to point out that, if (a) or (b) are given, the canonical map AcIIB; is
faithfully flat by 1.6. O

As a consequence of 1.7, the notion of formal R-schemes of tf (topologically
finite) presentation (resp. of admissible formal R-schemes) can be globalized:
a formal R-scheme X is called locally of tf presentation (resp. admissible) if, 1ocally,
X is R-isomorphic to the affine formal scheme Spf A of an R-algebra A which is of tf
presentation (resp. admissible). If X is locally of tf presentation and quasi-compact,
we say X is of tf presentation.

Corollary 1.8. Let X = @) X, be a formal R-scheme which is locally of tf presenta-
tion, and consider a point x € Xo. Then:

(a) For each formal open subscheme SpfA < X containing x, the canonical
morphism A — Oy . is flat. If A, is the localization of A at x, the morphism A, — Ox
is faithfully flat.

(b) If x is a specialization of a point y € X, the canonical morphism Oy, , — Oy,

is flat.

Proof. Assertion (a) follows from the flatness of maps of type 4 - A{f '), since
a direct limit of flat A-modules is flat again. To verify assertion (b), consider
a finitely generated ideal a, = Oy, .. We have to show that the canonical morphism
00, ®o,, Ox,— Oy, is injective. Choosing an open affine formal subscheme
Spf 4 < X such that a, is induced from a finitely generated ideal a = 4, the map
o is a direct limit of morphisms of type a ® A< f > - A{f~!). The latter are
injective, since each A f 1) is flat over A. O

We will allow to replace R or, better, the affine formal base scheme Spf R, by
a more general formal scheme S. Similarly as before, working in the admissible
context, we consider the following two cases:

(I') The classical rigid case. S is an arbitrary admissible formal scheme over
a valuation ring R as considered above. So the topology of S is generated by the
ideal .# = n(0g, where 7 is a non-zero element of the maximal ideal of R.

(IT") The noetherian case. S is a noetherian formal scheme such that the topology
of its structure sheaf (5 is generated by a coherent ideal .#. Of course, we have to
require that S (or better, its structure sheaf), has no .#-torsion.

In the following we will consider formal schemes X over a base S as above
which are locally of tf presentation; in particular, we require that .# Oy is an ideal of
definition of X. Such a formal scheme X is called admissible if it has no .#-torsion in
the sense that the structure sheaf Ox has no .#-torsion. Frequently we will start out
from an admissible formal S-scheme X and, performing a certain construction on
it, end up with a formal S-scheme X’ which is just of locally tf presentation. Then, in
order to return to an admissible formal S-scheme, we replace X by the subscheme
defined by the ideal of .#-torsion in Oy; it is admissible again as is easily seen using
1.4(c). We will fix S as well as the ideal .# in the following and call .# “the” ideal of
definition of S or X. Similarly as before, reduction modulo #**! yields an ordinary
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scheme X; over S;. We will call the S,-scheme X, the special fibre of X. For each 4,
the topological space underlying X, which coincides with the topological space
underlying X, is locally noetherian, even in the classical rigid case. Namely, in the
latter case the reduced scheme (X ¢),.q is locally of finite type over the residue field of
the valuation ring R over which we are working. In particular, all formal S-schemes
of locally tf presentation are quasi-separated. Formal S-schemes of locally tf
presentation and their morphisms form a category which admits fibred products.
The same is true for admissible formal S-schemes. However, if the fibred product of
two admissible formal S-schemes X and Y over a third one Z is to be constructed in
the category of admissible formal S-schemes, one constructs the fibred product in
terms of formal schemes X x ;Y and, as indicated above, kills its .#-torsion. Note
that the #-torsion is trivial if X or Y are flat over Z.

Many notions and definitions of algebraic geometry which apply to the scheme
case carry over to the case of formal S-schemes of locally tf presentation or to
admissible formal S-schemes; one just applies them to each S;-scheme X;. As an
example, we have already discussed the notion of flatness; cf. 1.6. Also we point out
that the notion of a coherent module .# over a formal S-scheme X as above is
defined as usual. The flatness assertion in 1.7 and the fact that a module M over
aring A is of finite presentation if and only if it has this property after faithfully flat
base change of A4, see [AC, Chap. I, Sect. 3, no. 6, Proposition 11], imply that an
Ox-module ./ is coherent if and only if on any affine open formal subscheme
Spf A = X it corresponds to an A-module which is coherent in the sense discussed
before. The structure sheaf Oy itself is coherent since algebras of tf presentation are
coherent by 1.3.

If Spf A is an affine open formal subscheme of X, we can identify points of the
special fibre X, with open prime ideals in the corresponding algebra A. Arbitrary
non-open prime ideals of 4 cannot be viewed in a reasonable way as “points” of X,
since there can be prime ideals in a localization A{f ~') without being induced
from prime ideals of A. Nevertheless, in certain considerations on affine formal
open parts Spf A = X, where we need to consider non-closed prime ideals of A, we
will talk about the complement of the special fibre X,. Also we point out that the
closed points of this complement may be viewed as points of the so-called asso-
ciated rigid space X,;, of X, to be introduced in Sect. 4.

2 Admissible formal blowing-up

In order to discuss the relationship between admissible formal schemes and rigid
spaces we need to introduce the notion of admissible formal blowing-up. Consider
an admissible formal S-scheme X with ideal of definition .# = Oy and a coherent
open ideal o/ = Oy. Then

X' =lim Proj @ (#" ®q, Ox/F**")
i n=0

is a formal S-scheme, and the projection ¢: X’ — X is called an admissible formal
blowing-up, more precisely, the formal blowing-up of &/ on X, or of the formal
subscheme Y < X, corresponding to <7, on X. As usual, the subscheme Y < X is
referred to as the center of the blowing-up. The construction of blowing-ups
X' — X is local on X, in fact, it commutes with flat base change. Furthermore, it
does not leave the category of admissible formal S-schemes as we prove below. If
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A, ..., o, are finitely many coherent open ideals on X, there will always be
an admissible blowing-up X' — X such that, on X', the ideals /; become
invertible and locally ordered by inclusion. So, up to admissible blowing-up,

the situation is locally as good as over a complete valuation ring of height
one.

Proposition 2.1. Let X be an admissible formal S-scheme and let ¢: X' — X be an
admissible formal blowing-up of some coherent open ideal o/ < Oy.

(a) Let U = Spf A = X be an affine open formal subscheme, and let a < A be the
ideal corresponding to o/ = Ox. Then ¢~ '(U) — U can be interpreted as the 3-adic
completion of the ordinary scheme-theoretic blowing-up of a on Spec A.

(b) X' is an admissible formal S-scheme on which the ideal o/ Oy’ is invertible.

(c) (Universal property) If r: Z — X is a morphism of formal S-schemes (Z is not
necessarily admissible) such that o/ (O0; is invertible on Z, then there is a unique
S-morphism /' : Z — X' such that y = oy’

Proof. Assertion (a) is part of the definition of admissible blowing-up. The remain-
ing assertions are easy to verify. Assuming X and S to be affine, say X = Spf A4,
S =SpfR, we can consider the corresponding scheme-theoretic blowing-
up @:X' > Spec A and use the fact that assertions (b) and (c) are known for ¢
in place of (p, assertion (b) in the sense that X' is an A-scheme of finite type, on
which «/@z" is invertible. In particular, as X has no 3-torsion, the same is true
for X', where 3 is the ideal of definition of A. We claim that these results carry
over from X' to the J-adic completion X'. This is clear for assertion (c) and, in
the noetherian case, also for assertion (b), since the J-adic completion C of any
noetherian R-algebra C is flat over C due to [AC, Chap. I11, Sect. 5, no. 4, Corollary
to Proposition 3].

In the classical rigid case, we have to use a slightly different argumentation
for proving assertion (b). Consider an affine open covering U’ = (Spec 4;) of X
as well as the associated covermg (SpfAj) of X' obtained from U’ via J-adic
completion. Then each A’ is of tf type over R and is separated by definition.
Furthermore, X' is flat over R since it has no J-torsion due to the fact that .o/ is
an open ideal. So using 1.6, the flatness of A} over R implies that A} is flat over
R. Thereby we see that X' is admissible again. To verify the second part of asser-
tion (b), we mention that the ideal .«/(y, is principal and, since it is open, contains
a power of the generator n of 3. However, since X' has no n-torsion, &0y, must
be invertible. 0

We want to add an explicit description of admissible formal blowing-ups.

Lemma 2.2. Let X = Spf A be an affine admissible formal R-scheme, where R and the
ideal 3=(gy,...,9,) <R are as in (I) or (I). Let @:X'— X be an admissible
Jformal blowing-up of a coherent open ideal a = (fo, ..., f,) = A and let ¢: X X
be the scheme-theoretic blowing-up of a on X = SpecA so that X' is the 3-adic
completion of X'. Consider the affine open covering (Spec A})i=o,...,n0f X', where
Spec A/ is the maximal open subscheme of X' where f; generates the mverttble ideal
alz;ie.,

A; = A} /(f;-torsion) ,

" fO f;l 60 én é
A_A[ﬁ f] A[ﬁ, é]/(f'é, f>
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Then the J-adic completions of the algebras A; and A, which are described as
= A /(f;-torsion) ,

R BN w4
Al _A<ﬁ f>_A<«:.~""’e:i>/<ﬁé.~ f’)’

give rise to the affine open covering (Spf Al)i—o. ... . of X', where SpfA} is the
maximal open subscheme in X' where f; generates the invertible ideal a Ox,. Further-
more, ( f;-torsion) and (J-torsion) coincide on A} and on A} .(The fractions &;/&; serve
as indeterminates, except for j = i.)

Proof. It is only to show that the completions of A} and A4} are as stated. In the
noetherian case, we use the fact that A{&;/&;) is flat over A[£;/&;]. As completion
of finite A[£;/£;]-modules is done by tensoring with A (&;/&;), the descriptions of
Ajand Aj carry over to their completions. Furthermore, f; generates an open ideal
in A7 as well as in A. We therefore have

(f;-torsion) — (3-torsion) .

However A4; has no 3-torsion since 4 does not have any. (If U = Spec A4 is
a schematically dense open subscheme, its inverse image in X' is schematically
dense, too.) Therefore the f;-torsion of A must coincide with the 3-torsion. The
same is true for A} since A}, obtained from Aj via flat base change, does not have
J-torsion.

Now we turn to the classical rigid case. Consider a short exact sequence

(%) 0-b—->B—->C—-0,

where B and C are rings and b is an ideal in B. Then, by completion with respect to
some ideal J — B, we get an exact sequence

(%) O—»B—»B?—»CA—>O,

where B and C are the J-adic completions of B and C and where b is the
completion of b under the restriction of the 3-adic topology on B. So b equals the
closure of the ideal generated by bin B. From this fact it follows that A/ satisfies the
assertion of the lemma since (f;¢;/¢; — f;) defines a closed ideal in 4<{¢;/&;> by
1.2(b). Furthermore, it follows as in the noetherian case that the f;-torsion and the
3-torsion coincide on A7 .

Now consider the canonical map ¢: 47 — A; whose kernel is the just mentioned
torsion. Via J-adic completlon it gives rise to a surjection 6 A” — A} whose kernel
is the closure of ker ¢ in A}. Since the ideal of J-torsion of A/ is saturated, it is
finitely generated by 1.2(c), and it follows that the closure ker 6 of ker o (the ideal
of 3-torsion of A}) is contained in the ideal of J-torsion of A?. However,
A, = A”/kera does not have J-torsion by 2.1, and so kerd is precisely the
S-torsion of A7. On the other hand, we may view ker & as the closure of the ideal of
fi-torsion in A7. So ker & can be thought to be generated by fi-torsion elements.
However, since the f-torsion of A7 is contained in the J-torsion, both must
coincide. O

If : X" —> X is an admissible formal blowing-up with center ¥ <= X corre-
sponding to a coherent open ideal &/ = O and if ./ is a coherent Ox-module, the
strict transform of . under ¢ is defined as the Oy,-module #' = .4’/ /" where
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M' = (¢*.M)and where & = ' is the submodule consisting of all sections whose
support is contained in ¢~ !(Y); i.e., /= Ann 4 (&/Oy,). We claim that 4" and,
thus, also .#' are well-defined coherent Oy,-modules. In fact, consider an affine
formal open subscheme SpfA’ = X’ and let a’ = A’ be the coherent open ideal
associated to /0y, as well as M’ the A’-module corresponding to .#’. Then
A corresponds to the submodule Ann,(a’) = M’ which is coherent by 1.4. Since
the formation of Ann,-(a’) commutes with flat base change, the annihilator
N = Ann (£ Oy) is a well-defined coherent submodule of .#’. Since &/ contains
a power of .#, we have Ann /(& Oy,) < (#-torsion) ,+ and, hence, A" = (SF-tor-
sion) - if the strict transform .#’ of .# has no .#-torsion. For example, the latter is
the case if ./’ is flat over X’ or S. Also note that .#’ coincides with .4’ if ./ is flat
over X.

If S'> S is an admissible formal blowing-up of some coherent open ideal
o = Og and if X — S is an admissible formal S-scheme, we have canonically
a commutative diagram

X « X' 6 X xs§

! !
S« ¢

where X' is the fibred product of X and S’ over S in the category of admissible
formal S-schemes, i.e., the subscheme of X x S’ given by the ideal of .#-torsion. In

analogy to the above, we call X' the strict transform of X under the blowing-up
§'—S.

Remark 2.3. In the above situation, X’ — X is an admissible formal blowing-up,
namely the one of the ideal «&/0x on X.

In fact, the ideal .«/ Oy is locally monogenous and, furthermore, invertible since
it is open and X' has no #-torsion. So there is a canonical morphism X' — X"
into the blowing-up X” of &/0x on X. On the other hand, X" lies over X and
over S’ so that we have a canonical morphism X” — X' into the fibred product
(in terms of admissible formal schemes) X’ of X and S’ over S.

We list some properties of admissible formal blowing-ups which are easily
deduced from 2.1.

Remark 2.4. (a) Let X be an admissible formal S-scheme and let ¢: X' — X
be an admissible formal blowing-up of some coherent open ideal & < Oy.
Then, for any formal open subscheme U < X such that U is disjoint from
the closed subscheme Y = X given by .o, the induced morphism ¢~ *(U) > U
is an isomorphism.

(b) In the category of admissible formal S-schemes, admissible formal blowing-
ups are compatible with base change.

(c) Admissible formal blowing-ups are proper and surjective on special fibres.

(d) Let ¢, 8 = Ox be coherent open ideals. If ¢:X’'— X is the admissible
blowing-up of o7 in X and ¢': X" — X’ the admissible blowing-up of #0x. in X',
then @ o @': X” — X is the admissible blowing-up of &% in X.

Since assertions (a) and (d) are clear and assertion (b) has been justified above,
only assertion (c) needs a verification. Consider an admissible blowing-up
©: X' — X of a coherent open ideal o/ < Oy on a non-empty formal scheme X. By
the definition of admissible blowing-up, ¢ : X' — X is proper and, thus, closed. So it
is enough to show that X’ is not empty. We may assume that X is affine, X = Spf 4.
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Let a = A be the ideal associated to /. Reducing modulo powers of the ideal of
definition 3, we have

X, =Proj P (a"®,44/F*1)
n=0

since the formation of Proj is compatible with pull-back of the base. We claim that
X', is not empty. In fact, if it were, we would have a" ® 4, A/3**1 4 = 0 for n>>0; see
[EGA 1II, 2.4.7]. The latter implies a" = I***a" and, hence, a" =0 for n>0.
However, a contains a power of J so that 3" = 0 for n>>0. But then, using the fact
that 4 has no 3-torsion, we have 4 = 0, which we had excluded. Alternatively, we
could have used the fact that rig-points of X, to be introduced in Sect. 3, corre-
spond one-to-one to the rig-points of X’.
There is a generalization of assertion (d).

Proposition 2.5. Let X be an admissible formal S-scheme which is quasi-compact. If
©: X' - X and y: X" - X' are admissible formal blowing-ups, ¢ o\ : X" — X is an
admissible formal blowing-up.

Proof. We will use the corresponding fact in the scheme case; cf. [RG, 5.1.4]. Let
¢ be the blowing-up of the coherent open ideal .o/ = )y and let Y be the blowing-
up of the coherent open ideal # = Ox,. Assume first that the situation is affine, say
X = Spf 4 and § = Spf R with ideal of definition 3. Then .« corresponds to an
open ideal a c 4, and we can consider the ordinary blowing-up ¢’: ¥’ — Y of a on
Y = Spec 4. Furthermore, X' is the J3-adic completion of Y’; let j: X’ — Y’ be the
associated morphism of ringed spaces and u: 0y, — j, Oy the corresponding mor-
phism of structure sheaves. Since the ideal # < Oy, is open, there exists an integer
n such that 3"0x, = #. Then, considering the isomorphism

(QYI/S"@]H e 0X//Sn@XI

induced from u, we see that ' = u~'(j, %) is a quasi-coherent open ideal of finite
type in Oy, such that j* 2’ generates # < Ox.. Now let ': Y” — Y’ be the ordinary
blowing-up of #’ in Y'. Then the composition

Qo X" X' 5 X
is obtained from
QoYY Y »Y

via 3-adic completion. By [RG, 5.1.4], there is an admissible open ideal d = A with
the property that D0y, coincides with /™ #'" Oy, for some integers m, n and such
that ¢’ -y’ is the ordinary blowing-up of ab = 4 on Y. But then, ¢ o is the formal
blowing-up of ad in X = Spf 4.

In the noetherian case, we may replace d by the inverse image d’ of
@ (™ B Oy) with respect to the canonical map Oy — ¢/, Oy/; this inverse b’ is
a quasi-coherent ideal of finite type on Y, due to the noetherian hypothesis. Since
for any f e A the blowing-up Y’ — Y is compatible with base change of type
A — A{f™1') which is flat by 1.6, the construction is local on X and, thus, can be
globalized.

In the classical rigid case we do not know a priori that b’ as constructed above
is of finite type. Nevertheless the construction of d’ is local on the formal scheme
X and, thus, can be globalized to produce a “quasi-coherent” open ideal 9’ = Oy
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such that 9’0y, = ™ B0y . Reducing modulo a suitable power of J and ap-
plying [EGA I, 6.9.9], we can replace 2’ by a smaller ideal 2” which is
quasi-coherent of finite type and which does the same job. O

We add here a technical lemma which will allow to reduce later considerations
on admissible blowing-ups X’ — X to the case where X is affine.

Lemma 2.6. Let X be an admissible formal S-scheme, which is quasi-compact, and let
U,, i € I, be finitely many open subschemes. For each i, consider a coherent open ideal
i < Oy, and the formal blowing-up ¢;: U; > U; of ;. Then:

(@) Each ¢; extends to an admissible formal blowing-up y;: X; - X.

(b) There is an admissible blowing-up  : X' — X which factors through each ;.

Proof. Reducing modulo a suitable power of 3 and applying [EGA 1., 6.9.7], we
can extend each .«/; to a coherent open ideal .«/;  ()x. The corresponding formal
blowing-up ¥;: X;— X extends ¢;. Furthermore, the product of the .o¢; yields
a coherent open ideal o/ — Oy such that the associated formal blowing-up
Y : X' — X factors through each ;. O

3 Rig-points of admissible formal schemes

When associating a rigid space X,;, to an admissible formal S-scheme X, as we will
do in Sects. 4 and 5, the rigid points of X ;, (which, in the classical rigid case, are the
points of the underlying topological space of X,;,) may be interpreted as points of
X with values in certain valuation rings. These points will be called rig-points of X.
In some sense they provide a link between the formal scheme X and the “com-
plement” of its special fibre X,.

Definition 3.1. Let X be an admissible formal S-scheme. A rig-point (resp. closed
rig-point) of X is given by a morphism of admissible formal S-schemes u: T — X with
the following properties:

(@) u is a locally closed (resp. closed) immersion.

(b) T is affine, T = Spf B, and B is a local integral domain of dimension 1. The
field of fractions of B is called the residue field of u.

Rig-points, as defined above, are also referred to as locally closed rig-points. In
the classical rigid case, locally closed rig-points are closed. The same is true if X, is
jacobson.

Lemma 3.2. In the situation of 3.1, T = Spf B is finite over an open part of S. The
integral closure B of B in its field of fractions Q(B) is a valuation ring which, in the
noetherian case, is finite over B.

Proof. We may assume that S is affine, say S = Spf R, where, in the classical rigid
case, R is a valuation ring. Looking at special fibres, we can view T, as a closed
point of X and, since the latter is of finite type over S,, we see that T, is finite over
an open part of Sy. Then an argument as used in the proof of 1.5 shows that T is
finite over an open part of S. Now consider the integral closure B of Bin Q(B) in the
noetherian case. Due to a Theorem of Nagata, B s finite over B; cf. [AC, Chap. IX,
Sect. 4, no. 2, Theorem 2]. Thus, B, as a complete semi-local integral domain, must
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be local. So it is a local noetherian integral domain and, hence, a discrete valuation
ring. In the classical rigid case, Q(B) is finite over the field of fractions K of R, and
the integral closure of R in Q(B) is a valuation ring; cf. [BGR, 3.2.4/2]. However
this integral closure coincides with B. O

Using the assertion of 3.2, it is easily verified that any morphism ¢: Y - X of
admissible formal S-schemes gives rise to a canonical map rig-pts(Y) — rig-pts(X)
between associated rig-points. Just as in the ordinary scheme case, residue fields
may shrink under this map.

Lemma 3.3. Let ¢: X' — X be an admissible formal blowing-up. Then the associated
map between rig-points is bijective and respects residue fields.

Proof. In order to exhibit a map from rig-pts(X) to rig-pts(X’) which is an inverse
of the canonical map rig-pts(X') — rig-pts(X), consider a rig-point u:Spf B — X.
Let a = B be the pull-back of the coherent open ideal of the blowing-up ¢: X’ — X.
Then a is a coherent open ideal in B which becomes invertible over the integral
closure B of B in Q(B) since B is a valuation ring by 3.2. Interpreting B as a direct
limit of finite extensions of B, we see that a is invertible already over a finite
extension B’ of B; the latter is a local ring. Using the universal property of the
blowing-up ¢, the morphism

SpfB' - Spf B> X

factors uniquely through a morphism u’: Spf B’ — X". Since Spf B’ is finite over an
open part of §, it is finite over an open part of X’ and, hence, replacing B’ by
a suitable subring containing B, we get a rig-point u’':Spf B’ —» X'. Thereby we
obtain a map rig-pts(X) — rig-pts(X’) which, as is easily seen, is an inverse of the
canonical map rig-pts(X’) — rig-pts(X). Since Q(B) = Q(B’), the maps leave residue
fields of rig-points invariant. |

We want to show that the rig-points of X correspond to the closed points of the
“complement” of the special fibre of X.

Lemma 3.4. Let X = SpfA be an affine admissible formal S-scheme, where S is
assumed to be affine, say S = SpfR. Then points of the following type correspond
bijectively to each other:

(a) closed rig-points of Spf A,

(b) prime ideals p = A with 3Adp and dim A/p = 1, where 3 is the ideal of
definition of R,

(¢) closed points of the complement of the special fibre of the ordinary scheme
Spec A.

Proof. 1t is clear that a point of type (a) induces a point of type (b) and that the
latter induces a point of type (c). Thus it remains to show how to obtain a closed
rig-point of Spf A from a point of type (c).

First, let us consider the classical rigid case, so we work over a valuation ring
R with field of fractions K. Then the generic fibre of Spec A4 is the scheme
Spec A,;, with A,;;, = A ® g K. A closed point of Spec A, corresponds to a surjec-
tive K-morphism A, = A ®z K — K’ where K’ is a finite extension of K; use
[BGR, 6.1.2/3]. The image of 4 in K’ is an admissible R-algebra, which we denote
by B. Let R’ be the integral closure of R in K'. Since R is a complete valuation ring,
the same is true for R’, cf. [BGR, 3.2.4/2]. Using a continuity argument, we see
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B < R’ and, thus, that B is integral over R. Therefore B must be a local ring of
dimension 1, just as R and R’ are. Consequently, the resulting R-morphism 4 — B
defines a closed rig-point of X in the terminology of 3.1.

In the noetherian case consider a closed point of the complement of the
special fibre of the ordinary scheme Spec A, ie., a surjective morphism
0:A[g '] > K, where ge 3 and where K is a field. Let B be the image
of A in K; it is an admissible R-algebra. In order that ¢ induces a rig-point
of X, we have to show B is a local ring of dimension 1. Since B[g '] is
a field, namely K, we see from the Theorem of Artin-Tate, [EGA 0y, 16.3.3],
that B is a semi-local ring of dimension < 1. However, B cannot be a field and,
thus, is of dimension precisely 1. As a complete semi-local integral domain, B
is local.

Finally, it is easily checked that the above defined maps between closed
rig-points and closed points of ordinary schemes are inverse to each other. [

If, for some admissible formal S-scheme X, there is no difference between
locally closed and closed rig-points (for example, in the classical rigid case),
the assertion of 3.4 states that, locally on affine open pieces of X, the set of
rig-points of X “is” the set of closed points of the complement of the special
fibre of X. However, for any locally closed rig-point u of X which is not
closed, we can only say that there is an affine open part SpfA of X such
that u corresponds to a closed point x of the complement of the special fibre
of the ordinary scheme Spec 4. In any case, we call such a point x a generic
fibre of u. Furthermore, we will view the set of rig-points of X as “the” points
of the complement of the special fibre of X and use X,, as a provisional
notation for this set. Also note that, for each u, we can consider the special
fibre ug of u.

Proposition 3.5. Let X be an admissible formal S-scheme. For each closed point
Xo € X there exists a rig-point u of X with special fibre x,.

Proof. We may assume that X is affine, say X = Spf A. Then, in the noetherian
case, the assertion follows from arguments on systems of parameters such as [EGA
01V, 16.3.4 and 16.3.7]. In the classical rigid case one applies [BGR, 7.1.5/4] to the
integral closure of 4 in A ® K, where K is the field of fractions of the valuation ring
over which we work. O

4 Classical rigid spaces in terms of formal schemes

Working in the classical rigid case (I') of Sect. 1, we want to explain how to
associate a rigid space (in the classical sense of [K, Sect. 0], or [BGR, 9.3.1/4]) to
each admissible formal scheme. Later we will extend this procedure to the noether-
ian case (II') where we work over a formal base scheme S which might have no
interpretation in terms of classical rigid geometry.

Let us start with the classical rigid case (I) of Sect. 1. So R is a complete
valuation ring which comes from a complete non-trivial height 1 valuation on the
field of fractions K of R, and the ideal 3 — R is generated by some element 7 € K
whose absolute value satisfies 0 < || < 1. For general facts on rigid spaces over
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K we refer to [T] or to [BGR]. Let A = R{¢)/a be an admissible R-algebra.
Tensoring with K over R, we obtain from A4 the K-algebra

Arig:= A ®rK = K<f>/ClK<€>

which is an affinoid K-algebra in the sense of [BGR, 6.1.1]. Furthermore, 4 — Avig
constitutes a functor which is compatible with complete localization. Namely,
consider an element fe 4. Then

AT ®rK = A /(1 - fO®rK
= Ar|g<C>/(1 —fC)zArig <f—1> >

using the terminology of [BGR, 6.1.4]. Hence, the rigid map associated to the
canonical map from A4 to the complete localization A{f ~! is just the canonical
map

Arig - Arig <f—1>

which, on the level of associated affinoid K-spaces corresponds to the inclusion of
the Laurent domain (Sp 4,;,) (f ~') given by f into Sp A,ig; of. [BGR, 7.2.3/1].
Thereby we see that the functor A+ A,,, yields in a natural way a functor

rig: (Admissible Formal R-Schemes) — (Rigid K-Spaces) ,
X—X

rig -

As in [R] we call X, the generic fibre of the formal R-scheme X. In fact, locally on
any affine open piece Spf A — X, the points of the associated open subspace
Sp Asig = Xy correspond to the maximal ideals in A, = A ® z K. So, pointwise,
X ;g “is” the complement of the special fibre of X in the sense we have defined it in
Sect. 3; it coincides with the set of rig-points of X.

If we start with some rigid K-space X, there is, of course, the question of
finding an admissible formal R-scheme X satisfying X,;, = Xx. Furthermore, if
X exists, there is the question of unicity for X. We want to state the main result
which settles these questions.

Theorem 4.1 (Raynaud [R]). In the classical rigid case (1), the functor
rig: X— X,

gives rise to an equivalence between

(1) the category of quasi-compact admissible formal R-schemes, localized by
admissible formal blowing-ups, and

(2) the category of rigid K-spaces which are quasi-compact and quasi-separated.

It is easily checked that the functor X — X, can produce only quasi-separated
rigid K-spaces, so this finiteness condition is definitely needed when we want to
construct a formal model X of a rigid K-space Xx. On the other hand, if X is
affinoid, the existence of X is quite easy. Writing Xy = Sp Ag with Ax = K &>/ a,
set A = R{£)/anR{EY and X = Spf A.

Proof of 4.1. To begin, let us briefly recall the notion of localization of a category.
Consider a category € and a class M of morphisms in €. A localization of € by M is
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a category €, together with a functor € — €, such that, for any functor € - D
transforming all morphisms of M into isomorphisms of D, there is a unique functor
€, —» D making the triangle

(O _)(gM
N '
D

commutative. Of course, uniqueness and commutativity are meant up to equiva-
lence of functors. Localizations of categories do always exist in a unique way, their
notion has been developed in order to introduce derived categories, see [V] or
[H].

In order to prove 4.1, we will establish the 5 statements listed below, from which
(a), (c), and (e) will yield the assertion.

(a) The functor rig transforms admissible formal blowing-ups into isomor-
phisms.

(b) Two morphisms @, {: Y — X of admissible formal R-schemes coincide if the
associated rigid morphisms ¢,;,, ¥, coincide.

(c) For quasi-compact formal R-schemes X, Y and any rigid morphism
@k Yy — Xy, there exist an admissible blowing-up 7: Y’ — Y and a morphism
¢:Y' — X of formal R-schemes such that ¢,;; = @k o Ty,.

(d) If ok asin (c) is an isomorphism of rigid K-spaces, we can choose ¢: Y’ —» X
satisfying @i, = @k o 7,5, With the additional property that it is an admissible formal
blowing-up of X.

(e) For each quasi-compact and quasi-separated rigid K-space X, there is
a quasi-compact formal R-scheme X satisfying X ;, >~ Xg.

Starting with (a), consider a morphism ¢ : X' — X of formal R-schemes which is
an admissible formal blowing-up of some coherent open ideal &/ = 0. In order to
verify that the associated morphism ¢, : X1;, = X, is an isomorphism, we may
assume that X is affine, say X = Spf 4. Let a =(fy,...,f,) = A be the ideal
corresponding to .«Z. Using 2.2, the formal R-scheme X' is obtained by gluing affine

parts Spf A} where
Jo f..> / -
A;=A(—,...,— ) /(n-torsion) ;
<f.~ fi

Spf 4; is the maximal open subscheme of X’ where f; generates the invertible ideal
aOyx,. Then, since fo, . . ., f, generate the unit ideal in 4,;,, we have

c oo (Lo
A e A,,g<ﬁ,...,fi>

in the terminology of [BGR, 6.1.4]. In fact, the rigid morphism associated to
Spf A; — X is just the inclusion of the rational subdomain X i, (fo/fi, . . . , fu/f:) into
X.ig, Where the latter subdomain consists of all x € X such that | f;(x)| is maximal
among | fo(x)], . . ., | f(x)]; cf. [BGR, 7.2.3/4]. If i varies from O to n, the corre-
sponding rational subdomains form a so-called rational covering of X,;,, and we
see easily that ¢, : X 1i; = X is an isomorphism, just as claimed. In particular, the
functor rig factors through the category obtained from formal R-schemes by
localizing with respect to admissible formal blowing-up. This verifies (a).

Next looking at assertion (b), consider two morphisms ¢, i: Y — X of admis-
sible formal R-schemes such that ¢, coincides with y,;,. Then we see from 3.4
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that ¢ and y coincide as maps between rig-points and, hence, as maps between the
point sets underlying ¥ and X; consider special fibres of rig-points and use 3.5.
Therefore, in order to show ¢ = i, we can assume that X and Y are affine, say
X = SpfA, Y = Spf B. However, since the canonical maps 4 — Ag and B — By are
injective, due to the fact that X and Y are admissible, it is clear that ¢,;, = ¥/ig must
imply ¢ = y.

Before we proceed any further with the proof of 4.1, let us state some facts which
we will need.

Lemma 4.2. Let X be an affinoid K-space and let Yx = Xg be an open affinoid
subspace. Then Y is a finite union of rational subdomains of X.

Lemma 4.3. For any affinoid K-space X g, the system of rational coverings is cofinal
in the system of all coverings which are admissible in the sense of the Grothendieck
topology of X.

Lemma 4.4. Let X be a quasi-compact admissible formal R-scheme and let Uy be
a finite family of quasi-compact open subspaces of the associated rigid space X rig-
Then there is an admissible formal blowing-up ¢ : X' — X together with a family W' of
Jformal open subschemes of X' such that the associated family W}, coincides with .
If Uk covers X, the system W' covers X'.

The assertion of 4.2 depends on the notion of open affinoid subspaces of
affinoid K-spaces. If we thereby understand open affinoid subdomains of most
general type, see [BGR, 7.2.2/2], then 4.2 is a consequence of the Theorem of
Gerritzen and Grauert, see [GG] or [BGR, 7.3.5/3]. However, for our purposes it
is enough to view the rational subdomains as basic open subsets of affinoid
K-spaces. Then we can say that a morphism of affinoid K—spaces Ok Yy — Xk
defines Y as an open subspace of X if there is a finite covering of Yy by rational
subdomains Y% such that each restriction ¢kly, defines Y% as a rational sub-
domain in X. Proceeding like this, the assertion of 42 just reflects this definition.
Anyhow, later the Theorem of Gerritzen and Grauert, more precisely, its version
concerning open immersions, follows in full generality from the flattening technique,
see [FIL, 5.4]. The assertion of 4.3 is easily derived from 4.2; cf. [BGR, 8.2.2/2].

To settle 4.4, start with the case where X is affine. Using 4.2, each Uy e Uy is
a finite union of rational subdomains in X ;,. We may assume that each Uy itself is
a rational subdomain in X, i.e., that each Uy is of type X rig(f1/fos - - -5 ful fo)
with functions fo, . . ., f, generating the unit ideal in Oy . Multiplying the f; with
a suitable constant of K, we may even assume f; € Oy for all i. So we can consider
the coherent open ideal .o/ < Oy generated by all f; as well as the associated formal
blowing-up X' — X. Then X' contains a formal open subscheme U which induces
Uk as a subspace of X ;,. Working with all Uy € U, we can blow up the product of
the corresponding ideals .o = Oy. Thereby we obtain an admissible formal
R-scheme X’ admitting a system U’ of open formal subschemes which induces the
system Uy on X,,. The generalization of this fact to the case where X is not
necessarily affine is straightforward, using 2.6. Finally we see with the help of 3.5(c)
that U’ covers X" if Uy covers X ;,.

We add here another lemma on admissible formal blowing-up which we will
need.

Lemma 4.5. Let A be an admissible R-algebra. Consider A as a subring of the
associated affinoid K-algebra Ay, and let fy, . . ., f, € Ay, be elements satisfying
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|filsup S 1. Then B = A[ fi, . . ., f,]is an admissible R-algebra which is finite over A.
Furthermore, if r € N is chosen in such a way that n" f; € A for all i, the canonical
morphism Spf B — Spf A can be viewed as the blowing-up of the coherent open ideal
generated by n", " f1, ..., n"f, on Spf A.

Proof. Choose a set of variables & and an epimorphism R{¢) — A. The associated
rigid morphism K{&) — A, is an epimorphism also, and it follows from [BGR,
6.3.4/1], that B is integral over R (&) and, hence, over A. Since B is of finite type
over A, we see that B is a finite A-module. From this one concludes that B is an
admissible R-algebra with associated affinoid K-algebra B,;, = A,;,. Now consider
the ordinary blowing-up Y’ — Spec A4 of the ideal a =(zn",n"f1,..., n"f,) on
Spec A. Since the pull-back of a to Spec B is generated by n” and, thus, is invertible,
there is a canonical factorization

Spec B — Y’ — Spec 4

of the morphism Spec B — Spec A. Furthermore, the first of these maps identifies
Spec B with the open part V' = Y’ where the pull-back of a is generated by n"; use
the formulas of 2.2. We claim that V' = Y". To justify this, we have to show that,
over each open part Spec 4; < Y’ where

nonfy n’f,,]/ )
A;=A - Cy T n-torsion ,
[ AR A

the pull-back of a is generated by n". In fact, A; contains an “inverse” of f;, and the
extension A; — A; [ f;] is integral. But then, using an integral equation of f; over 4;
and multiplying it with a suitable power of f !, we see f; € A;. Thus, the pull-back
of a to A; which is generated by =" f;, is also generated by n". This shows that the
blowing-up Y’ — Spec A4 coincides with the morphism Spec B — Spec A. It follows
then by 3-adic completion, which is trivial in this case, that Spf B — Spf A is the
formal blowing-up of a on Spf A. This concludes the verification of 4.5. O

Next, resuming the proof of 4.1, let us verify assertion (c) above. Consider two
quasi-compact formal R-schemes X, Y and a morphism ¢k: Y, — X, between
associated rigid K-spaces. We have to show that there exist an admissible blowing-
up Y- Y as well as a morphism of formal R-schemes ¢:Y' — X satisfying
¢rig = @k. To do this, consider coverings (X; ;) of Xy, and (Y ) Of Y by
finitely many open affinoid K- subspaces such that @g(Y; i) © X; g for all i
Applying 4.4 and refining the coverings (X ,;;) and (Y; ,;;) in a suitable way, we can
assume that both are represented by affine formal open coverings (X;) of X and (Y;)
of Y. Now assume that the assertion of (c) is already known in the affine case. Then
there exist admissible formal blowing-ups Y;— Y; and morphisms ¢;:Y;— X;
satisfying @; g = Qrigly, ., APplying 2.6, we can view the Y; as open formal
subschemes of some blowing-up Y’ of Y. Then it follows from (b) above that the ¢;
define a morphlsm ¢: Y — X satisfying ¢, = @g.

It remains to look at the case where X and Y are affine, say X = Spf 4 and
Y = Spf B. Then the morphism between associated rigid spaces @g: Yy — X
is given by a morphism between the corresponding affinoid K-algebras
0k Arig = Byig. Using 4.5, we can apply an admissible blowing-up to Y and thereby
assume that o extends to a morphism ¢ : A — B of admissible R-algebras. Then the
associated morphism ¢: Y — X satisfies ¢, = k.
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If, in the preceding situation, g : Y, = X, is an isomorphism, we can find an
admissible R-subalgebra C consisting of elements with supremum norm <1 in
A.ig = B.;g, which contains A and B. Then, by 4.5, Spf C is a common admissible
blowing-up of X and of Y. Using 2.6 and 4.4, we can extend this fact to the general
case and thereby prove (d).

Finally, it remains to settle the existence of formal models as stated in (e). So,
consider a quasi-compact and quasi-separated rigid K-space X . Proceeding by
induction on the number of open affinoid K-spaces which cover Xy, we assume
that Xy is covered by two quasi-compact open subspaces Uy and Vg of X, which
admit formal models U and V. Set Wy = Ug n V. Since X is a quasi-separated,
an application of 4.4 shows that, after blowing-up, we may assume that the open
immersions Wy Uy and Wi Vi are represented by open immersions W' U
and W" s V of quasi-compact formal R-Schemes. But then, using assertion (d), we
can dominate the formal models W’ and W" by a third formal model W of Wy.
Extending the necessary blowing-ups to U and ¥ with the help of 2.6, we may view
W as an open part of U and of V. Gluing both along W yields the required formal
model X of X. This concludes the proof of 4.1. O

From assertion (c) of the above proof we can deduce:

Corollary 4.6. In the situation of 4.1 the functor X — X, commutes with fibred
products.

As an application of this fact, it follows that separated rigid K-spaces admit
separated formal models; more precisely:

Proposition 4.7. A morphism of admissible formal R-schemes X — Y is separated if
and only if the associated morphism of rigid spaces X ;, —> Y, is separated.

Proof. We have to show that the diagonal morphism 4:X — X xyX is a closed
immersion if and only if the associated rigid morphism, which, by 4.6, is just
the diagonal morphism 4,,: X, > Xy X¥ig Xrig> 18 @ closed immersion. The
only-if-part being trivial, assume that 4,;, is a closed immersion. Then let Z be
the schematic closure of 4,,(X,,) in X xy X; it coincides with the schematic
image of 4 and is an admissible formal R-scheme, use 1.2(c). So it is enough to
verify that, in terms of closed points, Z coincides with the image of 4. To show
this, consider a closed point x, € Z, with projections xy, x§ € X,. Using 3.5,
we can extend x, to a rig-point x of Z; let x/, x” be the associated projec-
tions on X. Then the generic fibres of x' and x” must coincide, because the image
of 4, is closed in X ;, x ¥ig Xrig- Thus, we have x’ = x” by 3.4 and, hence, x{ = xg.
It follows that x, belongs to the image of 4 and that the latter coincides
with Z. O

Theorem 4.1 provides a means of characterizing classical rigid K-spaces in
terms of formal algebraic geometry, at least if we restrict ourselves to rigid K-spaces
which are quasi-compact and quasi-separated. If we do not require such finiteness
conditions, the assertion of 4.1 is still useful since we can interpret general rigid
K-spaces as inductive limits of rigid K-spaces which are quasi-compact and
quasi-separated. Anyhow, in most cases where rigid K-spaces occur in nature, they
are separated and equipped with a certain class of affinoid coverings leading to
formal models.



Formal and rigid geometry. I 311
5 Relative rigid spaces

In classical rigid geometry it is essential that the (absolute) base over which
one is working, consists of a field K with a valuation. Therefore, if one wants
to extend the notion of rigid spaces to the noetherian cases (II) or (II') of Sect. 1,
it is not possible to imitate the classical construction of Tate. Instead, motivated
by the characterization of classical rigid spaces given in Sect. 4, one proceeds via
admissible formal schemes. To simplify the terminology, we will require from
now on that all admissible formal S-schemes are quasi-compact, unless stated
otherwise. The base S is as in (I') (the classical rigid case) or in (II') (the noetherian
case) of Sect. 1.

Denoting the category of admissible formal S-schemes in the above sense by
(FSch/S), we can now extend the notion of rigid spaces.

Definition 5.1. The category (Rig/S) of rigid S-spaces is obtained from (FSch/S) by
localizing with respect to admissible formal blowing-up.

Due to the definition of the category (Rig/S), there is a canonical functor
rig:(FSch/S) — (Rig/S) ,

which associates a rigid S-space X, to any formal S-scheme X and a rigid
S-morphism ¢, to any morphism ¢ of formal S-schemes. Note that, for simplicity,
we will continue writing S instead of S,;, also on the rigid side, although S.ig would
be more accurate.

We have already explained the notion of a localized category in Sect. 4.
However, at this point, we must know how the localization (Rig/S) of (FSch/S) is
actually constructed; see [V] or [H] for the corresponding procedure which is
used to introduce derived categories. To define (Rig/S), take as objects the objects
of (FSch/S). Furthermore, for two objects X, Y of (Rig/S), a morphism X — Y is
given by an equivalence class of diagrams in (FSch/S) of type

XI
I~
X v,

where X'— X is an admissible formal blowing-up. Two such diagrams
X« X;—Y,i= 1,2, are called equivalent if there is a third diagram X « X5 > Y
of this type together with S-morphisms X5 — X}, i = 1, 2, providing factorizations
of X3 — X and X — Y through X} and X5.

It is not difficult to check directly that the just described relation really is an
equivalence relation. On the other hand, it might be more appropriate to interpret
the set Homg;y/s) (X, Y) as the direct limit (in the style of [A, L1.1]) of the sets
Hom gschys) (X', Y) where X' varies over all admissible formal blowing-ups of X.
To do this, consider the category B of all admissible formal blowing-ups of X;
define a morphism X; — X, in B between two such objects X; and X, as an
X-morphism X, - X; in (FSch/S). Composition of two arrows X, - X,
and X, - X5 is done, using the composition of morphisms in (FSch/S).
Then B satisfies the axioms (L1), (L2), (L3) of [A, L.1]. Namely, (L1) just means
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that, given a diagram

of X-morphisms in (FSch/S), where X' and the X} are admissible formal blowing-
ups of X, say of ideals .# and .#; on X, there is an admissible formal blowing-up X"
of X dominating the X; via X'-morphisms. Just define X" by blowing up the
product .# -+ .#, on X. Then each of the ideals .# and .#; becomes invertible on
X". Thus, using the universal property of blowing-ups, see 2.1(c), the existence of
the required morphisms follows.

In the same way we can verify axiom (L2). Consider two blowing-ups X; and
X, of X as well as two X-morphisms X, — X ;. Then both coincide after dominat-
ing X, by a blowing-up X of X; just blow up the product of the ideals necessary
for X, and X,. Finally, the connectedness axiom (L3) holds since two admissible
blowing-ups can be dominated by a third one.

Now, considering the functor B — (Sets) which associates to any admissible
formal blowing-up X’ of X the set Hom gsens) (X', ), the direct limit

%:%B Hom (gsenys) (X', ¥)
exists, and we can use it to define the set Hom gigs) (X, Y). Then the latter
corresponds to the above set of equivalence classes of diagrams X « X’ — Y, where
X’ varies over the admissible formal blowing-ups of X. Finally, to compose two
morphisms X — Y and Y - Z in (Rig/S), say given by diagrams

XeX'-Y Y<YZ
in (FSch/S), we use a diagram of type

Xl/

Lo~

X Y
(AN
X Y Z,

where X” — X’ is the formal blowing-up of the coherent open ideal .#’ on X’ which
is the pull-back of the ideal .# = (y corresponding to the formal blowing-up
Y’ - Y. To end the considerations concerning the construction of (Rig/S), one has,
of course, to observe that the resulting category satisfies the universal property of
a localized category.

Next we want to introduce the concept of rigid points for rigid S-spaces.
Thereby we will see that, even in the general noetherian case, a rigid space in the
sense of 5.1 is not too far from a rigid space in the classical sense.

Definition 5.2. Let X be an admissible formal S-scheme. For any rig-point u: T — X
(in the notion of 3.1) we call the associated morphism uygy: Trig = X 1iq a rigid point of
the associated rigid S-space X ;. The residue field of u (i.e., the field of fractions of the
ring O (T)) is referred to as the residue field of u,.
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It follows from 3.3 that the definition of rigid points of a rigid S-space X rig 18
independent of the choice of the formal model X of X ;, and that the residue field of
such a point is well-defined. Furthermore, we see from 3.4 that the concept of rigid
points in the sense of 5.2 coincides with the classical concept of (closed) points, if
classical rigid spaces are considered. In fact, the notion X,,, which was pro-
visionally used in Sect. 3 to denote the set of points of the complement of the special
fibre of an admissible formal S-scheme X, just yields the set of rigid points of the
rigid S-space X,;, which is associated to X in the sense of 5.1.

For any rigid point u,: Ty — Si, and any rigid S-space X ;,, we can define
the pull-back X ;4(u,,) of X5, with respect to uy;,. To do this, choose a rig-point
u:Spf B — S representing u,;, and let B be the integral closure of B in its field of
fractions; it is a valuation ring by 3.2. Forming the fibred product of X over S with
Spf B (in the sense of [EGA I, 10.7]) and killing the B-torsion, we obtain an
admissible formal B-scheme X (1) whose associated rigid space, which we denote by
X ig (rig), 1s a classical rigid space over Q(B). We may visualize X, as the family of
all (classical) rigid spaces X ;,(u,,) With u,;, varying over the rigid points of Srig-
Also we point out that all notions applicable to classical rigid spaces can now be
applied to the fibres over rigid points of the base S,,. In particular, the fibre
dimension of rigid S-spaces is defined.

Besides the notion of rigid points, there are several other notions in classical
rigid geometry which can be extended to the situation of Definition 5.1. Basically,
one can proceed in two ways. The first is to say that a certain object or morphism in
(Rig/S) has a certain property (P) if there is a representative in (FSch/S) which
satisfies a formal version of (P). For example one proceeds like this with open or
closed immersions. That in the classical rigid case open immersions can be charac-
terized in this manner, is part of the proof of 4.1; the case of closed immersions is
dealt with similarly. The same procedure works for flatness; to show this is the
main objective of the paper [FII].

The second possibility to define properties in (Rig/S) is by applying corre-
sponding properties to complements of special fibres of objects or morphisms in
(FSch/S). For example, considering an object X e (FSch/S), we cover X by open
affine pieces X; = SpfA4; and look at a scheme property (P) which applies to
complements of special fibres in the ordinary schemes Spec 4;. Of course, in order
that (P) defines a reasonable property in (Rig/S), one has to check that the validity
of (P) on complements of special fibres is local with respect to the Zariski topology
in (FSch/S) and invariant under admissible blowing-up. Frequently, we will say
that an object or a morphism in (FSch/S) satisfies rig-( P) if the associated object or
morphism in (Rig/S) satisfies (P) in the sense we have just explained.

In the following we want to work out the notion of rig-flatness in (FSch/S) as
well as the notion of flatness in (Rig/S). Assuming S affine, say S = SpfR, let B — A
be a morphism of admissible R-algebras and consider an A-module M as well as
a closed point x e Spec A — V() of the complement of the special fibre of Spec A.
We say that M is rig-flat over B at x, or at the rig-point of Spf 4 corresponding to x,
if the ordinary localization M, is a flat B-module. Furthermore, M is said to be
rig-flat (resp. faithfully rig-flat) over B if M restricts to a flat (resp. faithfully flat)
B-module over Spec A — V(3J). In particular, M is rig-flat over B if and only if it
has this property at each closed rig-point of Spf A. The notions we have just
introduced, can easily be extended to the level of admissible formal schemes.
Namely, consider a morphism ¢ : X — Y in (FSch/S) and a coherent Ox-module
A . Then A is called rig-flat over Y at a rig-point x € X if there are open affine
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parts U = Spf 4 = X and V = Spf B = Y with x closed in U and ¢(U) = V, such
that, on U, the Ox-module .# corresponds to an A-module which is rig-flat at
x over B. Of course, .# is called rig-flat over Y if it is rig-flat over Y at each
rig-point of X. Equivalently we can say that, locally on X and for each finitely
generated ideal o/ < Oy, the canonical map &/ ®,, .# — ./ has a kernel which is
annihilated by a power of the ideal of definition .# = Os; keep in mind that we have
restricted ourselves to quasi-compact formal schemes. Furthermore, .# is called
faithfully rig-flat over X, if it is rig-flat and if the pull-back of .# with respect to any
rig-point of X is not annihilated by a power of .#. Alternatively, we can require
that, locally on X, each equation /# ®,, A =0 with a finitely generated Ox-
module 4 implies that 4" is annihilated by a power of .#.

Proposition 5.3. Let X — Y be a morphism in (FSch/S) and consider a coherent
Ox-module M .

(a) The notion of rig-flatness of M over Y is local on X and Y; i.e., consider an
affine situation, where S = Spf R, X = Spf A, Y = Spf B, and let x be a closed
rig-point of X. Then M is rig-flat (resp. rig-flat at x) over Y if and only if the A-module
M associated to M is rig-flat (resp. rig-flat at x) over B.

(b) The notion of faithful rig-flatness of M over Y is local on Y.

(c) rig-flatness, rig-flatness at a point, and faithful rig-flatness are invariant under
admissible blowing-up.

Due to the properties of rig-points, assertion (b) is clear, once (a) has been
proved. Furthermore, assertions (a) and (c) will follow from Lemma 5.5, which we
will obtain as a consequence of Lemma 5.4 below.

Lemma 54. Let X = Spf A be an affine formal S-scheme, and consider a for-
mal admissible blowing-up X' — Spf A of some coherent open ideal a = A. Let
(Spf 4o, ..., m be an affine open covering of X'. Then,

(a) the morphisms A — A; are rig-flat,

(b) A - II; A; is faithfully rig-flat.

Lemma 5.5. In the situation of 5.4, consider a morphism ¢ :Spf A — Spf B of affine
formal S-schemes, an admissible formal blowing-up Y’ — Spf B of some coherent
open ideal b < B, as well as a coherent A-module M and a closed rig-point x € Spf A.
Let (Spf B))o, ..., » be an affine open covering of Y'. Then the following are equivalent:

(a) M is rig-flat (resp. rig-flat at x) over B,

(b) M ® 4 A} is rig-flat (resp. rig-flat at x) over B for all i.

(c) M ®j Bj is rig-flat (resp. rig-flat at x) over B for all j.

Proof of 5.4. Writing a = (fo, - . . , fu), Wwe may use 2.2 and thereby assume that
SpfAj_is the affine open part of X' where f; generates a@y,. Furthermore, let
Spec A} be the affine open part of the scheme-theoretic blowing-up ¥’ — Spec A of
a where f; generates aOy,. By the definition of admissible blowing-up, A; is the
J-adic completlon of 4;. But then, considering the noetherian case, (a) is clear since
Y’ - Spec A is an isomorphism on complements of special fibres and since A A
is flat as a completion map. To verify (b), it is enough to mention that the
admissible blowing-up X’ — Spf 4 induces a surjection, in fact, a bijection between
associated rig-points, cf. 3.3, and that, for each closed rig-point x € Spf 4, the
corresponding rig-point of X’ is closed in Spf A; for some i.

In the classical rigid case, (a) and (b) follow from the fact that, for any open
immersion of affinoid K-spaces Sp Bx — Sp Ak, the associated morphism of
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affinoid K-algebras Ax — Bg is flat. To justify this fact, consider the induced
morphisms Ag . — By , between localizations at points x € Sp Bg. The latter are
flat by [AC, Chap. III, Sect. 5, no. 4, Proposition 4], since the corresponding
morphisms between maximal-adic completions are isomorphisms; cf. [BGR,

7.3.2/3]. O
Proof of 5.5. We need only to consider the noetherian case. But then, using [AC,
Chap. I, Sect. 3, no. 2, Proposition 4], the equivalences follow from 5.4. O

Although in most cases we will work exclusively on the level of admissible
formal S-schemes, we want to point out that rigid S-spaces can be viewed in
a natural way as locally ringed spaces. To give some explanations, consider an
object X, € (Rig/S). The points of X, are, of course, the rigid points (which
correspond to the rig-points of any formal S-model X of X ;,). The open subsets are
induced from formal open subschemes of formal S-models of X ;. To define the
structure sheaf ¢;, on X ;,, fix a formal S-model X of X ;, with ideal of definition
#, and consider the presheaf @ which associates to any affine open formal
subscheme Spf 4 = X the ring I'(Spec(A4) — V(F), Ospec 4) of sections which are
defined on the complement of the special fibre of the ordinary scheme Spec A.
Using the fact that sections of ¢ extend to sections of Oy, if multiplied by suitable
sections of .#, one shows that ¢ satisfies sheaf properties and, thus, extends to
a sheaf which is defined on all open subsets of X. Let us call @ the sheaf of sections
on X which are defined on the complement of the special fibre. Now, to define the
structure sheaf O, of X ;,, consider an open subspace U, © X ;. By definition,
there is a formal model Us X of U,;, 5 X, which is an open immersion. Then
associate with U,;, the ring of sections on U which are defined on the complement
of the special fibre of U. That the resulting functor 0, is well-defined and is a sheaf
on X, (in the sense that it satisfies sheaf properties with respect to finite open
coverings) follows in the classical rigid case from Tate’s acyclicity theorem [BGR,
8.2.1/1], and in the noetherian case using [EGA III,, 5.1.2]. Actually, we would
have to say that @, is a sheaf with respect to the appropriate Grothendieck
topology G on X,;,, just as in the classical rigid case. However, since all our spaces
are quasi-compact and quasi-separated, G is quite simple to describe. The G-open
subsets of X,;, are the ones which are induced from formal open subschemes of
formal S-models of X;,, whereas the G-coverings are those coverings by G-open
sets which admit a finite subcover.

Having constructed the structure sheaf 0, on a rigid S-space X, there is
the notion of coherent O,,-modules; cf. [EGA 0;, 5.3.1]. The latter extends
the notion we have in the classical rigid case. Starting with a formal S-model X
of X,;, and a coherent Ox-module .#, we can proceed similarly as above and
associate to .# a coherent 0,;,-module .#,;,. Again we say that .# is a formal
Ox-model of .#,,. An alternative way to define coherent ¢,;,-modules is by
localizing the fibred category of coherent modules over the category of admissible
formal S-schemes.

Proposition 5.6. Let ./ ;, be a coherent (;;-module on a rigid S-space X,,. Then
M ;g admits a formal Ox-model M on any formal S-model X of X

rig*

Proof. Let us start with the noetherian case. Working up to admissible formal
blowing-up of X (which is permissible, as we will see at the end of the proof), we
want to show that, locally on X ;,, there exist formal models of .#,;,. To do this, we
may assume that the formal model X we are considering is affine and that the ideal
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of definition of X is principal, say generated by g € Ox. Furthermore, we can
assume that we have an exact sequence

m n
(Orig —>(9rig '—')'/%rig_’o .

Multiplying the first morphism by a suitable power of g, we can assume that the
sequence extends to an exact sequence

> 0% - M—0

of Ox-modules. Then .# is a formal Ox-model of .#,;, which is coherent.

In the classical rigid case, we can settle the local existence of formal models by
a similar argument, this time working locally on X. So assume that X is affine,
X = Spf A, and let g be a generator of the ideal of definition of A. Then .4, is
a coherent module on the classical rigid space Sp A[¢~'] and, hence, corresponds
to an A[g~']-module M, of finite presentation. Thus, there is an exact sequence
of A[g~']-modules

F:'ig_>Frig_’Mrig'_)0

with F;; and F, finite free. The same argument as the one used above shows that
M,;, extends to an A-module M of finite presentation, giving rise to a formal model
M of M, on X. The latter is coherent since it is of finite presentation and since O
is a sheaf of coherent rings; cf. 1.3.

As a next step we want to show how to produce a global formal ¢y-model of
M i, from local ones. In particular, this will settle the assertion of 5.6 in the classical
rigid case.

Lemma 5.7. For X € (FSch/S), consider a finite open covering (X;)ic; of X, together
with a coherent Oy -module M ; on each X;. Furthermore, assume that, on X g, we
have gluing data for the M ;. Then there exist a coherent Ox-module M as well as
Ox-morphisms M |x, > M ; which are rig-isomorphisms respecting the gluing data.

The procedure of proof is similar to the one we applied for the construction of
formal models of classical rigid spaces. Using the quasi-compactness and quasi-
separatedness of X, the basic case to deal with, is the one where I = {1,2} and
where X; and X, are affine; we set Xy, = X;nX,. To settle this case, let
M1, (resp. M ,,) be the restriction of 4 (resp. #,) to X,. Furthermore, let
g € Og be a generator of the ideal of definition J of X (for simplicity, we assume that
3 is principal). Then there is a power g" with the property that g".#,, may be
viewed as a submodule of .# ,, via an injection g".#, s ./ ,, respecting the gluing
data we have on the complement of the special fibre of X. Working modulo powers
of 3 and applying [EGA 1,.., 6.9.7], it is possible to extend g".#,, to a coherent
submodule .#' of #,. Then g"#, and ', + g".#, can be glued along g". 4,
over X ,, thus providing the desired Ox-module .# and thereby establishing the
assertion of 5.7.

Finally, it remains to justify that, in the noetherian case, we are allowed to work
up to admissible formal blowing-up of X, as we have done by using a local
argument on X .. So let ¢: X' — X be an admissible formal blowing-up, and
assume that .#’ is a coherent Oy,-module which is a formal model of .#,;,. Then
one can use the algebraization theorem [EGA III;, 4.1.5], in conjunction with
[EGA III,, 5.1.4], to show that ¢.(#') is a coherent Ox-module such that
©*@, (M) is rig-isomorphic to #'. In particular, ¢, (#’) is a formal Ox-model of
M ;. This finishes the proof of 5.6. O
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We end our general discussion of coherent modules by discussing briefly the
notion of flatness for coherent modules over rigid S-spaces. Consider a morphism
@rig* Yrig = X1ig 1n (Rig/S) and a coherent O;,-module .#;, on Y,;,. We say that
M g 18 flat over X, if there is a formal model ¢ : Y — X of ¢,;, with a formal model
M of M, on Y such that ./ is rig-flat over X. In fact, the latter means that ./ is
flat over X at all points of X,;,; i.e., at all points of the complement of the special
fibre of X. The morphism ¢, itself is called flat if ©y,,, the canonical Y,;,-module
induced from structure sheaves of formal models of Y., is flat over X ;,. As follows
from the properties of rig-flatness, the notion of flatness is local on X ;, and Y, as
well as independent of the choice of formal models.
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